Interpretable Fine‐Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning

Uncovering fine‐grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of featur...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced science Ročník 11; číslo 41; s. e2403547 - n/a
Hlavní autoři: Wang, Chuangqi, Choi, Hee June, Woodbury, Lucy, Lee, Kwonmoo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany John Wiley & Sons, Inc 01.11.2024
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2198-3844, 2198-3844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Uncovering fine‐grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self‐training deep learning framework designed for fine‐grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder‐based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine‐grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine‐grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity. An unsupervised deep learning framework is developed to analyze live cell dynamics by combining an unsupervised teacher model with a student deep neural network. This method successfully delineates detailed subcellular protrusion phenotypes and their responses to drugs. This approach preserves cellular heterogeneity while improving feature discrimination and interpretation, making it a valuable tool for studying subcellular dynamics.
AbstractList Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.
Uncovering fine‐grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self‐training deep learning framework designed for fine‐grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder‐based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine‐grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine‐grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity. An unsupervised deep learning framework is developed to analyze live cell dynamics by combining an unsupervised teacher model with a student deep neural network. This method successfully delineates detailed subcellular protrusion phenotypes and their responses to drugs. This approach preserves cellular heterogeneity while improving feature discrimination and interpretation, making it a valuable tool for studying subcellular dynamics.
Abstract Uncovering fine‐grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self‐training deep learning framework designed for fine‐grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder‐based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine‐grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine‐grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.
Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self-training deep learning framework designed for fine-grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder-based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine-grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine-grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity.
Uncovering fine‐grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological processes. However, this endeavor poses significant technical challenges for unsupervised machine learning, requiring the extraction of features that not only faithfully preserve this heterogeneity but also effectively discriminate between established biological states, all while remaining interpretable. To tackle these challenges, a self‐training deep learning framework designed for fine‐grained and interpretable phenotyping is presented. This framework incorporates an unsupervised teacher model with interpretable features to facilitate feature learning in a student deep neural network (DNN). Significantly, an autoencoder‐based regularizer is designed to encourage the student DNN to maximize the heterogeneity associated with molecular perturbations. This method enables the acquisition of features with enhanced discriminatory power, while simultaneously preserving the heterogeneity associated with molecular perturbations. This study successfully delineated fine‐grained phenotypes within the heterogeneous protrusion dynamics of migrating epithelial cells, revealing specific responses to pharmacological perturbations. Remarkably, this framework adeptly captured a concise set of highly interpretable features uniquely linked to these fine‐grained phenotypes, each corresponding to specific temporal intervals crucial for their manifestation. This unique capability establishes it as a valuable tool for investigating diverse cellular dynamics and their heterogeneity. An unsupervised deep learning framework is developed to analyze live cell dynamics by combining an unsupervised teacher model with a student deep neural network. This method successfully delineates detailed subcellular protrusion phenotypes and their responses to drugs. This approach preserves cellular heterogeneity while improving feature discrimination and interpretation, making it a valuable tool for studying subcellular dynamics.
Author Wang, Chuangqi
Choi, Hee June
Woodbury, Lucy
Lee, Kwonmoo
AuthorAffiliation 3 Vascular Biology Program and Department of Surgery Boston Children's Hospital Harvard Medical School Boston MA 02115 USA
4 Department of Biomedical Engineering University of Arkansas Fayetteville AR 72701 USA
1 Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
2 Department of Biomedical Engineering Worcester Polytechnic Institute Worcester MA 01609 USA
AuthorAffiliation_xml – name: 2 Department of Biomedical Engineering Worcester Polytechnic Institute Worcester MA 01609 USA
– name: 4 Department of Biomedical Engineering University of Arkansas Fayetteville AR 72701 USA
– name: 1 Department of Immunology and Microbiology University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
– name: 3 Vascular Biology Program and Department of Surgery Boston Children's Hospital Harvard Medical School Boston MA 02115 USA
Author_xml – sequence: 1
  givenname: Chuangqi
  surname: Wang
  fullname: Wang, Chuangqi
  organization: Worcester Polytechnic Institute
– sequence: 2
  givenname: Hee June
  surname: Choi
  fullname: Choi, Hee June
  organization: Harvard Medical School
– sequence: 3
  givenname: Lucy
  surname: Woodbury
  fullname: Woodbury, Lucy
  organization: University of Arkansas
– sequence: 4
  givenname: Kwonmoo
  orcidid: 0000-0001-6838-7094
  surname: Lee
  fullname: Lee, Kwonmoo
  email: kwonmoo.lee@childrens.harvard.edu
  organization: Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39239705$$D View this record in MEDLINE/PubMed
BookMark eNqFks1uEzEUhUeoiJbSLUs0EptuEvw7tleoamiJFAmkUpZYHs-d1NHEHuyZoOx4BJ6RJ8GhadVWQqxs2d859_j6viwOfPBQFK8xmmKEyDvTbNKUIMIQ5Uw8K44IVnJCJWMHD_aHxUlKK4QQ5lQwLF8Uh1QRqgTiR8W3uR8g9hEGU3dQXjgPv3_-uowmb5ry8w34MGx7SGVoy6uxttB1Y2diOdt6s3Y2lRtnymufxh7ixqWsmQH05QJM9M4vXxXPW9MlONmvx8X1xYcv5x8ni0-X8_OzxcTySqmJwIRbKblpERGoIvk9IBRhjBkrGlEZ0gjGleWESdLWBGNuwLbE5kC0rSQ9Lua3vk0wK91HtzZxq4Nx-u9BiEtt4uBsBxrXiEtQjFqmmJKN4i0xNZFc5aJMVtnr_a1XP9ZraCz4IZrukenjG-9u9DJsdE5FZSVEdjjdO8TwfYQ06LVLu9YZD2FMmmKECVEI04y-fYKuwhh97lWmCMuxJNlRbx5Gus9y948ZYLeAjSGlCK22bjCDC7uErtMY6d3E6N3E6PuJybLpE9md8z8F-zo_XAfb_9D6bPb1StFK0T-dptKn
CitedBy_id crossref_primary_10_1038_s41467_025_58718_1
crossref_primary_10_1038_s41746_025_01606_1
crossref_primary_10_1063_5_0246495
Cites_doi 10.1038/aps.2015.166
10.1109/TNNLS.2017.2766168
10.1038/nature08231
10.1088/1478-3975/abffbe
10.7554/eLife.11384
10.1083/jcb.201407068
10.1016/j.fss.2009.04.013
10.1039/C5IB00283D
10.1007/3-540-44503-X_27
10.1162/neco.1997.9.8.1735
10.1016/j.cels.2015.07.001
10.1016/j.crmeth.2021.100105
10.1038/s41467-018-04030-0
10.1038/s41592-020-01018-x
10.1038/s41586-019-1195-2
10.1126/science.1242072
10.1083/jcb.201705113
10.1101/gr.190595.115
10.1109/78.650093
10.1083/jcb.201003014
10.1126/science.1191710
10.1038/ncb3092
10.1002/humu.22080
10.1038/ncb3426
10.1038/s41551-018-0285-z
10.1371/journal.pcbi.1009667
10.1016/j.cell.2010.04.033
10.1109/TIT.1965.1053799
10.1098/rspa.1998.0193
10.1023/A:1007379606734
10.1038/13040
10.1214/15-AOAS812
10.1083/jcb.201207148
10.1038/ncomms12990
10.1038/s41573-020-00117-w
10.1109/TNNLS.2023.3333737
10.1038/ncb2216
10.1609/aaai.v31i1.10811
10.1016/j.physrep.2009.11.002
10.1371/journal.pbio.2005970
10.1038/nature08242
10.1016/0377-0427(87)90125-7
10.1109/TPAMI.2013.50
10.1038/ncomms11963
10.1016/j.cels.2021.05.003
10.1038/nature08994
10.1126/sciadv.aba9319
10.1126/sciadv.aba1972
10.1039/c3ib40144h
10.1038/s41592-018-0261-2
10.7554/eLife.06585
10.1371/journal.pcbi.1005927
10.15252/embj.201591517
10.1073/pnas.0706851105
10.18632/oncotarget.2257
10.1016/j.cub.2008.12.045
10.1038/nature09232
10.1016/j.inffus.2019.12.012
10.1109/CVPR52729.2023.00030
10.32614/RJ-2016-058
10.1529/biophysj.105.070383
10.1126/science.153.3731.34
10.1016/j.crmeth.2023.100655
10.1007/s10565-017-9413-x
10.1091/mbc.E21-11-0561
10.1016/S0092-8674(03)00120-X
10.1038/s42256-019-0048-x
10.1126/scisignal.2005781
10.1038/ncb1763
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202403547
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database (ProQuest)
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


CrossRef
MEDLINE - Academic
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_1b058e943c49498d95f2ab285935e486
PMC11538677
39239705
10_1002_advs_202403547
ADVS9369
Genre article
Journal Article
GrantInformation_xml – fundername: National Heart, Lung, and Blood Institute
  funderid: R01HL163513
– fundername: National Institute of General Medical Sciences
  funderid: R35GM133725; R15GM122012
– fundername: NHLBI NIH HHS
  grantid: R01 HL163513
– fundername: NIGMS NIH HHS
  grantid: R15 GM122012
– fundername: NHLBI NIH HHS
  grantid: R01HL163513
– fundername: NIGMS NIH HHS
  grantid: R15GM122012
– fundername: NIGMS NIH HHS
  grantid: R35GM133725
– fundername: NIGMS NIH HHS
  grantid: R35 GM133725
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5699-7125c885af027062035e792444ac7d76a2d7459c52482fb2115aecf2cbce3f683
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001306227500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Fri Oct 03 12:42:58 EDT 2025
Tue Nov 04 02:05:38 EST 2025
Fri Sep 05 07:07:21 EDT 2025
Wed Aug 13 06:25:23 EDT 2025
Mon Jul 21 06:05:51 EDT 2025
Tue Nov 18 21:52:52 EST 2025
Sat Nov 29 07:22:15 EST 2025
Wed Jan 22 17:15:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 41
Keywords cell migration
morphodynamics
live cell imaging
machine learning
phenotyping
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5699-7125c885af027062035e792444ac7d76a2d7459c52482fb2115aecf2cbce3f683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6838-7094
OpenAccessLink https://doaj.org/article/1b058e943c49498d95f2ab285935e486
PMID 39239705
PQID 3124285823
PQPubID 4365299
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_1b058e943c49498d95f2ab285935e486
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11538677
proquest_miscellaneous_3101229013
proquest_journals_3124285823
pubmed_primary_39239705
crossref_citationtrail_10_1002_advs_202403547
crossref_primary_10_1002_advs_202403547
wiley_primary_10_1002_advs_202403547_ADVS9369
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2010; 11
2015; 34
1966; 153
1965; 11
2013; 3
2021; 20
2009; 160
2010; 465
1997; 45
2014; 27
2019; 16
2010; 141
2020; 58
2008; 105
2011; 13
2023; 3
2013; 5
2016; 37
2003; 112
1997; 9
2018; 9
2020; 6
2014; 5
2018; 2
2001
2017; 33
2022; 33
2010; 191
2009; 19
2018; 31
2015; 1
2006; 90
2015; 17
2015; 4
2010; 329
2019; 1
2010; 486
1997; 28
2015; 208
2008; 10
2005
2017; 29
2020; 33
2003
1999; 1
2016; 18
2021; 1
2015; 9
2015; 8
1998; 454
2012; 33
2017; 216
2016; 5
2016; 7
2015; 25
1987; 20
2012; 199
2021; 12
2023
2013; 35
2021
2020
2021; 18
2018
2017
2016
2009; 460
2009; 461
2019; 570
2018; 16
2016; 8
2018; 14
2022; 18
2014; 344
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_50_1
Lee D.‐H. (e_1_2_9_52_1) 2013; 3
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Zoph B. (e_1_2_9_41_1) 2020; 33
e_1_2_9_71_1
Le L. (e_1_2_9_51_1) 2018; 31
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
Sundar A. (e_1_2_9_82_1) 2016; 5
Yosinski J. (e_1_2_9_23_1) 2014; 27
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
Vincent P. (e_1_2_9_24_1) 2010; 11
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
Covert I. (e_1_2_9_57_1) 2020; 33
References_xml – volume: 20
  start-page: 145
  year: 2021
  publication-title: Nat. Rev. Drug Discovery
– volume: 5
  start-page: 91
  year: 2016
  publication-title: Int. J. Pharma Med. Biol. Sci.
– volume: 58
  start-page: 82
  year: 2020
  publication-title: Inf. Fusion
– volume: 18
  start-page: 100
  year: 2021
  publication-title: Nat. Methods
– start-page: 31
  year: 2017
– volume: 16
  year: 2018
  publication-title: PLoS Biol.
– year: 2005
– volume: 460
  start-page: 1031
  year: 2009
  publication-title: Nature
– volume: 12
  start-page: 733
  year: 2021
  publication-title: Cell Syst.
– volume: 1
  start-page: 37
  year: 2015
  publication-title: Cell Syst.
– year: 2021
– volume: 13
  start-page: 383
  year: 2011
  publication-title: Nat. Cell Biol.
– volume: 10
  start-page: 1039
  year: 2008
  publication-title: Nat. Cell Biol.
– volume: 160
  start-page: 3565
  year: 2009
  publication-title: Fuzzy Sets Syst.
– volume: 25
  start-page: 1491
  year: 2015
  publication-title: Genome Res.
– volume: 5
  start-page: 6832
  year: 2014
  publication-title: Oncotarget
– year: 2018
– volume: 1
  year: 2021
  publication-title: Cell Rep. Methods
– volume: 3
  year: 2023
  publication-title: Cell Rep. Methods
– volume: 29
  start-page: 4550
  year: 2017
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 112
  start-page: 453
  year: 2003
  publication-title: Cell
– volume: 33
  start-page: 777
  year: 2012
  publication-title: Hum. Mutat.
– volume: 465
  start-page: 373
  year: 2010
  publication-title: Nature
– volume: 9
  start-page: 1688
  year: 2018
  publication-title: Nat. Commun.
– volume: 141
  start-page: 559
  year: 2010
  publication-title: Cell
– volume: 9
  start-page: 1735
  year: 1997
  publication-title: Neural Comput.
– volume: 191
  start-page: 571
  year: 2010
  publication-title: J. Cell Biol.
– year: 2023
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– start-page: 420
  year: 2001
  end-page: 434
– volume: 19
  start-page: 260
  year: 2009
  publication-title: Curr. Biol.
– volume: 153
  start-page: 34
  year: 1966
  publication-title: Science
– volume: 486
  start-page: 75
  year: 2010
  publication-title: Phys. Rep.
– volume: 8
  start-page: 73
  year: 2016
  publication-title: Integr. Biol.
– volume: 34
  start-page: 2025
  year: 2015
  publication-title: EMBO J.
– volume: 18
  year: 2021
  publication-title: Phys. Biol.
– volume: 1
  start-page: 206
  year: 2019
  publication-title: Nat. Mach. Intell.
– volume: 27
  start-page: 3320
  year: 2014
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 31
  start-page: 107
  year: 2018
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 199
  start-page: 545
  year: 2012
  publication-title: J. Cell Biol.
– volume: 45
  start-page: 2673
  year: 1997
  publication-title: IEEE Trans. Signal Process.
– volume: 18
  start-page: 1253
  year: 2016
  publication-title: Nat. Cell Biol.
– volume: 17
  start-page: 137
  year: 2015
  publication-title: Nat. Cell Biol.
– volume: 344
  start-page: 1492
  year: 2014
  publication-title: Science
– volume: 5
  start-page: 1464
  year: 2013
  publication-title: Integr. Biol.
– volume: 14
  year: 2018
  publication-title: PLoS Comput. Biol.
– volume: 33
  start-page: 507
  year: 2017
  publication-title: Cell Biol. Toxicol.
– volume: 11
  start-page: 3371
  year: 2010
  publication-title: J. Mach. Learn. Res.
– volume: 329
  start-page: 1341
  year: 2010
  publication-title: Science
– year: 2003
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 208
  start-page: 629
  year: 2015
  publication-title: J. Cell Biol.
– volume: 2
  start-page: 761
  year: 2018
  publication-title: Nat. Biomed. Eng.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 216
  start-page: 3405
  year: 2017
  publication-title: J. Cell Biol.
– volume: 90
  start-page: 1439
  year: 2006
  publication-title: Biophys. J.
– volume: 37
  start-page: 805
  year: 2016
  publication-title: Acta Pharmacol. Sin.
– volume: 105
  start-page: 1118
  year: 2008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 3
  start-page: 896
  year: 2013
  publication-title: Int. Conf. Mach. Learn.
– volume: 33
  year: 2020
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2016
– volume: 35
  start-page: 1798
  year: 2013
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 67
  year: 2019
  publication-title: Nat. Methods
– volume: 18
  year: 2022
  publication-title: PLoS Comput. Biol.
– volume: 8
  start-page: ra41
  year: 2015
  publication-title: Sci. Signal.
– volume: 454
  start-page: 903
  year: 1998
  publication-title: Proc. R. Soc. Lond. Ser., A: Math., Phys. Eng. Sci.
– volume: 461
  start-page: 99
  year: 2009
  publication-title: Nature
– volume: 4
  year: 2015
  publication-title: Elife
– volume: 465
  start-page: 736
  year: 2010
  publication-title: Nature
– volume: 11
  start-page: 363
  year: 1965
  publication-title: IEEE Trans. Inf. Theor.
– volume: 1
  start-page: 321
  year: 1999
  publication-title: Nat. Cell Biol.
– volume: 20
  start-page: 53
  year: 1987
  publication-title: J. Comput. Appl. Math.
– volume: 570
  start-page: 332
  year: 2019
  publication-title: Nature
– year: 2020
– volume: 33
  start-page: 3833
  year: 2020
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2023
– volume: 33
  start-page: ar59
  year: 2022
  publication-title: Mol. Biol. Cell
– volume: 9
  start-page: 801
  year: 2015
  publication-title: Ann. Appl. Stat.
– volume: 5
  year: 2016
  publication-title: eLife
– volume: 28
  start-page: 41
  year: 1997
  publication-title: Mach. Learn.
– volume: 454
  year: 1998
  publication-title: Proc. R. Soc. Lond., A: Math., Phys. Eng. Sci.
– ident: e_1_2_9_32_1
  doi: 10.1038/aps.2015.166
– ident: e_1_2_9_42_1
– ident: e_1_2_9_9_1
  doi: 10.1109/TNNLS.2017.2766168
– ident: e_1_2_9_48_1
– ident: e_1_2_9_72_1
  doi: 10.1038/nature08231
– ident: e_1_2_9_4_1
  doi: 10.1088/1478-3975/abffbe
– ident: e_1_2_9_37_1
  doi: 10.7554/eLife.11384
– ident: e_1_2_9_34_1
  doi: 10.1083/jcb.201407068
– ident: e_1_2_9_84_1
  doi: 10.1016/j.fss.2009.04.013
– ident: e_1_2_9_13_1
  doi: 10.1039/C5IB00283D
– ident: e_1_2_9_21_1
  doi: 10.1007/3-540-44503-X_27
– ident: e_1_2_9_55_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_9_73_1
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cels.2015.07.001
– ident: e_1_2_9_76_1
  doi: 10.1016/j.crmeth.2021.100105
– volume: 27
  start-page: 3320
  year: 2014
  ident: e_1_2_9_23_1
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_9_6_1
  doi: 10.1038/s41467-018-04030-0
– ident: e_1_2_9_75_1
  doi: 10.1038/s41592-020-01018-x
– ident: e_1_2_9_16_1
  doi: 10.1038/s41586-019-1195-2
– volume: 11
  start-page: 3371
  year: 2010
  ident: e_1_2_9_24_1
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_9_58_1
  doi: 10.1126/science.1242072
– ident: e_1_2_9_77_1
  doi: 10.1083/jcb.201705113
– ident: e_1_2_9_43_1
– ident: e_1_2_9_8_1
  doi: 10.1101/gr.190595.115
– ident: e_1_2_9_56_1
  doi: 10.1109/78.650093
– volume: 5
  start-page: 91
  year: 2016
  ident: e_1_2_9_82_1
  publication-title: Int. J. Pharma Med. Biol. Sci.
– ident: e_1_2_9_64_1
  doi: 10.1083/jcb.201003014
– ident: e_1_2_9_65_1
  doi: 10.1126/science.1191710
– ident: e_1_2_9_68_1
  doi: 10.1038/ncb3092
– ident: e_1_2_9_18_1
  doi: 10.1002/humu.22080
– ident: e_1_2_9_35_1
  doi: 10.1038/ncb3426
– ident: e_1_2_9_38_1
  doi: 10.1038/s41551-018-0285-z
– ident: e_1_2_9_80_1
  doi: 10.1371/journal.pcbi.1009667
– ident: e_1_2_9_7_1
  doi: 10.1016/j.cell.2010.04.033
– ident: e_1_2_9_46_1
– ident: e_1_2_9_40_1
  doi: 10.1109/TIT.1965.1053799
– ident: e_1_2_9_49_1
– ident: e_1_2_9_81_1
  doi: 10.1098/rspa.1998.0193
– volume: 33
  start-page: 3833
  year: 2020
  ident: e_1_2_9_41_1
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_9_45_1
  doi: 10.1098/rspa.1998.0193
– ident: e_1_2_9_54_1
  doi: 10.1023/A:1007379606734
– ident: e_1_2_9_62_1
  doi: 10.1038/13040
– ident: e_1_2_9_50_1
  doi: 10.1214/15-AOAS812
– ident: e_1_2_9_67_1
  doi: 10.1083/jcb.201207148
– ident: e_1_2_9_19_1
  doi: 10.1038/ncomms12990
– volume: 31
  start-page: 107
  year: 2018
  ident: e_1_2_9_51_1
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_9_10_1
  doi: 10.1038/s41573-020-00117-w
– ident: e_1_2_9_25_1
  doi: 10.1109/TNNLS.2023.3333737
– ident: e_1_2_9_70_1
  doi: 10.1038/ncb2216
– ident: e_1_2_9_26_1
  doi: 10.1609/aaai.v31i1.10811
– ident: e_1_2_9_59_1
  doi: 10.1016/j.physrep.2009.11.002
– ident: e_1_2_9_11_1
  doi: 10.1371/journal.pbio.2005970
– ident: e_1_2_9_44_1
  doi: 10.1038/nature08242
– ident: e_1_2_9_60_1
  doi: 10.1016/0377-0427(87)90125-7
– ident: e_1_2_9_22_1
  doi: 10.1109/TPAMI.2013.50
– ident: e_1_2_9_2_1
  doi: 10.1038/ncomms11963
– ident: e_1_2_9_29_1
  doi: 10.1016/j.cels.2021.05.003
– ident: e_1_2_9_66_1
  doi: 10.1038/nature08994
– ident: e_1_2_9_14_1
  doi: 10.1126/sciadv.aba9319
– volume: 3
  start-page: 896
  year: 2013
  ident: e_1_2_9_52_1
  publication-title: Int. Conf. Mach. Learn.
– ident: e_1_2_9_17_1
  doi: 10.1126/sciadv.aba1972
– ident: e_1_2_9_36_1
  doi: 10.1039/c3ib40144h
– volume: 33
  year: 2020
  ident: e_1_2_9_57_1
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_2_9_74_1
  doi: 10.1038/s41592-018-0261-2
– ident: e_1_2_9_63_1
  doi: 10.7554/eLife.06585
– ident: e_1_2_9_12_1
  doi: 10.1371/journal.pcbi.1005927
– ident: e_1_2_9_31_1
  doi: 10.15252/embj.201591517
– ident: e_1_2_9_47_1
  doi: 10.1073/pnas.0706851105
– ident: e_1_2_9_33_1
  doi: 10.18632/oncotarget.2257
– ident: e_1_2_9_69_1
  doi: 10.1016/j.cub.2008.12.045
– ident: e_1_2_9_1_1
  doi: 10.1038/nature09232
– ident: e_1_2_9_28_1
  doi: 10.1016/j.inffus.2019.12.012
– ident: e_1_2_9_78_1
  doi: 10.1109/CVPR52729.2023.00030
– ident: e_1_2_9_85_1
  doi: 10.32614/RJ-2016-058
– ident: e_1_2_9_39_1
  doi: 10.1529/biophysj.105.070383
– ident: e_1_2_9_20_1
  doi: 10.1126/science.153.3731.34
– ident: e_1_2_9_79_1
  doi: 10.1016/j.crmeth.2023.100655
– ident: e_1_2_9_3_1
  doi: 10.1007/s10565-017-9413-x
– ident: e_1_2_9_15_1
  doi: 10.1091/mbc.E21-11-0561
– ident: e_1_2_9_61_1
  doi: 10.1016/S0092-8674(03)00120-X
– ident: e_1_2_9_83_1
– ident: e_1_2_9_27_1
  doi: 10.1038/s42256-019-0048-x
– ident: e_1_2_9_30_1
  doi: 10.1126/scisignal.2005781
– ident: e_1_2_9_71_1
  doi: 10.1038/ncb1763
– ident: e_1_2_9_53_1
SSID ssj0001537418
Score 2.3225648
Snippet Uncovering fine‐grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological...
Uncovering fine-grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased biological...
Abstract Uncovering fine‐grained phenotypes of live cell dynamics is pivotal for a comprehensive understanding of the heterogeneity in healthy and diseased...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2403547
SubjectTerms Cancer
cell migration
Cell Movement - physiology
Clustering
Datasets
Deep Learning
Humans
live cell imaging
Machine learning
morphodynamics
Neural networks
Neural Networks, Computer
Phenotype
phenotyping
Time series
Unsupervised Machine Learning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWgw4INMDwDAzISErCwpvUjcVaIYaawQFUFDJoVke3YM5VGSWmmXfMJfCNfwr2Jm07Fa8E2vpZsX1_f40fOIeSZgazvFLdMpE4xKZ1hVgTBpA9eGyd82Yr2fX6fTSb65CSfxgO3Jj6rXK-J7UJd1g7PyPcFJCKulebi1fwrQ9UovF2NEhpXyQ4ylckB2Tk4mkw_bE5ZlEB6ljVb45Dvm3KFLN1IQ6dQU-VSNmpJ-3-HNH99MHkZyLaZaHzzf_twi9yIGJS-7ibNLrniq9tkN0Z5Q19EKuqXd8iXzZtEe-7pGCDpj2_f36KshC_p9MxXNZ7hNrQOFJYgvAXAZ630sNO5b-hqZuhx1SznuCQ1UOfQ-zmNpK6nd8nx-OjTm3csKjIwp9I8ZxnAIae1MgF2s8OUwxj6DHZwUhqXlVlqeJlJlYPzpebBgk-U8S5wBw0QIdXiHhlUdeUfEMqD9nxkrMAdjfGp1kZY3DzZNJPW8oSwtWcKF-nKUTXjvOiIlnmBnix6TybkeW8_74g6_mh5gI7urZBgu_1QL06LGK_FyA6V9rkUDul7dJmrwI1Ftj_ostRpQvbWLi5i1DfFxr8JedoXQ7zi8JvK10u0wctMQGFgc7-bVX1LAKsCPByqhOit-bbV1O2SanbWcoKPMHOlGXSOtVPzH2NQAOj5iFqOD__ej0fkOtbpfr7cI4OLxdI_Jtfc6mLWLJ7EaPsJ_ZYzug
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagcOAClGdKQUZCAg5WN34kzhEoCwdUrQRFPWHZjt2uVCWrTXfP_IT-Rn4JM0k22wgQQlzjSWKPZ-xv_PiGkBcWZn2vuGMi84pJ6S1zIgomQwzaehHKNmnf10_50ZE-OSlmV27xd_wQw4IbekY7XqODW9ccbElDbblGum3kk1Myv05upKnQmLyBy9l2lUUJpGfBDHMQXTOhpdwwN074wfgTo5mpJfD_Her89fDkVVDbzkrTO__fnrvkdo9I6ZvOhHbJtVDdI7u9zzf0VU9M_fo--bY9oejOA53CL398v_yASSZCSWdnoapxRbehdaQwIOGeAB5ypYdd1vuGrueWHlfNaoEDVAPvHIawoD3F6-kDcjx9_-XdR9bnZ2BeZUXBcgBHXmtlI8S2k4xDxUMO8ZyU1udlnlle5lIVYApS8-gg1FQ2-Mg9VEDETIuHZKeqq_CYUB514Kl1AuMbGzKtrXAYSrksl87xhLBN3xjfk5djDo1z09Euc4PqM4P6EvJykF90tB1_lHyLXT1IId12-6Benpree03qJkqHQgqPZD66LFTk1iH3HzRZ6iwh-xtDMf0Y0BgB0AlENBcJeT4Ug_ei-m0V6hXK4NYmYDKQedTZ1VATQK4AFicqIXpkcaOqjkuq-VnLEJ7iPJbl0DjWmtxfdGAAAn3GzI57_yj_hNzCh93dzH2yc7Fchafkpl9fzJvls9YVfwKUDDVb
  priority: 102
  providerName: Wiley-Blackwell
Title Interpretable Fine‐Grained Phenotypes of Subcellular Dynamics via Unsupervised Deep Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202403547
https://www.ncbi.nlm.nih.gov/pubmed/39239705
https://www.proquest.com/docview/3124285823
https://www.proquest.com/docview/3101229013
https://pubmed.ncbi.nlm.nih.gov/PMC11538677
https://doaj.org/article/1b058e943c49498d95f2ab285935e486
Volume 11
WOSCitedRecordID wos001306227500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5By4ELovw1UFZGQgIOUXf9kzhHSrulEl0ioLBciGzHoStV2VXT3TOPwDP2STqTZNNdAeqFi6XEk8iZGdvfOPY3AC8NzvpOcRuKyKlQSmdCKwoRSl94bZzweZ207-uHeDTS43GSrqT6oj1hDT1wo7jdge0r7RMpHPGo6DxRBTeWaNeE8lLXZNuIelaCqeZ8sCBaliVLY5_vmnxB7NxEP6col8rKLFST9f8NYf65UXIVwNYz0PA-3GuhI3vbNHkLbvnyAWy1nbNir1sG6TcP4cf1VkJ75tkQkeTlr9-HlA3C5yw99eWUll4rNi0Yjhy0eE-7Udl-k56-YouJYSdlNZ_RSFLhM_vez1jLxfrzEZwMD768ex-2iRRCp6IkCWNEMU5rZQoMQvsRRxX4GAMvKY2L8zgyPI-lStBmUvPCYkyojHcFd9gAUURaPIaNclr6bWC80J4PjBUUiBgfaW2EpZjHRrG0lgcQLhWbuZZlnJJdnGUNPzLPyBBZZ4gAXnXys4Zf45-Se2SnTop4sesb6C1Z6y3ZTd4SwM7SylnbWatMIMZBEc1FAC-6auxmpH5T-umcZOgfJIInlHnSOEXXEoSYiOr6KgC95i5rTV2vKSenNZX3gCacKMaPC2vPukEHGWKVz5SC8en_UMYzuEtvbk5W7sDGxfncP4c7bnExqc57cJvLFMt4rHuwuXcwSj_16k6G5TH_WJdYv5keHaff8erb0egKv0srJw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VFIlugPIogQKDBAIWVpN52OMFQkAIjZpGkWhR2WBmxuM2UrFD3AR1xyfwJXwUX8K9fiSNeK26YBtfR77jM_cxMz6HkIcasr6VzHjct9ITwmrP8IR7wiVOactdXIj2vesHg4E6OAiHK-R7_S0MHqusY2IRqOPM4hr5FodExJRUjD8ff_ZQNQp3V2sJjRIWO-70C7Rs-bNeB97vI8a6r_debXuVqoBnpR-GXgAp3SoldQIdWctnLS5dAF2IENoGceBrFgdChuCAUCwx0CBJ7WzCrLGOJ77i8L8XyKoAsKsGWR32dofvF6s6kiMdTM0O2WJbOp4hKzjS3knUcDmT_QqRgN9Vtr8e0DxbOBeZr3vlfxuzq-RyVWPTF-WkWCcrLr1G1qsoltMnFdX20-vkw-LMpTl2tAsl94-v396gbIaL6fDIpRmuUec0SyiEWNzlwGO7tHOa6k8jm9PZSNP9NJ-OMeTmcE_HuTGtSGsPb5D9c_HzJmmkWepuEcoS5VhbG44dm3a-UpobbA6NHwhjWJN4NRIiW9GxoyrIcVQSSbMIkRPNkdMkj-f245KI5I-WLxFYcyskEC9-yCaHURWPorZpSeVCwS3SE6k4lAnTBtkMwWWh_CbZrCEVVVEtjxZ4apIH88sQj3D4deqyKdrgZi1UmWCzUaJ4_iRQi0P525JNopbwvfSoy1fS0VHBed7GzOwH4JxXTIV_jEEERd1b1Kq8_Xc_7pNL23u7_ajfG-zcIWt4f_mh6SZpnEym7i65aGcno3xyr5rplHw874nyE6MPjj0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VglAvQHk1UGCRQMDBSrLrtdcHhIAQqFpCJCjqCbO7XreRih3iJqg3fgK_h5_DL2HGj6QRr1MPXONx5FnPc3f8fQD3NGZ9K7nxRGCl5_tWe0akwvNd6pS2wiUlad_7nXAwUHt70XAFvjffwtBYZRMTy0Cd5Jb2yNsCExFXUnHRTuuxiGGv_2T82SMGKTppbeg0KhPZdsdfsH0rHm_18F3f57z_4t3zV17NMOBZGUSRF2J6t0pJnWJ31gl4R0gXYkfi-9qGSRhonoS-jFAZX_HUYLMktbMpt8Y6kQZK4P-egbMoIwm3_zV_s9jfkYKAYRqcyA5v62RG-OAEgCeJzeVEHizpAn5X4_46qnmyhC5zYP_i_7x6l-BCXXmzp5WrrMOKyy7Deh3bCvawBuB-dAU-LCYxzaFjfSzEf3z99pLINFzChgcuy2nnumB5yjDw0tkHDfOy3nGmP41swWYjzXazYjqmQFzgPT3nxqyGst2_Crunouc1WM3yzG0A46lyvKuNoD5Ou0ApLQy1jCYIfWN4C7zGKmJbg7QTV8hhXMFL85isKJ5bUQsezOXHFTzJHyWfkZHNpQhWvPwhn-zHdZSKu6YjlYt8YQm0SCWRTLk2hHGIKvsqaMFmY15xHeuKeGFbLbg7v4xRipZfZy6fkgwd4WLtiTLXK4uePwlW6FgUd2QL1JKtLz3q8pVsdFAioXcpXwchKueVbvGPNYix1HtLDJY3_q7HHTiP3hHvbA22b8Ia3V59fboJq0eTqbsF5-zsaFRMbpcuz-DjaXvJT94SlXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Fine%E2%80%90Grained+Phenotypes+of+Subcellular+Dynamics+via+Unsupervised+Deep+Learning&rft.jtitle=Advanced+science&rft.au=Chuangqi+Wang&rft.au=Hee+June+Choi&rft.au=Lucy+Woodbury&rft.au=Kwonmoo+Lee&rft.date=2024-11-01&rft.pub=Wiley&rft.eissn=2198-3844&rft.volume=11&rft.issue=41&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadvs.202403547&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1b058e943c49498d95f2ab285935e486
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon