On duality in multiple objective linear programming

In this paper we present two approaches to duality in multiple objective linear programming. The first approach is based on a duality relation between maximal elements of a set and minimal elements of its complement. It offers a general duality scheme which unifies a number of known dual constructio...

Full description

Saved in:
Bibliographic Details
Published in:European journal of operational research Vol. 210; no. 2; pp. 158 - 168
Main Author: Luc, Dinh The
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 16.04.2011
Elsevier
Elsevier Sequoia S.A
Series:European Journal of Operational Research
Subjects:
ISSN:0377-2217, 1872-6860
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper we present two approaches to duality in multiple objective linear programming. The first approach is based on a duality relation between maximal elements of a set and minimal elements of its complement. It offers a general duality scheme which unifies a number of known dual constructions and improves several existing duality relations. The second approach utilizes polarity between a convex polyhedral set and the epigraph of its support function. It leads to a parametric dual problem and yields strong duality relations, including those of geometric duality.
AbstractList In this paper we present two approaches to duality in multiple objective linear programming. The first approach is based on a duality relation between maximal elements of a set and minimal elements of its complement. It offers a general duality scheme which unifies a number of known dual constructions and improves several existing duality relations. The second approach utilizes polarity between a convex polyhedral set and the epigraph of its support function. It leads to a parametric dual problem and yields strong duality relations, including those of geometric duality.
In this paper we present two approaches to duality in multiple objective linear programming. The first approach is based on a duality relation between maximal elements of a set and minimal elements of its complement. It offers a general duality scheme which unifies a number of known dual constructions and improves several existing duality relations. The second approach utilizes polarity between a convex polyhedral set and the epigraph of its support function. It leads to a parametric dual problem and yields strong duality relations, including those of geometric duality. [PUBLICATION ABSTRACT]
Author Luc, Dinh The
Author_xml – sequence: 1
  givenname: Dinh The
  surname: Luc
  fullname: Luc, Dinh The
  email: dtluc@univ-avignon.fr
  organization: Laboratory ANLG, University of Avignon, France
BackLink http://www.econis.eu/PPNSET?PPN=647155311$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23822402$$DView record in Pascal Francis
http://econpapers.repec.org/article/eeeejores/v_3a210_3ay_3a2011_3ai_3a2_3ap_3a158-168.htm$$DView record in RePEc
https://hal.science/hal-01325911$$DView record in HAL
BookMark eNp9ksFq3DAQhkVJoZttX6CXmkIpOXirkSxbhl5CaJPShVzas9DKciJjS65kL-zbd4y3oeQQwWgk8c3oH2kuyYUP3hLyHugOKJRfup3tQtwxige03lFWvCIbkBXLS1nSC7KhvKpyxqB6Qy5T6iilIEBsCL_3WTPr3k2nzPlsmPvJjb3NwqGzZnJHm_XOWx2zMYaHqIfB-Ye35HWr-2Tfnf2W_P7-7dfNXb6_v_1xc73PjSjrKYemZQIaLQoOZVs0B6nrtrYSN7VgkhrKi5qWrDjokktRSRSkdS0qw5uC04JvydWa91H3aoxu0PGkgnbq7nqvljMKnIka4AjIfl5Z1PlntmlSg0vG9r32NsxJSSEqyllZI_nxGdmFOXosREnOCxSFbkt-rlC0ozVPl1sc-M42qaPimgHF-bSsKAA6tyzRRjQQUkEp1eM0YLZP5yt1Mrpvo_bGpaesjEvGCsqQ-7By1gT_H1AWFQjBYSlTroSJIaVoW2XcpCcX_BS16xUqWvpBdWrRqZZ-ULRW2A8Yyp6F_kv_YtDXsyL856OzUSXjrDe2cRH7QzXBvRT-F-mnyxo
CODEN EJORDT
CitedBy_id crossref_primary_10_1007_s00186_014_0467_8
crossref_primary_10_1007_s10107_023_02022_7
crossref_primary_10_1007_s10288_016_0338_7
crossref_primary_10_1137_21M1458788
crossref_primary_10_1137_22M1507693
crossref_primary_10_1007_s10898_013_0098_2
crossref_primary_10_1007_s00186_023_00847_8
Cites_doi 10.1137/060674831
10.1016/S0898-1221(99)00062-0
10.1007/s00186-008-0216-y
10.1016/0022-247X(84)90028-3
10.1057/jors.1974.108
10.1023/A:1026465906067
10.1080/01630569208816480
10.1007/978-3-642-46618-2_10
10.1080/09720510.2002.10701063
10.1016/0377-2217(93)90194-R
10.1007/BF01917642
ContentType Journal Article
Copyright 2010 Elsevier B.V.
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Apr 16, 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2010 Elsevier B.V.
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Apr 16, 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
OQ6
IQODW
DKI
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
1XC
DOI 10.1016/j.ejor.2010.09.024
DatabaseName CrossRef
ECONIS
Pascal-Francis
RePEc IDEAS
RePEc
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Materials Business File
Materials Research Database
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Materials Research Database
Materials Business File
DatabaseTitleList

Technology Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
Applied Sciences
Mathematics
EISSN 1872-6860
EndPage 168
ExternalDocumentID oai:HAL:hal-01325911v1
2234893831
eeeejores_v_3a210_3ay_3a2011_3ai_3a2_3ap_3a158_168_htm
23822402
647155311
10_1016_j_ejor_2010_09_024
S0377221710006223
Genre Feature
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29G
4.4
41~
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
OQ6
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
02
08R
0R
1
41
6XO
8P
AAPBV
ABFLS
ADALY
DKI
G-
HZ
IPNFZ
K
M
MS
PQEST
STF
X
X2L
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
7TA
JG9
1XC
ID FETCH-LOGICAL-c569t-1df251da54316f4db8a9f9e816f95280c03490624ba638578515aa957c3d43043
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000286853300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Tue Oct 14 20:34:26 EDT 2025
Sun Sep 28 12:34:57 EDT 2025
Mon Jul 14 08:47:10 EDT 2025
Wed Aug 18 03:50:56 EDT 2021
Mon Jul 21 09:15:09 EDT 2025
Mon Sep 22 08:22:04 EDT 2025
Sat Nov 29 01:41:01 EST 2025
Tue Nov 18 22:22:11 EST 2025
Fri Feb 23 02:32:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Multiple objective linear problem
Normal cone
Duality
Polyhedron
Cone
Convex set
Multiobjective programming
Linear programming
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c569t-1df251da54316f4db8a9f9e816f95280c03490624ba638578515aa957c3d43043
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ORCID 0000-0003-1076-404X
PQID 833403483
PQPubID 45678
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_01325911v1
proquest_miscellaneous_855703269
proquest_journals_833403483
repec_primary_eeeejores_v_3a210_3ay_3a2011_3ai_3a2_3ap_3a158_168_htm
pascalfrancis_primary_23822402
econis_primary_647155311
crossref_citationtrail_10_1016_j_ejor_2010_09_024
crossref_primary_10_1016_j_ejor_2010_09_024
elsevier_sciencedirect_doi_10_1016_j_ejor_2010_09_024
PublicationCentury 2000
PublicationDate 2011-04-16
PublicationDateYYYYMMDD 2011-04-16
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-16
  day: 16
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationSeriesTitle European Journal of Operational Research
PublicationTitle European journal of operational research
PublicationYear 2011
Publisher Elsevier B.V
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier
– name: Elsevier Sequoia S.A
References Balbas, Heras (b0105) 1993; 68
Jahn (b0150) 2004
Danzig (b0120) 1963
Kim, Luc (b0155) 2000; 25
Luc (b0175) 1989; vol. 319
Heyde, Lohne (b0130) 2008; 19
Rockafellar (b0190) 1970
Galperin, Jimerez Guerra (b0125) 2001; 108
Rodder (b0195) 1977; 1
J. Kolumban, Dualität bei optimierunsaufgaben, in: Proceedings of the Conference on Constructive Theory of Functions, Akademiai Kiado, Budapest, 1969, pp. 261–265.
Martinez-Legaz (b0185) 2005; vol. 76
Corley (b0115) 1984; 104
Heyde, Lohne, Tammer (b0135) 2009; 69
J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Lang, Frankfurt, 1986.
Kim, Luc (b0160) 2002; 5
Balbas, Jimenez, Heras (b0110) 1999; 37
Kornbluth (b0170) 1974; 25
Luc, Jahn (b0180) 1992; 13
Isermann (b0140) 1978; 22
Rodder (10.1016/j.ejor.2010.09.024_b0195) 1977; 1
Heyde (10.1016/j.ejor.2010.09.024_b0135) 2009; 69
Kim (10.1016/j.ejor.2010.09.024_b0155) 2000; 25
Martinez-Legaz (10.1016/j.ejor.2010.09.024_b0185) 2005; vol. 76
Balbas (10.1016/j.ejor.2010.09.024_b0105) 1993; 68
Galperin (10.1016/j.ejor.2010.09.024_b0125) 2001; 108
Isermann (10.1016/j.ejor.2010.09.024_b0140) 1978; 22
Kornbluth (10.1016/j.ejor.2010.09.024_b0170) 1974; 25
Heyde (10.1016/j.ejor.2010.09.024_b0130) 2008; 19
Kim (10.1016/j.ejor.2010.09.024_b0160) 2002; 5
Corley (10.1016/j.ejor.2010.09.024_b0115) 1984; 104
Balbas (10.1016/j.ejor.2010.09.024_b0110) 1999; 37
Danzig (10.1016/j.ejor.2010.09.024_b0120) 1963
Luc (10.1016/j.ejor.2010.09.024_b0180) 1992; 13
10.1016/j.ejor.2010.09.024_b0145
Jahn (10.1016/j.ejor.2010.09.024_b0150) 2004
Rockafellar (10.1016/j.ejor.2010.09.024_b0190) 1970
10.1016/j.ejor.2010.09.024_b0165
Luc (10.1016/j.ejor.2010.09.024_b0175) 1989; vol. 319
References_xml – volume: 1
  start-page: 55
  year: 1977
  end-page: 59
  ident: b0195
  article-title: A generalized saddlepoint theory; its application to duality theory for linear vector optimum problems
  publication-title: European Journal of Operations Research
– volume: vol. 319
  year: 1989
  ident: b0175
  publication-title: Theory of Vector Optimization
– reference: J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Lang, Frankfurt, 1986.
– year: 2004
  ident: b0150
  publication-title: Vector Optimization
– volume: 37
  start-page: 101
  year: 1999
  end-page: 109
  ident: b0110
  article-title: Duality theory and slackness conditions in multiobjective linear linear programming
  publication-title: Computer and Mathematics with Applications
– volume: 69
  start-page: 159
  year: 2009
  end-page: 179
  ident: b0135
  article-title: Set-valued duality theory for multiple objective linear programs and application to mathematical finance
  publication-title: Mathematical Methods of Operation Research
– year: 1970
  ident: b0190
  article-title: Convex Analysis
– volume: 25
  start-page: 599
  year: 1974
  end-page: 614
  ident: b0170
  article-title: Duality, indifference and sensitivity analysis in multiple objective linear programming
  publication-title: Operations Research Quaterly
– volume: 22
  start-page: 33
  year: 1978
  end-page: 41
  ident: b0140
  article-title: On some relations between a dual pair of multiple objective linear programs
  publication-title: Zeitschrift fur Operations Research
– volume: 25
  start-page: 101
  year: 2000
  end-page: 124
  ident: b0155
  article-title: Normal cones to a polyhedral convex set and generating efficient faces in linear multiobjective programming
  publication-title: Acta Mathematica Vietnam
– volume: vol. 76
  year: 2005
  ident: b0185
  article-title: Generalized convex duality and its economic applications. Handbook of generalized convexity and generalized monotonicity
  publication-title: Nonconvex Optimization and Applications
– volume: 19
  start-page: 836
  year: 2008
  end-page: 845
  ident: b0130
  article-title: Geometric duality in multiple objective linear programming
  publication-title: SIAM Journal of Optimization
– volume: 13
  start-page: 305
  year: 1992
  end-page: 326
  ident: b0180
  article-title: Axiomatic approach to duality in optimization
  publication-title: Numerical Functional Analysis and Optimization
– reference: J. Kolumban, Dualität bei optimierunsaufgaben, in: Proceedings of the Conference on Constructive Theory of Functions, Akademiai Kiado, Budapest, 1969, pp. 261–265.
– volume: 5
  start-page: 341
  year: 2002
  end-page: 358
  ident: b0160
  article-title: The Normal cone method in solving linear multiobjective problems
  publication-title: Journal of Statistical Management System
– volume: 68
  start-page: 379
  year: 1993
  end-page: 388
  ident: b0105
  article-title: Duality theory for infinite dimensional multiobjective linear programming
  publication-title: European Journal of Operations Research
– volume: 104
  start-page: 47
  year: 1984
  end-page: 52
  ident: b0115
  article-title: Duality theory for the matrix linear programming problem
  publication-title: Journal of Mathematical Analysis and Applications
– year: 1963
  ident: b0120
  article-title: Linear Programming and Extension
– volume: 108
  start-page: 109
  year: 2001
  end-page: 137
  ident: b0125
  article-title: Duality of nonscalarized multiobjective linear programs: dual balance, level sets and dual clusters of optimal vectors
  publication-title: Journal of Optimization Theory and Applications
– ident: 10.1016/j.ejor.2010.09.024_b0165
– volume: 19
  start-page: 836
  year: 2008
  ident: 10.1016/j.ejor.2010.09.024_b0130
  article-title: Geometric duality in multiple objective linear programming
  publication-title: SIAM Journal of Optimization
  doi: 10.1137/060674831
– volume: 37
  start-page: 101
  year: 1999
  ident: 10.1016/j.ejor.2010.09.024_b0110
  article-title: Duality theory and slackness conditions in multiobjective linear linear programming
  publication-title: Computer and Mathematics with Applications
  doi: 10.1016/S0898-1221(99)00062-0
– volume: 1
  start-page: 55
  year: 1977
  ident: 10.1016/j.ejor.2010.09.024_b0195
  article-title: A generalized saddlepoint theory; its application to duality theory for linear vector optimum problems
  publication-title: European Journal of Operations Research
– volume: 69
  start-page: 159
  year: 2009
  ident: 10.1016/j.ejor.2010.09.024_b0135
  article-title: Set-valued duality theory for multiple objective linear programs and application to mathematical finance
  publication-title: Mathematical Methods of Operation Research
  doi: 10.1007/s00186-008-0216-y
– volume: 25
  start-page: 101
  year: 2000
  ident: 10.1016/j.ejor.2010.09.024_b0155
  article-title: Normal cones to a polyhedral convex set and generating efficient faces in linear multiobjective programming
  publication-title: Acta Mathematica Vietnam
– volume: 104
  start-page: 47
  year: 1984
  ident: 10.1016/j.ejor.2010.09.024_b0115
  article-title: Duality theory for the matrix linear programming problem
  publication-title: Journal of Mathematical Analysis and Applications
  doi: 10.1016/0022-247X(84)90028-3
– year: 1963
  ident: 10.1016/j.ejor.2010.09.024_b0120
– volume: 25
  start-page: 599
  year: 1974
  ident: 10.1016/j.ejor.2010.09.024_b0170
  article-title: Duality, indifference and sensitivity analysis in multiple objective linear programming
  publication-title: Operations Research Quaterly
  doi: 10.1057/jors.1974.108
– volume: 108
  start-page: 109
  year: 2001
  ident: 10.1016/j.ejor.2010.09.024_b0125
  article-title: Duality of nonscalarized multiobjective linear programs: dual balance, level sets and dual clusters of optimal vectors
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1023/A:1026465906067
– year: 2004
  ident: 10.1016/j.ejor.2010.09.024_b0150
– volume: vol. 319
  year: 1989
  ident: 10.1016/j.ejor.2010.09.024_b0175
– volume: 13
  start-page: 305
  year: 1992
  ident: 10.1016/j.ejor.2010.09.024_b0180
  article-title: Axiomatic approach to duality in optimization
  publication-title: Numerical Functional Analysis and Optimization
  doi: 10.1080/01630569208816480
– ident: 10.1016/j.ejor.2010.09.024_b0145
  doi: 10.1007/978-3-642-46618-2_10
– volume: 5
  start-page: 341
  year: 2002
  ident: 10.1016/j.ejor.2010.09.024_b0160
  article-title: The Normal cone method in solving linear multiobjective problems
  publication-title: Journal of Statistical Management System
  doi: 10.1080/09720510.2002.10701063
– volume: vol. 76
  year: 2005
  ident: 10.1016/j.ejor.2010.09.024_b0185
  article-title: Generalized convex duality and its economic applications. Handbook of generalized convexity and generalized monotonicity
– year: 1970
  ident: 10.1016/j.ejor.2010.09.024_b0190
– volume: 68
  start-page: 379
  year: 1993
  ident: 10.1016/j.ejor.2010.09.024_b0105
  article-title: Duality theory for infinite dimensional multiobjective linear programming
  publication-title: European Journal of Operations Research
  doi: 10.1016/0377-2217(93)90194-R
– volume: 22
  start-page: 33
  year: 1978
  ident: 10.1016/j.ejor.2010.09.024_b0140
  article-title: On some relations between a dual pair of multiple objective linear programs
  publication-title: Zeitschrift fur Operations Research
  doi: 10.1007/BF01917642
SSID ssj0001515
Score 2.0465555
Snippet In this paper we present two approaches to duality in multiple objective linear programming. The first approach is based on a duality relation between maximal...
SourceID hal
proquest
repec
pascalfrancis
econis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms Applied sciences
Complement
Construction
Decision theory. Utility theory
Duality
Exact sciences and technology
Linear programming
Mathematical programming
Mathematics
Multiple objective
Multiple objective linear problem
Multiple objective linear problem Duality Normal cone
Normal cone
Operational research
Operational research and scientific management
Operational research. Management science
Optimization
Polarity
Studies
Title On duality in multiple objective linear programming
URI https://dx.doi.org/10.1016/j.ejor.2010.09.024
http://www.econis.eu/PPNSET?PPN=647155311
http://econpapers.repec.org/article/eeeejores/v_3a210_3ay_3a2011_3ai_3a2_3ap_3a158-168.htm
https://www.proquest.com/docview/833403483
https://www.proquest.com/docview/855703269
https://hal.science/hal-01325911
Volume 210
WOSCitedRecordID wos000286853300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZrUsbG2KXbqNetmLG34BDbki09hrWjG6EdrIO8CdlWiMOqhDgJ3b_fOZbsJu0o22CBOI6iKI7ORZ-PzoWQDxPGeB3dnhZ5HtA4oUHGmA64yPSAap1QUQcKj9Lzcz4ei6-uJHxVlxNIjeHX12LxX0kNbUBsDJ39C3K3g0IDnAPR4Qhkh-MfEf7C9Iq1RdeluXEYnGczq9t6CCwxwbX1zLpq1q7fmecdVIWGZWM0dNmBWivyaF3XSD8pzRTdN7atCGgWpYENcrSmrTvhLTakKk2DKLLBlX1tNSRPoyDhtghAo0Ij55pabt3KWoUY2sTsbm0NbQmdO2rbWhBmfT2bL527negPbHD1rXTY3_Ci8JpwYyIBcLNHulHKBO-Q7vDz6fhLuw4jVKv3kNyfcCFT1rvv9i_twJJ9tEWU1Q4-2Zuio-yThapAdia26MnOXUl3qRc63wInl8_JU3dX4Q8tN7wgD7Q5IA-boIYD8qwp3uE7XX5AHm9lonxJ4gvjO67xS-M3XOO3XONbrvG3uOYV-f7p9PLjWeDqaQQ5S8QqCIsJoNlC1ekPJrTIuBIToTm8ESzigxxzFcGc0kyBVsYsSCFTSrA0jwsaD2j8mnTM3OhD4uskUioTmN5NUfTQyMMsi1OR5DBQIZhHwmY6Ze6SzWPNkx-y8SqcSSSBRBLIgZBAAo_02u8sbKqVe3sfWiq1fRPAWQyWlNAjrKGbdDjS4kMJ_HbvkO-ByO14mHj9bDiS2IY7kgxwwQYGP97hgbY7YF-Ex5FHjhqmkE5SK8njmMLs8tgjfvspKHLcnVNGz9fQpU6GFyXCIyc1K7Uja3jApepKbmSsQNbg-BPPQI7hpcRTeC7gCeImQcjkdHX15h9n4Yg8ulEQb0lntVzrd2Q_36zKannshOwXhoTVog
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+duality+in+multiple+objective+linear+programming&rft.jtitle=European+journal+of+operational+research&rft.au=Luc%2C+Dinh+The&rft.date=2011-04-16&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=210&rft.issue=2&rft.spage=158&rft.epage=168&rft_id=info:doi/10.1016%2Fj.ejor.2010.09.024&rft.externalDocID=S0377221710006223
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon