Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT...
Saved in:
| Published in: | Viruses Vol. 14; no. 8; p. 1622 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Switzerland
MDPI AG
26.07.2022
MDPI |
| Subjects: | |
| ISSN: | 1999-4915, 1999-4915 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein. |
|---|---|
| AbstractList | Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein. Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein. |
| Audience | Academic |
| Author | Bowen, Nicole E. Oo, Adrian Kim, Baek |
| AuthorAffiliation | 2 Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA 1 Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; nicole.eileen.bowen@emory.edu (N.E.B.); adrian.oo@emory.edu (A.O.) |
| AuthorAffiliation_xml | – name: 2 Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA – name: 1 Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; nicole.eileen.bowen@emory.edu (N.E.B.); adrian.oo@emory.edu (A.O.) |
| Author_xml | – sequence: 1 givenname: Nicole E. orcidid: 0000-0003-4269-2167 surname: Bowen fullname: Bowen, Nicole E. – sequence: 2 givenname: Adrian orcidid: 0000-0002-2469-5391 surname: Oo fullname: Oo, Adrian – sequence: 3 givenname: Baek surname: Kim fullname: Kim, Baek |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35893688$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstuEzEUhkeoiF5gwQugkdjAYlrfxhcWSFEoTUQjEJRuR57xmdTRxA72JCi8B--L05TQVJXQLDy2v_Pb5_d_nB047yDLXmJ0SqlCZyvMkMSckCfZEVZKFUzh8uDe_2F2HOMMIc4VEs-yQ1pKRbmUR9nvCTQ32tnY2yYfux7CotPrvIb-J4DLR-PrAudfYQUhQn4VtItNsItep9m5-7WeQ_7JOkjFMdfO5CMf-_zbYDL6gPMvwfdg3bv82gbd5ZM1dN6aYghdl5T8wsb5bc0FOD9Pp0-WvZ6Cg2jj8-xpq7sIL-7Gk-z7x_Or4ai4_HwxHg4ui6bkqi-YVK1CDRBm6rItZak18FbXYGpsGDOYNEKJluCW6BIbBBQbjpUQXBglDKUn2Xira7yeVYtg5zqsK69tdbvgw7TSITXXQYUJ4gYRxjgTzDChtBLIaIxx3UjZiqT1fqu1WNZzMA24PrW9J7q_4-xNNfWrSlGKGZFJ4M2dQPA_lhD7am5jk9zSDvwyVkRgSQVVjP4f5aokiqRUJPT1A3Tml8ElV5Mg4owQiek_aqpTr9a1Pl2x2YhWA8G4wKKUG-r0ESp9BtIDpky2Nq3vFby678nOjL_5S8DbLdAEH2OAdodgVG2yXe2yndizB2xje91bv7HTdo9U_AHAufjE |
| CitedBy_id | crossref_primary_10_1007_s00203_024_03846_3 crossref_primary_10_3390_ph18010030 crossref_primary_10_1016_j_compbiolchem_2025_108573 crossref_primary_10_3390_v16020288 crossref_primary_10_1111_ejh_70027 crossref_primary_10_1016_j_compbiomed_2025_109675 crossref_primary_10_3390_v16091412 crossref_primary_10_1080_07391102_2024_2319112 crossref_primary_10_1371_journal_ppat_1013130 crossref_primary_10_3390_ijms24065905 |
| Cites_doi | 10.1093/nar/gkq829 10.1021/acsomega.1c01742 10.1073/pnas.1401706111 10.1016/S0021-9258(17)32159-2 10.1073/pnas.1312033110 10.1038/jid.2013.311 10.1021/bi00475a007 10.1096/fj.201902508R 10.1016/j.virol.2012.10.029 10.1073/pnas.1519128113 10.1002/j.1460-2075.1996.tb01109.x 10.1182/blood-2013-04-490847 10.1371/journal.pbio.1002251 10.1371/journal.pone.0169052 10.1016/S0021-9258(20)71265-2 10.1016/j.bbrc.2019.04.085 10.1007/BF00928361 10.1146/annurev-biochem-013118-111843 10.1128/JVI.01970-20 10.1016/j.jbc.2022.101635 10.1038/s41408-017-0036-5 10.1080/15384101.2017.1314407 10.1371/journal.pgen.1009523 10.1016/j.tibtech.2020.06.008 10.1016/j.chom.2013.03.005 10.1074/jbc.M412859200 10.1016/S0021-9258(20)89464-2 10.1038/nsmb.2692 10.1038/s41586-018-0050-1 10.1074/jbc.RA120.015273 10.1016/S0021-9258(19)61477-8 10.1021/acs.jcim.0c00629 10.1136/annrheumdis-2013-204845 10.1073/pnas.90.13.6320 10.1128/microbiolspec.MDNA3-0027-2014 10.1016/j.tim.2018.09.009 10.1021/bi960364x 10.1016/j.virol.2019.08.010 10.1073/pnas.78.4.2447 10.1038/ng.2414 10.1002/j.1460-2075.1996.tb00777.x 10.1002/ana.410150109 10.1074/jbc.M113.486787 10.1074/jbc.M102441200 10.1074/jbc.C111.317628 10.1073/pnas.0708850105 10.1016/j.celrep.2016.02.022 10.1128/JVI.01642-13 10.1074/jbc.M114.591958 10.1016/j.antiviral.2011.08.020 10.1016/j.jmb.2017.05.010 10.1074/jbc.M113.472159 10.1128/JVI.00056-10 10.1016/j.virol.2015.11.022 10.1016/j.celrep.2016.07.002 10.1021/bi011653a 10.1038/nature10623 10.1128/JVI.01657-12 10.1002/j.1460-2075.1996.tb00426.x 10.1016/j.celrep.2017.08.008 10.1128/JVI.00915-10 10.1073/pnas.1416485112 10.1186/1742-4690-9-87 10.1002/ajmg.a.36887 10.1002/j.1460-2075.1989.tb03488.x 10.1038/ng.3127 10.1002/prot.25287 10.1097/QAD.0000000000000399 10.1074/jbc.M115.646588 10.1016/j.chom.2013.06.002 10.1128/JVI.00752-14 10.1016/j.celrep.2013.03.017 10.1146/annurev-genet-110711-155522 10.1016/j.jbc.2021.101170 10.1038/s42003-020-1052-8 10.1002/humu.23201 10.1038/s41467-018-04671-1 10.1093/nar/gkg187 10.1016/j.biocel.2004.02.020 10.1074/jbc.M116.753947 10.15252/embj.201696025 10.1002/pro.5560021216 10.1093/nar/gkt109 10.3390/v1031137 10.1016/j.mam.2012.05.007 10.1002/j.1460-2075.1992.tb05419.x 10.1371/journal.ppat.0030085 10.1073/pnas.89.15.6919 10.1128/jvi.76.5.2329-2339.2002 10.1021/bi00119a002 10.1038/383586a0 10.1128/AAC.02745-14 10.1006/viro.1994.1130 10.1074/jbc.M115.691576 10.1038/ng1845 10.1074/jbc.M604665200 10.1016/j.jmb.2010.06.001 10.1128/JB.02606-14 10.1073/pnas.1412289111 10.1093/nar/gkv633 10.1016/S0021-9258(19)36949-2 10.1038/nrdp.2015.35 10.1371/journal.pone.0008867 10.1038/sj.embor.7400980 10.1128/jvi.70.11.7594-7602.1996 10.1186/s12977-014-0111-y 10.3389/fimmu.2019.01435 10.1038/nm.4255 10.1186/s13046-021-02093-4 10.1371/journal.ppat.1005194 10.1038/srep31353 10.1093/nar/gkab051 10.1016/S0968-0004(98)01293-6 10.1002/prot.24594 10.1101/2021.04.06.438583 10.1056/NEJMra0706737 10.1074/jbc.M117.793661 10.1080/15384101.2015.1030558 10.1371/journal.ppat.1000059 10.1128/JVI.00292-18 10.1016/j.chom.2010.06.004 10.1186/s12977-018-0395-4 10.15252/emmm.201910419 10.1074/jbc.M111.297903 10.1371/journal.ppat.1003496 10.1158/1078-0432.CCR-15-3103 10.1016/j.smim.2021.101472 10.1080/15384101.2018.1480216 10.1074/jbc.RA119.011466 10.1186/1742-4690-9-105 10.1371/journal.pone.0037477 10.1016/j.bbrc.2014.10.153 10.1038/327716a0 10.18632/oncotarget.19704 10.1042/BJ20101852 10.1074/jbc.M205295200 10.1093/nar/gkj411 10.1016/j.celrep.2016.03.075 10.1021/acs.jcim.7b00279 10.1038/s41467-021-21023-8 10.1038/ncomms3722 10.1073/pnas.91.15.7242 10.1038/ncomms9571 10.1126/science.282.5394.1669 10.1038/srep44834 10.1016/j.exphem.2017.05.001 10.1126/science.2460925 10.1016/j.virol.2016.05.002 10.3390/v10110620 10.1016/S0021-9258(18)35706-5 10.1038/nm.4265 10.1074/jbc.M112.443796 10.1074/jbc.M115.677435 10.1371/journal.ppat.1000300 10.1074/jbc.M112.348482 10.1006/viro.1994.1169 10.1186/s12977-018-0452-z 10.1186/1742-4690-9-49 10.15252/embj.2019102931 10.1073/pnas.1805593115 10.1038/nature10195 10.1128/jvi.65.9.5088-5091.1991 10.1073/pnas.0702102104 10.1074/jbc.C112.374843 10.1089/ars.2016.6888 10.1007/BF02256413 10.1038/nsmb.1937 10.1038/s41586-018-0055-9 10.1371/journal.pbio.1000301 10.1073/pnas.98.2.658 10.3390/ijms22010370 10.3389/fmolb.2021.724870 10.1074/jbc.RA119.010360 10.1074/jbc.C113.493619 10.1128/JVI.00034-17 10.1074/jbc.M110.178582 10.1186/1742-4690-11-29 10.1038/nature10117 10.1128/JVI.02514-12 10.1038/s41598-021-00415-2 10.1182/blood-2015-05-647578 10.1016/j.chom.2012.01.004 10.1016/j.celrep.2018.06.090 10.1107/S1399004714027527 10.1016/j.jdcr.2015.05.003 10.1126/science.2460924 10.1016/j.bbrc.2014.07.023 10.1038/nm.2964 10.1073/pnas.1131932100 10.3390/v12040382 10.1038/s41467-020-16983-2 10.1016/S0092-8674(00)81601-3 10.1073/pnas.76.12.6505 10.1186/s12977-021-00548-2 10.3390/cells9010254 10.1128/JVI.00120-08 10.1159/000500822 10.3389/fmicb.2019.02828 10.1111/j.1742-4658.2012.08807.x 10.1002/humu.22087 10.4049/jimmunol.1400873 10.1021/acs.biochem.6b00986 10.1002/prot.25701 10.1016/j.virol.2010.07.028 10.1073/pnas.0409853102 10.1038/nature12815 10.1186/s12977-021-00586-w 10.1074/jbc.M408573200 10.1074/jbc.M111.276287 10.1038/ni.2236 10.1016/j.molimm.2018.08.005 10.1038/ng1842 10.1016/S0021-9258(17)39337-7 10.1016/S0021-9258(19)39981-8 10.1016/0014-5793(91)80484-K 10.1074/jbc.C116.751446 10.1016/j.virs.2022.01.019 10.1074/jbc.M112.340711 10.1038/s41467-021-24802-5 10.1038/ng.373 10.1038/s41467-021-22628-9 10.1093/emboj/18.4.1038 10.1016/j.chom.2012.01.007 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7U9 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM DOA |
| DOI | 10.3390/v14081622 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals (WRLC) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1999-4915 |
| ExternalDocumentID | oai_doaj_org_article_1206d02446474d479a970da111bc88f7 PMC9331428 A746717583 35893688 10_3390_v14081622 |
| Genre | Journal Article Review Research Support, N.I.H., Extramural |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GrantInformation_xml | – fundername: NIAID NIH HHS grantid: F31 AI157884 – fundername: NIH HHS grantid: AI136581 – fundername: NIH HHS grantid: AI162633 – fundername: NIAID NIH HHS grantid: R01 AI136581 – fundername: NIAID NIH HHS grantid: R01 AI162633 – fundername: NIH HHS grantid: AI157884 – fundername: NIH HHS grantid: CA254403 – fundername: NIH grantid: AI136581; AI162633; CA254403; AI157884 |
| GroupedDBID | --- 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACUHS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E O5R O5S OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RPM TR2 TUS UKHRP CGR CUY CVF ECM EIF ESTFP NPM 3V. 7U9 7XB 8FK AZQEC COVID DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c569t-489f90ce24db5f585aae6fabedb1d44d12c797f21f2a51d0e31d6197767d97d33 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845191300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4915 |
| IngestDate | Fri Oct 03 12:38:13 EDT 2025 Tue Nov 04 02:02:08 EST 2025 Mon Sep 08 15:56:33 EDT 2025 Wed Oct 01 14:22:05 EDT 2025 Tue Oct 07 07:10:20 EDT 2025 Sat Nov 29 14:07:20 EST 2025 Sat Nov 29 10:42:33 EST 2025 Sat Nov 01 14:15:54 EDT 2025 Sat Nov 29 07:08:02 EST 2025 Tue Nov 18 22:41:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | human immunodeficiency virus type 1 mutation retrovirus reverse transcriptase antiretroviral therapy drug resistance SAMHD1 cell tropism |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c569t-489f90ce24db5f585aae6fabedb1d44d12c797f21f2a51d0e31d6197767d97d33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
| ORCID | 0000-0003-4269-2167 0000-0002-2469-5391 |
| OpenAccessLink | https://www.proquest.com/docview/2706422813?pq-origsite=%requestingapplication% |
| PMID | 35893688 |
| PQID | 2706422813 |
| PQPubID | 2032319 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1206d02446474d479a970da111bc88f7 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331428 proquest_miscellaneous_2718373943 proquest_miscellaneous_2695292408 proquest_journals_2706422813 gale_infotracmisc_A746717583 gale_infotracacademiconefile_A746717583 pubmed_primary_35893688 crossref_primary_10_3390_v14081622 crossref_citationtrail_10_3390_v14081622 |
| PublicationCentury | 2000 |
| PublicationDate | 20220726 |
| PublicationDateYYYYMMDD | 2022-07-26 |
| PublicationDate_xml | – month: 7 year: 2022 text: 20220726 day: 26 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Viruses |
| PublicationTitleAlternate | Viruses |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Coquel (ref_216) 2018; 557 Igarashi (ref_19) 2001; 98 Franzolin (ref_8) 2013; 110 Greene (ref_70) 2020; 89 Patra (ref_97) 2017; 85 Qin (ref_183) 2020; 295 Clifford (ref_198) 2014; 123 Rothenburger (ref_212) 2020; 3 Franzolin (ref_220) 2020; 34 Crow (ref_171) 2006; 38 Arion (ref_21) 2004; 36 Espada (ref_184) 2021; 95 Schneider (ref_103) 2017; 23 Kruize (ref_16) 2019; 10 Deeks (ref_3) 2015; 1 Sharaf (ref_20) 2014; 82 Hansen (ref_98) 2014; 111 Kennedy (ref_4) 2010; 285 Betancor (ref_22) 2011; 92 Casartelli (ref_143) 2013; 87 Chen (ref_182) 2019; 27 Kennedy (ref_136) 2012; 287 Barrioluengo (ref_61) 2011; 436 Ding (ref_25) 1993; 90 Amie (ref_104) 2013; 288 ref_158 Batalis (ref_132) 2021; 8 Hrecka (ref_146) 2011; 474 ref_150 Hofmann (ref_83) 2012; 86 Bonifati (ref_124) 2016; 495 Guo (ref_151) 2019; 513 ref_157 Wang (ref_99) 2016; 291 Crow (ref_168) 2015; 167 Goldschmidt (ref_49) 2006; 34 Kaushik (ref_48) 1996; 35 Yu (ref_11) 1991; 65 (ref_62) 2017; 7 Zhu (ref_90) 2013; 4 Mahboubi (ref_139) 2018; 15 Knecht (ref_210) 2018; 115 Coppock (ref_78) 1987; 7 Robbe (ref_201) 2015; 126 Daugherty (ref_160) 2012; 46 Yan (ref_88) 2015; 290 Liu (ref_107) 2008; 105 Seamon (ref_178) 2016; 55 Buta (ref_176) 2018; 101 Wang (ref_204) 2014; 455 Aravind (ref_85) 1998; 23 Mendelman (ref_67) 1990; 265 Liu (ref_40) 2010; 17 White (ref_84) 2013; 436 Goncalves (ref_180) 2012; 33 Huang (ref_30) 1998; 282 Beerens (ref_33) 2002; 76 Herold (ref_209) 2017; 52 Geller (ref_68) 2015; 6 Skog (ref_75) 1990; 29 ref_219 Huang (ref_77) 1998; 94 Young (ref_71) 2013; 34 Kumar (ref_195) 2011; 39 Barrioluengo (ref_29) 2013; 41 Kirchhoff (ref_159) 2010; 8 Daddacha (ref_215) 2017; 20 Fye (ref_172) 2011; 286 Sawyer (ref_162) 2005; 102 White (ref_122) 2017; 38 Traut (ref_196) 1994; 140 Larder (ref_26) 1987; 327 Daddacha (ref_135) 2010; 406 Mohamed (ref_188) 2021; 11 Wong (ref_18) 2019; 10 DeStefano (ref_43) 1991; 266 Martinat (ref_125) 2021; 12 Coiras (ref_112) 2016; 14 Powell (ref_94) 2011; 286 Figiel (ref_44) 2017; 45 Bhattacharya (ref_118) 2016; 6 Mauney (ref_128) 2017; 27 Larsen (ref_32) 2018; 557 Hrecka (ref_148) 2007; 104 Yao (ref_76) 2003; 100 Isel (ref_38) 1996; 15 Giannakis (ref_207) 2014; 46 Lowe (ref_27) 1991; 282 Wang (ref_202) 2014; 134 Chen (ref_190) 2014; 450 Kerscher (ref_126) 2007; 8 Tristem (ref_155) 1992; 11 Lenzi (ref_165) 2015; 290 Taylor (ref_224) 2008; 358 Ji (ref_65) 1994; 199 Seamon (ref_177) 2015; 43 ref_226 Dilmore (ref_50) 2021; 6 ref_100 ref_101 ref_222 Ji (ref_92) 2014; 111 Kim (ref_54) 1996; 70 Bowen (ref_208) 2021; 297 Garforth (ref_58) 2010; 401 Abram (ref_66) 2010; 84 Descours (ref_141) 2012; 9 Mlcochova (ref_113) 2017; 36 Oo (ref_187) 2022; 298 Meuth (ref_192) 1979; 76 Huynh (ref_109) 2015; 112 Wang (ref_129) 2018; 24 Sharp (ref_153) 1996; 383 Patra (ref_130) 2019; 87 ref_15 White (ref_81) 2012; 9 Herold (ref_102) 2017; 23 Etienne (ref_154) 2013; 14 Merati (ref_203) 2015; 1 Goldschmidt (ref_35) 2003; 31 Maelfait (ref_179) 2016; 16 Rentoft (ref_205) 2016; 113 Preston (ref_46) 1988; 242 Koharudin (ref_96) 2014; 289 Lanchy (ref_39) 1996; 15 Rinaldo (ref_108) 2015; 197 Kim (ref_80) 2012; 287 Boyer (ref_63) 1992; 89 Schwefel (ref_147) 2014; 505 Lenzi (ref_13) 2014; 11 Oo (ref_152) 2020; 295 Mizrahi (ref_28) 1994; 269 Arnow (ref_191) 2021; 18 Kashlan (ref_72) 2002; 41 Akimova (ref_217) 2021; 49 Welbourn (ref_119) 2013; 87 Zheng (ref_1) 2022; 37 Lahouassa (ref_79) 2012; 13 Schott (ref_89) 2018; 9 Collin (ref_14) 1994; 200 Roberts (ref_55) 1989; 9 Baldauf (ref_140) 2012; 18 Skasko (ref_134) 2008; 82 Fink (ref_189) 2022; 19 Chen (ref_181) 2018; 115 Stultz (ref_7) 2017; 91 Aicardi (ref_169) 1984; 15 Husain (ref_218) 2020; 39 Back (ref_225) 1996; 15 Weinberg (ref_193) 1981; 78 Tramentozzi (ref_121) 2018; 17 Orebaugh (ref_173) 2011; 286 White (ref_110) 2013; 13 Morris (ref_106) 2020; 11 Operario (ref_133) 2006; 281 Yu (ref_145) 2021; 12 Coggins (ref_166) 2019; 537 Rudd (ref_214) 2020; 12 Cribier (ref_86) 2013; 3 Wang (ref_24) 1994; 91 ref_53 Eriksson (ref_73) 1985; 260 ref_51 Roberts (ref_6) 1988; 242 Goldstone (ref_9) 2011; 480 Kim (ref_138) 2013; 288 Lwatula (ref_59) 2012; 279 Pauls (ref_117) 2014; 28 Kim (ref_87) 2016; 291 Yan (ref_91) 2013; 288 Amie (ref_95) 2013; 288 Beerens (ref_34) 2001; 276 Ahn (ref_149) 2012; 287 Tang (ref_115) 2015; 290 Rice (ref_170) 2009; 41 ref_69 ref_161 (ref_56) 2009; 1 ref_164 Tomasselli (ref_23) 1993; 2 Guyader (ref_10) 1989; 8 Thapa (ref_131) 2020; 60 Antonucci (ref_144) 2018; 92 Skasko (ref_41) 2005; 280 Welbourn (ref_120) 2016; 488 Shah (ref_60) 2000; 275 Goetze (ref_137) 2017; 292 Ji (ref_93) 2013; 20 Zhu (ref_127) 2015; 71 Giannakis (ref_206) 2016; 15 Ha (ref_31) 2021; 12 Lee (ref_123) 2017; 8 Jiang (ref_200) 2020; 143 Isel (ref_37) 1999; 18 Coggins (ref_167) 2020; 295 Rawson (ref_52) 2017; 429 Patra (ref_114) 2017; 57 Diamond (ref_5) 2004; 279 Hughes (ref_2) 2015; 3 Eriksson (ref_74) 1984; 259 Rothenburger (ref_213) 2021; 40 Kretschmer (ref_221) 2015; 74 Sadler (ref_227) 2010; 84 Rezende (ref_47) 2001; 8 Achuthan (ref_45) 2014; 88 Laguette (ref_12) 2011; 474 Veenhuis (ref_17) 2021; 51 Pauls (ref_111) 2014; 193 Kati (ref_42) 1992; 267 Johansson (ref_199) 2018; 8 Goldschmidt (ref_36) 2002; 277 Amie (ref_142) 2012; 9 Ruiz (ref_116) 2015; 14 Huber (ref_105) 2014; 58 Ji (ref_64) 1992; 31 Laguette (ref_163) 2012; 11 ref_186 ref_185 Lim (ref_156) 2012; 11 Herold (ref_211) 2017; 16 Rice (ref_175) 2012; 44 Amin (ref_197) 2016; 22 Crow (ref_174) 2006; 38 Kunkel (ref_194) 1992; 267 (ref_57) 2021; 39 Schaller (ref_82) 2014; 11 Bale (ref_223) 2018; 15 |
| References_xml | – volume: 39 start-page: 1360 year: 2011 ident: ref_195 article-title: Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq829 – volume: 6 start-page: 14621 year: 2021 ident: ref_50 article-title: HIV Reverse Transcriptase Pre-Steady-State Kinetic Analysis of Chain Terminators and Translocation Inhibitors Reveals Interactions between Magnesium and Nucleotide 3’-OH publication-title: ACS Omega doi: 10.1021/acsomega.1c01742 – volume: 111 start-page: E1843 year: 2014 ident: ref_98 article-title: GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1401706111 – volume: 269 start-page: 19245 year: 1994 ident: ref_28 article-title: Mutagenesis of the conserved aspartic acid 443, glutamic acid 478, asparagine 494, and aspartic acid 498 residues in the ribonuclease H domain of p66/p51 human immunodeficiency virus type I reverse transcriptase. Expression and biochemical analysis publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)32159-2 – volume: 110 start-page: 14272 year: 2013 ident: ref_8 article-title: The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1312033110 – volume: 134 start-page: 562 year: 2014 ident: ref_202 article-title: Downregulation of SAMHD1 expression correlates with promoter DNA methylation in Sézary syndrome patients publication-title: J. Investig. Dermatol. doi: 10.1038/jid.2013.311 – volume: 29 start-page: 5452 year: 1990 ident: ref_75 article-title: S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs publication-title: Biochemistry doi: 10.1021/bi00475a007 – volume: 34 start-page: 631 year: 2020 ident: ref_220 article-title: SAMHD1-deficient fibroblasts from Aicardi-Goutieres Syndrome patients can escape senescence and accumulate mutations publication-title: FASEB J. doi: 10.1096/fj.201902508R – volume: 436 start-page: 81 year: 2013 ident: ref_84 article-title: Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1 publication-title: Virology doi: 10.1016/j.virol.2012.10.029 – volume: 113 start-page: 4723 year: 2016 ident: ref_205 article-title: Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1519128113 – volume: 15 start-page: 7178 year: 1996 ident: ref_39 article-title: Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb01109.x – volume: 123 start-page: 1021 year: 2014 ident: ref_198 article-title: SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage publication-title: Blood doi: 10.1182/blood-2013-04-490847 – ident: ref_53 doi: 10.1371/journal.pbio.1002251 – ident: ref_101 doi: 10.1371/journal.pone.0169052 – volume: 259 start-page: 11695 year: 1984 ident: ref_74 article-title: Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The S phase-correlated increase in subunit M2 is regulated by de novo protein synthesis publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)71265-2 – volume: 513 start-page: 933 year: 2019 ident: ref_151 article-title: Determinants of lentiviral Vpx-CRL4 E3 ligase-mediated SAMHD1 degradation in the substrate adaptor protein DCAF1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2019.04.085 – volume: 140 start-page: 1 year: 1994 ident: ref_196 article-title: Physiological concentrations of purines and pyrimidines publication-title: Mol. Cell Biochem. doi: 10.1007/BF00928361 – volume: 89 start-page: 45 year: 2020 ident: ref_70 article-title: Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-013118-111843 – volume: 95 start-page: e01970-20 year: 2021 ident: ref_184 article-title: TRAF6 and TAK1 Contribute to SAMHD1-Mediated Negative Regulation of NF-κB Signaling publication-title: J. Virol. doi: 10.1128/JVI.01970-20 – volume: 298 start-page: 101635 year: 2022 ident: ref_187 article-title: Elimination of Aicardi-Goutières syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2022.101635 – volume: 8 start-page: 11 year: 2018 ident: ref_199 article-title: SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia publication-title: Blood Cancer J. doi: 10.1038/s41408-017-0036-5 – volume: 16 start-page: 1029 year: 2017 ident: ref_211 article-title: SAMHD1 protects cancer cells from various nucleoside-based antimetabolites publication-title: Cell Cycle doi: 10.1080/15384101.2017.1314407 – volume: 45 start-page: 3341 year: 2017 ident: ref_44 article-title: Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase publication-title: Nucleic Acids Res. – ident: ref_219 doi: 10.1371/journal.pgen.1009523 – volume: 39 start-page: 194 year: 2021 ident: ref_57 article-title: Reverse Transcriptase: From Transcriptomics to Genome Editing publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.06.008 – volume: 13 start-page: 441 year: 2013 ident: ref_110 article-title: The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.03.005 – volume: 280 start-page: 12190 year: 2005 ident: ref_41 article-title: Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M412859200 – volume: 266 start-page: 7423 year: 1991 ident: ref_43 article-title: Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)89464-2 – volume: 20 start-page: 1304 year: 2013 ident: ref_93 article-title: Mechanism of allosteric activation of SAMHD1 by dGTP publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2692 – volume: 557 start-page: 57 year: 2018 ident: ref_216 article-title: SAMHD1 acts at stalled replication forks to prevent interferon induction publication-title: Nature doi: 10.1038/s41586-018-0050-1 – volume: 295 start-page: 16975 year: 2020 ident: ref_167 article-title: Enhanced enzyme kinetics of reverse transcriptase variants cloned from animals infected with SIVmac239 lacking Viral Protein X publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.015273 – volume: 275 start-page: 27037 year: 2000 ident: ref_60 article-title: Differential influence of nucleoside analog-resistance mutations K65R and L74V on the overall mutation rate and error specificity of human immunodeficiency virus type 1 reverse transcriptase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)61477-8 – volume: 60 start-page: 6377 year: 2020 ident: ref_131 article-title: Dimeric Hold States of Anti-HIV Protein SAMHD1 are Redox Tunable publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.0c00629 – volume: 74 start-page: e17 year: 2015 ident: ref_221 article-title: SAMHD1 prevents autoimmunity by maintaining genome stability publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2013-204845 – volume: 90 start-page: 6320 year: 1993 ident: ref_25 article-title: Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.13.6320 – volume: 3 start-page: 1051 year: 2015 ident: ref_2 article-title: Reverse Transcription of Retroviruses and LTR Retrotransposons publication-title: Microbiol. Spectr. doi: 10.1128/microbiolspec.MDNA3-0027-2014 – volume: 27 start-page: 254 year: 2019 ident: ref_182 article-title: SAMHD1 Suppression of Antiviral Immune Responses publication-title: Trends Microbiol. doi: 10.1016/j.tim.2018.09.009 – volume: 35 start-page: 11536 year: 1996 ident: ref_48 article-title: Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase publication-title: Biochemistry doi: 10.1021/bi960364x – volume: 115 start-page: E3798 year: 2018 ident: ref_181 article-title: SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-kappaB and interferon pathways publication-title: Proc. Natl. Acad. Sci. USA – volume: 537 start-page: 36 year: 2019 ident: ref_166 article-title: Efficient pre-catalytic conformational change of reverse transcriptases from SAMHD1 non-counteracting primate lentiviruses during dNTP incorporation publication-title: Virology doi: 10.1016/j.virol.2019.08.010 – volume: 78 start-page: 2447 year: 1981 ident: ref_193 article-title: Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.78.4.2447 – volume: 44 start-page: 1243 year: 2012 ident: ref_175 article-title: Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature publication-title: Nat. Genet. doi: 10.1038/ng.2414 – volume: 15 start-page: 4040 year: 1996 ident: ref_225 article-title: Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00777.x – volume: 15 start-page: 49 year: 1984 ident: ref_169 article-title: A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis publication-title: Ann. Neurol. doi: 10.1002/ana.410150109 – volume: 288 start-page: 33253 year: 2013 ident: ref_138 article-title: Restricted 5′-end gap repair of HIV-1 integration due to limited cellular dNTP concentrations in human primary macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.486787 – volume: 276 start-page: 31247 year: 2001 ident: ref_34 article-title: Initiation of HIV-1 reverse transcription is regulated by a primer activation signal publication-title: J. Biol. Chem. doi: 10.1074/jbc.M102441200 – volume: 286 start-page: 43596 year: 2011 ident: ref_94 article-title: Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase publication-title: J. Biol. Chem. doi: 10.1074/jbc.C111.317628 – volume: 105 start-page: 13309 year: 2008 ident: ref_107 article-title: Structural basis for the catalytic mechanism of human phosphodiesterase 9 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708850105 – volume: 14 start-page: 2100 year: 2016 ident: ref_112 article-title: IL-7 Induces SAMHD1 Phosphorylation in CD4+ T Lymphocytes, Improving Early Steps of HIV-1 Life Cycle publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.02.022 – volume: 87 start-page: 11516 year: 2013 ident: ref_119 article-title: Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1 publication-title: J. Virol. doi: 10.1128/JVI.01642-13 – volume: 289 start-page: 32617 year: 2014 ident: ref_96 article-title: Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates publication-title: J. Biol. Chem. doi: 10.1074/jbc.M114.591958 – volume: 92 start-page: 139 year: 2011 ident: ref_22 article-title: HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2011.08.020 – volume: 429 start-page: 2290 year: 2017 ident: ref_52 article-title: Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2017.05.010 – volume: 288 start-page: 20683 year: 2013 ident: ref_104 article-title: Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.472159 – volume: 84 start-page: 7396 year: 2010 ident: ref_227 article-title: APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis publication-title: J. Virol. doi: 10.1128/JVI.00056-10 – volume: 488 start-page: 271 year: 2016 ident: ref_120 article-title: Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1 publication-title: Virology doi: 10.1016/j.virol.2015.11.022 – volume: 16 start-page: 1492 year: 2016 ident: ref_179 article-title: Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.002 – volume: 41 start-page: 462 year: 2002 ident: ref_72 article-title: A comprehensive model for the allosteric regulation of mammalian ribonucleotide reductase. Functional consequences of ATP- and dATP-induced oligomerization of the large subunit publication-title: Biochemistry doi: 10.1021/bi011653a – volume: 480 start-page: 379 year: 2011 ident: ref_9 article-title: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase publication-title: Nature doi: 10.1038/nature10623 – volume: 86 start-page: 12552 year: 2012 ident: ref_83 article-title: The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus publication-title: J. Virol. doi: 10.1128/JVI.01657-12 – volume: 15 start-page: 917 year: 1996 ident: ref_38 article-title: Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00426.x – volume: 20 start-page: 1921 year: 2017 ident: ref_215 article-title: SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.08.008 – volume: 84 start-page: 9864 year: 2010 ident: ref_66 article-title: Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication publication-title: J. Virol. doi: 10.1128/JVI.00915-10 – volume: 112 start-page: E747 year: 2015 ident: ref_109 article-title: An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1416485112 – volume: 9 start-page: 87 year: 2012 ident: ref_141 article-title: SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells publication-title: Retrovirology doi: 10.1186/1742-4690-9-87 – volume: 167 start-page: 296 year: 2015 ident: ref_168 article-title: Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1 publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.36887 – volume: 8 start-page: 1169 year: 1989 ident: ref_10 article-title: VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes publication-title: EMBO J. doi: 10.1002/j.1460-2075.1989.tb03488.x – volume: 46 start-page: 1264 year: 2014 ident: ref_207 article-title: RNF43 is frequently mutated in colorectal and endometrial cancers publication-title: Nat. Genet. doi: 10.1038/ng.3127 – volume: 85 start-page: 1266 year: 2017 ident: ref_97 article-title: Uncovering allostery and regulation in SAMHD1 through molecular dynamics simulations publication-title: Proteins doi: 10.1002/prot.25287 – volume: 28 start-page: 2213 year: 2014 ident: ref_117 article-title: Palbociclib, a selective inhibitor of cyclin-dependent kinase4/6, blocks HIV-1 reverse transcription through the control of sterile α motif and HD domain-containing protein-1 (SAMHD1) activity publication-title: Aids doi: 10.1097/QAD.0000000000000399 – volume: 290 start-page: 13279 year: 2015 ident: ref_88 article-title: CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.646588 – volume: 14 start-page: 85 year: 2013 ident: ref_154 article-title: Gene loss and adaptation to hominids underlie the ancient origin of HIV-1 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.06.002 – volume: 88 start-page: 8514 year: 2014 ident: ref_45 article-title: Human immunodeficiency virus reverse transcriptase displays dramatically higher fidelity under physiological magnesium conditions in vitro publication-title: J. Virol. doi: 10.1128/JVI.00752-14 – volume: 3 start-page: 1036 year: 2013 ident: ref_86 article-title: Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.03.017 – volume: 46 start-page: 677 year: 2012 ident: ref_160 article-title: Rules of engagement: Molecular insights from host-virus arms races publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110711-155522 – volume: 297 start-page: 101170 year: 2021 ident: ref_208 article-title: Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.101170 – volume: 3 start-page: 324 year: 2020 ident: ref_212 article-title: SAMHD1 is a key regulator of the lineage-specific response of acute lymphoblastic leukaemias to nelarabine publication-title: Commun. Biol. doi: 10.1038/s42003-020-1052-8 – volume: 38 start-page: 658 year: 2017 ident: ref_122 article-title: A SAMHD1 mutation associated with Aicardi-Goutieres syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans publication-title: Hum. Mutat. doi: 10.1002/humu.23201 – volume: 9 start-page: 2227 year: 2018 ident: ref_89 article-title: Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzymes during mitotic exit publication-title: Nat. Commun. doi: 10.1038/s41467-018-04671-1 – volume: 31 start-page: 850 year: 2003 ident: ref_35 article-title: Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription? publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg187 – volume: 36 start-page: 1836 year: 2004 ident: ref_21 article-title: Proteolytic processing of an HIV-1 pol polyprotein precursor: Insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2004.02.020 – volume: 291 start-page: 26332 year: 2016 ident: ref_87 article-title: A Putative Cyclin-binding Motif in Human SAMHD1 Contributes to Protein Phosphorylation, Localization, and Stability publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.753947 – volume: 36 start-page: 604 year: 2017 ident: ref_113 article-title: A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages publication-title: EMBO J. doi: 10.15252/embj.201696025 – volume: 2 start-page: 2167 year: 1993 ident: ref_23 article-title: Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease H as substrates of the viral protease publication-title: Protein Sci. doi: 10.1002/pro.5560021216 – volume: 41 start-page: 4601 year: 2013 ident: ref_29 article-title: Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt109 – volume: 1 start-page: 1137 year: 2009 ident: ref_56 article-title: Mutation rates and intrinsic fidelity of retroviral reverse transcriptases publication-title: Viruses doi: 10.3390/v1031137 – volume: 34 start-page: 529 year: 2013 ident: ref_71 article-title: The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29 publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2012.05.007 – volume: 11 start-page: 3405 year: 1992 ident: ref_155 article-title: Evolution of the primate lentiviruses: Evidence from vpx and vpr publication-title: EMBO J. doi: 10.1002/j.1460-2075.1992.tb05419.x – ident: ref_157 doi: 10.1371/journal.ppat.0030085 – volume: 89 start-page: 6919 year: 1992 ident: ref_63 article-title: Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.15.6919 – volume: 76 start-page: 2329 year: 2002 ident: ref_33 article-title: The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription publication-title: J. Virol. doi: 10.1128/jvi.76.5.2329-2339.2002 – volume: 31 start-page: 954 year: 1992 ident: ref_64 article-title: Fidelity of HIV-1 reverse transcriptase copying RNA in vitro publication-title: Biochemistry doi: 10.1021/bi00119a002 – volume: 383 start-page: 586 year: 1996 ident: ref_153 article-title: Gene acquisition in HIV and SIV publication-title: Nature doi: 10.1038/383586a0 – volume: 58 start-page: 4915 year: 2014 ident: ref_105 article-title: SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.02745-14 – volume: 199 start-page: 323 year: 1994 ident: ref_65 article-title: Fidelity of HIV-1 reverse transcriptase copying a hypervariable region of the HIV-1 env gene publication-title: Virology doi: 10.1006/viro.1994.1130 – volume: 290 start-page: 30078 year: 2015 ident: ref_165 article-title: Mechanistic and Kinetic Differences between Reverse Transcriptases of Vpx Coding and Non-coding Lentiviruses publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.691576 – volume: 38 start-page: 917 year: 2006 ident: ref_171 article-title: Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus publication-title: Nat. Genet. doi: 10.1038/ng1845 – volume: 281 start-page: 32113 year: 2006 ident: ref_133 article-title: Reduced dNTP interaction of human immunodeficiency virus type 1 reverse transcriptase promotes strand transfer publication-title: J. Biol. Chem. doi: 10.1074/jbc.M604665200 – volume: 401 start-page: 33 year: 2010 ident: ref_58 article-title: K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2010.06.001 – volume: 197 start-page: 1525 year: 2015 ident: ref_108 article-title: Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site publication-title: J. Bacteriol. doi: 10.1128/JB.02606-14 – volume: 111 start-page: E4305 year: 2014 ident: ref_92 article-title: Structural basis of cellular dNTP regulation by SAMHD1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1412289111 – volume: 43 start-page: 6486 year: 2015 ident: ref_177 article-title: SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv633 – volume: 267 start-page: 18251 year: 1992 ident: ref_194 article-title: DNA replication fidelity publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)36949-2 – volume: 1 start-page: 15035 year: 2015 ident: ref_3 article-title: HIV infection publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2015.35 – ident: ref_51 doi: 10.1371/journal.pone.0008867 – volume: 8 start-page: 550 year: 2007 ident: ref_126 article-title: SUMO junction-what’s your function? New insights through SUMO-interacting motifs publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400980 – volume: 70 start-page: 7594 year: 1996 ident: ref_54 article-title: Retroviral mutation rates and A-to-G hypermutations during different stages of retroviral replication publication-title: J. Virol. doi: 10.1128/jvi.70.11.7594-7602.1996 – volume: 11 start-page: 111 year: 2014 ident: ref_13 article-title: Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses publication-title: Retrovirology doi: 10.1186/s12977-014-0111-y – volume: 10 start-page: 1435 year: 2019 ident: ref_18 article-title: The HIV Reservoir in Monocytes and Macrophages publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01435 – volume: 23 start-page: 250 year: 2017 ident: ref_103 article-title: SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia publication-title: Nat. Med. doi: 10.1038/nm.4255 – volume: 40 start-page: 317 year: 2021 ident: ref_213 article-title: Differences between intrinsic and acquired nucleoside analogue resistance in acute myeloid leukaemia cells publication-title: J. Exp. Clin. Cancer Res. doi: 10.1186/s13046-021-02093-4 – volume: 7 start-page: 2925 year: 1987 ident: ref_78 article-title: Control of thymidine kinase mRNA during the cell cycle publication-title: Mol. Cell Biol. – ident: ref_100 doi: 10.1371/journal.ppat.1005194 – volume: 6 start-page: 31353 year: 2016 ident: ref_118 article-title: Effects of T592 phosphomimetic mutations on tetramer stability and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect publication-title: Sci. Rep. doi: 10.1038/srep31353 – volume: 49 start-page: 2598 year: 2021 ident: ref_217 article-title: SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab051 – volume: 23 start-page: 469 year: 1998 ident: ref_85 article-title: The HD domain defines a new superfamily of metal-dependent phosphohydrolases publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(98)01293-6 – volume: 82 start-page: 2343 year: 2014 ident: ref_20 article-title: The p66 immature precursor of HIV-1 reverse transcriptase publication-title: Proteins doi: 10.1002/prot.24594 – ident: ref_226 doi: 10.1101/2021.04.06.438583 – volume: 358 start-page: 1590 year: 2008 ident: ref_224 article-title: The challenge of HIV-1 subtype diversity publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra0706737 – volume: 292 start-page: 14016 year: 2017 ident: ref_137 article-title: A CRISPR/Cas9 approach reveals that the polymerase activity of DNA polymerase beta is dispensable for HIV-1 infection in dividing and nondividing cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.793661 – volume: 14 start-page: 1657 year: 2015 ident: ref_116 article-title: Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages publication-title: Cell Cycle doi: 10.1080/15384101.2015.1030558 – ident: ref_150 doi: 10.1371/journal.ppat.1000059 – volume: 92 start-page: e00292-18 year: 2018 ident: ref_144 article-title: SAMHD1 Impairs HIV-1 Gene Expression and Negatively Modulates Reactivation of Viral Latency in CD4(+) T Cells publication-title: J. Virol. doi: 10.1128/JVI.00292-18 – volume: 9 start-page: 469 year: 1989 ident: ref_55 article-title: Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro publication-title: Mol. Cell Biol. – volume: 8 start-page: 55 year: 2010 ident: ref_159 article-title: Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.06.004 – volume: 15 start-page: 14 year: 2018 ident: ref_223 article-title: HIV evolution and diversity in ART-treated patients publication-title: Retrovirology doi: 10.1186/s12977-018-0395-4 – volume: 12 start-page: e10419 year: 2020 ident: ref_214 article-title: Ribonucleotide reductase inhibitors suppress SAMHD1 ara-CTPase activity enhancing cytarabine efficacy publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201910419 – volume: 286 start-page: 40246 year: 2011 ident: ref_173 article-title: The TREX1 exonuclease R114H mutation in Aicardi-Goutières syndrome and lupus reveals dimeric structure requirements for DNA degradation activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.297903 – ident: ref_164 doi: 10.1371/journal.ppat.1003496 – volume: 22 start-page: 4525 year: 2016 ident: ref_197 article-title: A Quantitative Analysis of Subclonal and Clonal Gene Mutations before and after Therapy in Chronic Lymphocytic Leukemia publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-3103 – volume: 51 start-page: 101472 year: 2021 ident: ref_17 article-title: HIV replication and latency in monocytes and macrophages publication-title: Semin. Immunol. doi: 10.1016/j.smim.2021.101472 – volume: 17 start-page: 1102 year: 2018 ident: ref_121 article-title: The dNTP triphosphohydrolase activity of SAMHD1 persists during S-phase when the enzyme is phosphorylated at T592 publication-title: Cell Cycle doi: 10.1080/15384101.2018.1480216 – volume: 295 start-page: 657 year: 2020 ident: ref_152 article-title: Viral protein X reduces the incorporation of mutagenic noncanonical rNTPs during lentivirus reverse transcription in macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.011466 – volume: 9 start-page: 105 year: 2012 ident: ref_142 article-title: SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons publication-title: Retrovirology doi: 10.1186/1742-4690-9-105 – ident: ref_186 doi: 10.1371/journal.pone.0037477 – volume: 455 start-page: 229 year: 2014 ident: ref_204 article-title: SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.10.153 – volume: 327 start-page: 716 year: 1987 ident: ref_26 article-title: Site-specific mutagenesis of AIDS virus reverse transcriptase publication-title: Nature doi: 10.1038/327716a0 – volume: 8 start-page: 68517 year: 2017 ident: ref_123 article-title: SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation publication-title: Oncotarget doi: 10.18632/oncotarget.19704 – volume: 436 start-page: 599 year: 2011 ident: ref_61 article-title: Thermostable HIV-1 group O reverse transcriptase variants with the same fidelity as murine leukaemia virus reverse transcriptase publication-title: Biochem. J. doi: 10.1042/BJ20101852 – volume: 277 start-page: 43233 year: 2002 ident: ref_36 article-title: Direct and indirect contributions of RNA secondary structure elements to the initiation of HIV-1 reverse transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205295200 – volume: 34 start-page: 42 year: 2006 ident: ref_49 article-title: Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj411 – volume: 15 start-page: 857 year: 2016 ident: ref_206 article-title: Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.03.075 – volume: 57 start-page: 2523 year: 2017 ident: ref_114 article-title: Allosteric Signal Transduction in HIV-1 Restriction Factor SAMHD1 Proceeds via Reciprocal Handshake across Monomers publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.7b00279 – volume: 12 start-page: 731 year: 2021 ident: ref_145 article-title: Nucleic acid binding by SAMHD1 contributes to the antiretroviral activity and is enhanced by the GpsN modification publication-title: Nat. Commun. doi: 10.1038/s41467-021-21023-8 – volume: 4 start-page: 2722 year: 2013 ident: ref_90 article-title: Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase publication-title: Nat. Commun. doi: 10.1038/ncomms3722 – volume: 91 start-page: 7242 year: 1994 ident: ref_24 article-title: Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.15.7242 – volume: 6 start-page: 8571 year: 2015 ident: ref_68 article-title: The external domains of the HIV-1 envelope are a mutational cold spot publication-title: Nat. Commun. doi: 10.1038/ncomms9571 – volume: 282 start-page: 1669 year: 1998 ident: ref_30 article-title: Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug resistance publication-title: Science doi: 10.1126/science.282.5394.1669 – volume: 7 start-page: 44834 year: 2017 ident: ref_62 article-title: Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases publication-title: Sci. Rep. doi: 10.1038/srep44834 – volume: 52 start-page: 32 year: 2017 ident: ref_209 article-title: With me or against me: Tumor suppressor and drug resistance activities of SAMHD1 publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2017.05.001 – volume: 242 start-page: 1171 year: 1988 ident: ref_6 article-title: The accuracy of reverse transcriptase from HIV-1 publication-title: Science doi: 10.1126/science.2460925 – volume: 495 start-page: 92 year: 2016 ident: ref_124 article-title: SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells publication-title: Virology doi: 10.1016/j.virol.2016.05.002 – ident: ref_15 doi: 10.3390/v10110620 – volume: 267 start-page: 25988 year: 1992 ident: ref_42 article-title: Mechanism and fidelity of HIV reverse transcriptase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)35706-5 – volume: 23 start-page: 256 year: 2017 ident: ref_102 article-title: Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies publication-title: Nat. Med. doi: 10.1038/nm.4265 – volume: 288 start-page: 10406 year: 2013 ident: ref_91 article-title: Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.443796 – volume: 290 start-page: 26352 year: 2015 ident: ref_115 article-title: Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.677435 – ident: ref_161 doi: 10.1371/journal.ppat.1000300 – volume: 287 start-page: 14280 year: 2012 ident: ref_136 article-title: Frequent incorporation of ribonucleotides during HIV-1 reverse transcription and their attenuated repair in macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.348482 – volume: 200 start-page: 114 year: 1994 ident: ref_14 article-title: The kinetics of human immunodeficiency virus reverse transcription are slower in primary human macrophages than in a lymphoid cell line publication-title: Virology doi: 10.1006/viro.1994.1169 – volume: 15 start-page: 69 year: 2018 ident: ref_139 article-title: Host SAMHD1 protein restricts endogenous reverse transcription of HIV-1 in nondividing macrophages publication-title: Retrovirology doi: 10.1186/s12977-018-0452-z – volume: 9 start-page: 49 year: 2012 ident: ref_81 article-title: Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac publication-title: Retrovirology doi: 10.1186/1742-4690-9-49 – volume: 39 start-page: e102931 year: 2020 ident: ref_218 article-title: SAMHD1-mediated dNTP degradation is required for efficient DNA repair during antibody class switch recombination publication-title: EMBO J. doi: 10.15252/embj.2019102931 – volume: 115 start-page: E10022 year: 2018 ident: ref_210 article-title: The structural basis for cancer drug interactions with the catalytic and allosteric sites of SAMHD1 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1805593115 – volume: 474 start-page: 658 year: 2011 ident: ref_146 article-title: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein publication-title: Nature doi: 10.1038/nature10195 – volume: 65 start-page: 5088 year: 1991 ident: ref_11 article-title: The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage publication-title: J. Virol. doi: 10.1128/jvi.65.9.5088-5091.1991 – volume: 104 start-page: 11778 year: 2007 ident: ref_148 article-title: Lentiviral Vpr usurps Cul4-DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0702102104 – volume: 287 start-page: 21570 year: 2012 ident: ref_80 article-title: Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.C112.374843 – volume: 27 start-page: 1317 year: 2017 ident: ref_128 article-title: The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2016.6888 – volume: 8 start-page: 197 year: 2001 ident: ref_47 article-title: The effect of increased processivity on overall fidelity of human immunodeficiency virus type 1 reverse transcriptase publication-title: J. Biomed. Sci. doi: 10.1007/BF02256413 – volume: 17 start-page: 1453 year: 2010 ident: ref_40 article-title: Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1937 – volume: 557 start-page: 118 year: 2018 ident: ref_32 article-title: Architecture of an HIV-1 reverse transcriptase initiation complex publication-title: Nature doi: 10.1038/s41586-018-0055-9 – ident: ref_158 doi: 10.1371/journal.pbio.1000301 – volume: 98 start-page: 658 year: 2001 ident: ref_19 article-title: Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.98.2.658 – ident: ref_69 doi: 10.3390/ijms22010370 – volume: 8 start-page: 724870 year: 2021 ident: ref_132 article-title: SAMHD1 Phosphorylation at T592 Regulates Cellular Localization and S-phase Progression publication-title: Front. Mol. Biosci. doi: 10.3389/fmolb.2021.724870 – volume: 295 start-page: 1575 year: 2020 ident: ref_183 article-title: The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.010360 – volume: 288 start-page: 25001 year: 2013 ident: ref_95 article-title: GTP is the primary activator of the anti-HIV restriction factor SAMHD1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.C113.493619 – volume: 91 start-page: e00034-17 year: 2017 ident: ref_7 article-title: Imaging HIV-1 genomic DNA from entry through productive infection publication-title: J. Virol. doi: 10.1128/JVI.00034-17 – volume: 285 start-page: 39380 year: 2010 ident: ref_4 article-title: Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.178582 – volume: 11 start-page: 29 year: 2014 ident: ref_82 article-title: Nuclear import of SAMHD1 is mediated by a classical karyopherin α/β1 dependent pathway and confers sensitivity to VpxMAC induced ubiquitination and proteasomal degradation publication-title: Retrovirology doi: 10.1186/1742-4690-11-29 – volume: 474 start-page: 654 year: 2011 ident: ref_12 article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx publication-title: Nature doi: 10.1038/nature10117 – volume: 87 start-page: 2846 year: 2013 ident: ref_143 article-title: SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells publication-title: J. Virol. doi: 10.1128/JVI.02514-12 – volume: 11 start-page: 20984 year: 2021 ident: ref_188 article-title: HIV-2 Vpx neutralizes host restriction factor SAMHD1 to promote viral pathogenesis publication-title: Sci. Rep. doi: 10.1038/s41598-021-00415-2 – volume: 126 start-page: 2110 year: 2015 ident: ref_201 article-title: Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL publication-title: Blood doi: 10.1182/blood-2015-05-647578 – volume: 11 start-page: 194 year: 2012 ident: ref_156 article-title: The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.004 – volume: 24 start-page: 815 year: 2018 ident: ref_129 article-title: Functionality of Redox-Active Cysteines Is Required for Restriction of Retroviral Replication by SAMHD1 publication-title: Cell Rep. doi: 10.1016/j.celrep.2018.06.090 – volume: 71 start-page: 516 year: 2015 ident: ref_127 article-title: The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP publication-title: Acta Crystallogr. D Biol. Crystallogr. doi: 10.1107/S1399004714027527 – volume: 1 start-page: 227 year: 2015 ident: ref_203 article-title: Aggressive CD8(+) epidermotropic cutaneous T-cell lymphoma associated with homozygous mutation in SAMHD1 publication-title: JAAD Case Rep. doi: 10.1016/j.jdcr.2015.05.003 – volume: 242 start-page: 1168 year: 1988 ident: ref_46 article-title: Fidelity of HIV-1 reverse transcriptase publication-title: Science doi: 10.1126/science.2460924 – volume: 450 start-page: 1462 year: 2014 ident: ref_190 article-title: Inhibition of Hepatitis B virus replication by SAMHD1 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2014.07.023 – volume: 18 start-page: 1682 year: 2012 ident: ref_140 article-title: SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells publication-title: Nat. Med. doi: 10.1038/nm.2964 – volume: 100 start-page: 6628 year: 2003 ident: ref_76 article-title: Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1131932100 – ident: ref_222 doi: 10.3390/v12040382 – volume: 11 start-page: 3165 year: 2020 ident: ref_106 article-title: Crystal structures of SAMHD1 inhibitor complexes reveal the mechanism of water-mediated dNTP hydrolysis publication-title: Nat. Commun. doi: 10.1038/s41467-020-16983-2 – volume: 94 start-page: 595 year: 1998 ident: ref_77 article-title: The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor publication-title: Cell doi: 10.1016/S0092-8674(00)81601-3 – volume: 76 start-page: 6505 year: 1979 ident: ref_192 article-title: Characterization of a mutator gene in Chinese hamster ovary cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.76.12.6505 – volume: 18 start-page: 4 year: 2021 ident: ref_191 article-title: Vpx enhances innate immune responses independently of SAMHD1 during HIV-1 infection publication-title: Retrovirology doi: 10.1186/s12977-021-00548-2 – ident: ref_185 doi: 10.3390/cells9010254 – volume: 82 start-page: 7716 year: 2008 ident: ref_134 article-title: Compensatory role of human immunodeficiency virus central polypurine tract sequence in kinetically disrupted reverse transcription publication-title: J. Virol. doi: 10.1128/JVI.00120-08 – volume: 143 start-page: 51 year: 2020 ident: ref_200 article-title: Expression and Relationship of SAMHD1 with Other Apoptotic and Autophagic Genes in Acute Myeloid Leukemia Patients publication-title: Acta Haematol. doi: 10.1159/000500822 – volume: 10 start-page: 2828 year: 2019 ident: ref_16 article-title: The Role of Macrophages in HIV-1 Persistence and Pathogenesis publication-title: Front. Microbiol. doi: 10.3389/fmicb.2019.02828 – volume: 279 start-page: 4010 year: 2012 ident: ref_59 article-title: Lys66 residue as a determinant of high mismatch extension and misinsertion rates of HIV-1 reverse transcriptase publication-title: FEBS J. doi: 10.1111/j.1742-4658.2012.08807.x – volume: 33 start-page: 1116 year: 2012 ident: ref_180 article-title: SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations publication-title: Hum. Mutat. doi: 10.1002/humu.22087 – volume: 193 start-page: 1988 year: 2014 ident: ref_111 article-title: Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1400873 – volume: 55 start-page: 6087 year: 2016 ident: ref_178 article-title: Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer publication-title: Biochemistry doi: 10.1021/acs.biochem.6b00986 – volume: 87 start-page: 748 year: 2019 ident: ref_130 article-title: Molecular dynamics investigation of a redox switch in the anti-HIV protein SAMHD1 publication-title: Proteins doi: 10.1002/prot.25701 – volume: 406 start-page: 253 year: 2010 ident: ref_135 article-title: Mechanistic interplay among the M184I HIV-1 reverse transcriptase mutant, the central polypurine tract, cellular dNTP concentrations and drug sensitivity publication-title: Virology doi: 10.1016/j.virol.2010.07.028 – volume: 102 start-page: 2832 year: 2005 ident: ref_162 article-title: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0409853102 – volume: 505 start-page: 234 year: 2014 ident: ref_147 article-title: Structural basis of lentiviral subversion of a cellular protein degradation pathway publication-title: Nature doi: 10.1038/nature12815 – volume: 19 start-page: 2 year: 2022 ident: ref_189 article-title: HIV-2/SIV Vpx antagonises NF-κB activation by targeting p65 publication-title: Retrovirology doi: 10.1186/s12977-021-00586-w – volume: 279 start-page: 51545 year: 2004 ident: ref_5 article-title: Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M408573200 – volume: 286 start-page: 32373 year: 2011 ident: ref_172 article-title: Dominant mutation of the TREX1 exonuclease gene in lupus and Aicardi-Goutieres syndrome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.276287 – volume: 13 start-page: 223 year: 2012 ident: ref_79 article-title: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates publication-title: Nat. Immunol. doi: 10.1038/ni.2236 – volume: 101 start-page: 450 year: 2018 ident: ref_176 article-title: SAMHD1 deficient human monocytes autonomously trigger type I interferon publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2018.08.005 – volume: 38 start-page: 910 year: 2006 ident: ref_174 article-title: Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection publication-title: Nat. Genet. doi: 10.1038/ng1842 – volume: 260 start-page: 9114 year: 1985 ident: ref_73 article-title: Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)39337-7 – volume: 265 start-page: 2338 year: 1990 ident: ref_67 article-title: Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)39981-8 – volume: 282 start-page: 231 year: 1991 ident: ref_27 article-title: Mutational analysis of two conserved sequence motifs in HIV-1 reverse transcriptase publication-title: FEBS Lett. doi: 10.1016/0014-5793(91)80484-K – volume: 291 start-page: 21407 year: 2016 ident: ref_99 article-title: Allosteric Activation of SAMHD1 Protein by Deoxynucleotide Triphosphate (dNTP)-dependent Tetramerization Requires dNTP Concentrations That Are Similar to dNTP Concentrations Observed in Cycling T Cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.C116.751446 – volume: 37 start-page: 11 year: 2022 ident: ref_1 article-title: The diversity and evolution of retroviruses: Perspectives from viral “fossils” publication-title: Virol. Sin. doi: 10.1016/j.virs.2022.01.019 – volume: 287 start-page: 12550 year: 2012 ident: ref_149 article-title: HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.340711 – volume: 12 start-page: 4582 year: 2021 ident: ref_125 article-title: SUMOylation of SAMHD1 at Lysine 595 is required for HIV-1 restriction in non-cycling cells publication-title: Nat. Commun. doi: 10.1038/s41467-021-24802-5 – volume: 41 start-page: 829 year: 2009 ident: ref_170 article-title: Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response publication-title: Nat. Genet. doi: 10.1038/ng.373 – volume: 12 start-page: 2500 year: 2021 ident: ref_31 article-title: High-resolution view of HIV-1 reverse transcriptase initiation complexes and inhibition by NNRTI drugs publication-title: Nat. Commun. doi: 10.1038/s41467-021-22628-9 – volume: 18 start-page: 1038 year: 1999 ident: ref_37 article-title: Structural basis for the specificity of the initiation of HIV-1 reverse transcription publication-title: EMBO J. doi: 10.1093/emboj/18.4.1038 – volume: 11 start-page: 205 year: 2012 ident: ref_163 article-title: Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.01.007 |
| SSID | ssj0066907 |
| Score | 2.348324 |
| SecondaryResourceType | review_article |
| Snippet | Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1622 |
| SubjectTerms | Antiretroviral drugs antiretroviral therapy Antiviral Agents - pharmacology Antiviral drugs Binding sites Deoxyribonucleic acid DNA DNA polymerase DNA-directed DNA polymerase DNA-Directed DNA Polymerase - genetics Double-stranded RNA Drug resistance Enzyme kinetics evolution Exonuclease Genetic aspects genome Genomes Genomics HIV HIV (Viruses) HIV Reverse Transcriptase - genetics HIV Reverse Transcriptase - metabolism HIV-1 - genetics HIV-1 - metabolism Human immunodeficiency virus Human immunodeficiency virus 1 human immunodeficiency virus type 1 Humans Immune system Infections Life cycles Lymphocytes Methods Mutagenesis Mutation Myeloid cells Myeloid Cells - metabolism Proofreading Proteins Replication retrovirus reverse transcriptase Review RNA RNA-directed DNA polymerase SAM Domain and HD Domain-Containing Protein 1 - genetics SAM Domain and HD Domain-Containing Protein 1 - metabolism therapeutics Tropism Viral Tropism Virus Replication Viruses |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals (WRLC) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiDcLBRmEBJeo8SNxzG0pLYvQVhWPqrfIiR01UppUTbbS9n_wf5lxstFGILhwjceRY49n5lNmviHkTSGdLcCtBuDeeCAzFwdGOYM_HI2yEJCEUeGbTajj4-TsTJ9stfrCnLCeHrjfuH3Gw9iCI5GxVNJKpY1WoTVwRbM8SQpfRw5RzwZM9TY4RszX8wgJAPX71wAjEhZzPvE-nqT_d1O85YumeZJbjufoHrk7RIx03q_0Prnl6gfkdt9Dcv2Q_Fw6LN71fMu0TyGszJoO-Vd08fk0YPSrw-wLR71n8nYCnBc9rG_WF45-gUATyZqpqS1dNG1Hv82Xi4-MniCHQ1m_p6clrIsu165qShscuKqCNzWXZXvh53xyvraZLlcdWCewnWX7iPw4Ovx-sAiGXgtBHsW6C2SiCx3mjkubRQVgCGNcXJjM2YxZKS3judKq4KzgJmI2dIJZwF7IBWS1skI8Jjt1U7unhBqnrElMJDOF8CvTSRFFVjswHZoZKWbk3eYM0nwgIsd-GFUKgASPKx2Pa0Zej6KXPfvGn4Q-4EGOAkiY7R-AGqWDGqX_UqMZeYtqkOK1hsXkZqhOgE9Cgqx0jm1ZINRKYPl7E0m4jvl0eKNI6WAO2pQrxHk8YTD8ahzGmZjiVrtmBTKxjrhGxrm_yEAkIZTQuIlPet0cP1tEEHrGCcxWE62d7Mt0pC7PPaG4FgKJ9579j418Tu5wrBAJVcDjPbLTXa3cC7KbX3dle_XS39Jfs79A2Q priority: 102 providerName: Directory of Open Access Journals |
| Title | Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35893688 https://www.proquest.com/docview/2706422813 https://www.proquest.com/docview/2695292408 https://www.proquest.com/docview/2718373943 https://pubmed.ncbi.nlm.nih.gov/PMC9331428 https://doaj.org/article/1206d02446474d479a970da111bc88f7 |
| Volume | 14 |
| WOSCitedRecordID | wos000845191300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: M7P dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: 7X7 dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4915 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0066907 issn: 1999-4915 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfH8URmUQErxES-wkjnlB3ejohFpFA6buKXJiByJ1SWnaSeX_4P_lzknLItBeeOlDfK7s-Py7O-f8O0Je577ROZhVB8wbc_zUhI4SRuEHRyU0OCRukNtiE2IyiaZTGbcHbnWbVrnBRAvUusrwjPyACXSVWeTx9_MfDlaNwq-rbQmNHbKHLAncpu7FGyQOMfJr2IQ4hPYHlxBMRF7IWMcGWar-vwH5ikXqZkteMT_Hd_934PfIndbxpINGU-6TG6Z8QG41pSjXD8mvscE7wJa2mTaZiDO1pm0aFx2dnDkePTWYxGGoNXAWbsAG0mH5c31h6CfwV5HzmapS01FVL-nnwXj0waMxUkEU5Tt6VsDE6HhtZlWhnSMzm8E_VfOivrB9Php7RZqOV0sAOYDgon5Evh4PvxyNnLZkg5MFoVw6fiRz6WaG-ToNcghFlDJhrlKjU0_7vvZYJqTImZczFXjaNdzTEMIhpZCWQnP-mOyWVWmeEqqM0CpSgZ8KjOJSGeVBoKUBBJKe8nmPvN0sYpK1fOZYVmOWQFyD651s17tHXm1F5w2Jx7-EDlETtgLIu20fVItvSbuNE4-5oQa3xg994WtfSCWFqxUYjDSLolz0yBvUowTRAQaTqfaSA0wJebaSAVZ3AY8tguHvdyRhV2fd5o02JS2q1MkfVeqRl9tm7ImZcqWpViATyoBJJK67RgYcEi64xJf4pFHu7bR5AB5sGEFv0VH7znvptpTFd8tLLjlH_r5n1w_9ObnN8AqJKxwW7pPd5WJlXpCb2eWyqBd9siOmwv5GfbJ3OJzEp317TtK3WxuexSfj-Pw3LqZWWw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL78dCAYNAcImaOE4cIyG09MGutruqoK16C07sQKRtsuyjaPkf_A1-IzNOsjQC9dYD13gcOZPxNzPJ-BtCXmTc6AzcqgPujTk8MaGjhFH4w1EJDQGJG2S22YQYjaLjY7m_Rn41Z2GwrLLBRAvUukzxG_kmExgqs8jz302-Odg1Cv-uNi00KrMYmOV3SNlmb_vb8H5fMra7c7DVc-quAk4ahHLu8Ehm0k0N4zoJMoiWlTJhphKjE09zrj2WCiky5mVMBZ52je9pyDKQ9UZLofEDKED-JQgjWGRLBfcb5A8x06zYi3xfupunkLxEXshYy-fZ1gB_O4AzHrBdnXnG3e3e-N8UdZNcrwNr2q12wi2yZorb5ErVanN5h_wcGjzjbGmpaVVpOVZLWpep0V7_yPHoR4NFKoZaB27hFHw83Sl-LE8MHUA8jpzWVBWa9srZnH7qDnvbHt1Hqou8eEOPclAkHS7NuMy1s2XGY7hTOclnJ3bOB2OPgNPhYg4gDi4mn90lhxeik3tkvSgL84BQZYRWkQp4IjBLTWSUBYGWBhBWeor7HfK6MZo4rfnasW3IOIa8De0rXtlXhzxfiU4qkpJ_Cb1Hy1sJIK-4vVBOv8Q1TMUec0MNYRsPueCaC6mkcLUCh5ikUZSJDnmFdhsj-sFiUlUf4oBHQh6xuIvdayAijWD5Gy1JQK20PdxYb1yj5iz-Y7od8mw1jDOxErAw5QJkQhkwicR858hAwOULX6IS71ebafXYfgARehjBbNHaZi29tEeK_KvlXZe-j_yED89f-lNytXcw3Iv3-qPBI3KN4XEZVzgs3CDr8-nCPCaX09N5Pps-seBByeeL3oS_ASO7rk0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bjtMwELVWy0W8cL8UFjAIBC9RE8eJYySEynZLq9JVBctq34ITOxCpm5SmXVT-g5_h65jJpWwE2rd94LUeV4kzPmcmGZ8h5FnCjU6AVi2gN2bxyPiWEkbhB0clNAQktpeUzSbE_n5wdCSnW-RXcxYGyyobTCyBWucxviPvMoGhMgsct5vUZRHT_uDN_JuFHaTwS2vTTqNykbFZf4f0rXg96sOzfs7YYO9gd2jVHQas2PPl0uKBTKQdG8Z15CUQOStl_ERFRkeO5lw7LBZSJMxJmPIcbRvX0ZBxoAKOlkLjy1CA_wsCRcvLssFpwwI-Zp2VkpHrSrt7AolM4PiMtfivbBPwNxmcYsN2peYp6htc-58X7Tq5WgfctFftkBtky2Q3yaWqBef6Fvk5MXj2uZSrplUF5kytaV2-RoejQ8uhHwwWrxhaEnsJs8D9dC_7sT42dAxxOmpdU5VpOsyLJf3Ymwz7Dp2iBEaavaKHKSwqnazNLE-1tWtmM_infJ4Wx-Wcd6Y8Gk4nqyWAO1BPWtwmn85lTe6Q7SzPzD1ClRFaBcrjkcDsNZJB4nlaGkBe6SjudsjLxoHCuNZxx3YisxDyOfS1cONrHfJ0YzqvxEv-ZfQWvXBjgHrj5Q_54ktYw1foMNvXEM5xnwuuuZBKClsrIMooDoJEdMgL9OEQUREuJlb14Q64JdQXC3vY1QYi1QAuf6dlCWgWt4cbTw5rNC3CP27cIU82wzgTKwQzk6_AxpcekyjYd4YNBGKucCUu4t1qY21u2_UgcvcDmC1aW661Lu2RLP1a6rFL10XdwvtnX_pjchn2Xvh-tD9-QK4wPEVjC4v5O2R7uViZh-RifLJMi8WjEkco-Xzee_A3R4K3Cg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Interplay+between+HIV-1+Reverse+Transcriptase+Enzyme+Kinetics+and+Host+SAMHD1+Protein%3A+Viral+Myeloid-Cell+Tropism+and+Genomic+Mutagenesis&rft.jtitle=Viruses&rft.au=Bowen%2C+Nicole+E.&rft.au=Oo%2C+Adrian&rft.au=Kim%2C+Baek&rft.date=2022-07-26&rft.pub=MDPI&rft.eissn=1999-4915&rft.volume=14&rft.issue=8&rft_id=info:doi/10.3390%2Fv14081622&rft_id=info%3Apmid%2F35893688&rft.externalDocID=PMC9331428 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon |