Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis

Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT...

Full description

Saved in:
Bibliographic Details
Published in:Viruses Vol. 14; no. 8; p. 1622
Main Authors: Bowen, Nicole E., Oo, Adrian, Kim, Baek
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 26.07.2022
MDPI
Subjects:
ISSN:1999-4915, 1999-4915
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
AbstractList Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication kinetics, drug resistance, and viral evolution. Following infection and entry into target cells, the HIV-1 core disassembles, and the viral RT concomitantly converts the viral RNA into double-stranded proviral DNA, which is integrated into the host genome. The successful completion of the viral life cycle highly depends on the enzymatic DNA polymerase activity of RT. Furthermore, HIV-1 RT has long been known as an error-prone DNA polymerase due to its lack of proofreading exonuclease properties. Indeed, the low fidelity of HIV-1 RT has been considered as one of the key factors in the uniquely high rate of mutagenesis of HIV-1, which leads to efficient viral escape from immune and therapeutic antiviral selective pressures. Interestingly, a series of studies on the replication kinetics of HIV-1 in non-dividing myeloid cells and myeloid specific host restriction factor, SAM domain, and HD domain-containing protein, SAMHD1, suggest that the myeloid cell tropism and high rate of mutagenesis of HIV-1 are mechanistically connected. Here, we review not only HIV-1 RT as a key antiviral target, but also potential evolutionary and mechanistic crosstalk among the unique enzymatic features of HIV-1 RT, the replication kinetics of HIV-1, cell tropism, viral genetic mutation, and host SAMHD1 protein.
Audience Academic
Author Bowen, Nicole E.
Oo, Adrian
Kim, Baek
AuthorAffiliation 2 Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
1 Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; nicole.eileen.bowen@emory.edu (N.E.B.); adrian.oo@emory.edu (A.O.)
AuthorAffiliation_xml – name: 2 Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, GA 30329, USA
– name: 1 Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30329, USA; nicole.eileen.bowen@emory.edu (N.E.B.); adrian.oo@emory.edu (A.O.)
Author_xml – sequence: 1
  givenname: Nicole E.
  orcidid: 0000-0003-4269-2167
  surname: Bowen
  fullname: Bowen, Nicole E.
– sequence: 2
  givenname: Adrian
  orcidid: 0000-0002-2469-5391
  surname: Oo
  fullname: Oo, Adrian
– sequence: 3
  givenname: Baek
  surname: Kim
  fullname: Kim, Baek
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35893688$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuEzEUhkeoiF5gwQugkdjAYlrfxhcWSFEoTUQjEJRuR57xmdTRxA72JCi8B--L05TQVJXQLDy2v_Pb5_d_nB047yDLXmJ0SqlCZyvMkMSckCfZEVZKFUzh8uDe_2F2HOMMIc4VEs-yQ1pKRbmUR9nvCTQ32tnY2yYfux7CotPrvIb-J4DLR-PrAudfYQUhQn4VtItNsItep9m5-7WeQ_7JOkjFMdfO5CMf-_zbYDL6gPMvwfdg3bv82gbd5ZM1dN6aYghdl5T8wsb5bc0FOD9Pp0-WvZ6Cg2jj8-xpq7sIL-7Gk-z7x_Or4ai4_HwxHg4ui6bkqi-YVK1CDRBm6rItZak18FbXYGpsGDOYNEKJluCW6BIbBBQbjpUQXBglDKUn2Xira7yeVYtg5zqsK69tdbvgw7TSITXXQYUJ4gYRxjgTzDChtBLIaIxx3UjZiqT1fqu1WNZzMA24PrW9J7q_4-xNNfWrSlGKGZFJ4M2dQPA_lhD7am5jk9zSDvwyVkRgSQVVjP4f5aokiqRUJPT1A3Tml8ElV5Mg4owQiek_aqpTr9a1Pl2x2YhWA8G4wKKUG-r0ESp9BtIDpky2Nq3vFby678nOjL_5S8DbLdAEH2OAdodgVG2yXe2yndizB2xje91bv7HTdo9U_AHAufjE
CitedBy_id crossref_primary_10_1007_s00203_024_03846_3
crossref_primary_10_3390_ph18010030
crossref_primary_10_1016_j_compbiolchem_2025_108573
crossref_primary_10_3390_v16020288
crossref_primary_10_1111_ejh_70027
crossref_primary_10_1016_j_compbiomed_2025_109675
crossref_primary_10_3390_v16091412
crossref_primary_10_1080_07391102_2024_2319112
crossref_primary_10_1371_journal_ppat_1013130
crossref_primary_10_3390_ijms24065905
Cites_doi 10.1093/nar/gkq829
10.1021/acsomega.1c01742
10.1073/pnas.1401706111
10.1016/S0021-9258(17)32159-2
10.1073/pnas.1312033110
10.1038/jid.2013.311
10.1021/bi00475a007
10.1096/fj.201902508R
10.1016/j.virol.2012.10.029
10.1073/pnas.1519128113
10.1002/j.1460-2075.1996.tb01109.x
10.1182/blood-2013-04-490847
10.1371/journal.pbio.1002251
10.1371/journal.pone.0169052
10.1016/S0021-9258(20)71265-2
10.1016/j.bbrc.2019.04.085
10.1007/BF00928361
10.1146/annurev-biochem-013118-111843
10.1128/JVI.01970-20
10.1016/j.jbc.2022.101635
10.1038/s41408-017-0036-5
10.1080/15384101.2017.1314407
10.1371/journal.pgen.1009523
10.1016/j.tibtech.2020.06.008
10.1016/j.chom.2013.03.005
10.1074/jbc.M412859200
10.1016/S0021-9258(20)89464-2
10.1038/nsmb.2692
10.1038/s41586-018-0050-1
10.1074/jbc.RA120.015273
10.1016/S0021-9258(19)61477-8
10.1021/acs.jcim.0c00629
10.1136/annrheumdis-2013-204845
10.1073/pnas.90.13.6320
10.1128/microbiolspec.MDNA3-0027-2014
10.1016/j.tim.2018.09.009
10.1021/bi960364x
10.1016/j.virol.2019.08.010
10.1073/pnas.78.4.2447
10.1038/ng.2414
10.1002/j.1460-2075.1996.tb00777.x
10.1002/ana.410150109
10.1074/jbc.M113.486787
10.1074/jbc.M102441200
10.1074/jbc.C111.317628
10.1073/pnas.0708850105
10.1016/j.celrep.2016.02.022
10.1128/JVI.01642-13
10.1074/jbc.M114.591958
10.1016/j.antiviral.2011.08.020
10.1016/j.jmb.2017.05.010
10.1074/jbc.M113.472159
10.1128/JVI.00056-10
10.1016/j.virol.2015.11.022
10.1016/j.celrep.2016.07.002
10.1021/bi011653a
10.1038/nature10623
10.1128/JVI.01657-12
10.1002/j.1460-2075.1996.tb00426.x
10.1016/j.celrep.2017.08.008
10.1128/JVI.00915-10
10.1073/pnas.1416485112
10.1186/1742-4690-9-87
10.1002/ajmg.a.36887
10.1002/j.1460-2075.1989.tb03488.x
10.1038/ng.3127
10.1002/prot.25287
10.1097/QAD.0000000000000399
10.1074/jbc.M115.646588
10.1016/j.chom.2013.06.002
10.1128/JVI.00752-14
10.1016/j.celrep.2013.03.017
10.1146/annurev-genet-110711-155522
10.1016/j.jbc.2021.101170
10.1038/s42003-020-1052-8
10.1002/humu.23201
10.1038/s41467-018-04671-1
10.1093/nar/gkg187
10.1016/j.biocel.2004.02.020
10.1074/jbc.M116.753947
10.15252/embj.201696025
10.1002/pro.5560021216
10.1093/nar/gkt109
10.3390/v1031137
10.1016/j.mam.2012.05.007
10.1002/j.1460-2075.1992.tb05419.x
10.1371/journal.ppat.0030085
10.1073/pnas.89.15.6919
10.1128/jvi.76.5.2329-2339.2002
10.1021/bi00119a002
10.1038/383586a0
10.1128/AAC.02745-14
10.1006/viro.1994.1130
10.1074/jbc.M115.691576
10.1038/ng1845
10.1074/jbc.M604665200
10.1016/j.jmb.2010.06.001
10.1128/JB.02606-14
10.1073/pnas.1412289111
10.1093/nar/gkv633
10.1016/S0021-9258(19)36949-2
10.1038/nrdp.2015.35
10.1371/journal.pone.0008867
10.1038/sj.embor.7400980
10.1128/jvi.70.11.7594-7602.1996
10.1186/s12977-014-0111-y
10.3389/fimmu.2019.01435
10.1038/nm.4255
10.1186/s13046-021-02093-4
10.1371/journal.ppat.1005194
10.1038/srep31353
10.1093/nar/gkab051
10.1016/S0968-0004(98)01293-6
10.1002/prot.24594
10.1101/2021.04.06.438583
10.1056/NEJMra0706737
10.1074/jbc.M117.793661
10.1080/15384101.2015.1030558
10.1371/journal.ppat.1000059
10.1128/JVI.00292-18
10.1016/j.chom.2010.06.004
10.1186/s12977-018-0395-4
10.15252/emmm.201910419
10.1074/jbc.M111.297903
10.1371/journal.ppat.1003496
10.1158/1078-0432.CCR-15-3103
10.1016/j.smim.2021.101472
10.1080/15384101.2018.1480216
10.1074/jbc.RA119.011466
10.1186/1742-4690-9-105
10.1371/journal.pone.0037477
10.1016/j.bbrc.2014.10.153
10.1038/327716a0
10.18632/oncotarget.19704
10.1042/BJ20101852
10.1074/jbc.M205295200
10.1093/nar/gkj411
10.1016/j.celrep.2016.03.075
10.1021/acs.jcim.7b00279
10.1038/s41467-021-21023-8
10.1038/ncomms3722
10.1073/pnas.91.15.7242
10.1038/ncomms9571
10.1126/science.282.5394.1669
10.1038/srep44834
10.1016/j.exphem.2017.05.001
10.1126/science.2460925
10.1016/j.virol.2016.05.002
10.3390/v10110620
10.1016/S0021-9258(18)35706-5
10.1038/nm.4265
10.1074/jbc.M112.443796
10.1074/jbc.M115.677435
10.1371/journal.ppat.1000300
10.1074/jbc.M112.348482
10.1006/viro.1994.1169
10.1186/s12977-018-0452-z
10.1186/1742-4690-9-49
10.15252/embj.2019102931
10.1073/pnas.1805593115
10.1038/nature10195
10.1128/jvi.65.9.5088-5091.1991
10.1073/pnas.0702102104
10.1074/jbc.C112.374843
10.1089/ars.2016.6888
10.1007/BF02256413
10.1038/nsmb.1937
10.1038/s41586-018-0055-9
10.1371/journal.pbio.1000301
10.1073/pnas.98.2.658
10.3390/ijms22010370
10.3389/fmolb.2021.724870
10.1074/jbc.RA119.010360
10.1074/jbc.C113.493619
10.1128/JVI.00034-17
10.1074/jbc.M110.178582
10.1186/1742-4690-11-29
10.1038/nature10117
10.1128/JVI.02514-12
10.1038/s41598-021-00415-2
10.1182/blood-2015-05-647578
10.1016/j.chom.2012.01.004
10.1016/j.celrep.2018.06.090
10.1107/S1399004714027527
10.1016/j.jdcr.2015.05.003
10.1126/science.2460924
10.1016/j.bbrc.2014.07.023
10.1038/nm.2964
10.1073/pnas.1131932100
10.3390/v12040382
10.1038/s41467-020-16983-2
10.1016/S0092-8674(00)81601-3
10.1073/pnas.76.12.6505
10.1186/s12977-021-00548-2
10.3390/cells9010254
10.1128/JVI.00120-08
10.1159/000500822
10.3389/fmicb.2019.02828
10.1111/j.1742-4658.2012.08807.x
10.1002/humu.22087
10.4049/jimmunol.1400873
10.1021/acs.biochem.6b00986
10.1002/prot.25701
10.1016/j.virol.2010.07.028
10.1073/pnas.0409853102
10.1038/nature12815
10.1186/s12977-021-00586-w
10.1074/jbc.M408573200
10.1074/jbc.M111.276287
10.1038/ni.2236
10.1016/j.molimm.2018.08.005
10.1038/ng1842
10.1016/S0021-9258(17)39337-7
10.1016/S0021-9258(19)39981-8
10.1016/0014-5793(91)80484-K
10.1074/jbc.C116.751446
10.1016/j.virs.2022.01.019
10.1074/jbc.M112.340711
10.1038/s41467-021-24802-5
10.1038/ng.373
10.1038/s41467-021-22628-9
10.1093/emboj/18.4.1038
10.1016/j.chom.2012.01.007
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7U9
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/v14081622
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE
Publicly Available Content Database

MEDLINE - Academic
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1999-4915
ExternalDocumentID oai_doaj_org_article_1206d02446474d479a970da111bc88f7
PMC9331428
A746717583
35893688
10_3390_v14081622
Genre Journal Article
Review
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: F31 AI157884
– fundername: NIH HHS
  grantid: AI136581
– fundername: NIH HHS
  grantid: AI162633
– fundername: NIAID NIH HHS
  grantid: R01 AI136581
– fundername: NIAID NIH HHS
  grantid: R01 AI162633
– fundername: NIH HHS
  grantid: AI157884
– fundername: NIH HHS
  grantid: CA254403
– fundername: NIH
  grantid: AI136581; AI162633; CA254403; AI157884
GroupedDBID ---
2WC
53G
5VS
7X7
88E
8FE
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
E3Z
EBD
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IHR
ITC
KQ8
LK8
M1P
M48
M7P
MODMG
M~E
O5R
O5S
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
RPM
TR2
TUS
UKHRP
CGR
CUY
CVF
ECM
EIF
ESTFP
NPM
3V.
7U9
7XB
8FK
AZQEC
COVID
DWQXO
GNUQQ
H94
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
5PM
ID FETCH-LOGICAL-c569t-489f90ce24db5f585aae6fabedb1d44d12c797f21f2a51d0e31d6197767d97d33
IEDL.DBID M7P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000845191300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4915
IngestDate Fri Oct 03 12:38:13 EDT 2025
Tue Nov 04 02:02:08 EST 2025
Mon Sep 08 15:56:33 EDT 2025
Wed Oct 01 14:22:05 EDT 2025
Tue Oct 07 07:10:20 EDT 2025
Sat Nov 29 14:07:20 EST 2025
Sat Nov 29 10:42:33 EST 2025
Sat Nov 01 14:15:54 EDT 2025
Sat Nov 29 07:08:02 EST 2025
Tue Nov 18 22:41:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords human immunodeficiency virus type 1
mutation
retrovirus
reverse transcriptase
antiretroviral therapy
drug resistance
SAMHD1
cell tropism
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c569t-489f90ce24db5f585aae6fabedb1d44d12c797f21f2a51d0e31d6197767d97d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ORCID 0000-0003-4269-2167
0000-0002-2469-5391
OpenAccessLink https://www.proquest.com/docview/2706422813?pq-origsite=%requestingapplication%
PMID 35893688
PQID 2706422813
PQPubID 2032319
ParticipantIDs doaj_primary_oai_doaj_org_article_1206d02446474d479a970da111bc88f7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9331428
proquest_miscellaneous_2718373943
proquest_miscellaneous_2695292408
proquest_journals_2706422813
gale_infotracmisc_A746717583
gale_infotracacademiconefile_A746717583
pubmed_primary_35893688
crossref_primary_10_3390_v14081622
crossref_citationtrail_10_3390_v14081622
PublicationCentury 2000
PublicationDate 20220726
PublicationDateYYYYMMDD 2022-07-26
PublicationDate_xml – month: 7
  year: 2022
  text: 20220726
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Viruses
PublicationTitleAlternate Viruses
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Coquel (ref_216) 2018; 557
Igarashi (ref_19) 2001; 98
Franzolin (ref_8) 2013; 110
Greene (ref_70) 2020; 89
Patra (ref_97) 2017; 85
Qin (ref_183) 2020; 295
Clifford (ref_198) 2014; 123
Rothenburger (ref_212) 2020; 3
Franzolin (ref_220) 2020; 34
Crow (ref_171) 2006; 38
Arion (ref_21) 2004; 36
Espada (ref_184) 2021; 95
Schneider (ref_103) 2017; 23
Kruize (ref_16) 2019; 10
Deeks (ref_3) 2015; 1
Sharaf (ref_20) 2014; 82
Hansen (ref_98) 2014; 111
Kennedy (ref_4) 2010; 285
Betancor (ref_22) 2011; 92
Casartelli (ref_143) 2013; 87
Chen (ref_182) 2019; 27
Kennedy (ref_136) 2012; 287
Barrioluengo (ref_61) 2011; 436
Ding (ref_25) 1993; 90
Amie (ref_104) 2013; 288
ref_158
Batalis (ref_132) 2021; 8
Hrecka (ref_146) 2011; 474
ref_150
Hofmann (ref_83) 2012; 86
Bonifati (ref_124) 2016; 495
Guo (ref_151) 2019; 513
ref_157
Wang (ref_99) 2016; 291
Crow (ref_168) 2015; 167
Goldschmidt (ref_49) 2006; 34
Kaushik (ref_48) 1996; 35
Yu (ref_11) 1991; 65
(ref_62) 2017; 7
Zhu (ref_90) 2013; 4
Mahboubi (ref_139) 2018; 15
Knecht (ref_210) 2018; 115
Coppock (ref_78) 1987; 7
Robbe (ref_201) 2015; 126
Daugherty (ref_160) 2012; 46
Yan (ref_88) 2015; 290
Liu (ref_107) 2008; 105
Seamon (ref_178) 2016; 55
Buta (ref_176) 2018; 101
Wang (ref_204) 2014; 455
Aravind (ref_85) 1998; 23
Mendelman (ref_67) 1990; 265
Liu (ref_40) 2010; 17
White (ref_84) 2013; 436
Goncalves (ref_180) 2012; 33
Huang (ref_30) 1998; 282
Beerens (ref_33) 2002; 76
Herold (ref_209) 2017; 52
Geller (ref_68) 2015; 6
Skog (ref_75) 1990; 29
ref_219
Huang (ref_77) 1998; 94
Young (ref_71) 2013; 34
Kumar (ref_195) 2011; 39
Barrioluengo (ref_29) 2013; 41
Kirchhoff (ref_159) 2010; 8
Daddacha (ref_215) 2017; 20
Fye (ref_172) 2011; 286
Sawyer (ref_162) 2005; 102
White (ref_122) 2017; 38
Traut (ref_196) 1994; 140
Larder (ref_26) 1987; 327
Daddacha (ref_135) 2010; 406
Mohamed (ref_188) 2021; 11
Wong (ref_18) 2019; 10
DeStefano (ref_43) 1991; 266
Martinat (ref_125) 2021; 12
Coiras (ref_112) 2016; 14
Powell (ref_94) 2011; 286
Figiel (ref_44) 2017; 45
Bhattacharya (ref_118) 2016; 6
Mauney (ref_128) 2017; 27
Larsen (ref_32) 2018; 557
Hrecka (ref_148) 2007; 104
Yao (ref_76) 2003; 100
Isel (ref_38) 1996; 15
Giannakis (ref_207) 2014; 46
Lowe (ref_27) 1991; 282
Wang (ref_202) 2014; 134
Chen (ref_190) 2014; 450
Kerscher (ref_126) 2007; 8
Tristem (ref_155) 1992; 11
Lenzi (ref_165) 2015; 290
Taylor (ref_224) 2008; 358
Ji (ref_65) 1994; 199
Seamon (ref_177) 2015; 43
ref_226
Dilmore (ref_50) 2021; 6
ref_100
ref_101
ref_222
Ji (ref_92) 2014; 111
Kim (ref_54) 1996; 70
Bowen (ref_208) 2021; 297
Garforth (ref_58) 2010; 401
Abram (ref_66) 2010; 84
Descours (ref_141) 2012; 9
Mlcochova (ref_113) 2017; 36
Oo (ref_187) 2022; 298
Meuth (ref_192) 1979; 76
Huynh (ref_109) 2015; 112
Wang (ref_129) 2018; 24
Sharp (ref_153) 1996; 383
Patra (ref_130) 2019; 87
ref_15
White (ref_81) 2012; 9
Herold (ref_102) 2017; 23
Etienne (ref_154) 2013; 14
Merati (ref_203) 2015; 1
Goldschmidt (ref_35) 2003; 31
Maelfait (ref_179) 2016; 16
Rentoft (ref_205) 2016; 113
Preston (ref_46) 1988; 242
Koharudin (ref_96) 2014; 289
Lanchy (ref_39) 1996; 15
Rinaldo (ref_108) 2015; 197
Kim (ref_80) 2012; 287
Boyer (ref_63) 1992; 89
Schwefel (ref_147) 2014; 505
Lenzi (ref_13) 2014; 11
Oo (ref_152) 2020; 295
Mizrahi (ref_28) 1994; 269
Arnow (ref_191) 2021; 18
Kashlan (ref_72) 2002; 41
Akimova (ref_217) 2021; 49
Welbourn (ref_119) 2013; 87
Zheng (ref_1) 2022; 37
Lahouassa (ref_79) 2012; 13
Schott (ref_89) 2018; 9
Collin (ref_14) 1994; 200
Roberts (ref_55) 1989; 9
Baldauf (ref_140) 2012; 18
Skasko (ref_134) 2008; 82
Fink (ref_189) 2022; 19
Chen (ref_181) 2018; 115
Stultz (ref_7) 2017; 91
Aicardi (ref_169) 1984; 15
Husain (ref_218) 2020; 39
Back (ref_225) 1996; 15
Weinberg (ref_193) 1981; 78
Tramentozzi (ref_121) 2018; 17
Orebaugh (ref_173) 2011; 286
White (ref_110) 2013; 13
Morris (ref_106) 2020; 11
Operario (ref_133) 2006; 281
Yu (ref_145) 2021; 12
Coggins (ref_166) 2019; 537
Rudd (ref_214) 2020; 12
Cribier (ref_86) 2013; 3
Wang (ref_24) 1994; 91
ref_53
Eriksson (ref_73) 1985; 260
ref_51
Roberts (ref_6) 1988; 242
Goldstone (ref_9) 2011; 480
Kim (ref_138) 2013; 288
Lwatula (ref_59) 2012; 279
Pauls (ref_117) 2014; 28
Kim (ref_87) 2016; 291
Yan (ref_91) 2013; 288
Amie (ref_95) 2013; 288
Beerens (ref_34) 2001; 276
Ahn (ref_149) 2012; 287
Tang (ref_115) 2015; 290
Rice (ref_170) 2009; 41
ref_69
ref_161
(ref_56) 2009; 1
ref_164
Tomasselli (ref_23) 1993; 2
Guyader (ref_10) 1989; 8
Thapa (ref_131) 2020; 60
Antonucci (ref_144) 2018; 92
Skasko (ref_41) 2005; 280
Welbourn (ref_120) 2016; 488
Shah (ref_60) 2000; 275
Goetze (ref_137) 2017; 292
Ji (ref_93) 2013; 20
Zhu (ref_127) 2015; 71
Giannakis (ref_206) 2016; 15
Ha (ref_31) 2021; 12
Lee (ref_123) 2017; 8
Jiang (ref_200) 2020; 143
Isel (ref_37) 1999; 18
Coggins (ref_167) 2020; 295
Rawson (ref_52) 2017; 429
Patra (ref_114) 2017; 57
Diamond (ref_5) 2004; 279
Hughes (ref_2) 2015; 3
Eriksson (ref_74) 1984; 259
Rothenburger (ref_213) 2021; 40
Kretschmer (ref_221) 2015; 74
Sadler (ref_227) 2010; 84
Rezende (ref_47) 2001; 8
Achuthan (ref_45) 2014; 88
Laguette (ref_12) 2011; 474
Veenhuis (ref_17) 2021; 51
Pauls (ref_111) 2014; 193
Kati (ref_42) 1992; 267
Johansson (ref_199) 2018; 8
Goldschmidt (ref_36) 2002; 277
Amie (ref_142) 2012; 9
Ruiz (ref_116) 2015; 14
Huber (ref_105) 2014; 58
Ji (ref_64) 1992; 31
Laguette (ref_163) 2012; 11
ref_186
ref_185
Lim (ref_156) 2012; 11
Herold (ref_211) 2017; 16
Rice (ref_175) 2012; 44
Amin (ref_197) 2016; 22
Crow (ref_174) 2006; 38
Kunkel (ref_194) 1992; 267
(ref_57) 2021; 39
Schaller (ref_82) 2014; 11
Bale (ref_223) 2018; 15
References_xml – volume: 39
  start-page: 1360
  year: 2011
  ident: ref_195
  article-title: Mechanisms of mutagenesis in vivo due to imbalanced dNTP pools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq829
– volume: 6
  start-page: 14621
  year: 2021
  ident: ref_50
  article-title: HIV Reverse Transcriptase Pre-Steady-State Kinetic Analysis of Chain Terminators and Translocation Inhibitors Reveals Interactions between Magnesium and Nucleotide 3’-OH
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c01742
– volume: 111
  start-page: E1843
  year: 2014
  ident: ref_98
  article-title: GTP activator and dNTP substrates of HIV-1 restriction factor SAMHD1 generate a long-lived activated state
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1401706111
– volume: 269
  start-page: 19245
  year: 1994
  ident: ref_28
  article-title: Mutagenesis of the conserved aspartic acid 443, glutamic acid 478, asparagine 494, and aspartic acid 498 residues in the ribonuclease H domain of p66/p51 human immunodeficiency virus type I reverse transcriptase. Expression and biochemical analysis
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)32159-2
– volume: 110
  start-page: 14272
  year: 2013
  ident: ref_8
  article-title: The deoxynucleotide triphosphohydrolase SAMHD1 is a major regulator of DNA precursor pools in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1312033110
– volume: 134
  start-page: 562
  year: 2014
  ident: ref_202
  article-title: Downregulation of SAMHD1 expression correlates with promoter DNA methylation in Sézary syndrome patients
  publication-title: J. Investig. Dermatol.
  doi: 10.1038/jid.2013.311
– volume: 29
  start-page: 5452
  year: 1990
  ident: ref_75
  article-title: S-phase-specific expression of mammalian ribonucleotide reductase R1 and R2 subunit mRNAs
  publication-title: Biochemistry
  doi: 10.1021/bi00475a007
– volume: 34
  start-page: 631
  year: 2020
  ident: ref_220
  article-title: SAMHD1-deficient fibroblasts from Aicardi-Goutieres Syndrome patients can escape senescence and accumulate mutations
  publication-title: FASEB J.
  doi: 10.1096/fj.201902508R
– volume: 436
  start-page: 81
  year: 2013
  ident: ref_84
  article-title: Contribution of SAM and HD domains to retroviral restriction mediated by human SAMHD1
  publication-title: Virology
  doi: 10.1016/j.virol.2012.10.029
– volume: 113
  start-page: 4723
  year: 2016
  ident: ref_205
  article-title: Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1519128113
– volume: 15
  start-page: 7178
  year: 1996
  ident: ref_39
  article-title: Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb01109.x
– volume: 123
  start-page: 1021
  year: 2014
  ident: ref_198
  article-title: SAMHD1 is mutated recurrently in chronic lymphocytic leukemia and is involved in response to DNA damage
  publication-title: Blood
  doi: 10.1182/blood-2013-04-490847
– ident: ref_53
  doi: 10.1371/journal.pbio.1002251
– ident: ref_101
  doi: 10.1371/journal.pone.0169052
– volume: 259
  start-page: 11695
  year: 1984
  ident: ref_74
  article-title: Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The S phase-correlated increase in subunit M2 is regulated by de novo protein synthesis
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)71265-2
– volume: 513
  start-page: 933
  year: 2019
  ident: ref_151
  article-title: Determinants of lentiviral Vpx-CRL4 E3 ligase-mediated SAMHD1 degradation in the substrate adaptor protein DCAF1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2019.04.085
– volume: 140
  start-page: 1
  year: 1994
  ident: ref_196
  article-title: Physiological concentrations of purines and pyrimidines
  publication-title: Mol. Cell Biochem.
  doi: 10.1007/BF00928361
– volume: 89
  start-page: 45
  year: 2020
  ident: ref_70
  article-title: Ribonucleotide Reductases: Structure, Chemistry, and Metabolism Suggest New Therapeutic Targets
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-013118-111843
– volume: 95
  start-page: e01970-20
  year: 2021
  ident: ref_184
  article-title: TRAF6 and TAK1 Contribute to SAMHD1-Mediated Negative Regulation of NF-κB Signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.01970-20
– volume: 298
  start-page: 101635
  year: 2022
  ident: ref_187
  article-title: Elimination of Aicardi-Goutières syndrome protein SAMHD1 activates cellular innate immunity and suppresses SARS-CoV-2 replication
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2022.101635
– volume: 8
  start-page: 11
  year: 2018
  ident: ref_199
  article-title: SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia
  publication-title: Blood Cancer J.
  doi: 10.1038/s41408-017-0036-5
– volume: 16
  start-page: 1029
  year: 2017
  ident: ref_211
  article-title: SAMHD1 protects cancer cells from various nucleoside-based antimetabolites
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2017.1314407
– volume: 45
  start-page: 3341
  year: 2017
  ident: ref_44
  article-title: Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase
  publication-title: Nucleic Acids Res.
– ident: ref_219
  doi: 10.1371/journal.pgen.1009523
– volume: 39
  start-page: 194
  year: 2021
  ident: ref_57
  article-title: Reverse Transcriptase: From Transcriptomics to Genome Editing
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.06.008
– volume: 13
  start-page: 441
  year: 2013
  ident: ref_110
  article-title: The retroviral restriction ability of SAMHD1, but not its deoxynucleotide triphosphohydrolase activity, is regulated by phosphorylation
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.03.005
– volume: 280
  start-page: 12190
  year: 2005
  ident: ref_41
  article-title: Mechanistic differences in RNA-dependent DNA polymerization and fidelity between murine leukemia virus and HIV-1 reverse transcriptases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M412859200
– volume: 266
  start-page: 7423
  year: 1991
  ident: ref_43
  article-title: Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(20)89464-2
– volume: 20
  start-page: 1304
  year: 2013
  ident: ref_93
  article-title: Mechanism of allosteric activation of SAMHD1 by dGTP
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2692
– volume: 557
  start-page: 57
  year: 2018
  ident: ref_216
  article-title: SAMHD1 acts at stalled replication forks to prevent interferon induction
  publication-title: Nature
  doi: 10.1038/s41586-018-0050-1
– volume: 295
  start-page: 16975
  year: 2020
  ident: ref_167
  article-title: Enhanced enzyme kinetics of reverse transcriptase variants cloned from animals infected with SIVmac239 lacking Viral Protein X
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA120.015273
– volume: 275
  start-page: 27037
  year: 2000
  ident: ref_60
  article-title: Differential influence of nucleoside analog-resistance mutations K65R and L74V on the overall mutation rate and error specificity of human immunodeficiency virus type 1 reverse transcriptase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)61477-8
– volume: 60
  start-page: 6377
  year: 2020
  ident: ref_131
  article-title: Dimeric Hold States of Anti-HIV Protein SAMHD1 are Redox Tunable
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.0c00629
– volume: 74
  start-page: e17
  year: 2015
  ident: ref_221
  article-title: SAMHD1 prevents autoimmunity by maintaining genome stability
  publication-title: Ann. Rheum. Dis.
  doi: 10.1136/annrheumdis-2013-204845
– volume: 90
  start-page: 6320
  year: 1993
  ident: ref_25
  article-title: Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.90.13.6320
– volume: 3
  start-page: 1051
  year: 2015
  ident: ref_2
  article-title: Reverse Transcription of Retroviruses and LTR Retrotransposons
  publication-title: Microbiol. Spectr.
  doi: 10.1128/microbiolspec.MDNA3-0027-2014
– volume: 27
  start-page: 254
  year: 2019
  ident: ref_182
  article-title: SAMHD1 Suppression of Antiviral Immune Responses
  publication-title: Trends Microbiol.
  doi: 10.1016/j.tim.2018.09.009
– volume: 35
  start-page: 11536
  year: 1996
  ident: ref_48
  article-title: Biochemical analysis of catalytically crucial aspartate mutants of human immunodeficiency virus type 1 reverse transcriptase
  publication-title: Biochemistry
  doi: 10.1021/bi960364x
– volume: 115
  start-page: E3798
  year: 2018
  ident: ref_181
  article-title: SAMHD1 suppresses innate immune responses to viral infections and inflammatory stimuli by inhibiting the NF-kappaB and interferon pathways
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 537
  start-page: 36
  year: 2019
  ident: ref_166
  article-title: Efficient pre-catalytic conformational change of reverse transcriptases from SAMHD1 non-counteracting primate lentiviruses during dNTP incorporation
  publication-title: Virology
  doi: 10.1016/j.virol.2019.08.010
– volume: 78
  start-page: 2447
  year: 1981
  ident: ref_193
  article-title: Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.78.4.2447
– volume: 44
  start-page: 1243
  year: 2012
  ident: ref_175
  article-title: Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2414
– volume: 15
  start-page: 4040
  year: 1996
  ident: ref_225
  article-title: Reduced replication of 3TC-resistant HIV-1 variants in primary cells due to a processivity defect of the reverse transcriptase enzyme
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00777.x
– volume: 15
  start-page: 49
  year: 1984
  ident: ref_169
  article-title: A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410150109
– volume: 288
  start-page: 33253
  year: 2013
  ident: ref_138
  article-title: Restricted 5′-end gap repair of HIV-1 integration due to limited cellular dNTP concentrations in human primary macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.486787
– volume: 276
  start-page: 31247
  year: 2001
  ident: ref_34
  article-title: Initiation of HIV-1 reverse transcription is regulated by a primer activation signal
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M102441200
– volume: 286
  start-page: 43596
  year: 2011
  ident: ref_94
  article-title: Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C111.317628
– volume: 105
  start-page: 13309
  year: 2008
  ident: ref_107
  article-title: Structural basis for the catalytic mechanism of human phosphodiesterase 9
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708850105
– volume: 14
  start-page: 2100
  year: 2016
  ident: ref_112
  article-title: IL-7 Induces SAMHD1 Phosphorylation in CD4+ T Lymphocytes, Improving Early Steps of HIV-1 Life Cycle
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.02.022
– volume: 87
  start-page: 11516
  year: 2013
  ident: ref_119
  article-title: Restriction of virus infection but not catalytic dNTPase activity is regulated by phosphorylation of SAMHD1
  publication-title: J. Virol.
  doi: 10.1128/JVI.01642-13
– volume: 289
  start-page: 32617
  year: 2014
  ident: ref_96
  article-title: Structural basis of allosteric activation of sterile α motif and histidine-aspartate domain-containing protein 1 (SAMHD1) by nucleoside triphosphates
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M114.591958
– volume: 92
  start-page: 139
  year: 2011
  ident: ref_22
  article-title: HIV-1 reverse transcriptase connection subdomain mutations involved in resistance to approved non-nucleoside inhibitors
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2011.08.020
– volume: 429
  start-page: 2290
  year: 2017
  ident: ref_52
  article-title: Single-Strand Consensus Sequencing Reveals that HIV Type but not Subtype Significantly Impacts Viral Mutation Frequencies and Spectra
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2017.05.010
– volume: 288
  start-page: 20683
  year: 2013
  ident: ref_104
  article-title: Anti-HIV host factor SAMHD1 regulates viral sensitivity to nucleoside reverse transcriptase inhibitors via modulation of cellular deoxyribonucleoside triphosphate (dNTP) levels
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.472159
– volume: 84
  start-page: 7396
  year: 2010
  ident: ref_227
  article-title: APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis
  publication-title: J. Virol.
  doi: 10.1128/JVI.00056-10
– volume: 488
  start-page: 271
  year: 2016
  ident: ref_120
  article-title: Low dNTP levels are necessary but may not be sufficient for lentiviral restriction by SAMHD1
  publication-title: Virology
  doi: 10.1016/j.virol.2015.11.022
– volume: 16
  start-page: 1492
  year: 2016
  ident: ref_179
  article-title: Restriction by SAMHD1 Limits cGAS/STING-Dependent Innate and Adaptive Immune Responses to HIV-1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.07.002
– volume: 41
  start-page: 462
  year: 2002
  ident: ref_72
  article-title: A comprehensive model for the allosteric regulation of mammalian ribonucleotide reductase. Functional consequences of ATP- and dATP-induced oligomerization of the large subunit
  publication-title: Biochemistry
  doi: 10.1021/bi011653a
– volume: 480
  start-page: 379
  year: 2011
  ident: ref_9
  article-title: HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase
  publication-title: Nature
  doi: 10.1038/nature10623
– volume: 86
  start-page: 12552
  year: 2012
  ident: ref_83
  article-title: The Vpx lentiviral accessory protein targets SAMHD1 for degradation in the nucleus
  publication-title: J. Virol.
  doi: 10.1128/JVI.01657-12
– volume: 15
  start-page: 917
  year: 1996
  ident: ref_38
  article-title: Specific initiation and switch to elongation of human immunodeficiency virus type 1 reverse transcription require the post-transcriptional modifications of primer tRNA3Lys
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00426.x
– volume: 20
  start-page: 1921
  year: 2017
  ident: ref_215
  article-title: SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.08.008
– volume: 84
  start-page: 9864
  year: 2010
  ident: ref_66
  article-title: Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication
  publication-title: J. Virol.
  doi: 10.1128/JVI.00915-10
– volume: 112
  start-page: E747
  year: 2015
  ident: ref_109
  article-title: An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1416485112
– volume: 9
  start-page: 87
  year: 2012
  ident: ref_141
  article-title: SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-9-87
– volume: 167
  start-page: 296
  year: 2015
  ident: ref_168
  article-title: Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1
  publication-title: Am. J. Med. Genet. A
  doi: 10.1002/ajmg.a.36887
– volume: 8
  start-page: 1169
  year: 1989
  ident: ref_10
  article-title: VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1989.tb03488.x
– volume: 46
  start-page: 1264
  year: 2014
  ident: ref_207
  article-title: RNF43 is frequently mutated in colorectal and endometrial cancers
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3127
– volume: 85
  start-page: 1266
  year: 2017
  ident: ref_97
  article-title: Uncovering allostery and regulation in SAMHD1 through molecular dynamics simulations
  publication-title: Proteins
  doi: 10.1002/prot.25287
– volume: 28
  start-page: 2213
  year: 2014
  ident: ref_117
  article-title: Palbociclib, a selective inhibitor of cyclin-dependent kinase4/6, blocks HIV-1 reverse transcription through the control of sterile α motif and HD domain-containing protein-1 (SAMHD1) activity
  publication-title: Aids
  doi: 10.1097/QAD.0000000000000399
– volume: 290
  start-page: 13279
  year: 2015
  ident: ref_88
  article-title: CyclinA2-Cyclin-dependent Kinase Regulates SAMHD1 Protein Phosphohydrolase Domain
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.646588
– volume: 14
  start-page: 85
  year: 2013
  ident: ref_154
  article-title: Gene loss and adaptation to hominids underlie the ancient origin of HIV-1
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2013.06.002
– volume: 88
  start-page: 8514
  year: 2014
  ident: ref_45
  article-title: Human immunodeficiency virus reverse transcriptase displays dramatically higher fidelity under physiological magnesium conditions in vitro
  publication-title: J. Virol.
  doi: 10.1128/JVI.00752-14
– volume: 3
  start-page: 1036
  year: 2013
  ident: ref_86
  article-title: Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.03.017
– volume: 46
  start-page: 677
  year: 2012
  ident: ref_160
  article-title: Rules of engagement: Molecular insights from host-virus arms races
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-110711-155522
– volume: 297
  start-page: 101170
  year: 2021
  ident: ref_208
  article-title: Structural and functional characterization explains loss of dNTPase activity of the cancer-specific R366C/H mutant SAMHD1 proteins
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.101170
– volume: 3
  start-page: 324
  year: 2020
  ident: ref_212
  article-title: SAMHD1 is a key regulator of the lineage-specific response of acute lymphoblastic leukaemias to nelarabine
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-1052-8
– volume: 38
  start-page: 658
  year: 2017
  ident: ref_122
  article-title: A SAMHD1 mutation associated with Aicardi-Goutieres syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.23201
– volume: 9
  start-page: 2227
  year: 2018
  ident: ref_89
  article-title: Dephosphorylation of the HIV-1 restriction factor SAMHD1 is mediated by PP2A-B55α holoenzymes during mitotic exit
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04671-1
– volume: 31
  start-page: 850
  year: 2003
  ident: ref_35
  article-title: Does the HIV-1 primer activation signal interact with tRNA3(Lys) during the initiation of reverse transcription?
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg187
– volume: 36
  start-page: 1836
  year: 2004
  ident: ref_21
  article-title: Proteolytic processing of an HIV-1 pol polyprotein precursor: Insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2004.02.020
– volume: 291
  start-page: 26332
  year: 2016
  ident: ref_87
  article-title: A Putative Cyclin-binding Motif in Human SAMHD1 Contributes to Protein Phosphorylation, Localization, and Stability
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.753947
– volume: 36
  start-page: 604
  year: 2017
  ident: ref_113
  article-title: A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages
  publication-title: EMBO J.
  doi: 10.15252/embj.201696025
– volume: 2
  start-page: 2167
  year: 1993
  ident: ref_23
  article-title: Human immunodeficiency virus type-1 reverse transcriptase and ribonuclease H as substrates of the viral protease
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560021216
– volume: 41
  start-page: 4601
  year: 2013
  ident: ref_29
  article-title: Altered error specificity of RNase H-deficient HIV-1 reverse transcriptases during DNA-dependent DNA synthesis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt109
– volume: 1
  start-page: 1137
  year: 2009
  ident: ref_56
  article-title: Mutation rates and intrinsic fidelity of retroviral reverse transcriptases
  publication-title: Viruses
  doi: 10.3390/v1031137
– volume: 34
  start-page: 529
  year: 2013
  ident: ref_71
  article-title: The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2012.05.007
– volume: 11
  start-page: 3405
  year: 1992
  ident: ref_155
  article-title: Evolution of the primate lentiviruses: Evidence from vpx and vpr
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1992.tb05419.x
– ident: ref_157
  doi: 10.1371/journal.ppat.0030085
– volume: 89
  start-page: 6919
  year: 1992
  ident: ref_63
  article-title: Unequal human immunodeficiency virus type 1 reverse transcriptase error rates with RNA and DNA templates
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.15.6919
– volume: 76
  start-page: 2329
  year: 2002
  ident: ref_33
  article-title: The tRNA primer activation signal in the human immunodeficiency virus type 1 genome is important for initiation and processive elongation of reverse transcription
  publication-title: J. Virol.
  doi: 10.1128/jvi.76.5.2329-2339.2002
– volume: 31
  start-page: 954
  year: 1992
  ident: ref_64
  article-title: Fidelity of HIV-1 reverse transcriptase copying RNA in vitro
  publication-title: Biochemistry
  doi: 10.1021/bi00119a002
– volume: 383
  start-page: 586
  year: 1996
  ident: ref_153
  article-title: Gene acquisition in HIV and SIV
  publication-title: Nature
  doi: 10.1038/383586a0
– volume: 58
  start-page: 4915
  year: 2014
  ident: ref_105
  article-title: SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.02745-14
– volume: 199
  start-page: 323
  year: 1994
  ident: ref_65
  article-title: Fidelity of HIV-1 reverse transcriptase copying a hypervariable region of the HIV-1 env gene
  publication-title: Virology
  doi: 10.1006/viro.1994.1130
– volume: 290
  start-page: 30078
  year: 2015
  ident: ref_165
  article-title: Mechanistic and Kinetic Differences between Reverse Transcriptases of Vpx Coding and Non-coding Lentiviruses
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.691576
– volume: 38
  start-page: 917
  year: 2006
  ident: ref_171
  article-title: Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus
  publication-title: Nat. Genet.
  doi: 10.1038/ng1845
– volume: 281
  start-page: 32113
  year: 2006
  ident: ref_133
  article-title: Reduced dNTP interaction of human immunodeficiency virus type 1 reverse transcriptase promotes strand transfer
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M604665200
– volume: 401
  start-page: 33
  year: 2010
  ident: ref_58
  article-title: K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2010.06.001
– volume: 197
  start-page: 1525
  year: 2015
  ident: ref_108
  article-title: Structural basis of functional diversification of the HD-GYP domain revealed by the Pseudomonas aeruginosa PA4781 protein, which displays an unselective bimetallic binding site
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.02606-14
– volume: 111
  start-page: E4305
  year: 2014
  ident: ref_92
  article-title: Structural basis of cellular dNTP regulation by SAMHD1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1412289111
– volume: 43
  start-page: 6486
  year: 2015
  ident: ref_177
  article-title: SAMHD1 is a single-stranded nucleic acid binding protein with no active site-associated nuclease activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv633
– volume: 267
  start-page: 18251
  year: 1992
  ident: ref_194
  article-title: DNA replication fidelity
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)36949-2
– volume: 1
  start-page: 15035
  year: 2015
  ident: ref_3
  article-title: HIV infection
  publication-title: Nat. Rev. Dis. Primers
  doi: 10.1038/nrdp.2015.35
– ident: ref_51
  doi: 10.1371/journal.pone.0008867
– volume: 8
  start-page: 550
  year: 2007
  ident: ref_126
  article-title: SUMO junction-what’s your function? New insights through SUMO-interacting motifs
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400980
– volume: 70
  start-page: 7594
  year: 1996
  ident: ref_54
  article-title: Retroviral mutation rates and A-to-G hypermutations during different stages of retroviral replication
  publication-title: J. Virol.
  doi: 10.1128/jvi.70.11.7594-7602.1996
– volume: 11
  start-page: 111
  year: 2014
  ident: ref_13
  article-title: Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses
  publication-title: Retrovirology
  doi: 10.1186/s12977-014-0111-y
– volume: 10
  start-page: 1435
  year: 2019
  ident: ref_18
  article-title: The HIV Reservoir in Monocytes and Macrophages
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01435
– volume: 23
  start-page: 250
  year: 2017
  ident: ref_103
  article-title: SAMHD1 is a biomarker for cytarabine response and a therapeutic target in acute myeloid leukemia
  publication-title: Nat. Med.
  doi: 10.1038/nm.4255
– volume: 40
  start-page: 317
  year: 2021
  ident: ref_213
  article-title: Differences between intrinsic and acquired nucleoside analogue resistance in acute myeloid leukaemia cells
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-021-02093-4
– volume: 7
  start-page: 2925
  year: 1987
  ident: ref_78
  article-title: Control of thymidine kinase mRNA during the cell cycle
  publication-title: Mol. Cell Biol.
– ident: ref_100
  doi: 10.1371/journal.ppat.1005194
– volume: 6
  start-page: 31353
  year: 2016
  ident: ref_118
  article-title: Effects of T592 phosphomimetic mutations on tetramer stability and dNTPase activity of SAMHD1 can not explain the retroviral restriction defect
  publication-title: Sci. Rep.
  doi: 10.1038/srep31353
– volume: 49
  start-page: 2598
  year: 2021
  ident: ref_217
  article-title: SAMHD1 restrains aberrant nucleotide insertions at repair junctions generated by DNA end joining
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkab051
– volume: 23
  start-page: 469
  year: 1998
  ident: ref_85
  article-title: The HD domain defines a new superfamily of metal-dependent phosphohydrolases
  publication-title: Trends Biochem. Sci.
  doi: 10.1016/S0968-0004(98)01293-6
– volume: 82
  start-page: 2343
  year: 2014
  ident: ref_20
  article-title: The p66 immature precursor of HIV-1 reverse transcriptase
  publication-title: Proteins
  doi: 10.1002/prot.24594
– ident: ref_226
  doi: 10.1101/2021.04.06.438583
– volume: 358
  start-page: 1590
  year: 2008
  ident: ref_224
  article-title: The challenge of HIV-1 subtype diversity
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra0706737
– volume: 292
  start-page: 14016
  year: 2017
  ident: ref_137
  article-title: A CRISPR/Cas9 approach reveals that the polymerase activity of DNA polymerase beta is dispensable for HIV-1 infection in dividing and nondividing cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M117.793661
– volume: 14
  start-page: 1657
  year: 2015
  ident: ref_116
  article-title: Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1030558
– ident: ref_150
  doi: 10.1371/journal.ppat.1000059
– volume: 92
  start-page: e00292-18
  year: 2018
  ident: ref_144
  article-title: SAMHD1 Impairs HIV-1 Gene Expression and Negatively Modulates Reactivation of Viral Latency in CD4(+) T Cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.00292-18
– volume: 9
  start-page: 469
  year: 1989
  ident: ref_55
  article-title: Fidelity of two retroviral reverse transcriptases during DNA-dependent DNA synthesis in vitro
  publication-title: Mol. Cell Biol.
– volume: 8
  start-page: 55
  year: 2010
  ident: ref_159
  article-title: Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2010.06.004
– volume: 15
  start-page: 14
  year: 2018
  ident: ref_223
  article-title: HIV evolution and diversity in ART-treated patients
  publication-title: Retrovirology
  doi: 10.1186/s12977-018-0395-4
– volume: 12
  start-page: e10419
  year: 2020
  ident: ref_214
  article-title: Ribonucleotide reductase inhibitors suppress SAMHD1 ara-CTPase activity enhancing cytarabine efficacy
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201910419
– volume: 286
  start-page: 40246
  year: 2011
  ident: ref_173
  article-title: The TREX1 exonuclease R114H mutation in Aicardi-Goutières syndrome and lupus reveals dimeric structure requirements for DNA degradation activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.297903
– ident: ref_164
  doi: 10.1371/journal.ppat.1003496
– volume: 22
  start-page: 4525
  year: 2016
  ident: ref_197
  article-title: A Quantitative Analysis of Subclonal and Clonal Gene Mutations before and after Therapy in Chronic Lymphocytic Leukemia
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-3103
– volume: 51
  start-page: 101472
  year: 2021
  ident: ref_17
  article-title: HIV replication and latency in monocytes and macrophages
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2021.101472
– volume: 17
  start-page: 1102
  year: 2018
  ident: ref_121
  article-title: The dNTP triphosphohydrolase activity of SAMHD1 persists during S-phase when the enzyme is phosphorylated at T592
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2018.1480216
– volume: 295
  start-page: 657
  year: 2020
  ident: ref_152
  article-title: Viral protein X reduces the incorporation of mutagenic noncanonical rNTPs during lentivirus reverse transcription in macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.011466
– volume: 9
  start-page: 105
  year: 2012
  ident: ref_142
  article-title: SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4+ T-lymphocytes cannot be upregulated by interferons
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-9-105
– ident: ref_186
  doi: 10.1371/journal.pone.0037477
– volume: 455
  start-page: 229
  year: 2014
  ident: ref_204
  article-title: SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.10.153
– volume: 327
  start-page: 716
  year: 1987
  ident: ref_26
  article-title: Site-specific mutagenesis of AIDS virus reverse transcriptase
  publication-title: Nature
  doi: 10.1038/327716a0
– volume: 8
  start-page: 68517
  year: 2017
  ident: ref_123
  article-title: SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.19704
– volume: 436
  start-page: 599
  year: 2011
  ident: ref_61
  article-title: Thermostable HIV-1 group O reverse transcriptase variants with the same fidelity as murine leukaemia virus reverse transcriptase
  publication-title: Biochem. J.
  doi: 10.1042/BJ20101852
– volume: 277
  start-page: 43233
  year: 2002
  ident: ref_36
  article-title: Direct and indirect contributions of RNA secondary structure elements to the initiation of HIV-1 reverse transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205295200
– volume: 34
  start-page: 42
  year: 2006
  ident: ref_49
  article-title: Mg2+ dependency of HIV-1 reverse transcription, inhibition by nucleoside analogues and resistance
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj411
– volume: 15
  start-page: 857
  year: 2016
  ident: ref_206
  article-title: Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.03.075
– volume: 57
  start-page: 2523
  year: 2017
  ident: ref_114
  article-title: Allosteric Signal Transduction in HIV-1 Restriction Factor SAMHD1 Proceeds via Reciprocal Handshake across Monomers
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.7b00279
– volume: 12
  start-page: 731
  year: 2021
  ident: ref_145
  article-title: Nucleic acid binding by SAMHD1 contributes to the antiretroviral activity and is enhanced by the GpsN modification
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21023-8
– volume: 4
  start-page: 2722
  year: 2013
  ident: ref_90
  article-title: Structural insight into dGTP-dependent activation of tetrameric SAMHD1 deoxynucleoside triphosphate triphosphohydrolase
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3722
– volume: 91
  start-page: 7242
  year: 1994
  ident: ref_24
  article-title: Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.91.15.7242
– volume: 6
  start-page: 8571
  year: 2015
  ident: ref_68
  article-title: The external domains of the HIV-1 envelope are a mutational cold spot
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9571
– volume: 282
  start-page: 1669
  year: 1998
  ident: ref_30
  article-title: Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug resistance
  publication-title: Science
  doi: 10.1126/science.282.5394.1669
– volume: 7
  start-page: 44834
  year: 2017
  ident: ref_62
  article-title: Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases
  publication-title: Sci. Rep.
  doi: 10.1038/srep44834
– volume: 52
  start-page: 32
  year: 2017
  ident: ref_209
  article-title: With me or against me: Tumor suppressor and drug resistance activities of SAMHD1
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2017.05.001
– volume: 242
  start-page: 1171
  year: 1988
  ident: ref_6
  article-title: The accuracy of reverse transcriptase from HIV-1
  publication-title: Science
  doi: 10.1126/science.2460925
– volume: 495
  start-page: 92
  year: 2016
  ident: ref_124
  article-title: SAMHD1 controls cell cycle status, apoptosis and HIV-1 infection in monocytic THP-1 cells
  publication-title: Virology
  doi: 10.1016/j.virol.2016.05.002
– ident: ref_15
  doi: 10.3390/v10110620
– volume: 267
  start-page: 25988
  year: 1992
  ident: ref_42
  article-title: Mechanism and fidelity of HIV reverse transcriptase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)35706-5
– volume: 23
  start-page: 256
  year: 2017
  ident: ref_102
  article-title: Targeting SAMHD1 with the Vpx protein to improve cytarabine therapy for hematological malignancies
  publication-title: Nat. Med.
  doi: 10.1038/nm.4265
– volume: 288
  start-page: 10406
  year: 2013
  ident: ref_91
  article-title: Tetramerization of SAMHD1 is required for biological activity and inhibition of HIV infection
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.443796
– volume: 290
  start-page: 26352
  year: 2015
  ident: ref_115
  article-title: Impaired dNTPase activity of SAMHD1 by phosphomimetic mutation of Thr-592
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.677435
– ident: ref_161
  doi: 10.1371/journal.ppat.1000300
– volume: 287
  start-page: 14280
  year: 2012
  ident: ref_136
  article-title: Frequent incorporation of ribonucleotides during HIV-1 reverse transcription and their attenuated repair in macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.348482
– volume: 200
  start-page: 114
  year: 1994
  ident: ref_14
  article-title: The kinetics of human immunodeficiency virus reverse transcription are slower in primary human macrophages than in a lymphoid cell line
  publication-title: Virology
  doi: 10.1006/viro.1994.1169
– volume: 15
  start-page: 69
  year: 2018
  ident: ref_139
  article-title: Host SAMHD1 protein restricts endogenous reverse transcription of HIV-1 in nondividing macrophages
  publication-title: Retrovirology
  doi: 10.1186/s12977-018-0452-z
– volume: 9
  start-page: 49
  year: 2012
  ident: ref_81
  article-title: Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-9-49
– volume: 39
  start-page: e102931
  year: 2020
  ident: ref_218
  article-title: SAMHD1-mediated dNTP degradation is required for efficient DNA repair during antibody class switch recombination
  publication-title: EMBO J.
  doi: 10.15252/embj.2019102931
– volume: 115
  start-page: E10022
  year: 2018
  ident: ref_210
  article-title: The structural basis for cancer drug interactions with the catalytic and allosteric sites of SAMHD1
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1805593115
– volume: 474
  start-page: 658
  year: 2011
  ident: ref_146
  article-title: Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein
  publication-title: Nature
  doi: 10.1038/nature10195
– volume: 65
  start-page: 5088
  year: 1991
  ident: ref_11
  article-title: The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage
  publication-title: J. Virol.
  doi: 10.1128/jvi.65.9.5088-5091.1991
– volume: 104
  start-page: 11778
  year: 2007
  ident: ref_148
  article-title: Lentiviral Vpr usurps Cul4-DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0702102104
– volume: 287
  start-page: 21570
  year: 2012
  ident: ref_80
  article-title: Tight interplay among SAMHD1 protein level, cellular dNTP levels, and HIV-1 proviral DNA synthesis kinetics in human primary monocyte-derived macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C112.374843
– volume: 27
  start-page: 1317
  year: 2017
  ident: ref_128
  article-title: The SAMHD1 dNTP Triphosphohydrolase Is Controlled by a Redox Switch
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2016.6888
– volume: 8
  start-page: 197
  year: 2001
  ident: ref_47
  article-title: The effect of increased processivity on overall fidelity of human immunodeficiency virus type 1 reverse transcriptase
  publication-title: J. Biomed. Sci.
  doi: 10.1007/BF02256413
– volume: 17
  start-page: 1453
  year: 2010
  ident: ref_40
  article-title: Initiation complex dynamics direct the transitions between distinct phases of early HIV reverse transcription
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1937
– volume: 557
  start-page: 118
  year: 2018
  ident: ref_32
  article-title: Architecture of an HIV-1 reverse transcriptase initiation complex
  publication-title: Nature
  doi: 10.1038/s41586-018-0055-9
– ident: ref_158
  doi: 10.1371/journal.pbio.1000301
– volume: 98
  start-page: 658
  year: 2001
  ident: ref_19
  article-title: Macrophage are the principal reservoir and sustain high virus loads in rhesus macaques after the depletion of CD4+ T cells by a highly pathogenic simian immunodeficiency virus/HIV type 1 chimera (SHIV): Implications for HIV-1 infections of humans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.98.2.658
– ident: ref_69
  doi: 10.3390/ijms22010370
– volume: 8
  start-page: 724870
  year: 2021
  ident: ref_132
  article-title: SAMHD1 Phosphorylation at T592 Regulates Cellular Localization and S-phase Progression
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.724870
– volume: 295
  start-page: 1575
  year: 2020
  ident: ref_183
  article-title: The dNTPase activity of SAMHD1 is important for its suppression of innate immune responses in differentiated monocytic cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA119.010360
– volume: 288
  start-page: 25001
  year: 2013
  ident: ref_95
  article-title: GTP is the primary activator of the anti-HIV restriction factor SAMHD1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C113.493619
– volume: 91
  start-page: e00034-17
  year: 2017
  ident: ref_7
  article-title: Imaging HIV-1 genomic DNA from entry through productive infection
  publication-title: J. Virol.
  doi: 10.1128/JVI.00034-17
– volume: 285
  start-page: 39380
  year: 2010
  ident: ref_4
  article-title: Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.178582
– volume: 11
  start-page: 29
  year: 2014
  ident: ref_82
  article-title: Nuclear import of SAMHD1 is mediated by a classical karyopherin α/β1 dependent pathway and confers sensitivity to VpxMAC induced ubiquitination and proteasomal degradation
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-11-29
– volume: 474
  start-page: 654
  year: 2011
  ident: ref_12
  article-title: SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx
  publication-title: Nature
  doi: 10.1038/nature10117
– volume: 87
  start-page: 2846
  year: 2013
  ident: ref_143
  article-title: SAMHD1 restricts HIV-1 cell-to-cell transmission and limits immune detection in monocyte-derived dendritic cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.02514-12
– volume: 11
  start-page: 20984
  year: 2021
  ident: ref_188
  article-title: HIV-2 Vpx neutralizes host restriction factor SAMHD1 to promote viral pathogenesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00415-2
– volume: 126
  start-page: 2110
  year: 2015
  ident: ref_201
  article-title: Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL
  publication-title: Blood
  doi: 10.1182/blood-2015-05-647578
– volume: 11
  start-page: 194
  year: 2012
  ident: ref_156
  article-title: The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.004
– volume: 24
  start-page: 815
  year: 2018
  ident: ref_129
  article-title: Functionality of Redox-Active Cysteines Is Required for Restriction of Retroviral Replication by SAMHD1
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2018.06.090
– volume: 71
  start-page: 516
  year: 2015
  ident: ref_127
  article-title: The mechanism of substrate-controlled allosteric regulation of SAMHD1 activated by GTP
  publication-title: Acta Crystallogr. D Biol. Crystallogr.
  doi: 10.1107/S1399004714027527
– volume: 1
  start-page: 227
  year: 2015
  ident: ref_203
  article-title: Aggressive CD8(+) epidermotropic cutaneous T-cell lymphoma associated with homozygous mutation in SAMHD1
  publication-title: JAAD Case Rep.
  doi: 10.1016/j.jdcr.2015.05.003
– volume: 242
  start-page: 1168
  year: 1988
  ident: ref_46
  article-title: Fidelity of HIV-1 reverse transcriptase
  publication-title: Science
  doi: 10.1126/science.2460924
– volume: 450
  start-page: 1462
  year: 2014
  ident: ref_190
  article-title: Inhibition of Hepatitis B virus replication by SAMHD1
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2014.07.023
– volume: 18
  start-page: 1682
  year: 2012
  ident: ref_140
  article-title: SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells
  publication-title: Nat. Med.
  doi: 10.1038/nm.2964
– volume: 100
  start-page: 6628
  year: 2003
  ident: ref_76
  article-title: Subcellular localization of yeast ribonucleotide reductase regulated by the DNA replication and damage checkpoint pathways
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1131932100
– ident: ref_222
  doi: 10.3390/v12040382
– volume: 11
  start-page: 3165
  year: 2020
  ident: ref_106
  article-title: Crystal structures of SAMHD1 inhibitor complexes reveal the mechanism of water-mediated dNTP hydrolysis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16983-2
– volume: 94
  start-page: 595
  year: 1998
  ident: ref_77
  article-title: The DNA replication and damage checkpoint pathways induce transcription by inhibition of the Crt1 repressor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81601-3
– volume: 76
  start-page: 6505
  year: 1979
  ident: ref_192
  article-title: Characterization of a mutator gene in Chinese hamster ovary cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.76.12.6505
– volume: 18
  start-page: 4
  year: 2021
  ident: ref_191
  article-title: Vpx enhances innate immune responses independently of SAMHD1 during HIV-1 infection
  publication-title: Retrovirology
  doi: 10.1186/s12977-021-00548-2
– ident: ref_185
  doi: 10.3390/cells9010254
– volume: 82
  start-page: 7716
  year: 2008
  ident: ref_134
  article-title: Compensatory role of human immunodeficiency virus central polypurine tract sequence in kinetically disrupted reverse transcription
  publication-title: J. Virol.
  doi: 10.1128/JVI.00120-08
– volume: 143
  start-page: 51
  year: 2020
  ident: ref_200
  article-title: Expression and Relationship of SAMHD1 with Other Apoptotic and Autophagic Genes in Acute Myeloid Leukemia Patients
  publication-title: Acta Haematol.
  doi: 10.1159/000500822
– volume: 10
  start-page: 2828
  year: 2019
  ident: ref_16
  article-title: The Role of Macrophages in HIV-1 Persistence and Pathogenesis
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2019.02828
– volume: 279
  start-page: 4010
  year: 2012
  ident: ref_59
  article-title: Lys66 residue as a determinant of high mismatch extension and misinsertion rates of HIV-1 reverse transcriptase
  publication-title: FEBS J.
  doi: 10.1111/j.1742-4658.2012.08807.x
– volume: 33
  start-page: 1116
  year: 2012
  ident: ref_180
  article-title: SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutières syndrome-associated mutations
  publication-title: Hum. Mutat.
  doi: 10.1002/humu.22087
– volume: 193
  start-page: 1988
  year: 2014
  ident: ref_111
  article-title: Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1400873
– volume: 55
  start-page: 6087
  year: 2016
  ident: ref_178
  article-title: Single-Stranded Nucleic Acids Bind to the Tetramer Interface of SAMHD1 and Prevent Formation of the Catalytic Homotetramer
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.6b00986
– volume: 87
  start-page: 748
  year: 2019
  ident: ref_130
  article-title: Molecular dynamics investigation of a redox switch in the anti-HIV protein SAMHD1
  publication-title: Proteins
  doi: 10.1002/prot.25701
– volume: 406
  start-page: 253
  year: 2010
  ident: ref_135
  article-title: Mechanistic interplay among the M184I HIV-1 reverse transcriptase mutant, the central polypurine tract, cellular dNTP concentrations and drug sensitivity
  publication-title: Virology
  doi: 10.1016/j.virol.2010.07.028
– volume: 102
  start-page: 2832
  year: 2005
  ident: ref_162
  article-title: Positive selection of primate TRIM5alpha identifies a critical species-specific retroviral restriction domain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0409853102
– volume: 505
  start-page: 234
  year: 2014
  ident: ref_147
  article-title: Structural basis of lentiviral subversion of a cellular protein degradation pathway
  publication-title: Nature
  doi: 10.1038/nature12815
– volume: 19
  start-page: 2
  year: 2022
  ident: ref_189
  article-title: HIV-2/SIV Vpx antagonises NF-κB activation by targeting p65
  publication-title: Retrovirology
  doi: 10.1186/s12977-021-00586-w
– volume: 279
  start-page: 51545
  year: 2004
  ident: ref_5
  article-title: Macrophage tropism of HIV-1 depends on efficient cellular dNTP utilization by reverse transcriptase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M408573200
– volume: 286
  start-page: 32373
  year: 2011
  ident: ref_172
  article-title: Dominant mutation of the TREX1 exonuclease gene in lupus and Aicardi-Goutieres syndrome
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.276287
– volume: 13
  start-page: 223
  year: 2012
  ident: ref_79
  article-title: SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2236
– volume: 101
  start-page: 450
  year: 2018
  ident: ref_176
  article-title: SAMHD1 deficient human monocytes autonomously trigger type I interferon
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2018.08.005
– volume: 38
  start-page: 910
  year: 2006
  ident: ref_174
  article-title: Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection
  publication-title: Nat. Genet.
  doi: 10.1038/ng1842
– volume: 260
  start-page: 9114
  year: 1985
  ident: ref_73
  article-title: Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)39337-7
– volume: 265
  start-page: 2338
  year: 1990
  ident: ref_67
  article-title: Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)39981-8
– volume: 282
  start-page: 231
  year: 1991
  ident: ref_27
  article-title: Mutational analysis of two conserved sequence motifs in HIV-1 reverse transcriptase
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(91)80484-K
– volume: 291
  start-page: 21407
  year: 2016
  ident: ref_99
  article-title: Allosteric Activation of SAMHD1 Protein by Deoxynucleotide Triphosphate (dNTP)-dependent Tetramerization Requires dNTP Concentrations That Are Similar to dNTP Concentrations Observed in Cycling T Cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C116.751446
– volume: 37
  start-page: 11
  year: 2022
  ident: ref_1
  article-title: The diversity and evolution of retroviruses: Perspectives from viral “fossils”
  publication-title: Virol. Sin.
  doi: 10.1016/j.virs.2022.01.019
– volume: 287
  start-page: 12550
  year: 2012
  ident: ref_149
  article-title: HIV/simian immunodeficiency virus (SIV) accessory virulence factor Vpx loads the host cell restriction factor SAMHD1 onto the E3 ubiquitin ligase complex CRL4DCAF1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.340711
– volume: 12
  start-page: 4582
  year: 2021
  ident: ref_125
  article-title: SUMOylation of SAMHD1 at Lysine 595 is required for HIV-1 restriction in non-cycling cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24802-5
– volume: 41
  start-page: 829
  year: 2009
  ident: ref_170
  article-title: Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response
  publication-title: Nat. Genet.
  doi: 10.1038/ng.373
– volume: 12
  start-page: 2500
  year: 2021
  ident: ref_31
  article-title: High-resolution view of HIV-1 reverse transcriptase initiation complexes and inhibition by NNRTI drugs
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22628-9
– volume: 18
  start-page: 1038
  year: 1999
  ident: ref_37
  article-title: Structural basis for the specificity of the initiation of HIV-1 reverse transcription
  publication-title: EMBO J.
  doi: 10.1093/emboj/18.4.1038
– volume: 11
  start-page: 205
  year: 2012
  ident: ref_163
  article-title: Evolutionary and functional analyses of the interaction between the myeloid restriction factor SAMHD1 and the lentiviral Vpx protein
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2012.01.007
SSID ssj0066907
Score 2.348324
SecondaryResourceType review_article
Snippet Human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been the primary interest among studies on antiviral discovery, viral replication...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1622
SubjectTerms Antiretroviral drugs
antiretroviral therapy
Antiviral Agents - pharmacology
Antiviral drugs
Binding sites
Deoxyribonucleic acid
DNA
DNA polymerase
DNA-directed DNA polymerase
DNA-Directed DNA Polymerase - genetics
Double-stranded RNA
Drug resistance
Enzyme kinetics
evolution
Exonuclease
Genetic aspects
genome
Genomes
Genomics
HIV
HIV (Viruses)
HIV Reverse Transcriptase - genetics
HIV Reverse Transcriptase - metabolism
HIV-1 - genetics
HIV-1 - metabolism
Human immunodeficiency virus
Human immunodeficiency virus 1
human immunodeficiency virus type 1
Humans
Immune system
Infections
Life cycles
Lymphocytes
Methods
Mutagenesis
Mutation
Myeloid cells
Myeloid Cells - metabolism
Proofreading
Proteins
Replication
retrovirus
reverse transcriptase
Review
RNA
RNA-directed DNA polymerase
SAM Domain and HD Domain-Containing Protein 1 - genetics
SAM Domain and HD Domain-Containing Protein 1 - metabolism
therapeutics
Tropism
Viral Tropism
Virus Replication
Viruses
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (WRLC)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQVSQuiDcLBRmEBJeo8SNxzG0pLYvQVhWPqrfIiR01UppUTbbS9n_wf5lxstFGILhwjceRY49n5lNmviHkTSGdLcCtBuDeeCAzFwdGOYM_HI2yEJCEUeGbTajj4-TsTJ9stfrCnLCeHrjfuH3Gw9iCI5GxVNJKpY1WoTVwRbM8SQpfRw5RzwZM9TY4RszX8wgJAPX71wAjEhZzPvE-nqT_d1O85YumeZJbjufoHrk7RIx03q_0Prnl6gfkdt9Dcv2Q_Fw6LN71fMu0TyGszJoO-Vd08fk0YPSrw-wLR71n8nYCnBc9rG_WF45-gUATyZqpqS1dNG1Hv82Xi4-MniCHQ1m_p6clrIsu165qShscuKqCNzWXZXvh53xyvraZLlcdWCewnWX7iPw4Ovx-sAiGXgtBHsW6C2SiCx3mjkubRQVgCGNcXJjM2YxZKS3judKq4KzgJmI2dIJZwF7IBWS1skI8Jjt1U7unhBqnrElMJDOF8CvTSRFFVjswHZoZKWbk3eYM0nwgIsd-GFUKgASPKx2Pa0Zej6KXPfvGn4Q-4EGOAkiY7R-AGqWDGqX_UqMZeYtqkOK1hsXkZqhOgE9Cgqx0jm1ZINRKYPl7E0m4jvl0eKNI6WAO2pQrxHk8YTD8ahzGmZjiVrtmBTKxjrhGxrm_yEAkIZTQuIlPet0cP1tEEHrGCcxWE62d7Mt0pC7PPaG4FgKJ9579j418Tu5wrBAJVcDjPbLTXa3cC7KbX3dle_XS39Jfs79A2Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis
URI https://www.ncbi.nlm.nih.gov/pubmed/35893688
https://www.proquest.com/docview/2706422813
https://www.proquest.com/docview/2695292408
https://www.proquest.com/docview/2718373943
https://pubmed.ncbi.nlm.nih.gov/PMC9331428
https://doaj.org/article/1206d02446474d479a970da111bc88f7
Volume 14
WOSCitedRecordID wos000845191300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: M7P
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: 7X7
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4915
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0066907
  issn: 1999-4915
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYBhIvfH8URmUQErxES-wkjnlB3ejohFpFA6buKXJiByJ1SWnaSeX_4P_lzknLItBeeOlDfK7s-Py7O-f8O0Je577ROZhVB8wbc_zUhI4SRuEHRyU0OCRukNtiE2IyiaZTGbcHbnWbVrnBRAvUusrwjPyACXSVWeTx9_MfDlaNwq-rbQmNHbKHLAncpu7FGyQOMfJr2IQ4hPYHlxBMRF7IWMcGWar-vwH5ikXqZkteMT_Hd_934PfIndbxpINGU-6TG6Z8QG41pSjXD8mvscE7wJa2mTaZiDO1pm0aFx2dnDkePTWYxGGoNXAWbsAG0mH5c31h6CfwV5HzmapS01FVL-nnwXj0waMxUkEU5Tt6VsDE6HhtZlWhnSMzm8E_VfOivrB9Php7RZqOV0sAOYDgon5Evh4PvxyNnLZkg5MFoVw6fiRz6WaG-ToNcghFlDJhrlKjU0_7vvZYJqTImZczFXjaNdzTEMIhpZCWQnP-mOyWVWmeEqqM0CpSgZ8KjOJSGeVBoKUBBJKe8nmPvN0sYpK1fOZYVmOWQFyD651s17tHXm1F5w2Jx7-EDlETtgLIu20fVItvSbuNE4-5oQa3xg994WtfSCWFqxUYjDSLolz0yBvUowTRAQaTqfaSA0wJebaSAVZ3AY8tguHvdyRhV2fd5o02JS2q1MkfVeqRl9tm7ImZcqWpViATyoBJJK67RgYcEi64xJf4pFHu7bR5AB5sGEFv0VH7znvptpTFd8tLLjlH_r5n1w_9ObnN8AqJKxwW7pPd5WJlXpCb2eWyqBd9siOmwv5GfbJ3OJzEp317TtK3WxuexSfj-Pw3LqZWWw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqAoIL78dCAYNAcImaOE4cIyG09MGutruqoK16C07sQKRtsuyjaPkf_A1-IzNOsjQC9dYD13gcOZPxNzPJ-BtCXmTc6AzcqgPujTk8MaGjhFH4w1EJDQGJG2S22YQYjaLjY7m_Rn41Z2GwrLLBRAvUukzxG_kmExgqs8jz302-Odg1Cv-uNi00KrMYmOV3SNlmb_vb8H5fMra7c7DVc-quAk4ahHLu8Ehm0k0N4zoJMoiWlTJhphKjE09zrj2WCiky5mVMBZ52je9pyDKQ9UZLofEDKED-JQgjWGRLBfcb5A8x06zYi3xfupunkLxEXshYy-fZ1gB_O4AzHrBdnXnG3e3e-N8UdZNcrwNr2q12wi2yZorb5ErVanN5h_wcGjzjbGmpaVVpOVZLWpep0V7_yPHoR4NFKoZaB27hFHw83Sl-LE8MHUA8jpzWVBWa9srZnH7qDnvbHt1Hqou8eEOPclAkHS7NuMy1s2XGY7hTOclnJ3bOB2OPgNPhYg4gDi4mn90lhxeik3tkvSgL84BQZYRWkQp4IjBLTWSUBYGWBhBWeor7HfK6MZo4rfnasW3IOIa8De0rXtlXhzxfiU4qkpJ_Cb1Hy1sJIK-4vVBOv8Q1TMUec0MNYRsPueCaC6mkcLUCh5ikUZSJDnmFdhsj-sFiUlUf4oBHQh6xuIvdayAijWD5Gy1JQK20PdxYb1yj5iz-Y7od8mw1jDOxErAw5QJkQhkwicR858hAwOULX6IS71ebafXYfgARehjBbNHaZi29tEeK_KvlXZe-j_yED89f-lNytXcw3Iv3-qPBI3KN4XEZVzgs3CDr8-nCPCaX09N5Pps-seBByeeL3oS_ASO7rk0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bjtMwELVWy0W8cL8UFjAIBC9RE8eJYySEynZLq9JVBctq34ITOxCpm5SmXVT-g5_h65jJpWwE2rd94LUeV4kzPmcmGZ8h5FnCjU6AVi2gN2bxyPiWEkbhB0clNAQktpeUzSbE_n5wdCSnW-RXcxYGyyobTCyBWucxviPvMoGhMgsct5vUZRHT_uDN_JuFHaTwS2vTTqNykbFZf4f0rXg96sOzfs7YYO9gd2jVHQas2PPl0uKBTKQdG8Z15CUQOStl_ERFRkeO5lw7LBZSJMxJmPIcbRvX0ZBxoAKOlkLjy1CA_wsCRcvLssFpwwI-Zp2VkpHrSrt7AolM4PiMtfivbBPwNxmcYsN2peYp6htc-58X7Tq5WgfctFftkBtky2Q3yaWqBef6Fvk5MXj2uZSrplUF5kytaV2-RoejQ8uhHwwWrxhaEnsJs8D9dC_7sT42dAxxOmpdU5VpOsyLJf3Ymwz7Dp2iBEaavaKHKSwqnazNLE-1tWtmM_infJ4Wx-Wcd6Y8Gk4nqyWAO1BPWtwmn85lTe6Q7SzPzD1ClRFaBcrjkcDsNZJB4nlaGkBe6SjudsjLxoHCuNZxx3YisxDyOfS1cONrHfJ0YzqvxEv-ZfQWvXBjgHrj5Q_54ktYw1foMNvXEM5xnwuuuZBKClsrIMooDoJEdMgL9OEQUREuJlb14Q64JdQXC3vY1QYi1QAuf6dlCWgWt4cbTw5rNC3CP27cIU82wzgTKwQzk6_AxpcekyjYd4YNBGKucCUu4t1qY21u2_UgcvcDmC1aW661Lu2RLP1a6rFL10XdwvtnX_pjchn2Xvh-tD9-QK4wPEVjC4v5O2R7uViZh-RifLJMi8WjEkco-Xzee_A3R4K3Cg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanistic+Interplay+between+HIV-1+Reverse+Transcriptase+Enzyme+Kinetics+and+Host+SAMHD1+Protein%3A+Viral+Myeloid-Cell+Tropism+and+Genomic+Mutagenesis&rft.jtitle=Viruses&rft.au=Bowen%2C+Nicole+E.&rft.au=Oo%2C+Adrian&rft.au=Kim%2C+Baek&rft.date=2022-07-26&rft.pub=MDPI&rft.eissn=1999-4915&rft.volume=14&rft.issue=8&rft_id=info:doi/10.3390%2Fv14081622&rft_id=info%3Apmid%2F35893688&rft.externalDocID=PMC9331428
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4915&client=summon