A comparison of enhanced continuum FE with micro FE models of human vertebral bodies
Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking μ FE as the gold standard. The enhanced continuum models account for trabecular bo...
Gespeichert in:
| Veröffentlicht in: | Journal of biomechanics Jg. 42; H. 4; S. 455 - 462 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
11.03.2009
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 0021-9290, 1873-2380, 1873-2380 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking
μ
FE
as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical
μ
FE
models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions—kinematic [
Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69–81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476.]—are used in these FE models. After removal of the endplates, compressive and antero–posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with
μ
FE
. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models. |
|---|---|
| AbstractList | Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking
μ
FE
as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical
μ
FE
models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions—kinematic [
Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69–81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476.]—are used in these FE models. After removal of the endplates, compressive and antero–posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with
μ
FE
. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models. Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking muFE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical muFE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions-kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]-are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with muFE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models.Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking muFE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical muFE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions-kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]-are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with muFE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models. Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking mu FE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical mu FE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions - kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.] - are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with mu FE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models. Abstract Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking μ FE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical μ FE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions—kinematic [ Van Rietbergen et al., 1995 . A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69–81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476.]—are used in these FE models. After removal of the endplates, compressive and antero–posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with μ FE . Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models. Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking muFE as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical muFE models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions-kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]-are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with muFE. Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models. Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study investigates the accuracy of an enhanced continuum FE model by taking as the gold standard. The enhanced continuum models account for trabecular bone morphology (density and fabric) as well as for an anatomically correct cortical shell. Vertebral body slice models are extracted from high-resolution CT images using an algorithm proposed in [Pahr and Zysset, 2008b. From high-resolution CT data to FE models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press.]. Three different models are generated: the proposed enhanced density-fabric-based model with a subject-specific cortex and two classical isotropic density-only models, with and without explicit modeling of the cortical shell. The material property errors of the used morphology-elasticity relationship are minimized by using elasticity tensors from 60 cubical models which are cropped from the trabecular centrums of the investigated vertebral bodies. Two different boundary conditions--kinematic [Van Rietbergen et al., 1995. A new method to determine trabecular bone elastic properties and loading using micromechanical FE models. Journal of Biomechanics 28 (1), 69-81] and mixed [Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463-476.]--are used in these FE models. After removal of the endplates, compressive and antero-posterior shear loading is applied on the investigated vertebral bodies. Individual error sources are studied in more detail by loading also the trabecular centrum (removed shell) and the cortical shell alone. It is found that the cortex-only models need a correction of the shell thickness when transforming from a voxel to a smooth description. The trabecular centrum alone gives too stiff and too soft a response using material calibration with kinematic and mixed boundary conditions, respectively. A comparison of the whole vertebral body stiffnesses shows that an orthotropic cancellous bone material calibrated with kinematic boundary conditions corresponds best with . Taken together, the proposed enhanced homogenized surface-based FE model is structurally more accurate than density-only models. |
| Author | Pahr, Dieter H. Zysset, Philippe K. |
| Author_xml | – sequence: 1 givenname: Dieter H. surname: Pahr fullname: Pahr, Dieter H. email: pahr@ilsb.tuwien.ac.at – sequence: 2 givenname: Philippe K. surname: Zysset fullname: Zysset, Philippe K. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19155014$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkkFr3DAQhUVJaTZp_0IwFNpcvB3JlmxBKQ0haQuBHpqehSyPWbm2tJXslPz7yGxCYA-bnoTE9x6j9-aEHDnvkJAzCmsKVHzq131j_Yhms2YA9ZrSNbD6FVnRuipyVtRwRFYAjOaSSTgmJzH2AFCVlXxDjqmknAMtV-T2IjN-3Opgo3eZ7zJ0G-0MtunZTdbN85hdX2X_7LTJRmuCX26jb3GIC72ZR-2yOwwTNkEPWeNbi_Eted3pIeK7x_OU_L6-ur38nt_8_Pbj8uImN1zIKee0k5URogIjgDa6abTsJNdQYdu0oGtTgtTIyjKNXUmGomNct6xImDCsK07Jx53vNvi_M8ZJjTYaHAbt0M9RyZRUxQtaJfLDQVIIWQOveQLPD4LJsAYoarZ4vt9Dez8Hlz6sKBScUspKmaizR2puRmzVNthRh3v1VEECxA5I4cYYsHtGQC1dq149da2WrhWlKnWdhJ_3hMZOerKpt6Dt8LL8606eqsQ7i0FFY3Gp3gY0k2q9fdniy56FGayzRg9_8B7jcxwqMgXq17KPyzpCilCAKA8b_M8EDx-s8SE |
| CitedBy_id | crossref_primary_10_1016_j_jbiomech_2009_12_027 crossref_primary_10_1016_j_medengphy_2015_10_007 crossref_primary_10_1111_joa_12446 crossref_primary_10_1002_ajpa_23635 crossref_primary_10_1016_j_cmpb_2023_107549 crossref_primary_10_1016_j_jmbbm_2014_01_006 crossref_primary_10_1016_j_medengphy_2016_10_003 crossref_primary_10_1016_j_jmbbm_2012_11_018 crossref_primary_10_1080_21681163_2014_947385 crossref_primary_10_1016_j_jbiomech_2012_08_022 crossref_primary_10_1016_j_medengphy_2019_03_017 crossref_primary_10_1007_s10237_012_0443_2 crossref_primary_10_1007_s11012_021_01452_x crossref_primary_10_1016_j_jmbbm_2025_106888 crossref_primary_10_1016_j_cmpb_2025_108805 crossref_primary_10_1080_10255842_2017_1390086 crossref_primary_10_1080_10255842_2011_565751 crossref_primary_10_1002_ajpa_24939 crossref_primary_10_1109_TMI_2016_2646698 crossref_primary_10_1118_1_3582946 