Optogenetic control of phosphoinositide metabolism

Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 109; H. 35; S. E2316
Hauptverfasser: Idevall-Hagren, Olof, Dickson, Eamonn J, Hille, Bertil, Toomre, Derek K, De Camilli, Pietro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 28.08.2012
Schlagworte:
ISSN:1091-6490, 1091-6490
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids.
AbstractList Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids.Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids.
Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids.
Author Idevall-Hagren, Olof
De Camilli, Pietro
Dickson, Eamonn J
Hille, Bertil
Toomre, Derek K
Author_xml – sequence: 1
  givenname: Olof
  surname: Idevall-Hagren
  fullname: Idevall-Hagren, Olof
  organization: Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
– sequence: 2
  givenname: Eamonn J
  surname: Dickson
  fullname: Dickson, Eamonn J
– sequence: 3
  givenname: Bertil
  surname: Hille
  fullname: Hille, Bertil
– sequence: 4
  givenname: Derek K
  surname: Toomre
  fullname: Toomre, Derek K
– sequence: 5
  givenname: Pietro
  surname: De Camilli
  fullname: De Camilli, Pietro
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22847441$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAUhYOMOA9du5Mu3XS8uU3SZimDLxiYja5Lmt5qpE1qky789w44govzWHwcOGu28METY9ccthzK4m70Jm45cl6A5KDP2OroPFdCw-JfX7J1jJ8AoGUFF2yJWIlSCL5ieBhTeCdPydnMBp-m0Gehy8aPEI9yPkSXXEvZQMk0oXdxuGTnnekjXZ1yw94eH153z_n-8PSyu9_nViqd8lJYIKqE5KbFqgGphUXUtlCqsNR0rZKyadBSKa0uO2NQSY5SGbStKUjhht3-7o5T-Joppnpw0VLfG09hjjWHokQhEMQRvTmhczNQW4-TG8z0Xf_9xB8jq1bx
CitedBy_id crossref_primary_10_1073_pnas_1604720113
crossref_primary_10_1016_j_ceb_2024_102373
crossref_primary_10_1016_j_cub_2012_09_005
crossref_primary_10_3389_fnmol_2015_00037
crossref_primary_10_1038_nature25146
crossref_primary_10_1042_BST20130150
crossref_primary_10_1038_s41420_022_01258_0
crossref_primary_10_1002_adbi_201800310
crossref_primary_10_1016_j_celrep_2023_112826
crossref_primary_10_1016_j_devcel_2015_10_020
crossref_primary_10_1038_s42005_019_0198_5
crossref_primary_10_1254_jphs_14R14CP
crossref_primary_10_1016_j_bbalip_2014_10_013
crossref_primary_10_3389_fnsyn_2016_00024
crossref_primary_10_1113_jphysiol_2013_258301
crossref_primary_10_1146_annurev_bioeng_083120_111648
crossref_primary_10_1016_j_jmb_2020_03_019
crossref_primary_10_1126_science_aah6171
crossref_primary_10_1016_j_cbpa_2021_06_005
crossref_primary_10_3389_fcell_2023_1195806
crossref_primary_10_1002_bies_201900245
crossref_primary_10_1091_mbc_e14_04_0870
crossref_primary_10_7554_eLife_85962
crossref_primary_10_1016_j_celrep_2024_113992
crossref_primary_10_1371_journal_pone_0053790
crossref_primary_10_1083_jcb_202405174
crossref_primary_10_1038_ncb3339
crossref_primary_10_1038_s41467_021_25465_y
crossref_primary_10_1016_j_chembiol_2015_04_014
crossref_primary_10_1016_j_jphotochemrev_2016_10_003
crossref_primary_10_1016_j_cell_2013_05_026
crossref_primary_10_1146_annurev_biochem_060614_034411
crossref_primary_10_1002_cbic_201800013
crossref_primary_10_1038_s41467_021_25920_w
crossref_primary_10_1038_s41557_023_01214_0
crossref_primary_10_1371_journal_ppat_1007046
crossref_primary_10_1016_j_chembiol_2022_11_005
crossref_primary_10_1073_pnas_1611096114
crossref_primary_10_1083_jcb_201503067
crossref_primary_10_1091_mbc_e17_01_0030
crossref_primary_10_1016_j_ejcb_2015_06_003
crossref_primary_10_1002_biot_201400077
crossref_primary_10_1016_j_bcp_2020_114088
crossref_primary_10_1016_j_tibtech_2016_09_002
crossref_primary_10_1371_journal_pgen_1003861
crossref_primary_10_1016_j_bbalip_2014_12_008
crossref_primary_10_1177_10738584251337664
crossref_primary_10_1073_pnas_2318900121
crossref_primary_10_1016_j_neuron_2017_09_047
crossref_primary_10_1038_s41589_023_01520_1
crossref_primary_10_1002_adfm_202007215
crossref_primary_10_1074_jbc_RA119_011527
crossref_primary_10_3389_fcell_2021_626136
crossref_primary_10_1111_tra_12562
crossref_primary_10_1016_j_jbc_2021_100726
crossref_primary_10_1074_jbc_M113_465583
crossref_primary_10_1038_nchembio_1633
crossref_primary_10_1073_pnas_1713845115
crossref_primary_10_1002_yea_3933
crossref_primary_10_1016_j_bbamem_2024_184396
crossref_primary_10_1242_jcs_174805
crossref_primary_10_1016_j_jbc_2025_108253
crossref_primary_10_1038_s42003_022_03835_6
crossref_primary_10_1016_j_tplants_2019_10_002
crossref_primary_10_1073_pnas_1409667112
crossref_primary_10_1016_j_bpj_2016_07_040
crossref_primary_10_7554_eLife_63230
crossref_primary_10_1016_j_tcb_2022_01_009
crossref_primary_10_1039_c5pp00171d
crossref_primary_10_1016_j_bbamcr_2016_11_009
crossref_primary_10_1146_annurev_chembioeng_060816_101254
crossref_primary_10_1159_000528796
crossref_primary_10_1096_fasebj_29_1_supplement_364_1
crossref_primary_10_1186_s12915_021_01151_9
crossref_primary_10_7554_eLife_52589
crossref_primary_10_1073_pnas_2426929122
crossref_primary_10_1016_j_cbpa_2022_102234
crossref_primary_10_7554_eLife_30203
crossref_primary_10_3389_fcell_2020_00757
crossref_primary_10_1016_j_tcb_2016_09_006
crossref_primary_10_1083_jcb_201907013
crossref_primary_10_7554_eLife_54113
crossref_primary_10_1016_j_chembiol_2016_07_001
crossref_primary_10_12688_f1000research_7370_1
crossref_primary_10_1016_j_ceb_2018_08_003
crossref_primary_10_1159_000486644
crossref_primary_10_7554_eLife_01621
crossref_primary_10_1038_s41592_019_0541_5
crossref_primary_10_1038_ncomms5925
crossref_primary_10_3389_fphar_2015_00068
crossref_primary_10_1016_j_jmb_2020_06_019
crossref_primary_10_1016_j_bbalip_2014_03_012
crossref_primary_10_1038_ncomms14396
crossref_primary_10_3389_fcell_2020_00510
crossref_primary_10_1016_j_jbc_2022_101893
crossref_primary_10_1002_wsbm_1249
crossref_primary_10_1007_s00018_021_03836_4
crossref_primary_10_1002_bit_27895
crossref_primary_10_1083_jcb_201307100
crossref_primary_10_1016_j_jbc_2021_100509
crossref_primary_10_1042_BJ20140361
crossref_primary_10_1016_j_tibtech_2014_11_007
crossref_primary_10_1038_s41556_025_01647_4
crossref_primary_10_1016_j_ceb_2014_08_004
crossref_primary_10_1016_j_sbi_2019_01_021
crossref_primary_10_1038_s41598_018_32539_3
crossref_primary_10_1038_s41598_018_38443_0
crossref_primary_10_1038_ncomms13516
crossref_primary_10_15252_embj_2020106871
crossref_primary_10_7554_eLife_91012
crossref_primary_10_34172_bi_2021_22179
crossref_primary_10_1002_anie_201402294
crossref_primary_10_1038_srep14589
crossref_primary_10_1042_BCJ20180022
crossref_primary_10_15252_embj_201593564
crossref_primary_10_1002_bies_201200129
crossref_primary_10_1074_jbc_RA120_012606
crossref_primary_10_1111_boc_201200056
crossref_primary_10_1038_s41467_017_00648_8
crossref_primary_10_1038_s41580_022_00490_x
crossref_primary_10_1038_nchembio_2000
crossref_primary_10_3389_fmolb_2015_00030
crossref_primary_10_1016_j_bmc_2015_03_048
crossref_primary_10_1038_ncomms7256
crossref_primary_10_1371_journal_pone_0153487
crossref_primary_10_7554_eLife_02975
crossref_primary_10_1016_j_bpj_2021_06_041
crossref_primary_10_1146_annurev_physiol_042022_013956
crossref_primary_10_1242_jcs_151472
crossref_primary_10_1080_01677063_2018_1502762
crossref_primary_10_1016_j_jbc_2022_102009
crossref_primary_10_1083_jcb_201206095
crossref_primary_10_1177_25152564241229272
crossref_primary_10_1038_s42003_023_04726_0
crossref_primary_10_1111_ejn_16526
crossref_primary_10_1242_jcs_099994
crossref_primary_10_1039_C7CS00404D
crossref_primary_10_1096_fj_201801878R
crossref_primary_10_1371_journal_pone_0070861
crossref_primary_10_3389_fcell_2022_789841
crossref_primary_10_1002_wdev_188
crossref_primary_10_1016_j_devcel_2015_11_020
crossref_primary_10_1016_j_devcel_2020_11_024
crossref_primary_10_1016_j_devcel_2023_04_019
crossref_primary_10_1038_s41583_022_00561_0
crossref_primary_10_1002_rmv_2001
crossref_primary_10_7554_eLife_91012_3
crossref_primary_10_1083_jcb_201903121
crossref_primary_10_1042_BCJ20160240
crossref_primary_10_1016_j_bpj_2015_08_042
crossref_primary_10_1016_j_jbc_2021_100290
crossref_primary_10_1002_cbic_201700635
crossref_primary_10_1038_s41556_024_01495_8
crossref_primary_10_1038_s41467_019_12260_z
crossref_primary_10_1016_j_bbalip_2014_09_017
crossref_primary_10_1083_jcb_201312072
crossref_primary_10_1073_pnas_1518412113
crossref_primary_10_1242_dev_140889
crossref_primary_10_1126_science_1250709
crossref_primary_10_1016_j_chembiol_2016_06_009
crossref_primary_10_1016_j_tibtech_2018_06_011
crossref_primary_10_1016_j_bbalip_2014_09_010
crossref_primary_10_15252_embj_201591565
crossref_primary_10_1016_j_chembiol_2014_07_004
crossref_primary_10_1016_j_bbalip_2017_02_002
crossref_primary_10_1038_nchembio_2063
crossref_primary_10_1038_nrm3837
crossref_primary_10_1242_jcs_228544
crossref_primary_10_1016_j_chembiol_2014_05_013
crossref_primary_10_1016_j_jmb_2020_07_005
crossref_primary_10_1016_j_tcb_2013_05_002
crossref_primary_10_1152_physrev_00040_2013
crossref_primary_10_1073_pnas_1308987110
crossref_primary_10_1093_lifemeta_loae014
crossref_primary_10_1002_ange_201402294
crossref_primary_10_1242_jcs_154435
crossref_primary_10_1016_j_chembiol_2013_03_010
crossref_primary_10_1038_s41592_020_0913_x
crossref_primary_10_1073_pnas_2212325120
crossref_primary_10_1016_j_devcel_2019_11_005
crossref_primary_10_1016_j_preteyeres_2022_101153
crossref_primary_10_1186_s12943_024_02219_0
crossref_primary_10_1016_j_ymeth_2025_07_002
crossref_primary_10_1016_j_cub_2015_11_040
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1211305109
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 22847441
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS036251
– fundername: NINDS NIH HHS
  grantid: R01 NS008174
– fundername: Howard Hughes Medical Institute
– fundername: NINDS NIH HHS
  grantid: NS08174
– fundername: NINDS NIH HHS
  grantid: R37 NS008174
– fundername: NIDDK NIH HHS
  grantid: R01 DK082700
– fundername: NIDDK NIH HHS
  grantid: DK082700
– fundername: NIDA NIH HHS
  grantid: P30 DA018343
– fundername: NINDS NIH HHS
  grantid: NS36251
– fundername: NINDS NIH HHS
  grantid: R37 NS036251
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c569t-74c0ee8451ad28b0594c229c3663cebfd655bb2ce75c97faa2651256a2cda3e62
IEDL.DBID 7X8
ISICitedReferencesCount 253
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308565300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Fri Sep 05 09:02:29 EDT 2025
Thu Apr 03 06:56:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-74c0ee8451ad28b0594c229c3663cebfd655bb2ce75c97faa2651256a2cda3e62
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/109/35/E2316.full.pdf
PMID 22847441
PQID 1037244204
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1037244204
pubmed_primary_22847441
PublicationCentury 2000
PublicationDate 2012-08-28
PublicationDateYYYYMMDD 2012-08-28
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
References 21765402 - Nat Biotechnol. 2011 Aug;29(8):757-61
11001876 - Biochem J. 2000 Oct 1;351(Pt 1):19-31
17254974 - Cell. 2007 Jan 26;128(2):383-97
9512420 - Curr Biol. 1998 Mar 12;8(6):343-6
9442017 - J Biol Chem. 1998 Jan 23;273(4):1859-62
21909100 - Nat Methods. 2011;8(10):837-9
22341323 - Prog Brain Res. 2012;196:95-117
17183359 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):37-48
10782093 - Trends Biochem Sci. 2000 May;25(5):229-35
16990515 - Science. 2006 Dec 1;314(5804):1454-7
18784754 - EMBO J. 2008 Oct 8;27(19):2457-70
22481094 - Cell Signal. 2012 Aug;24(8):1541-7
20100891 - J Gen Physiol. 2010 Feb;135(2):99-114
17095657 - Science. 2006 Dec 1;314(5804):1458-61
17360432 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3793-8
17030795 - Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15473-8
19749742 - Nature. 2009 Oct 15;461(7266):997-1001
19272022 - Biochem J. 2009 Apr 1;419(1):29-49
21037589 - Nat Methods. 2010 Dec;7(12):973-5
15809030 - Dev Cell. 2005 Apr;8(4):467-77
1643658 - Cell. 1992 Aug 7;70(3):401-10
17035995 - Nature. 2006 Oct 12;443(7112):651-7
19196647 - Physiology (Bethesda). 2009 Feb;24:8-16
22079055 - Curr Opin Chem Biol. 2011 Dec;15(6):822-30
19303853 - Cell. 2009 Mar 20;136(6):1110-21
21692661 - Annu Rev Neurosci. 2011;34:389-412
11283724 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):268-75
12040186 - Science. 2002 May 31;296(5573):1655-7
20043944 - Prog Lipid Res. 2010 Jul;49(3):201-17
15635101 - Mol Biol Cell. 2005 Mar;16(3):1282-95
17088424 - J Cell Biol. 2006 Nov 6;175(3):377-82
12062103 - Cell. 2002 May 31;109(5):599-610
22381590 - Trends Biochem Sci. 2012 Apr;37(4):134-43
21142151 - J Am Chem Soc. 2011 Jan 12;133(1):12-4
15184679 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8951-6
19693014 - Nature. 2009 Sep 3;461(7260):104-8
16921364 - Nat Cell Biol. 2006 Sep;8(9):963-70
References_xml – reference: 21037589 - Nat Methods. 2010 Dec;7(12):973-5
– reference: 17183359 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):37-48
– reference: 21909100 - Nat Methods. 2011;8(10):837-9
– reference: 9442017 - J Biol Chem. 1998 Jan 23;273(4):1859-62
– reference: 1643658 - Cell. 1992 Aug 7;70(3):401-10
– reference: 11001876 - Biochem J. 2000 Oct 1;351(Pt 1):19-31
– reference: 19196647 - Physiology (Bethesda). 2009 Feb;24:8-16
– reference: 21765402 - Nat Biotechnol. 2011 Aug;29(8):757-61
– reference: 17035995 - Nature. 2006 Oct 12;443(7112):651-7
– reference: 17360432 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3793-8
– reference: 22481094 - Cell Signal. 2012 Aug;24(8):1541-7
– reference: 19693014 - Nature. 2009 Sep 3;461(7260):104-8
– reference: 20043944 - Prog Lipid Res. 2010 Jul;49(3):201-17
– reference: 22381590 - Trends Biochem Sci. 2012 Apr;37(4):134-43
– reference: 18784754 - EMBO J. 2008 Oct 8;27(19):2457-70
– reference: 21142151 - J Am Chem Soc. 2011 Jan 12;133(1):12-4
– reference: 16921364 - Nat Cell Biol. 2006 Sep;8(9):963-70
– reference: 12040186 - Science. 2002 May 31;296(5573):1655-7
– reference: 15635101 - Mol Biol Cell. 2005 Mar;16(3):1282-95
– reference: 10782093 - Trends Biochem Sci. 2000 May;25(5):229-35
– reference: 16990515 - Science. 2006 Dec 1;314(5804):1454-7
– reference: 15184679 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8951-6
– reference: 17030795 - Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15473-8
– reference: 17095657 - Science. 2006 Dec 1;314(5804):1458-61
– reference: 19272022 - Biochem J. 2009 Apr 1;419(1):29-49
– reference: 20100891 - J Gen Physiol. 2010 Feb;135(2):99-114
– reference: 19749742 - Nature. 2009 Oct 15;461(7266):997-1001
– reference: 11283724 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):268-75
– reference: 17254974 - Cell. 2007 Jan 26;128(2):383-97
– reference: 9512420 - Curr Biol. 1998 Mar 12;8(6):343-6
– reference: 17088424 - J Cell Biol. 2006 Nov 6;175(3):377-82
– reference: 22079055 - Curr Opin Chem Biol. 2011 Dec;15(6):822-30
– reference: 21692661 - Annu Rev Neurosci. 2011;34:389-412
– reference: 19303853 - Cell. 2009 Mar 20;136(6):1110-21
– reference: 22341323 - Prog Brain Res. 2012;196:95-117
– reference: 12062103 - Cell. 2002 May 31;109(5):599-610
– reference: 15809030 - Dev Cell. 2005 Apr;8(4):467-77
SSID ssj0009580
Score 2.5258844
Snippet Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E2316
SubjectTerms Actins - metabolism
Amino Acid Motifs - physiology
Animals
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Binding Sites - physiology
Cell Membrane - metabolism
Cell Membrane - radiation effects
Cercopithecus aethiops
COS Cells
Cryptochromes - genetics
Cryptochromes - metabolism
Endocytosis - physiology
Endocytosis - radiation effects
Humans
KCNQ2 Potassium Channel - physiology
KCNQ3 Potassium Channel - physiology
Light
Membrane Potentials - physiology
Membrane Potentials - radiation effects
PC12 Cells
Phosphatidylinositol 3-Kinases - metabolism
Phosphatidylinositol 4,5-Diphosphate - metabolism
Phosphatidylinositols - metabolism
Phosphoric Monoester Hydrolases - genetics
Phosphoric Monoester Hydrolases - metabolism
Phosphorylation - physiology
Phosphorylation - radiation effects
Rats
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Signal Transduction - physiology
Signal Transduction - radiation effects
Title Optogenetic control of phosphoinositide metabolism
URI https://www.ncbi.nlm.nih.gov/pubmed/22847441
https://www.proquest.com/docview/1037244204
Volume 109
WOSCitedRecordID wos000308565300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleChIDDFEbO46dCSFExULpAFK3yLHPohJNAgn8fs6JK1iQkBjiLZJ1vsd35_N3hFwwpVVqVYKWJiGMVaRCZeUotBaYwhyb50y3wybEZCJns3TqC261b6tc-sTWUZtSuxr50L1nw1BER_F19Ra6qVHudtWP0FglPYZQxmm1mMkfpLuyYyNIozCJ09GS2kewYVWo2jEroAvnbTfib_iyjTPjrf_ucJtseoQZ3HQq0ScrUOyQvrfhOrj0RNNXu4Q-Vk2JCuTeMQa-Zz0obVC9lDV-86Jt6DIQLKBBXXmd14s98jy-e7q9D_0MhVDzJG1CEesRgIx5pAyVuWNn0ZSmmiHS0JBbk3Ce51SD4DoVVimaIATgiaLaKAYJ3SdrRVnAIQkioVnMDMvBYBaWY6IH0jIbR0ZTQUEOyPlSLhnqqLt4UAWUH3X2LZkBOeiEm1UdmUZGXXxETHb0h7-PyQbiFepKulSekJ5FC4VTsq4_m3n9ftYePq6T6cMXwR-56w
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optogenetic+control+of+phosphoinositide+metabolism&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Idevall-Hagren%2C+Olof&rft.au=Dickson%2C+Eamonn+J&rft.au=Hille%2C+Bertil&rft.au=Toomre%2C+Derek+K&rft.date=2012-08-28&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=109&rft.issue=35&rft.spage=E2316&rft_id=info:doi/10.1073%2Fpnas.1211305109&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon