A comparison of enhanced continuum FE with micro FE models of human vertebral bodies

Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking μ FE as the gold standard. The enhanced continuum models account for trabecular bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanics Jg. 42; H. 4; S. 455 - 462
Hauptverfasser: Pahr, Dieter H., Zysset, Philippe K.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 11.03.2009
Elsevier Limited
Schlagworte:
ISSN:0021-9290, 1873-2380, 1873-2380
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking μ FE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical μ FE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions—kinematic [ Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69–81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476.]—are used in these FE models. After removal of the endplates, compressive and antero–posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with μ FE . Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.
AbstractList Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking μ FE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical μ FE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions—kinematic [ Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69–81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476.]—are used in these FE models. After removal of the endplates, compressive and antero–posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with μ FE . Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.
Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking muFE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical muFE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions-kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]-are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with muFE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking muFE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical muFE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions-kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]-are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with muFE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.
Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking mu FE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical mu FE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions - kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.] - are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with mu FE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.
Abstract Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking μ FE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical μ FE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions—kinematic [ Van Rietbergen et al., 1995 . A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69–81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476.]—are used in these FE models. After removal of the endplates, compressive and antero–posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with μ FE . Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.
Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking muFE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical muFE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions-kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]-are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with muFE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.
Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions--kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]--are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with . Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.
Author Pahr, Dieter H.
Zysset, Philippe K.
Author_xml – sequence: 1
  givenname: Dieter H.
  surname: Pahr
  fullname: Pahr, Dieter H.
  email: pahr@ilsb.tuwien.ac.at
– sequence: 2
  givenname: Philippe K.
  surname: Zysset
  fullname: Zysset, Philippe K.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19155014$$D View this record in MEDLINE/PubMed
BookMark eNqNkkFr3DAQhUVJaTZp_0IwFNpcvB3JlmxBKQ0haQuBHpqehSyPWbm2tJXslPz7yGxCYA-bnoTE9x6j9-aEHDnvkJAzCmsKVHzq131j_Yhms2YA9ZrSNbD6FVnRuipyVtRwRFYAjOaSSTgmJzH2AFCVlXxDjqmknAMtV-T2IjN-3Opgo3eZ7zJ0G-0MtunZTdbN85hdX2X_7LTJRmuCX26jb3GIC72ZR-2yOwwTNkEPWeNbi_Eted3pIeK7x_OU_L6-ur38nt_8_Pbj8uImN1zIKee0k5URogIjgDa6abTsJNdQYdu0oGtTgtTIyjKNXUmGomNct6xImDCsK07Jx53vNvi_M8ZJjTYaHAbt0M9RyZRUxQtaJfLDQVIIWQOveQLPD4LJsAYoarZ4vt9Dez8Hlz6sKBScUspKmaizR2puRmzVNthRh3v1VEECxA5I4cYYsHtGQC1dq149da2WrhWlKnWdhJ_3hMZOerKpt6Dt8LL8606eqsQ7i0FFY3Gp3gY0k2q9fdniy56FGayzRg9_8B7jcxwqMgXq17KPyzpCilCAKA8b_M8EDx-s8SE
CitedBy_id crossref_primary_10_1016_j_jbiomech_2009_12_027
crossref_primary_10_1016_j_medengphy_2015_10_007
crossref_primary_10_1111_joa_12446
crossref_primary_10_1002_ajpa_23635
crossref_primary_10_1016_j_cmpb_2023_107549
crossref_primary_10_1016_j_jmbbm_2014_01_006
crossref_primary_10_1016_j_medengphy_2016_10_003
crossref_primary_10_1016_j_jmbbm_2012_11_018
crossref_primary_10_1080_21681163_2014_947385
crossref_primary_10_1016_j_jbiomech_2012_08_022
crossref_primary_10_1016_j_medengphy_2019_03_017
crossref_primary_10_1007_s10237_012_0443_2
crossref_primary_10_1007_s11012_021_01452_x
crossref_primary_10_1016_j_jmbbm_2025_106888
crossref_primary_10_1016_j_cmpb_2025_108805
crossref_primary_10_1080_10255842_2017_1390086
crossref_primary_10_1080_10255842_2011_565751
crossref_primary_10_1002_ajpa_24939
crossref_primary_10_1109_TMI_2016_2646698
crossref_primary_10_1118_1_3582946
crossref_primary_10_1002_nme_5008
crossref_primary_10_1016_j_jhevol_2018_05_004
crossref_primary_10_1016_j_medengphy_2017_03_005
crossref_primary_10_1016_j_bone_2010_08_002
crossref_primary_10_1007_s10439_014_0983_y
crossref_primary_10_1088_1742_6596_1158_3_032012
crossref_primary_10_1016_j_medengphy_2015_03_007
crossref_primary_10_1016_j_bone_2010_07_001
crossref_primary_10_1016_j_jocd_2015_06_011
crossref_primary_10_1016_j_medengphy_2010_01_004
crossref_primary_10_1007_s11914_016_0335_y
crossref_primary_10_1016_j_clinbiomech_2012_09_008
crossref_primary_10_3390_ma14206064
crossref_primary_10_1002_nme_7114
crossref_primary_10_1002_ajpa_24449
crossref_primary_10_1016_j_jbiomech_2013_07_042
crossref_primary_10_1371_journal_pone_0078781
crossref_primary_10_1016_j_jbiomech_2013_07_047
crossref_primary_10_1177_1077546313480548
crossref_primary_10_1002_ar_24050
crossref_primary_10_1016_j_ejrad_2013_10_024
crossref_primary_10_1111_joa_13437
crossref_primary_10_1002_ajpa_70007
crossref_primary_10_1016_j_jbiomech_2015_10_012
crossref_primary_10_1007_s10237_014_0584_6
crossref_primary_10_1080_10255842_2020_1811507
crossref_primary_10_1007_s10237_010_0245_3
crossref_primary_10_1007_s00198_013_2591_3
crossref_primary_10_1016_j_bone_2021_116282
crossref_primary_10_1080_10255842_2012_744400
crossref_primary_10_1186_s40634_016_0072_2
crossref_primary_10_1016_j_jbiomech_2009_05_005
crossref_primary_10_1016_j_jbiomech_2016_07_031
crossref_primary_10_1002_ajpa_24596
crossref_primary_10_1088_1742_6596_1158_2_022046
crossref_primary_10_1007_s12668_018_0551_2
crossref_primary_10_1007_s10439_022_03104_x
crossref_primary_10_1016_j_bone_2012_09_006
crossref_primary_10_1002_ar_25010
crossref_primary_10_1002_nme_7149
crossref_primary_10_1016_j_jmbbm_2012_06_005
crossref_primary_10_3390_biomechanics2010012
crossref_primary_10_1002_jsp2_1170
crossref_primary_10_1016_j_jhevol_2022_103304
crossref_primary_10_1016_j_jbiomech_2009_04_017
crossref_primary_10_1016_j_jbiomech_2012_07_004
crossref_primary_10_1007_s10439_017_1883_8
crossref_primary_10_1080_10255842_2011_556627
crossref_primary_10_1007_s10237_019_01225_2
crossref_primary_10_1016_j_jmbbm_2023_105740
crossref_primary_10_3389_fmed_2020_569449
crossref_primary_10_1002_jmor_20238
crossref_primary_10_1016_j_cmpb_2022_107310
crossref_primary_10_1097_BRS_0b013e3182293628
crossref_primary_10_1016_j_jmbbm_2014_10_016
crossref_primary_10_3389_fmars_2024_1456505
crossref_primary_10_1007_s11831_014_9120_1
crossref_primary_10_1038_s41598_024_56327_4
crossref_primary_10_1109_TMI_2014_2387114
crossref_primary_10_1016_j_bone_2024_117115
crossref_primary_10_1038_s41598_022_09063_6
Cites_doi 10.1007/s10237-007-0109-7
10.1080/10255840802078022
10.2307/2532051
10.1016/0021-9290(95)80008-5
10.1148/radiology.179.3.2027972
10.1115/1.2798314
10.1016/j.cma.2006.06.017
10.1016/S1350-4533(03)00081-X
10.1080/10255840802144105
10.1002/nme.2101
10.1016/S8756-3282(03)00210-2
10.1016/0167-6636(85)90012-2
10.1359/jbmr.061011
10.1016/j.bone.2003.12.001
10.1097/01.BRS.0000049923.27694.47
10.1016/S0021-9290(96)80021-2
10.1097/01.brs.0000225993.57349.df
10.1016/S0021-9290(03)00128-3
ContentType Journal Article
Copyright 2008 Elsevier Ltd
Elsevier Ltd
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.jbiomech.2008.11.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Calcium & Calcified Tissue Abstracts

MEDLINE
Research Library Prep
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
EndPage 462
ExternalDocumentID 2745270291
19155014
10_1016_j_jbiomech_2008_11_028
S0021929008006064
1_s2_0_S0021929008006064
Genre Journal Article
Comparative Study
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUFD
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HEE
HMCUK
HMK
HMO
HVGLF
HZ~
H~9
I-F
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
ML~
MO0
MVM
N9A
O-L
O9-
OAUVE
OH.
OHT
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
VH1
WUQ
X7M
XOL
XPP
YQT
Z5R
ZGI
ZMT
~G-
~HD
3V.
AACTN
AFCTW
AFFDN
AFKWA
AJOXV
ALIPV
AMFUW
PKN
RIG
YCJ
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
F3I
LCYCR
9DU
AAYXX
AFFHD
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
PUEGO
7X8
ID FETCH-LOGICAL-c569t-51f97c6670c601babba9f95a07edbd0a8c409ae244747792e6f25ad23a9f6c2f3
IEDL.DBID M7P
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264507300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9290
1873-2380
IngestDate Sat Sep 27 18:02:13 EDT 2025
Sun Nov 09 11:13:24 EST 2025
Thu Oct 02 11:55:10 EDT 2025
Sat Nov 29 14:25:44 EST 2025
Thu Apr 03 07:07:05 EDT 2025
Sat Nov 29 07:25:56 EST 2025
Tue Nov 18 22:06:15 EST 2025
Fri Feb 23 02:28:28 EST 2024
Sun Feb 23 10:20:44 EST 2025
Tue Oct 14 19:30:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Finite element method
Cortex
Elasticity
Vertebral body
Micro FE
Bone
Density
Fabric
Mesh generation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-51f97c6670c601babba9f95a07edbd0a8c409ae244747792e6f25ad23a9f6c2f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Undefined-1
ObjectType-Feature-3
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Feature-1
PMID 19155014
PQID 1035111249
PQPubID 1226346
PageCount 8
ParticipantIDs proquest_miscellaneous_901675317
proquest_miscellaneous_66980585
proquest_miscellaneous_1678003827
proquest_journals_1035111249
pubmed_primary_19155014
crossref_primary_10_1016_j_jbiomech_2008_11_028
crossref_citationtrail_10_1016_j_jbiomech_2008_11_028
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2008_11_028
elsevier_clinicalkeyesjournals_1_s2_0_S0021929008006064
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2008_11_028
PublicationCentury 2000
PublicationDate 2009-03-11
PublicationDateYYYYMMDD 2009-03-11
PublicationDate_xml – month: 03
  year: 2009
  text: 2009-03-11
  day: 11
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle Journal of biomechanics
PublicationTitleAlternate J Biomech
PublicationYear 2009
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Liebschner, Kopperdahl, Rosenberg, Keaveny (bib15) 2003; 28
Crawford, Cann, Keaveny (bib6) 2003; 33
Homminga, Van-Rietbergen, Lochmuller, Weinans, Eckstein, Huiskes (bib11) 2004; 34
Van Rietbergen, Odgaard, Kabel, Huiskes (bib21) 1996; 29
Chevalier, Y., Charlebois, M., Pahr, D., Varga, P., Heini, P., Schneider, E., Zysset, P., 2008. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Computer Methods in Biomechanics and Biomedical Engineering, available online.
Keyak, Falkinstein (bib14) 2003; 25
Zysset (bib22) 2003; 36
Imai, Ohnishi, Bessho, Nakamura (bib12) 2006; 31
Eswaran, Bayraktar, Adams, Gupta, Hoffmann, Lee, Papadopoulos, Keaveny (bib7) 2007; 196
Van Rietbergen, Weinans, Huiskes, Odgaard (bib20) 1995; 28
Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M., 2006. A scalable multi-level preconditioner for matrix-free finite element analysis of human bone structures. Technical Report, Institute of Computational Science, ETH Zürich.
Guldberg, Hollister, Charras (bib10) 1998; 120
Lin (bib16) 1989; 45
Chevalier, Y., Varga, P., Pahr, D., Schneider, E., Zysset, P., 2006. Calibrated finite element voxel models based on high-resolution ct predict in vitro vertebral strength better than dexa. In: ASBMR 28th Annual Meeting, vol. 21, September 15–19, p. S81.
Mennel, U., Sala, M., 2007. Overview of parFE: A Scalable Finite Element Solver for Bone Modeling. Institute of Computational Science, ETH Zurich.
Keaveny, Donley, Hoffmann, Mitlak, Glass, San Martin (bib13) 2007; 22
Pahr, D.H., Zysset, P.K., 2008b. From high-resolution CT data to finite element models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.
Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476.
Abaqus, 2007. ABAQUS Analysis User's Manual V6.6. ABAQUS, Inc., Rising Sun Mills, 166 Vally Street, Providence, RI, USA.
Faulkner, Cann, Hasegawa (bib8) 1991; 179
Cowin (bib5) 1985; 4
Graeff, C., Glüer, C., Borggrefe, J., Charlebois, M., Chevalier, Y., Varga, P., Pahr, D., Nickelsen, T., Marin, F., Farrerons, J., Zysset, P., 2007. Effects of 2 years teriparatide treatment on bone strength assessed by high resolution CT based finite element analysis of human vertebrae in vivo: results form the Eurofors study. In: ASBMR 29th Annual Meeting, September 16–19, Honolulu, USA.
Faulkner (10.1016/j.jbiomech.2008.11.028_bib8) 1991; 179
10.1016/j.jbiomech.2008.11.028_bib9
Cowin (10.1016/j.jbiomech.2008.11.028_bib5) 1985; 4
Crawford (10.1016/j.jbiomech.2008.11.028_bib6) 2003; 33
Zysset (10.1016/j.jbiomech.2008.11.028_bib22) 2003; 36
Liebschner (10.1016/j.jbiomech.2008.11.028_bib15) 2003; 28
Van Rietbergen (10.1016/j.jbiomech.2008.11.028_bib21) 1996; 29
Keaveny (10.1016/j.jbiomech.2008.11.028_bib13) 2007; 22
Guldberg (10.1016/j.jbiomech.2008.11.028_bib10) 1998; 120
Eswaran (10.1016/j.jbiomech.2008.11.028_bib7) 2007; 196
10.1016/j.jbiomech.2008.11.028_bib18
10.1016/j.jbiomech.2008.11.028_bib19
Imai (10.1016/j.jbiomech.2008.11.028_bib12) 2006; 31
10.1016/j.jbiomech.2008.11.028_bib17
Homminga (10.1016/j.jbiomech.2008.11.028_bib11) 2004; 34
Van Rietbergen (10.1016/j.jbiomech.2008.11.028_bib20) 1995; 28
Keyak (10.1016/j.jbiomech.2008.11.028_bib14) 2003; 25
10.1016/j.jbiomech.2008.11.028_bib2
10.1016/j.jbiomech.2008.11.028_bib1
10.1016/j.jbiomech.2008.11.028_bib4
10.1016/j.jbiomech.2008.11.028_bib3
Lin (10.1016/j.jbiomech.2008.11.028_bib16) 1989; 45
References_xml – volume: 31
  start-page: 1789
  year: 2006
  end-page: 1794
  ident: bib12
  article-title: Nonlinear finite element model predicts vertebral bone strength and fracture site
  publication-title: Spine
– volume: 28
  start-page: 559
  year: 2003
  end-page: 565
  ident: bib15
  article-title: Finite element modeling of the human thoracolumbar spine
  publication-title: Spine
– reference: Mennel, U., Sala, M., 2007. Overview of parFE: A Scalable Finite Element Solver for Bone Modeling. Institute of Computational Science, ETH Zurich.
– volume: 36
  start-page: 1469
  year: 2003
  end-page: 1485
  ident: bib22
  article-title: A review of morphology-elasticity relationships in human trabecular bone: theories and experiments
  publication-title: Journal of Biomechanics
– volume: 4
  start-page: 137
  year: 1985
  end-page: 147
  ident: bib5
  article-title: The relationship between the elasticity tensor and the fabric tensor
  publication-title: Mechanics of Materials
– volume: 25
  start-page: 781
  year: 2003
  end-page: 787
  ident: bib14
  article-title: Comparison of in situ and in vitro ct scan-based finite element model predictions of proximal femoral fracture load
  publication-title: Medical Engineering & Physics
– reference: Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M., 2006. A scalable multi-level preconditioner for matrix-free finite element analysis of human bone structures. Technical Report, Institute of Computational Science, ETH Zürich.
– volume: 33
  start-page: 744
  year: 2003
  end-page: 750
  ident: bib6
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
– reference: Abaqus, 2007. ABAQUS Analysis User's Manual V6.6. ABAQUS, Inc., Rising Sun Mills, 166 Vally Street, Providence, RI, USA.
– volume: 29
  start-page: 1653
  year: 1996
  end-page: 1657
  ident: bib21
  article-title: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture
  publication-title: Journal of Biomechanics
– volume: 28
  start-page: 69
  year: 1995
  end-page: 81
  ident: bib20
  article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models
  publication-title: Journal of Biomechanics
– volume: 45
  start-page: 255
  year: 1989
  end-page: 268
  ident: bib16
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 179
  start-page: 669
  year: 1991
  end-page: 674
  ident: bib8
  article-title: Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis
  publication-title: Radiology
– reference: Pahr, D.H., Zysset, P.K., 2008b. From high-resolution CT data to finite element models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.
– reference: Chevalier, Y., Charlebois, M., Pahr, D., Varga, P., Heini, P., Schneider, E., Zysset, P., 2008. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Computer Methods in Biomechanics and Biomedical Engineering, available online.
– volume: 34
  start-page: 510
  year: 2004
  end-page: 516
  ident: bib11
  article-title: The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads
  publication-title: Bone
– volume: 22
  start-page: 149
  year: 2007
  end-page: 157
  ident: bib13
  article-title: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis
  publication-title: Journal of Bone and Mineral Research
– volume: 196
  start-page: 3025
  year: 2007
  end-page: 3032
  ident: bib7
  article-title: The micro-mechanics of cortical shell removal in the human vertebral body
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 120
  start-page: 289
  year: 1998
  end-page: 295
  ident: bib10
  article-title: The accuracy of digital image-based finite element models
  publication-title: Journal of Biomechanical Engineering
– reference: Chevalier, Y., Varga, P., Pahr, D., Schneider, E., Zysset, P., 2006. Calibrated finite element voxel models based on high-resolution ct predict in vitro vertebral strength better than dexa. In: ASBMR 28th Annual Meeting, vol. 21, September 15–19, p. S81.
– reference: Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476.
– reference: Graeff, C., Glüer, C., Borggrefe, J., Charlebois, M., Chevalier, Y., Varga, P., Pahr, D., Nickelsen, T., Marin, F., Farrerons, J., Zysset, P., 2007. Effects of 2 years teriparatide treatment on bone strength assessed by high resolution CT based finite element analysis of human vertebrae in vivo: results form the Eurofors study. In: ASBMR 29th Annual Meeting, September 16–19, Honolulu, USA.
– ident: 10.1016/j.jbiomech.2008.11.028_bib9
– ident: 10.1016/j.jbiomech.2008.11.028_bib18
  doi: 10.1007/s10237-007-0109-7
– ident: 10.1016/j.jbiomech.2008.11.028_bib4
  doi: 10.1080/10255840802078022
– volume: 45
  start-page: 255
  year: 1989
  ident: 10.1016/j.jbiomech.2008.11.028_bib16
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– ident: 10.1016/j.jbiomech.2008.11.028_bib3
– volume: 28
  start-page: 69
  issue: 1
  year: 1995
  ident: 10.1016/j.jbiomech.2008.11.028_bib20
  article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models
  publication-title: Journal of Biomechanics
  doi: 10.1016/0021-9290(95)80008-5
– volume: 179
  start-page: 669
  issue: 3
  year: 1991
  ident: 10.1016/j.jbiomech.2008.11.028_bib8
  article-title: Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis
  publication-title: Radiology
  doi: 10.1148/radiology.179.3.2027972
– volume: 120
  start-page: 289
  year: 1998
  ident: 10.1016/j.jbiomech.2008.11.028_bib10
  article-title: The accuracy of digital image-based finite element models
  publication-title: Journal of Biomechanical Engineering
  doi: 10.1115/1.2798314
– ident: 10.1016/j.jbiomech.2008.11.028_bib1
– volume: 196
  start-page: 3025
  issue: 31–32
  year: 2007
  ident: 10.1016/j.jbiomech.2008.11.028_bib7
  article-title: The micro-mechanics of cortical shell removal in the human vertebral body
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2006.06.017
– volume: 25
  start-page: 781
  issue: 9
  year: 2003
  ident: 10.1016/j.jbiomech.2008.11.028_bib14
  article-title: Comparison of in situ and in vitro ct scan-based finite element model predictions of proximal femoral fracture load
  publication-title: Medical Engineering & Physics
  doi: 10.1016/S1350-4533(03)00081-X
– ident: 10.1016/j.jbiomech.2008.11.028_bib19
  doi: 10.1080/10255840802144105
– ident: 10.1016/j.jbiomech.2008.11.028_bib2
  doi: 10.1002/nme.2101
– volume: 33
  start-page: 744
  issue: 4
  year: 2003
  ident: 10.1016/j.jbiomech.2008.11.028_bib6
  article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography
  publication-title: Bone
  doi: 10.1016/S8756-3282(03)00210-2
– volume: 4
  start-page: 137
  issue: 2
  year: 1985
  ident: 10.1016/j.jbiomech.2008.11.028_bib5
  article-title: The relationship between the elasticity tensor and the fabric tensor
  publication-title: Mechanics of Materials
  doi: 10.1016/0167-6636(85)90012-2
– volume: 22
  start-page: 149
  year: 2007
  ident: 10.1016/j.jbiomech.2008.11.028_bib13
  article-title: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis
  publication-title: Journal of Bone and Mineral Research
  doi: 10.1359/jbmr.061011
– volume: 34
  start-page: 510
  issue: 3
  year: 2004
  ident: 10.1016/j.jbiomech.2008.11.028_bib11
  article-title: The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads
  publication-title: Bone
  doi: 10.1016/j.bone.2003.12.001
– volume: 28
  start-page: 559
  issue: 6
  year: 2003
  ident: 10.1016/j.jbiomech.2008.11.028_bib15
  article-title: Finite element modeling of the human thoracolumbar spine
  publication-title: Spine
  doi: 10.1097/01.BRS.0000049923.27694.47
– volume: 29
  start-page: 1653
  issue: 12
  year: 1996
  ident: 10.1016/j.jbiomech.2008.11.028_bib21
  article-title: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(96)80021-2
– ident: 10.1016/j.jbiomech.2008.11.028_bib17
– volume: 31
  start-page: 1789
  year: 2006
  ident: 10.1016/j.jbiomech.2008.11.028_bib12
  article-title: Nonlinear finite element model predicts vertebral bone strength and fracture site
  publication-title: Spine
  doi: 10.1097/01.brs.0000225993.57349.df
– volume: 36
  start-page: 1469
  issue: 10
  year: 2003
  ident: 10.1016/j.jbiomech.2008.11.028_bib22
  article-title: A review of morphology-elasticity relationships in human trabecular bone: theories and experiments
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(03)00128-3
SSID ssj0007479
Score 2.2802882
Snippet Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study...
Abstract Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 455
SubjectTerms Aged
Aged, 80 and over
Algorithms
Biomechanical Phenomena
Biomechanics
Bone
Bones
Boundary conditions
Continuums
Cortex
Density
Elasticity
Fabric
Finite Element Analysis
Finite element method
Humans
Kinematics
Male
Mathematical models
Mesh generation
Micro FE
Middle Aged
Models, Biological
Physical Medicine and Rehabilitation
Shells
Spine
Stress, Mechanical
Vertebral body
Title A comparison of enhanced continuum FE with micro FE models of human vertebral bodies
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929008006064
https://www.clinicalkey.es/playcontent/1-s2.0-S0021929008006064
https://dx.doi.org/10.1016/j.jbiomech.2008.11.028
https://www.ncbi.nlm.nih.gov/pubmed/19155014
https://www.proquest.com/docview/1035111249
https://www.proquest.com/docview/1678003827
https://www.proquest.com/docview/66980585
https://www.proquest.com/docview/901675317
Volume 42
WOSCitedRecordID wos000264507300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251013
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M7P
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251013
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: 7X7
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251013
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: BENPR
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1873-2380
  dateEnd: 20251013
  omitProxy: false
  ssIdentifier: ssj0007479
  issn: 0021-9290
  databaseCode: M2O
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSF44KPjIzCKkRBvHkma2PETKqgVLysVGlLfrNhxtFVrOpYWif-eO-dje6CA4CVSlHMT9ezz73wfP4A3SeZkgciXuyK1PFGJ5CZNSq6cslTkI4oi82QTcjbLFgs1bw_c6jatsrOJ3lAXa0tn5Li6KeRFVMnvL79xYo2i6GpLobEHB9QlIfape_PeEiNUblM8Io4wILxRIbw8Xvr69iYgkR1TJ09iZP_15rQLfPpNaPrgfz__Idxv4ScbN_PlEdxy1QAOxxW63qsf7C3zCaH-pH0A9270KhzAnZM2Cn8Ip2Nme_pCti6Zq858IgGjxPfzartdsemE0REvW1HCH915yp2apD0tICMeaApaXzCzpkzGx_B1Ojn9-Im37AzcpkJteBqVSlohZGjRqTO5MbkqVZqH0hWmCPPMouuYO4QPqAapYifKOM2LeIRiwsbl6AnsV-vKPQNmszR00kSiUNT-y2XSiFzhvpmUiZHCBJB2atG2bV1ODBoXustRW-pOnQ2vJno1qM4A3vXjLpvmHX8cITut6640FY2pxv3l30a6urUJtY50HetQU3g8otlIWB3dxyQA1Y9sYU8DZ_7qrUfddNPXL-rnWgCv-8doNigWlFduvUUZBCkUFY5lAK92yAihshDdyQDYDglFRSxoxfFHnjbr4vp_JuIB9L-f__4LX8DdJj434lF0BPubq617Cbft9815fTWEPbmQ_poN4eDDZDb_gncn8eehX-g_AdWbVcE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgngceKQ8DIUuEnDbYrv2rveAUASNWrUNHILU2-Jdr0Wjxi51Auqf4jcy41d7IICQeuBoZcevzM7D8818AC-ixMkMI1_ustjySEWSmzjKuXLKUpOPyLKkJpuQ43FyeKg-rsCPrheGYJWdTawNdVZa-kaOu5tKXkSV_PbkKyfWKKqudhQajVrsubPvmLJVb3bf4__7MgxH25N3O7xlFeA2FmrO4yBX0gohfYvJiEmNSVWu4tSXLjOZnyYWU57UodvDSFuq0Ik8jNMs3MJlwob5Fp73ClyNKBMiqGD4obf8KNBCSgKOYYd_oSN5ujmt--mbAkiySZNDiQH-185wWbBbO73Rnf_tdd2F2214zYbNfrgHK64YwNqwSOfl7Iy9YjXgta4kDODWhVmMA7h-0KIM1mAyZLanZ2RlzlzxpQZKMAL2HxWLxYyNthl9wmYzAjTSUU0pVNHqmvaQEc81FeWPmSkJqXkfPl3Kgz-A1aIs3CNgNol9J00gMkXjzVwijUgVxgVRHhkpjAdxpwbatqPZiSHkWHcYvKnu1KfhDcWsDdXHg9e93EkznOSPErLTMt213qKz0Og__03SVa3Nq3Sgq1D7msr_AWk_5SKYHkceqF6yDeuacO2vrrreqbc-v1Cv2x48739Gs0i1rrRw5QLXYBBGVe9QerCxZI0QKvExXfaALVmhqEkHvRSe5GGzD8_fMxEr-EH0-Pd3uAE3diYH-3p_d7z3BG42tcgtHgTrsDo_XbincM1-mx9Vp89qU8Lg82Vvxp_7va88
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVw4JHyMBS6SMBtW9uxd70HhAJNRFWIIlSk3hZ7vRaNGrvUCah_jV_HjF_tgQBC6oGjlVm_Mk_PN_sBPA8iK1PMfLlNQ8MDFUiehEHGlVWGhnxEmkYV2YScTKKjIzVdgx_tLAzBKlufWDnqtDD0jRytm1peRJW8mzWwiOne-PXpV04MUtRpbek0ahU5sOffsXwrX-3v4X_9wvfHo8O373jDMMBNKNSCh16mpBFCugYLkyROklhlKoxdadMkdePIYPkTWwyBmHVL5VuR-WGc-gMUE8bPBnjea7AuMckIerD-ZjSZfuziAC5pACYexyTEvTSfPNuZVdP1dTsk2qF9RIkP_tehcVXqW4XA8e3_-eXdgVtN4s2GtaXchTWb92FzmMeLYn7OXrIKClv1GPpw89IujX3Y-NDgDzbhcMhMR9zIiozZ_EsFoWAE-T_Ol8s5G48Yfdxmc4I60lFFNlSSdEWIyIgBm9r1JywpCMN5Dz5dyYPfh15e5PYhMBOFrpWJJ1JFG5_ZSCYiVpgxBFmQSJE4ELYqoU2zaTtxh5zoFp03060q1YyiWM-hKjmw2607rbct-eMK2WqcbodyMYxojKz_ttKWjTcstadLX7uagAEeWQJVKVg4Bw6obmWT8NWJ3F9ddatVdX1xoU7PHXjW_YwOk7pgcW6LJcpgekb9cF86sL1CRggVuVhIO8BWSCga38H4hSd5UNvkxXsmygXXCx79_g63YQNtUL_fnxw8hht1k3LAPW8LeouzpX0C1823xXF59rTxKww-X7U1_gTxWrlZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+enhanced+continuum+FE+with+micro+FE+models+of+human+vertebral+bodies&rft.jtitle=Journal+of+biomechanics&rft.au=Pahr%2C+Dieter+H&rft.au=Zysset%2C+Philippe+K&rft.date=2009-03-11&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=42&rft.issue=4&rft.spage=455&rft_id=info:doi/10.1016%2Fj.jbiomech.2008.11.028&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2745270291
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929009X00035%2Fcov150h.gif