crossref_primary_10_1002_nme_5008 crossref_primary_10_1016_j_jhevol_2018_05_004 crossref_primary_10_1016_j_medengphy_2017_03_005 crossref_primary_10_1016_j_bone_2010_08_002 crossref_primary_10_1007_s10439_014_0983_y crossref_primary_10_1088_1742_6596_1158_3_032012 crossref_primary_10_1016_j_medengphy_2015_03_007 crossref_primary_10_1016_j_bone_2010_07_001 crossref_primary_10_1016_j_jocd_2015_06_011 crossref_primary_10_1016_j_medengphy_2010_01_004 crossref_primary_10_1007_s11914_016_0335_y crossref_primary_10_1016_j_clinbiomech_2012_09_008 crossref_primary_10_3390_ma14206064 crossref_primary_10_1002_nme_7114 crossref_primary_10_1002_ajpa_24449 crossref_primary_10_1016_j_jbiomech_2013_07_042 crossref_primary_10_1371_journal_pone_0078781 crossref_primary_10_1016_j_jbiomech_2013_07_047 crossref_primary_10_1177_1077546313480548 crossref_primary_10_1002_ar_24050 crossref_primary_10_1016_j_ejrad_2013_10_024 crossref_primary_10_1111_joa_13437 crossref_primary_10_1002_ajpa_70007 crossref_primary_10_1016_j_jbiomech_2015_10_012 crossref_primary_10_1007_s10237_014_0584_6 crossref_primary_10_1080_10255842_2020_1811507 crossref_primary_10_1007_s10237_010_0245_3 crossref_primary_10_1007_s00198_013_2591_3 crossref_primary_10_1016_j_bone_2021_116282 crossref_primary_10_1080_10255842_2012_744400 crossref_primary_10_1186_s40634_016_0072_2 crossref_primary_10_1016_j_jbiomech_2009_05_005 crossref_primary_10_1016_j_jbiomech_2016_07_031 crossref_primary_10_1002_ajpa_24596 crossref_primary_10_1088_1742_6596_1158_2_022046 crossref_primary_10_1007_s12668_018_0551_2 crossref_primary_10_1007_s10439_022_03104_x crossref_primary_10_1016_j_bone_2012_09_006 crossref_primary_10_1002_ar_25010 crossref_primary_10_1002_nme_7149 crossref_primary_10_1016_j_jmbbm_2012_06_005 crossref_primary_10_3390_biomechanics2010012 crossref_primary_10_1002_jsp2_1170 crossref_primary_10_1016_j_jhevol_2022_103304 crossref_primary_10_1016_j_jbiomech_2009_04_017 crossref_primary_10_1016_j_jbiomech_2012_07_004 crossref_primary_10_1007_s10439_017_1883_8 crossref_primary_10_1080_10255842_2011_556627 crossref_primary_10_1007_s10237_019_01225_2 crossref_primary_10_1016_j_jmbbm_2023_105740 crossref_primary_10_3389_fmed_2020_569449 crossref_primary_10_1002_jmor_20238 crossref_primary_10_1016_j_cmpb_2022_107310 crossref_primary_10_1097_BRS_0b013e3182293628 crossref_primary_10_1016_j_jmbbm_2014_10_016 crossref_primary_10_3389_fmars_2024_1456505 crossref_primary_10_1007_s11831_014_9120_1 crossref_primary_10_1038_s41598_024_56327_4 crossref_primary_10_1109_TMI_2014_2387114 crossref_primary_10_1016_j_bone_2024_117115 crossref_primary_10_1038_s41598_022_09063_6 |
| Cites_doi | 10.1007/s10237-007-0109-7 10.1080/10255840802078022 10.2307/2532051 10.1016/0021-9290(95)80008-5 10.1148/radiology.179.3.2027972 10.1115/1.2798314 10.1016/j.cma.2006.06.017 10.1016/S1350-4533(03)00081-X 10.1080/10255840802144105 10.1002/nme.2101 10.1016/S8756-3282(03)00210-2 10.1016/0167-6636(85)90012-2 10.1359/jbmr.061011 10.1016/j.bone.2003.12.001 10.1097/01.BRS.0000049923.27694.47 10.1016/S0021-9290(96)80021-2 10.1097/01.brs.0000225993.57349.df 10.1016/S0021-9290(03)00128-3 |
| ContentType | Journal Article |
| Copyright | 2008 Elsevier Ltd Elsevier Ltd |
| Copyright_xml | – notice: 2008 Elsevier Ltd – notice: Elsevier Ltd |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
| DOI | 10.1016/j.jbiomech.2008.11.028 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Calcium & Calcified Tissue Abstracts MEDLINE Research Library Prep Technology Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Anatomy & Physiology |
| EISSN | 1873-2380 |
| EndPage | 462 |
| ExternalDocumentID | 2745270291 19155014 10_1016_j_jbiomech_2008_11_028 S0021929008006064 1_s2_0_S0021929008006064 |
| Genre | Journal Article Comparative Study |
| GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUFD ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACLOT ACNNM ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBD EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GNUQQ GUQSH HCIFZ HEE HMCUK HMK HMO HVGLF HZ~ H~9 I-F IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P ML~ MO0 MVM N9A O-L O9- OAUVE OH. OHT OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT VH1 WUQ X7M XOL XPP YQT Z5R ZGI ZMT ~G- ~HD 3V. AACTN AFCTW AFFDN AFKWA AJOXV ALIPV AMFUW PKN RIG YCJ AAIAV ABLVK ABYKQ AHPSJ AJBFU F3I LCYCR 9DU AAYXX AFFHD CITATION CGR CUY CVF ECM EIF NPM 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U PUEGO 7X8 |
| ID | FETCH-LOGICAL-c569t-51f97c6670c601babba9f95a07edbd0a8c409ae244747792e6f25ad23a9f6c2f3 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 101 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264507300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9290 1873-2380 |
| IngestDate | Sat Sep 27 18:02:13 EDT 2025 Sun Nov 09 11:13:24 EST 2025 Thu Oct 02 11:55:10 EDT 2025 Sat Nov 29 14:25:44 EST 2025 Thu Apr 03 07:07:05 EDT 2025 Sat Nov 29 07:25:56 EST 2025 Tue Nov 18 22:06:15 EST 2025 Fri Feb 23 02:28:28 EST 2024 Sun Feb 23 10:20:44 EST 2025 Tue Oct 14 19:30:55 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Finite element method Cortex Elasticity Vertebral body Micro FE Bone Density Fabric Mesh generation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c569t-51f97c6670c601babba9f95a07edbd0a8c409ae244747792e6f25ad23a9f6c2f3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Undefined-1 ObjectType-Feature-3 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Feature-1 |
| PMID | 19155014 |
| PQID | 1035111249 |
| PQPubID | 1226346 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_901675317 proquest_miscellaneous_66980585 proquest_miscellaneous_1678003827 proquest_journals_1035111249 pubmed_primary_19155014 crossref_primary_10_1016_j_jbiomech_2008_11_028 crossref_citationtrail_10_1016_j_jbiomech_2008_11_028 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2008_11_028 elsevier_clinicalkeyesjournals_1_s2_0_S0021929008006064 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2008_11_028 |
| PublicationCentury | 2000 |
| PublicationDate | 2009-03-11 |
| PublicationDateYYYYMMDD | 2009-03-11 |
| PublicationDate_xml | – month: 03 year: 2009 text: 2009-03-11 day: 11 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | Journal of biomechanics |
| PublicationTitleAlternate | J Biomech |
| PublicationYear | 2009 |
| Publisher | Elsevier Ltd Elsevier Limited |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
| References | Liebschner, Kopperdahl, Rosenberg, Keaveny (bib15) 2003; 28 Crawford, Cann, Keaveny (bib6) 2003; 33 Homminga, Van-Rietbergen, Lochmuller, Weinans, Eckstein, Huiskes (bib11) 2004; 34 Van Rietbergen, Odgaard, Kabel, Huiskes (bib21) 1996; 29 Chevalier, Y., Charlebois, M., Pahr, D., Varga, P., Heini, P., Schneider, E., Zysset, P., 2008. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Computer Methods in Biomechanics and Biomedical Engineering, available online. Keyak, Falkinstein (bib14) 2003; 25 Zysset (bib22) 2003; 36 Imai, Ohnishi, Bessho, Nakamura (bib12) 2006; 31 Eswaran, Bayraktar, Adams, Gupta, Hoffmann, Lee, Papadopoulos, Keaveny (bib7) 2007; 196 Van Rietbergen, Weinans, Huiskes, Odgaard (bib20) 1995; 28 Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M., 2006. A scalable multi-level preconditioner for matrix-free finite element analysis of human bone structures. Technical Report, Institute of Computational Science, ETH Zürich. Guldberg, Hollister, Charras (bib10) 1998; 120 Lin (bib16) 1989; 45 Chevalier, Y., Varga, P., Pahr, D., Schneider, E., Zysset, P., 2006. Calibrated finite element voxel models based on high-resolution ct predict in vitro vertebral strength better than dexa. In: ASBMR 28th Annual Meeting, vol. 21, September 15–19, p. S81. Mennel, U., Sala, M., 2007. Overview of parFE: A Scalable Finite Element Solver for Bone Modeling. Institute of Computational Science, ETH Zurich. Keaveny, Donley, Hoffmann, Mitlak, Glass, San Martin (bib13) 2007; 22 Pahr, D.H., Zysset, P.K., 2008b. From high-resolution CT data to finite element models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press. Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476. Abaqus, 2007. ABAQUS Analysis User's Manual V6.6. ABAQUS, Inc., Rising Sun Mills, 166 Vally Street, Providence, RI, USA. Faulkner, Cann, Hasegawa (bib8) 1991; 179 Cowin (bib5) 1985; 4 Graeff, C., Glüer, C., Borggrefe, J., Charlebois, M., Chevalier, Y., Varga, P., Pahr, D., Nickelsen, T., Marin, F., Farrerons, J., Zysset, P., 2007. Effects of 2 years teriparatide treatment on bone strength assessed by high resolution CT based finite element analysis of human vertebrae in vivo: results form the Eurofors study. In: ASBMR 29th Annual Meeting, September 16–19, Honolulu, USA. Faulkner (10.1016/j.jbiomech.2008.11.028_bib8) 1991; 179 10.1016/j.jbiomech.2008.11.028_bib9 Cowin (10.1016/j.jbiomech.2008.11.028_bib5) 1985; 4 Crawford (10.1016/j.jbiomech.2008.11.028_bib6) 2003; 33 Zysset (10.1016/j.jbiomech.2008.11.028_bib22) 2003; 36 Liebschner (10.1016/j.jbiomech.2008.11.028_bib15) 2003; 28 Van Rietbergen (10.1016/j.jbiomech.2008.11.028_bib21) 1996; 29 Keaveny (10.1016/j.jbiomech.2008.11.028_bib13) 2007; 22 Guldberg (10.1016/j.jbiomech.2008.11.028_bib10) 1998; 120 Eswaran (10.1016/j.jbiomech.2008.11.028_bib7) 2007; 196 10.1016/j.jbiomech.2008.11.028_bib18 10.1016/j.jbiomech.2008.11.028_bib19 Imai (10.1016/j.jbiomech.2008.11.028_bib12) 2006; 31 10.1016/j.jbiomech.2008.11.028_bib17 Homminga (10.1016/j.jbiomech.2008.11.028_bib11) 2004; 34 Van Rietbergen (10.1016/j.jbiomech.2008.11.028_bib20) 1995; 28 Keyak (10.1016/j.jbiomech.2008.11.028_bib14) 2003; 25 10.1016/j.jbiomech.2008.11.028_bib2 10.1016/j.jbiomech.2008.11.028_bib1 10.1016/j.jbiomech.2008.11.028_bib4 10.1016/j.jbiomech.2008.11.028_bib3 Lin (10.1016/j.jbiomech.2008.11.028_bib16) 1989; 45 |
| References_xml | – volume: 31 start-page: 1789 year: 2006 end-page: 1794 ident: bib12 article-title: Nonlinear finite element model predicts vertebral bone strength and fracture site publication-title: Spine – volume: 28 start-page: 559 year: 2003 end-page: 565 ident: bib15 article-title: Finite element modeling of the human thoracolumbar spine publication-title: Spine – reference: Mennel, U., Sala, M., 2007. Overview of parFE: A Scalable Finite Element Solver for Bone Modeling. Institute of Computational Science, ETH Zurich. – volume: 36 start-page: 1469 year: 2003 end-page: 1485 ident: bib22 article-title: A review of morphology-elasticity relationships in human trabecular bone: theories and experiments publication-title: Journal of Biomechanics – volume: 4 start-page: 137 year: 1985 end-page: 147 ident: bib5 article-title: The relationship between the elasticity tensor and the fabric tensor publication-title: Mechanics of Materials – volume: 25 start-page: 781 year: 2003 end-page: 787 ident: bib14 article-title: Comparison of in situ and in vitro ct scan-based finite element model predictions of proximal femoral fracture load publication-title: Medical Engineering & Physics – reference: Arbenz, P., van Lenthe, G.H., Mennel, U., Müller, R., Sala, M., 2006. A scalable multi-level preconditioner for matrix-free finite element analysis of human bone structures. Technical Report, Institute of Computational Science, ETH Zürich. – volume: 33 start-page: 744 year: 2003 end-page: 750 ident: bib6 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone – reference: Abaqus, 2007. ABAQUS Analysis User's Manual V6.6. ABAQUS, Inc., Rising Sun Mills, 166 Vally Street, Providence, RI, USA. – volume: 29 start-page: 1653 year: 1996 end-page: 1657 ident: bib21 article-title: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture publication-title: Journal of Biomechanics – volume: 28 start-page: 69 year: 1995 end-page: 81 ident: bib20 article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models publication-title: Journal of Biomechanics – volume: 45 start-page: 255 year: 1989 end-page: 268 ident: bib16 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 179 start-page: 669 year: 1991 end-page: 674 ident: bib8 article-title: Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis publication-title: Radiology – reference: Pahr, D.H., Zysset, P.K., 2008b. From high-resolution CT data to finite element models: development of an integrated modular framework. Computer Methods in Biomechanics and Biomedical Engineering, in press. – reference: Chevalier, Y., Charlebois, M., Pahr, D., Varga, P., Heini, P., Schneider, E., Zysset, P., 2008. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Computer Methods in Biomechanics and Biomedical Engineering, available online. – volume: 34 start-page: 510 year: 2004 end-page: 516 ident: bib11 article-title: The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads publication-title: Bone – volume: 22 start-page: 149 year: 2007 end-page: 157 ident: bib13 article-title: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis publication-title: Journal of Bone and Mineral Research – volume: 196 start-page: 3025 year: 2007 end-page: 3032 ident: bib7 article-title: The micro-mechanics of cortical shell removal in the human vertebral body publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 120 start-page: 289 year: 1998 end-page: 295 ident: bib10 article-title: The accuracy of digital image-based finite element models publication-title: Journal of Biomechanical Engineering – reference: Chevalier, Y., Varga, P., Pahr, D., Schneider, E., Zysset, P., 2006. Calibrated finite element voxel models based on high-resolution ct predict in vitro vertebral strength better than dexa. In: ASBMR 28th Annual Meeting, vol. 21, September 15–19, p. S81. – reference: Pahr, D.H., Zysset, P.K., 2008a. Influence of boundary conditions on computed apparent elastic properties of cancellous bone. Biomechanics and Modeling in Mechanobiology 7, 463–476. – reference: Graeff, C., Glüer, C., Borggrefe, J., Charlebois, M., Chevalier, Y., Varga, P., Pahr, D., Nickelsen, T., Marin, F., Farrerons, J., Zysset, P., 2007. Effects of 2 years teriparatide treatment on bone strength assessed by high resolution CT based finite element analysis of human vertebrae in vivo: results form the Eurofors study. In: ASBMR 29th Annual Meeting, September 16–19, Honolulu, USA. – ident: 10.1016/j.jbiomech.2008.11.028_bib9 – ident: 10.1016/j.jbiomech.2008.11.028_bib18 doi: 10.1007/s10237-007-0109-7 – ident: 10.1016/j.jbiomech.2008.11.028_bib4 doi: 10.1080/10255840802078022 – volume: 45 start-page: 255 year: 1989 ident: 10.1016/j.jbiomech.2008.11.028_bib16 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 – ident: 10.1016/j.jbiomech.2008.11.028_bib3 – volume: 28 start-page: 69 issue: 1 year: 1995 ident: 10.1016/j.jbiomech.2008.11.028_bib20 article-title: A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models publication-title: Journal of Biomechanics doi: 10.1016/0021-9290(95)80008-5 – volume: 179 start-page: 669 issue: 3 year: 1991 ident: 10.1016/j.jbiomech.2008.11.028_bib8 article-title: Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis publication-title: Radiology doi: 10.1148/radiology.179.3.2027972 – volume: 120 start-page: 289 year: 1998 ident: 10.1016/j.jbiomech.2008.11.028_bib10 article-title: The accuracy of digital image-based finite element models publication-title: Journal of Biomechanical Engineering doi: 10.1115/1.2798314 – ident: 10.1016/j.jbiomech.2008.11.028_bib1 – volume: 196 start-page: 3025 issue: 31–32 year: 2007 ident: 10.1016/j.jbiomech.2008.11.028_bib7 article-title: The micro-mechanics of cortical shell removal in the human vertebral body publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2006.06.017 – volume: 25 start-page: 781 issue: 9 year: 2003 ident: 10.1016/j.jbiomech.2008.11.028_bib14 article-title: Comparison of in situ and in vitro ct scan-based finite element model predictions of proximal femoral fracture load publication-title: Medical Engineering & Physics doi: 10.1016/S1350-4533(03)00081-X – ident: 10.1016/j.jbiomech.2008.11.028_bib19 doi: 10.1080/10255840802144105 – ident: 10.1016/j.jbiomech.2008.11.028_bib2 doi: 10.1002/nme.2101 – volume: 33 start-page: 744 issue: 4 year: 2003 ident: 10.1016/j.jbiomech.2008.11.028_bib6 article-title: Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography publication-title: Bone doi: 10.1016/S8756-3282(03)00210-2 – volume: 4 start-page: 137 issue: 2 year: 1985 ident: 10.1016/j.jbiomech.2008.11.028_bib5 article-title: The relationship between the elasticity tensor and the fabric tensor publication-title: Mechanics of Materials doi: 10.1016/0167-6636(85)90012-2 – volume: 22 start-page: 149 year: 2007 ident: 10.1016/j.jbiomech.2008.11.028_bib13 article-title: Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis publication-title: Journal of Bone and Mineral Research doi: 10.1359/jbmr.061011 – volume: 34 start-page: 510 issue: 3 year: 2004 ident: 10.1016/j.jbiomech.2008.11.028_bib11 article-title: The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads publication-title: Bone doi: 10.1016/j.bone.2003.12.001 – volume: 28 start-page: 559 issue: 6 year: 2003 ident: 10.1016/j.jbiomech.2008.11.028_bib15 article-title: Finite element modeling of the human thoracolumbar spine publication-title: Spine doi: 10.1097/01.BRS.0000049923.27694.47 – volume: 29 start-page: 1653 issue: 12 year: 1996 ident: 10.1016/j.jbiomech.2008.11.028_bib21 article-title: Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(96)80021-2 – ident: 10.1016/j.jbiomech.2008.11.028_bib17 – volume: 31 start-page: 1789 year: 2006 ident: 10.1016/j.jbiomech.2008.11.028_bib12 article-title: Nonlinear finite element model predicts vertebral bone strength and fracture site publication-title: Spine doi: 10.1097/01.brs.0000225993.57349.df – volume: 36 start-page: 1469 issue: 10 year: 2003 ident: 10.1016/j.jbiomech.2008.11.028_bib22 article-title: A review of morphology-elasticity relationships in human trabecular bone: theories and experiments publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(03)00128-3 |
| SSID | ssj0007479 |
| Score | 2.2802882 |
| Snippet | Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study... Abstract Continuum finite element (FE) models are standard tools for determination of biomechanical properties of bones and bone-implant systems. This study... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 455 |
| SubjectTerms | Aged Aged, 80 and over Algorithms Biomechanical Phenomena Biomechanics Bone Bones Boundary conditions Continuums Cortex Density Elasticity Fabric Finite Element Analysis Finite element method Humans Kinematics Male Mathematical models Mesh generation Micro FE Middle Aged Models, Biological Physical Medicine and Rehabilitation Shells Spine Stress, Mechanical Vertebral body |
| Title | A comparison of enhanced continuum FE with micro FE models of human vertebral bodies |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929008006064 https://www.clinicalkey.es/playcontent/1-s2.0-S0021929008006064 https://dx.doi.org/10.1016/j.jbiomech.2008.11.028 https://www.ncbi.nlm.nih.gov/pubmed/19155014 https://www.proquest.com/docview/1035111249 https://www.proquest.com/docview/1678003827 https://www.proquest.com/docview/66980585 https://www.proquest.com/docview/901675317 |
| Volume | 42 |
| WOSCitedRecordID | wos000264507300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2380 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M7P dateStart: 20030101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: 7X7 dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: BENPR dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1873-2380 dateEnd: 20251013 omitProxy: false ssIdentifier: ssj0007479 issn: 0021-9290 databaseCode: M2O dateStart: 20030101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSF44KPjIzCKkRBvHkma2PETKqgVLysVGlLfrNhxtFVrOpYWif-eO-dje6CA4CVSlHMT9ezz73wfP4A3SeZkgciXuyK1PFGJ5CZNSq6cslTkI4oi82QTcjbLFgs1bw_c6jatsrOJ3lAXa0tn5Li6KeRFVMnvL79xYo2i6GpLobEHB9QlIfape_PeEiNUblM8Io4wILxRIbw8Xvr69iYgkR1TJ09iZP_15rQLfPpNaPrgfz__Idxv4ScbN_PlEdxy1QAOxxW63qsf7C3zCaH-pH0A9270KhzAnZM2Cn8Ip2Nme_pCti6Zq858IgGjxPfzartdsemE0REvW1HCH915yp2apD0tICMeaApaXzCzpkzGx_B1Ojn9-Im37AzcpkJteBqVSlohZGjRqTO5MbkqVZqH0hWmCPPMouuYO4QPqAapYifKOM2LeIRiwsbl6AnsV-vKPQNmszR00kSiUNT-y2XSiFzhvpmUiZHCBJB2atG2bV1ODBoXustRW-pOnQ2vJno1qM4A3vXjLpvmHX8cITut6640FY2pxv3l30a6urUJtY50HetQU3g8otlIWB3dxyQA1Y9sYU8DZ_7qrUfddNPXL-rnWgCv-8doNigWlFduvUUZBCkUFY5lAK92yAihshDdyQDYDglFRSxoxfFHnjbr4vp_JuIB9L-f__4LX8DdJj434lF0BPubq617Cbft9815fTWEPbmQ_poN4eDDZDb_gncn8eehX-g_AdWbVcE |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VgngceKQ8DIUuEnDbYrv2rveAUASNWrUNHILU2-Jdr0Wjxi51Auqf4jcy41d7IICQeuBoZcevzM7D8818AC-ixMkMI1_ustjySEWSmzjKuXLKUpOPyLKkJpuQ43FyeKg-rsCPrheGYJWdTawNdVZa-kaOu5tKXkSV_PbkKyfWKKqudhQajVrsubPvmLJVb3bf4__7MgxH25N3O7xlFeA2FmrO4yBX0gohfYvJiEmNSVWu4tSXLjOZnyYWU57UodvDSFuq0Ik8jNMs3MJlwob5Fp73ClyNKBMiqGD4obf8KNBCSgKOYYd_oSN5ujmt--mbAkiySZNDiQH-185wWbBbO73Rnf_tdd2F2214zYbNfrgHK64YwNqwSOfl7Iy9YjXgta4kDODWhVmMA7h-0KIM1mAyZLanZ2RlzlzxpQZKMAL2HxWLxYyNthl9wmYzAjTSUU0pVNHqmvaQEc81FeWPmSkJqXkfPl3Kgz-A1aIs3CNgNol9J00gMkXjzVwijUgVxgVRHhkpjAdxpwbatqPZiSHkWHcYvKnu1KfhDcWsDdXHg9e93EkznOSPErLTMt213qKz0Og__03SVa3Nq3Sgq1D7msr_AWk_5SKYHkceqF6yDeuacO2vrrreqbc-v1Cv2x48739Gs0i1rrRw5QLXYBBGVe9QerCxZI0QKvExXfaALVmhqEkHvRSe5GGzD8_fMxEr-EH0-Pd3uAE3diYH-3p_d7z3BG42tcgtHgTrsDo_XbincM1-mx9Vp89qU8Lg82Vvxp_7va88 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVw4JHyMBS6SMBtW9uxd70HhAJNRFWIIlSk3hZ7vRaNGrvUCah_jV_HjF_tgQBC6oGjlVm_Mk_PN_sBPA8iK1PMfLlNQ8MDFUiehEHGlVWGhnxEmkYV2YScTKKjIzVdgx_tLAzBKlufWDnqtDD0jRytm1peRJW8mzWwiOne-PXpV04MUtRpbek0ahU5sOffsXwrX-3v4X_9wvfHo8O373jDMMBNKNSCh16mpBFCugYLkyROklhlKoxdadMkdePIYPkTWwyBmHVL5VuR-WGc-gMUE8bPBnjea7AuMckIerD-ZjSZfuziAC5pACYexyTEvTSfPNuZVdP1dTsk2qF9RIkP_tehcVXqW4XA8e3_-eXdgVtN4s2GtaXchTWb92FzmMeLYn7OXrIKClv1GPpw89IujX3Y-NDgDzbhcMhMR9zIiozZ_EsFoWAE-T_Ol8s5G48Yfdxmc4I60lFFNlSSdEWIyIgBm9r1JywpCMN5Dz5dyYPfh15e5PYhMBOFrpWJJ1JFG5_ZSCYiVpgxBFmQSJE4ELYqoU2zaTtxh5zoFp03060q1YyiWM-hKjmw2607rbct-eMK2WqcbodyMYxojKz_ttKWjTcstadLX7uagAEeWQJVKVg4Bw6obmWT8NWJ3F9ddatVdX1xoU7PHXjW_YwOk7pgcW6LJcpgekb9cF86sL1CRggVuVhIO8BWSCga38H4hSd5UNvkxXsmygXXCx79_g63YQNtUL_fnxw8hht1k3LAPW8LeouzpX0C1823xXF59rTxKww-X7U1_gTxWrlZ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+enhanced+continuum+FE+with+micro+FE+models+of+human+vertebral+bodies&rft.jtitle=Journal+of+biomechanics&rft.au=Pahr%2C+Dieter+H&rft.au=Zysset%2C+Philippe+K&rft.date=2009-03-11&rft.pub=Elsevier+Limited&rft.issn=0021-9290&rft.eissn=1873-2380&rft.volume=42&rft.issue=4&rft.spage=455&rft_id=info:doi/10.1016%2Fj.jbiomech.2008.11.028&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2745270291 |
| thumbnail_m | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00219290%2FS0021929009X00035%2Fcov150h.gif |