Optogenetic control of phosphoinositide metabolism
Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly,...
Gespeichert in:
| Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS Jg. 109; H. 35; S. E2316 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
28.08.2012
|
| Schlagworte: | |
| ISSN: | 1091-6490, 1091-6490 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids. |
|---|---|
| AbstractList | Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids.Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids. Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced dimerization between two plant proteins, cryptochrome 2 (CRY2) and the transcription factor CIBN, to control plasma membrane PI levels rapidly, locally, and reversibly. The inositol 5-phosphatase domain of OCRL (5-ptase(OCRL)), which acts on PI(4,5)P(2) and PI(3,4,5)P(3), was fused to the photolyase homology region domain of CRY2, and the CRY2-binding domain, CIBN, was fused to plasma membrane-targeting motifs. Blue-light illumination (458-488 nm) of mammalian cells expressing these constructs resulted in nearly instantaneous recruitment of 5-ptase(OCRL) to the plasma membrane, where it caused rapid (within seconds) and reversible (within minutes) dephosphorylation of its targets as revealed by diverse cellular assays: dissociation of PI(4,5)P(2) and PI(3,4,5)P(3) biosensors, disappearance of endocytic clathrin-coated pits, nearly complete inhibition of KCNQ2/3 channel currents, and loss of membrane ruffling. Focal illumination resulted in local and transient 5-ptase(OCRL) recruitment and PI(4,5)P(2) dephosphorylation, causing not only local collapse and retraction of the cell edge or process but also compensatory accumulation of the PI(4,5)P(2) biosensor and membrane ruffling at the opposite side of the cells. Using the same approach for the recruitment of PI3K, local PI(3,4,5)P(3) synthesis and membrane ruffling could be induced, with corresponding loss of ruffling distally to the illuminated region. This technique provides a powerful tool for dissecting with high spatial-temporal kinetics the cellular functions of various PIs and reversibly controlling the functions of downstream effectors of these signaling lipids. |
| Author | Idevall-Hagren, Olof De Camilli, Pietro Dickson, Eamonn J Hille, Bertil Toomre, Derek K |
| Author_xml | – sequence: 1 givenname: Olof surname: Idevall-Hagren fullname: Idevall-Hagren, Olof organization: Department of Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA – sequence: 2 givenname: Eamonn J surname: Dickson fullname: Dickson, Eamonn J – sequence: 3 givenname: Bertil surname: Hille fullname: Hille, Bertil – sequence: 4 givenname: Derek K surname: Toomre fullname: Toomre, Derek K – sequence: 5 givenname: Pietro surname: De Camilli fullname: De Camilli, Pietro |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22847441$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAUhYOMOA9du5Mu3XS8uU3SZimDLxiYja5Lmt5qpE1qky789w44govzWHwcOGu28METY9ccthzK4m70Jm45cl6A5KDP2OroPFdCw-JfX7J1jJ8AoGUFF2yJWIlSCL5ieBhTeCdPydnMBp-m0Gehy8aPEI9yPkSXXEvZQMk0oXdxuGTnnekjXZ1yw94eH153z_n-8PSyu9_nViqd8lJYIKqE5KbFqgGphUXUtlCqsNR0rZKyadBSKa0uO2NQSY5SGbStKUjhht3-7o5T-Joppnpw0VLfG09hjjWHokQhEMQRvTmhczNQW4-TG8z0Xf_9xB8jq1bx |
| CitedBy_id | crossref_primary_10_1073_pnas_1604720113 crossref_primary_10_1016_j_ceb_2024_102373 crossref_primary_10_1016_j_cub_2012_09_005 crossref_primary_10_3389_fnmol_2015_00037 crossref_primary_10_1038_nature25146 crossref_primary_10_1042_BST20130150 crossref_primary_10_1038_s41420_022_01258_0 crossref_primary_10_1002_adbi_201800310 crossref_primary_10_1016_j_celrep_2023_112826 crossref_primary_10_1016_j_devcel_2015_10_020 crossref_primary_10_1038_s42005_019_0198_5 crossref_primary_10_1254_jphs_14R14CP crossref_primary_10_1016_j_bbalip_2014_10_013 crossref_primary_10_3389_fnsyn_2016_00024 crossref_primary_10_1113_jphysiol_2013_258301 crossref_primary_10_1146_annurev_bioeng_083120_111648 crossref_primary_10_1016_j_jmb_2020_03_019 crossref_primary_10_1126_science_aah6171 crossref_primary_10_1016_j_cbpa_2021_06_005 crossref_primary_10_3389_fcell_2023_1195806 crossref_primary_10_1002_bies_201900245 crossref_primary_10_1091_mbc_e14_04_0870 crossref_primary_10_7554_eLife_85962 crossref_primary_10_1016_j_celrep_2024_113992 crossref_primary_10_1371_journal_pone_0053790 crossref_primary_10_1083_jcb_202405174 crossref_primary_10_1038_ncb3339 crossref_primary_10_1038_s41467_021_25465_y crossref_primary_10_1016_j_chembiol_2015_04_014 crossref_primary_10_1016_j_jphotochemrev_2016_10_003 crossref_primary_10_1016_j_cell_2013_05_026 crossref_primary_10_1146_annurev_biochem_060614_034411 crossref_primary_10_1002_cbic_201800013 crossref_primary_10_1038_s41467_021_25920_w crossref_primary_10_1038_s41557_023_01214_0 crossref_primary_10_1371_journal_ppat_1007046 crossref_primary_10_1016_j_chembiol_2022_11_005 crossref_primary_10_1073_pnas_1611096114 crossref_primary_10_1083_jcb_201503067 crossref_primary_10_1091_mbc_e17_01_0030 crossref_primary_10_1016_j_ejcb_2015_06_003 crossref_primary_10_1002_biot_201400077 crossref_primary_10_1016_j_bcp_2020_114088 crossref_primary_10_1016_j_tibtech_2016_09_002 crossref_primary_10_1371_journal_pgen_1003861 crossref_primary_10_1016_j_bbalip_2014_12_008 crossref_primary_10_1177_10738584251337664 crossref_primary_10_1073_pnas_2318900121 crossref_primary_10_1016_j_neuron_2017_09_047 crossref_primary_10_1038_s41589_023_01520_1 crossref_primary_10_1002_adfm_202007215 crossref_primary_10_1074_jbc_RA119_011527 crossref_primary_10_3389_fcell_2021_626136 crossref_primary_10_1111_tra_12562 crossref_primary_10_1016_j_jbc_2021_100726 crossref_primary_10_1074_jbc_M113_465583 crossref_primary_10_1038_nchembio_1633 crossref_primary_10_1073_pnas_1713845115 crossref_primary_10_1002_yea_3933 crossref_primary_10_1016_j_bbamem_2024_184396 crossref_primary_10_1242_jcs_174805 crossref_primary_10_1016_j_jbc_2025_108253 crossref_primary_10_1038_s42003_022_03835_6 crossref_primary_10_1016_j_tplants_2019_10_002 crossref_primary_10_1073_pnas_1409667112 crossref_primary_10_1016_j_bpj_2016_07_040 crossref_primary_10_7554_eLife_63230 crossref_primary_10_1016_j_tcb_2022_01_009 crossref_primary_10_1039_c5pp00171d crossref_primary_10_1016_j_bbamcr_2016_11_009 crossref_primary_10_1146_annurev_chembioeng_060816_101254 crossref_primary_10_1159_000528796 crossref_primary_10_1096_fasebj_29_1_supplement_364_1 crossref_primary_10_1186_s12915_021_01151_9 crossref_primary_10_7554_eLife_52589 crossref_primary_10_1073_pnas_2426929122 crossref_primary_10_1016_j_cbpa_2022_102234 crossref_primary_10_7554_eLife_30203 crossref_primary_10_3389_fcell_2020_00757 crossref_primary_10_1016_j_tcb_2016_09_006 crossref_primary_10_1083_jcb_201907013 crossref_primary_10_7554_eLife_54113 crossref_primary_10_1016_j_chembiol_2016_07_001 crossref_primary_10_12688_f1000research_7370_1 crossref_primary_10_1016_j_ceb_2018_08_003 crossref_primary_10_1159_000486644 crossref_primary_10_7554_eLife_01621 crossref_primary_10_1038_s41592_019_0541_5 crossref_primary_10_1038_ncomms5925 crossref_primary_10_3389_fphar_2015_00068 crossref_primary_10_1016_j_jmb_2020_06_019 crossref_primary_10_1016_j_bbalip_2014_03_012 crossref_primary_10_1038_ncomms14396 crossref_primary_10_3389_fcell_2020_00510 crossref_primary_10_1016_j_jbc_2022_101893 crossref_primary_10_1002_wsbm_1249 crossref_primary_10_1007_s00018_021_03836_4 crossref_primary_10_1002_bit_27895 crossref_primary_10_1083_jcb_201307100 crossref_primary_10_1016_j_jbc_2021_100509 crossref_primary_10_1042_BJ20140361 crossref_primary_10_1016_j_tibtech_2014_11_007 crossref_primary_10_1038_s41556_025_01647_4 crossref_primary_10_1016_j_ceb_2014_08_004 crossref_primary_10_1016_j_sbi_2019_01_021 crossref_primary_10_1038_s41598_018_32539_3 crossref_primary_10_1038_s41598_018_38443_0 crossref_primary_10_1038_ncomms13516 crossref_primary_10_15252_embj_2020106871 crossref_primary_10_7554_eLife_91012 crossref_primary_10_34172_bi_2021_22179 crossref_primary_10_1002_anie_201402294 crossref_primary_10_1038_srep14589 crossref_primary_10_1042_BCJ20180022 crossref_primary_10_15252_embj_201593564 crossref_primary_10_1002_bies_201200129 crossref_primary_10_1074_jbc_RA120_012606 crossref_primary_10_1111_boc_201200056 crossref_primary_10_1038_s41467_017_00648_8 crossref_primary_10_1038_s41580_022_00490_x crossref_primary_10_1038_nchembio_2000 crossref_primary_10_3389_fmolb_2015_00030 crossref_primary_10_1016_j_bmc_2015_03_048 crossref_primary_10_1038_ncomms7256 crossref_primary_10_1371_journal_pone_0153487 crossref_primary_10_7554_eLife_02975 crossref_primary_10_1016_j_bpj_2021_06_041 crossref_primary_10_1146_annurev_physiol_042022_013956 crossref_primary_10_1242_jcs_151472 crossref_primary_10_1080_01677063_2018_1502762 crossref_primary_10_1016_j_jbc_2022_102009 crossref_primary_10_1083_jcb_201206095 crossref_primary_10_1177_25152564241229272 crossref_primary_10_1038_s42003_023_04726_0 crossref_primary_10_1111_ejn_16526 crossref_primary_10_1242_jcs_099994 crossref_primary_10_1039_C7CS00404D crossref_primary_10_1096_fj_201801878R crossref_primary_10_1371_journal_pone_0070861 crossref_primary_10_3389_fcell_2022_789841 crossref_primary_10_1002_wdev_188 crossref_primary_10_1016_j_devcel_2015_11_020 crossref_primary_10_1016_j_devcel_2020_11_024 crossref_primary_10_1016_j_devcel_2023_04_019 crossref_primary_10_1038_s41583_022_00561_0 crossref_primary_10_1002_rmv_2001 crossref_primary_10_7554_eLife_91012_3 crossref_primary_10_1083_jcb_201903121 crossref_primary_10_1042_BCJ20160240 crossref_primary_10_1016_j_bpj_2015_08_042 crossref_primary_10_1016_j_jbc_2021_100290 crossref_primary_10_1002_cbic_201700635 crossref_primary_10_1038_s41556_024_01495_8 crossref_primary_10_1038_s41467_019_12260_z crossref_primary_10_1016_j_bbalip_2014_09_017 crossref_primary_10_1083_jcb_201312072 crossref_primary_10_1073_pnas_1518412113 crossref_primary_10_1242_dev_140889 crossref_primary_10_1126_science_1250709 crossref_primary_10_1016_j_chembiol_2016_06_009 crossref_primary_10_1016_j_tibtech_2018_06_011 crossref_primary_10_1016_j_bbalip_2014_09_010 crossref_primary_10_15252_embj_201591565 crossref_primary_10_1016_j_chembiol_2014_07_004 crossref_primary_10_1016_j_bbalip_2017_02_002 crossref_primary_10_1038_nchembio_2063 crossref_primary_10_1038_nrm3837 crossref_primary_10_1242_jcs_228544 crossref_primary_10_1016_j_chembiol_2014_05_013 crossref_primary_10_1016_j_jmb_2020_07_005 crossref_primary_10_1016_j_tcb_2013_05_002 crossref_primary_10_1152_physrev_00040_2013 crossref_primary_10_1073_pnas_1308987110 crossref_primary_10_1093_lifemeta_loae014 crossref_primary_10_1002_ange_201402294 crossref_primary_10_1242_jcs_154435 crossref_primary_10_1016_j_chembiol_2013_03_010 crossref_primary_10_1038_s41592_020_0913_x crossref_primary_10_1073_pnas_2212325120 crossref_primary_10_1016_j_devcel_2019_11_005 crossref_primary_10_1016_j_preteyeres_2022_101153 crossref_primary_10_1186_s12943_024_02219_0 crossref_primary_10_1016_j_ymeth_2025_07_002 crossref_primary_10_1016_j_cub_2015_11_040 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1073/pnas.1211305109 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1091-6490 |
| ExternalDocumentID | 22847441 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS036251 – fundername: NINDS NIH HHS grantid: R01 NS008174 – fundername: Howard Hughes Medical Institute – fundername: NINDS NIH HHS grantid: NS08174 – fundername: NINDS NIH HHS grantid: R37 NS008174 – fundername: NIDDK NIH HHS grantid: R01 DK082700 – fundername: NIDDK NIH HHS grantid: DK082700 – fundername: NIDA NIH HHS grantid: P30 DA018343 – fundername: NINDS NIH HHS grantid: NS36251 – fundername: NINDS NIH HHS grantid: R37 NS036251 |
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DU5 E3Z EBS ECM EIF EJD F5P FRP GX1 H13 HH5 HTVGU HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 MVM N9A NPM N~3 O9- OK1 P-O PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM 7X8 ADXHL |
| ID | FETCH-LOGICAL-c569t-74c0ee8451ad28b0594c229c3663cebfd655bb2ce75c97faa2651256a2cda3e62 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 253 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000308565300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1091-6490 |
| IngestDate | Fri Sep 05 09:02:29 EDT 2025 Thu Apr 03 06:56:50 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 35 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c569t-74c0ee8451ad28b0594c229c3663cebfd655bb2ce75c97faa2651256a2cda3e62 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.pnas.org/content/pnas/109/35/E2316.full.pdf |
| PMID | 22847441 |
| PQID | 1037244204 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1037244204 pubmed_primary_22847441 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-28 |
| PublicationDateYYYYMMDD | 2012-08-28 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
| PublicationTitleAlternate | Proc Natl Acad Sci U S A |
| PublicationYear | 2012 |
| References | 21765402 - Nat Biotechnol. 2011 Aug;29(8):757-61 11001876 - Biochem J. 2000 Oct 1;351(Pt 1):19-31 17254974 - Cell. 2007 Jan 26;128(2):383-97 9512420 - Curr Biol. 1998 Mar 12;8(6):343-6 9442017 - J Biol Chem. 1998 Jan 23;273(4):1859-62 21909100 - Nat Methods. 2011;8(10):837-9 22341323 - Prog Brain Res. 2012;196:95-117 17183359 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):37-48 10782093 - Trends Biochem Sci. 2000 May;25(5):229-35 16990515 - Science. 2006 Dec 1;314(5804):1454-7 18784754 - EMBO J. 2008 Oct 8;27(19):2457-70 22481094 - Cell Signal. 2012 Aug;24(8):1541-7 20100891 - J Gen Physiol. 2010 Feb;135(2):99-114 17095657 - Science. 2006 Dec 1;314(5804):1458-61 17360432 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3793-8 17030795 - Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15473-8 19749742 - Nature. 2009 Oct 15;461(7266):997-1001 19272022 - Biochem J. 2009 Apr 1;419(1):29-49 21037589 - Nat Methods. 2010 Dec;7(12):973-5 15809030 - Dev Cell. 2005 Apr;8(4):467-77 1643658 - Cell. 1992 Aug 7;70(3):401-10 17035995 - Nature. 2006 Oct 12;443(7112):651-7 19196647 - Physiology (Bethesda). 2009 Feb;24:8-16 22079055 - Curr Opin Chem Biol. 2011 Dec;15(6):822-30 19303853 - Cell. 2009 Mar 20;136(6):1110-21 21692661 - Annu Rev Neurosci. 2011;34:389-412 11283724 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):268-75 12040186 - Science. 2002 May 31;296(5573):1655-7 20043944 - Prog Lipid Res. 2010 Jul;49(3):201-17 15635101 - Mol Biol Cell. 2005 Mar;16(3):1282-95 17088424 - J Cell Biol. 2006 Nov 6;175(3):377-82 12062103 - Cell. 2002 May 31;109(5):599-610 22381590 - Trends Biochem Sci. 2012 Apr;37(4):134-43 21142151 - J Am Chem Soc. 2011 Jan 12;133(1):12-4 15184679 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8951-6 19693014 - Nature. 2009 Sep 3;461(7260):104-8 16921364 - Nat Cell Biol. 2006 Sep;8(9):963-70 |
| References_xml | – reference: 21037589 - Nat Methods. 2010 Dec;7(12):973-5 – reference: 17183359 - Nat Rev Mol Cell Biol. 2007 Jan;8(1):37-48 – reference: 21909100 - Nat Methods. 2011;8(10):837-9 – reference: 9442017 - J Biol Chem. 1998 Jan 23;273(4):1859-62 – reference: 1643658 - Cell. 1992 Aug 7;70(3):401-10 – reference: 11001876 - Biochem J. 2000 Oct 1;351(Pt 1):19-31 – reference: 19196647 - Physiology (Bethesda). 2009 Feb;24:8-16 – reference: 21765402 - Nat Biotechnol. 2011 Aug;29(8):757-61 – reference: 17035995 - Nature. 2006 Oct 12;443(7112):651-7 – reference: 17360432 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):3793-8 – reference: 22481094 - Cell Signal. 2012 Aug;24(8):1541-7 – reference: 19693014 - Nature. 2009 Sep 3;461(7260):104-8 – reference: 20043944 - Prog Lipid Res. 2010 Jul;49(3):201-17 – reference: 22381590 - Trends Biochem Sci. 2012 Apr;37(4):134-43 – reference: 18784754 - EMBO J. 2008 Oct 8;27(19):2457-70 – reference: 21142151 - J Am Chem Soc. 2011 Jan 12;133(1):12-4 – reference: 16921364 - Nat Cell Biol. 2006 Sep;8(9):963-70 – reference: 12040186 - Science. 2002 May 31;296(5573):1655-7 – reference: 15635101 - Mol Biol Cell. 2005 Mar;16(3):1282-95 – reference: 10782093 - Trends Biochem Sci. 2000 May;25(5):229-35 – reference: 16990515 - Science. 2006 Dec 1;314(5804):1454-7 – reference: 15184679 - Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8951-6 – reference: 17030795 - Proc Natl Acad Sci U S A. 2006 Oct 17;103(42):15473-8 – reference: 17095657 - Science. 2006 Dec 1;314(5804):1458-61 – reference: 19272022 - Biochem J. 2009 Apr 1;419(1):29-49 – reference: 20100891 - J Gen Physiol. 2010 Feb;135(2):99-114 – reference: 19749742 - Nature. 2009 Oct 15;461(7266):997-1001 – reference: 11283724 - Nat Rev Mol Cell Biol. 2001 Apr;2(4):268-75 – reference: 17254974 - Cell. 2007 Jan 26;128(2):383-97 – reference: 9512420 - Curr Biol. 1998 Mar 12;8(6):343-6 – reference: 17088424 - J Cell Biol. 2006 Nov 6;175(3):377-82 – reference: 22079055 - Curr Opin Chem Biol. 2011 Dec;15(6):822-30 – reference: 21692661 - Annu Rev Neurosci. 2011;34:389-412 – reference: 19303853 - Cell. 2009 Mar 20;136(6):1110-21 – reference: 22341323 - Prog Brain Res. 2012;196:95-117 – reference: 12062103 - Cell. 2002 May 31;109(5):599-610 – reference: 15809030 - Dev Cell. 2005 Apr;8(4):467-77 |
| SSID | ssj0009580 |
| Score | 2.5258844 |
| Snippet | Phosphoinositides (PIs) are lipid components of cell membranes that regulate a wide variety of cellular functions. Here we exploited the blue light-induced... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | E2316 |
| SubjectTerms | Actins - metabolism Amino Acid Motifs - physiology Animals Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Binding Sites - physiology Cell Membrane - metabolism Cell Membrane - radiation effects Cercopithecus aethiops COS Cells Cryptochromes - genetics Cryptochromes - metabolism Endocytosis - physiology Endocytosis - radiation effects Humans KCNQ2 Potassium Channel - physiology KCNQ3 Potassium Channel - physiology Light Membrane Potentials - physiology Membrane Potentials - radiation effects PC12 Cells Phosphatidylinositol 3-Kinases - metabolism Phosphatidylinositol 4,5-Diphosphate - metabolism Phosphatidylinositols - metabolism Phosphoric Monoester Hydrolases - genetics Phosphoric Monoester Hydrolases - metabolism Phosphorylation - physiology Phosphorylation - radiation effects Rats Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Signal Transduction - physiology Signal Transduction - radiation effects |
| Title | Optogenetic control of phosphoinositide metabolism |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22847441 https://www.proquest.com/docview/1037244204 |
| Volume | 109 |
| WOSCitedRecordID | wos000308565300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleChIDDFEbO46dCSFExULpAFK3yLHPohJNAgn8fs6JK1iQkBjiLZJ1vsd35_N3hFwwpVVqVYKWJiGMVaRCZeUotBaYwhyb50y3wybEZCJns3TqC261b6tc-sTWUZtSuxr50L1nw1BER_F19Ra6qVHudtWP0FglPYZQxmm1mMkfpLuyYyNIozCJ09GS2kewYVWo2jEroAvnbTfib_iyjTPjrf_ucJtseoQZ3HQq0ScrUOyQvrfhOrj0RNNXu4Q-Vk2JCuTeMQa-Zz0obVC9lDV-86Jt6DIQLKBBXXmd14s98jy-e7q9D_0MhVDzJG1CEesRgIx5pAyVuWNn0ZSmmiHS0JBbk3Ce51SD4DoVVimaIATgiaLaKAYJ3SdrRVnAIQkioVnMDMvBYBaWY6IH0jIbR0ZTQUEOyPlSLhnqqLt4UAWUH3X2LZkBOeiEm1UdmUZGXXxETHb0h7-PyQbiFepKulSekJ5FC4VTsq4_m3n9ftYePq6T6cMXwR-56w |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optogenetic+control+of+phosphoinositide+metabolism&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Idevall-Hagren%2C+Olof&rft.au=Dickson%2C+Eamonn+J&rft.au=Hille%2C+Bertil&rft.au=Toomre%2C+Derek+K&rft.date=2012-08-28&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=109&rft.issue=35&rft.spage=E2316&rft_id=info:doi/10.1073%2Fpnas.1211305109&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon |