Structure‐Property Correlations in CZTSe Domains within Semiconductor Nanocrystals as Photovoltaic Absorbers
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can h...
Uloženo v:
| Vydáno v: | Advanced science Ročník 11; číslo 31; s. e2402154 - n/a |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Germany
John Wiley & Sons, Inc
01.08.2024
John Wiley and Sons Inc Wiley |
| Témata: | |
| ISSN: | 2198-3844, 2198-3844 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I4¯$\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.
Four identified domains within tetrapod‐shaped CZTSe nanocrystals have distinct electronic properties. Interestingly, the 3D periodic structure of only two domains exhibits a band gap. Moreover, the computationally predicted type‐II band alignment between these two semiconductor domains facilitates electron‐hole pair separation and enhances solar power conversion efficiency. These insights enable optimizing the design of next‐generation CZTSe‐based solar cells and optoelectronic arrays. |
|---|---|
| AbstractList | Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I4¯$\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.
Four identified domains within tetrapod‐shaped CZTSe nanocrystals have distinct electronic properties. Interestingly, the 3D periodic structure of only two domains exhibits a band gap. Moreover, the computationally predicted type‐II band alignment between these two semiconductor domains facilitates electron‐hole pair separation and enhances solar power conversion efficiency. These insights enable optimizing the design of next‐generation CZTSe‐based solar cells and optoelectronic arrays. Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified Cu α Zn β Sn γ Se δ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I and monoclinic P 1 c 1 Cu 2 ZnSnSe 4 ). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 10 5 cm −1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod-shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I 4 ¯ $\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type-II band alignment, facilitating the separation of photogenerated electron-hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor "Schottky"-junctions. For the two photo-absorbing domains, the calculated absorption spectra yield maximum photon-absorption coefficients of about 105 cm-1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure-property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod-shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I 4 ¯ $\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type-II band alignment, facilitating the separation of photogenerated electron-hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor "Schottky"-junctions. For the two photo-absorbing domains, the calculated absorption spectra yield maximum photon-absorption coefficients of about 105 cm-1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure-property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I4¯$\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified Cu Zn Sn Se (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod-shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I and monoclinic P1c1 Cu ZnSnSe ). The heterojunction between these two semiconductor domains exhibits a staggered type-II band alignment, facilitating the separation of photogenerated electron-hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor "Schottky"-junctions. For the two photo-absorbing domains, the calculated absorption spectra yield maximum photon-absorption coefficients of about 10 cm in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure-property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Abstract Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I4¯ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I 4¯ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Four identified domains within tetrapod‐shaped CZTSe nanocrystals have distinct electronic properties. Interestingly, the 3D periodic structure of only two domains exhibits a band gap. Moreover, the computationally predicted type‐II band alignment between these two semiconductor domains facilitates electron‐hole pair separation and enhances solar power conversion efficiency. These insights enable optimizing the design of next‐generation CZTSe‐based solar cells and optoelectronic arrays. |
| Author | Vandichel, Matthias Ren, Huan Ngoipala, Apinya Ryan, Kevin M. |
| AuthorAffiliation | 2 Department of Biological Sciences National University of Singapore 16 Science Drive 4 Singapore 117543 Singapore 1 Department of Chemical Sciences and Bernal Institute University of Limerick Limerick V94 TP9X Ireland |
| AuthorAffiliation_xml | – name: 1 Department of Chemical Sciences and Bernal Institute University of Limerick Limerick V94 TP9X Ireland – name: 2 Department of Biological Sciences National University of Singapore 16 Science Drive 4 Singapore 117543 Singapore |
| Author_xml | – sequence: 1 givenname: Apinya orcidid: 0000-0002-8463-964X surname: Ngoipala fullname: Ngoipala, Apinya organization: University of Limerick – sequence: 2 givenname: Huan orcidid: 0000-0002-4030-6210 surname: Ren fullname: Ren, Huan organization: National University of Singapore – sequence: 3 givenname: Kevin M. orcidid: 0000-0003-3670-8505 surname: Ryan fullname: Ryan, Kevin M. organization: University of Limerick – sequence: 4 givenname: Matthias orcidid: 0000-0003-1592-0726 surname: Vandichel fullname: Vandichel, Matthias email: matthias.vandichel@ul.ie organization: University of Limerick |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38889237$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUk1vEzEQtVARLaFXjmglLlwS_Llrn1CU8lGpgkopHLhYttduHG3Wqe1NlRs_gd_IL8Ft0qqthPBlrPF7b55n5iU46ENvAXiN4ARBiN-rdpMmGGIKMWL0GTjCSPAx4ZQePLgfguOUlhBCxEhDEX8BDgnnXGDSHIF-nuNg8hDtn1-_z2NY25i31SzEaDuVfehT5ftq9vNibquTsFK-JK59XpTk3K68CX1b6CFWX1UfTNymrLpUqVSdL0IOm9Bl5U011SlEbWN6BZ67ArDH-zgC3z99vJh9GZ99-3w6m56NDasFHiuCNWuNYCUo7RBrNbSkFnX5K2OaW964hrawaYirqaPOCqNrIixmrWPEkRE43em2QS3lOvqVilsZlJe3iRAvpYrZm85KQwTRHFoINaeOGY1oaSZqXYuwxrQuWh92WutBr2xrbJ-j6h6JPn7p_UJeho1EiBTPjBWFd3uFGK4Gm7Jc-WRs16nehiFJAhvYiIaUMwJvn0CXYYh96VVBCQZRLSgvqDcPLd17uZtrAdAdwMSQUrROGp9v51kc-k4iKG82SN5skLzfoEKbPKHdKf-TsK9z7Tu7_Q9aTk9-zDktBv8CM6baqg |
| CitedBy_id | crossref_primary_10_1021_acs_nanolett_5c03311 crossref_primary_10_1021_acs_nanolett_5c02739 |
| Cites_doi | 10.1103/PhysRevB.73.045112 10.1038/s41560-018-0206-0 10.1002/pssr.201409520 10.3389/fchem.2018.00005 10.1021/acs.chemmater.8b03398 10.1103/PhysRevMaterials.4.054602 10.1103/PhysRevB.94.235418 10.1016/j.rser.2016.12.028 10.1016/j.scitotenv.2021.150924 10.1002/aenm.202102730 10.1039/C7CP02192E 10.1021/acs.chemmater.0c01663 10.1002/adma.200501717 10.1016/j.mssp.2021.106214 10.1039/C9SE00040B 10.1063/1.3600060 10.1021/acs.chemrev.0c00831 10.1103/PhysRevB.82.205204 10.1021/acsaem.0c01146 10.1038/nmat3789 10.1016/j.matchemphys.2015.06.034 10.1016/j.spmi.2018.04.003 10.1088/2515-7655/abc07b 10.1038/srep00952 10.1021/ja909498c 10.1002/pssb.201046303 10.1021/nn303815z 10.1039/C7TA01090G 10.1021/acsami.9b09813 10.1557/s43578-022-00593-3 10.1039/C5CS00067J 10.1021/acs.jpcc.6b12613 10.1002/adfm.201807672 10.1021/jz101565j 10.1038/s41467-023-39127-8 10.1002/pip.1078 10.15863/TAS.2013.09.5.1 10.1021/acsami.5b01617 10.1039/C5RA00477B 10.1021/ct400235w 10.1038/s41524-019-0160-9 10.1016/j.commatsci.2021.110456 10.1002/pip.2741 10.1063/1.3074499 10.1021/cm2031812 10.1016/j.tsf.2012.10.078 10.1021/acs.chemrev.6b00376 10.1103/PhysRevLett.91.266401 10.1088/0022-3727/41/20/205305 10.1063/1.4858400 10.1016/j.tsf.2004.11.024 10.1088/1367-2630/10/6/063020 10.1063/1.4704191 10.1063/1.3457172 10.1016/j.solener.2021.04.043 10.1039/c0ce00779j 10.1063/1.2955460 10.1002/pssa.200723144 10.1103/PhysRevB.73.205421 10.1103/PhysRevB.87.245203 10.1002/pssc.200881236 10.1039/D2SC01715F 10.1021/nn3052296 10.1039/c2jm33809b 10.1016/j.tsf.2008.11.002 10.1038/s41560-023-01251-6 10.1021/acs.nanolett.3c02810 10.1088/2515-7655/ab29a0 10.1002/aenm.201401372 10.1017/CBO9781139165037 10.1016/j.solener.2020.07.065 10.1103/PhysRevB.87.155206 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.1002/advs.202402154 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Collection (ProQuest) Research Library (ProQuest) Science Database Research Library (Corporate) ProQuest One Academic ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access (WRLC) url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2198-3844 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_c393b80e00b84f5cb141541dfd12b246 PMC11336955 38889237 10_1002_advs_202402154 ADVS8492 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Irish Research Council (IRC) funderid: GOIPG/2021/867 – fundername: Science Foundation Ireland (SFI) funderid: 12/RC/2275_P2 – fundername: Irish Research Council (IRC) grantid: GOIPG/2021/867 – fundername: Science Foundation Ireland (SFI) grantid: 12/RC/2275_P2 |
| GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAMMB AAYXX ADMLS AEFGJ AFFHD AFPKN AGXDD AIDQK AIDYY CITATION EJD IGS PHGZM PHGZT NPM 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c5692-a32b5dc952b5abf15db0e369602455b8e87f74d0773f64f4fe9cb639e25df53f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001250153700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2198-3844 |
| IngestDate | Fri Oct 03 12:50:51 EDT 2025 Tue Nov 04 02:05:30 EST 2025 Fri Sep 05 11:58:33 EDT 2025 Sat Jul 26 02:32:57 EDT 2025 Mon Jul 21 05:50:15 EDT 2025 Sat Nov 29 07:24:00 EST 2025 Tue Nov 18 22:31:03 EST 2025 Wed Jan 22 17:14:57 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 31 |
| Keywords | structure‐optical property relationships material interfaces CZTSe nanocrystals DFT calculations |
| Language | English |
| License | Attribution 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5692-a32b5dc952b5abf15db0e369602455b8e87f74d0773f64f4fe9cb639e25df53f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3670-8505 0000-0002-8463-964X 0000-0003-1592-0726 0000-0002-4030-6210 |
| OpenAccessLink | https://www.proquest.com/docview/3095016948?pq-origsite=%requestingapplication% |
| PMID | 38889237 |
| PQID | 3095016948 |
| PQPubID | 4365299 |
| PageCount | 10 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c393b80e00b84f5cb141541dfd12b246 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11336955 proquest_miscellaneous_3070797333 proquest_journals_3095016948 pubmed_primary_38889237 crossref_citationtrail_10_1002_advs_202402154 crossref_primary_10_1002_advs_202402154 wiley_primary_10_1002_advs_202402154_ADVS8492 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Advanced science |
| PublicationTitleAlternate | Adv Sci (Weinh) |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
| References | 2018 2017 2018 2021; 6 5 30 221 2023 2022; 14 13 2007; 204 2019; 5 2006; 73 2015 2009 2010 2009; 5 1165 82 6 2006 2022; 73 37 2012 2009 2010 2008 2019 2005 2009; 94 97 41 1 480 517 2019; 11 2023; 8 2010 2012 2013 2011 2012; 132 24 7 13 111 2020 2024; 32 24 2015 2018; 5 3 2011; 98 2013; 5 2015; 7 2017 2017; 117 70 2011; 248 2011 2013 2015 2013 2020 2003; 19 535 9 12 207 91 2022 2011 2008 2013; 137 2 129 9 2012; 2 2020; 4 2014 2012; 1 22 2020; 3 2015 2018; 162 119 2015 2020; 44 121 2006 2012; 18 6 2008 2016; 10 94 2021 2005; 194 2022; 12 2017 2013 2013; 19 87 87 2019; 29 2022 2017; 806 121 2019 2016; 3 24 e_1_2_7_3_4 e_1_2_7_5_2 e_1_2_7_3_3 e_1_2_7_5_1 e_1_2_7_3_2 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_3_6 e_1_2_7_3_5 e_1_2_7_7_1 e_1_2_7_17_4 e_1_2_7_17_3 e_1_2_7_19_1 e_1_2_7_17_2 e_1_2_7_17_1 e_1_2_7_1_2 e_1_2_7_11_5 e_1_2_7_15_1 e_1_2_7_1_1 e_1_2_7_11_4 e_1_2_7_11_3 e_1_2_7_13_1 e_1_2_7_11_2 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_26_2 e_1_2_7_28_1 e_1_2_7_28_2 Maeda T. (e_1_2_7_21_2) 2009; 1165 e_1_2_7_25_2 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_21_4 e_1_2_7_21_3 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_33_2 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_35_2 e_1_2_7_2_5 e_1_2_7_6_1 e_1_2_7_2_4 e_1_2_7_2_3 e_1_2_7_4_1 e_1_2_7_2_2 e_1_2_7_6_4 e_1_2_7_6_3 e_1_2_7_8_1 e_1_2_7_2_6 e_1_2_7_6_2 e_1_2_7_18_3 e_1_2_7_18_2 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_10_2 e_1_2_7_10_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_29_2 e_1_2_7_30_1 e_1_2_7_24_2 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_32_2 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_20_1 e_1_2_7_36_1 |
| References_xml | – volume: 204 start-page: 3373 year: 2007 publication-title: Physica Status Solidi – volume: 10 94 year: 2008 2016 publication-title: New J. Phys. Phys. Rev. B – volume: 194 year: 2021 2005 publication-title: Comput. Mater. Sci. – volume: 132 24 7 13 111 start-page: 4514 562 1454 2222 year: 2010 2012 2013 2011 2012 publication-title: J. Am. Chem. Soc. Chem. Mater. ACS Nano CrystEngComm J. Appl. Phys. – volume: 94 97 41 1 480 517 start-page: 426 2455 year: 2009 2010 2008 2019 2005 2009 publication-title: Appl. Phys. Lett. Appl. Phys. Lett. J. Phys. D: Appl. Phys. J. Phys.: Energy Thin Solid Films Thin Solid Films – volume: 117 70 start-page: 5865 1286 year: 2017 2017 publication-title: Chem. Rev. Renew. Sustain. Energy Rev. – volume: 2 start-page: 952 year: 2012 publication-title: Sci. Rep. – volume: 7 start-page: 9752 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 3 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 19 535 9 12 207 91 start-page: 894 362 28 1107 1146 year: 2011 2013 2015 2013 2020 2003 publication-title: Prog. Photovoltaics Thin Solid Films Physica Status Solidi (RRL)–Rapid Res. Lett. Nat. Mater. Sol. Energy Phys. Rev. Lett. – volume: 44 121 start-page: 8714 3186 year: 2015 2020 publication-title: Chem. Soc. Rev. Chem. Rev. – volume: 162 119 start-page: 608 59 year: 2015 2018 publication-title: Mater. Chem. Phys. Superlattices Microstruct. – volume: 19 87 87 year: 2017 2013 2013 publication-title: Phys. Chem. Chem. Phys. Phys. Rev. B Phys. Rev. B – volume: 32 24 start-page: 7254 2125 year: 2020 2024 publication-title: Chem. Mater. Nano Lett. – volume: 248 start-page: 767 year: 2011 publication-title: Physica Status Solidi – volume: 3 year: 2020 publication-title: J. Phys.: Energy – volume: 73 37 start-page: 1859 year: 2006 2022 publication-title: Phys. Rev. B J. Mater. Res. – volume: 4 year: 2020 publication-title: Phys. Rev. Mater. – volume: 5 3 start-page: 764 year: 2015 2018 publication-title: Adv. Energy Mater. Nat. Energy – volume: 806 121 start-page: 3648 year: 2022 2017 publication-title: Sci. Total Environ. J. Phys. Chem. C – volume: 8 start-page: 526 year: 2023 publication-title: Nat. Energy – year: 2012 – volume: 137 2 129 9 start-page: 212 2950 year: 2022 2011 2008 2013 publication-title: Mater. Sci. Semicond. Process. J. Phys. Chem. Lett. J. Chem. Phys. J. Chem. Theory Comput. – volume: 5 start-page: 1 year: 2013 publication-title: Int. J. Theor. Appl. Sci. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 3 24 start-page: 1365 879 year: 2019 2016 publication-title: Sustainable Energy Fuels Prog. Photovoltaics – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 73 year: 2006 publication-title: Phys. Rev. B – volume: 5 start-page: 19 year: 2019 publication-title: npj Comput. Mater. – volume: 6 5 30 221 start-page: 5 6606 7860 314 year: 2018 2017 2018 2021 publication-title: Front. Chem. J. Mater. Chem. A Chem. Mater. Sol. Energy – volume: 98 year: 2011 publication-title: Appl. Phys. Lett. – volume: 14 13 start-page: 3394 5432 year: 2023 2022 publication-title: Nat. Commun. Chem. Sci. – volume: 18 6 start-page: 789 year: 2006 2012 publication-title: Adv. Mater. ACS Nano – volume: 1 22 year: 2014 2012 publication-title: Appl. Phys. Rev. J. Mater. Chem. – volume: 12 year: 2022 publication-title: Adv. Energy Mater. – volume: 5 1165 82 6 start-page: 1165 1261 year: 2015 2009 2010 2009 publication-title: RSC Adv. MRS Online Proc. Lib. (OPL) Phys. Rev. B Physica Status Solidi C – ident: e_1_2_7_31_1 doi: 10.1103/PhysRevB.73.045112 – ident: e_1_2_7_35_2 doi: 10.1038/s41560-018-0206-0 – ident: e_1_2_7_2_3 doi: 10.1002/pssr.201409520 – ident: e_1_2_7_6_1 doi: 10.3389/fchem.2018.00005 – ident: e_1_2_7_6_3 doi: 10.1021/acs.chemmater.8b03398 – ident: e_1_2_7_14_1 doi: 10.1103/PhysRevMaterials.4.054602 – ident: e_1_2_7_28_2 doi: 10.1103/PhysRevB.94.235418 – ident: e_1_2_7_1_2 doi: 10.1016/j.rser.2016.12.028 – ident: e_1_2_7_26_1 doi: 10.1016/j.scitotenv.2021.150924 – ident: e_1_2_7_36_1 doi: 10.1002/aenm.202102730 – ident: e_1_2_7_18_1 doi: 10.1039/C7CP02192E – ident: e_1_2_7_10_1 doi: 10.1021/acs.chemmater.0c01663 – ident: e_1_2_7_34_1 doi: 10.1002/adma.200501717 – ident: e_1_2_7_17_1 doi: 10.1016/j.mssp.2021.106214 – ident: e_1_2_7_5_1 doi: 10.1039/C9SE00040B – ident: e_1_2_7_22_1 doi: 10.1063/1.3600060 – ident: e_1_2_7_33_2 doi: 10.1021/acs.chemrev.0c00831 – ident: e_1_2_7_21_3 doi: 10.1103/PhysRevB.82.205204 – ident: e_1_2_7_8_1 doi: 10.1021/acsaem.0c01146 – ident: e_1_2_7_2_4 doi: 10.1038/nmat3789 – ident: e_1_2_7_20_1 doi: 10.1016/j.matchemphys.2015.06.034 – ident: e_1_2_7_30_1 – ident: e_1_2_7_20_2 doi: 10.1016/j.spmi.2018.04.003 – ident: e_1_2_7_16_1 doi: 10.1088/2515-7655/abc07b – ident: e_1_2_7_9_1 doi: 10.1038/srep00952 – ident: e_1_2_7_11_1 doi: 10.1021/ja909498c – ident: e_1_2_7_15_1 doi: 10.1002/pssb.201046303 – ident: e_1_2_7_34_2 doi: 10.1021/nn303815z – ident: e_1_2_7_6_2 doi: 10.1039/C7TA01090G – ident: e_1_2_7_7_1 doi: 10.1021/acsami.9b09813 – ident: e_1_2_7_24_2 doi: 10.1557/s43578-022-00593-3 – ident: e_1_2_7_33_1 doi: 10.1039/C5CS00067J – ident: e_1_2_7_26_2 doi: 10.1021/acs.jpcc.6b12613 – ident: e_1_2_7_27_1 doi: 10.1002/adfm.201807672 – ident: e_1_2_7_17_2 doi: 10.1021/jz101565j – ident: e_1_2_7_25_1 doi: 10.1038/s41467-023-39127-8 – ident: e_1_2_7_2_1 doi: 10.1002/pip.1078 – ident: e_1_2_7_12_1 doi: 10.15863/TAS.2013.09.5.1 – ident: e_1_2_7_19_1 doi: 10.1021/acsami.5b01617 – ident: e_1_2_7_21_1 doi: 10.1039/C5RA00477B – ident: e_1_2_7_17_4 doi: 10.1021/ct400235w – ident: e_1_2_7_23_1 doi: 10.1038/s41524-019-0160-9 – ident: e_1_2_7_32_1 doi: 10.1016/j.commatsci.2021.110456 – ident: e_1_2_7_5_2 doi: 10.1002/pip.2741 – ident: e_1_2_7_3_1 doi: 10.1063/1.3074499 – volume: 1165 start-page: 1165 year: 2009 ident: e_1_2_7_21_2 publication-title: MRS Online Proc. Lib. (OPL) – ident: e_1_2_7_11_2 doi: 10.1021/cm2031812 – ident: e_1_2_7_2_2 doi: 10.1016/j.tsf.2012.10.078 – ident: e_1_2_7_1_1 doi: 10.1021/acs.chemrev.6b00376 – ident: e_1_2_7_2_6 doi: 10.1103/PhysRevLett.91.266401 – ident: e_1_2_7_3_3 doi: 10.1088/0022-3727/41/20/205305 – ident: e_1_2_7_29_1 doi: 10.1063/1.4858400 – ident: e_1_2_7_3_5 doi: 10.1016/j.tsf.2004.11.024 – ident: e_1_2_7_28_1 doi: 10.1088/1367-2630/10/6/063020 – ident: e_1_2_7_11_5 doi: 10.1063/1.4704191 – ident: e_1_2_7_3_2 doi: 10.1063/1.3457172 – ident: e_1_2_7_6_4 doi: 10.1016/j.solener.2021.04.043 – ident: e_1_2_7_11_4 doi: 10.1039/c0ce00779j – ident: e_1_2_7_17_3 doi: 10.1063/1.2955460 – ident: e_1_2_7_13_1 doi: 10.1002/pssa.200723144 – ident: e_1_2_7_24_1 doi: 10.1103/PhysRevB.73.205421 – ident: e_1_2_7_18_3 doi: 10.1103/PhysRevB.87.245203 – ident: e_1_2_7_21_4 doi: 10.1002/pssc.200881236 – ident: e_1_2_7_25_2 doi: 10.1039/D2SC01715F – ident: e_1_2_7_11_3 doi: 10.1021/nn3052296 – ident: e_1_2_7_29_2 doi: 10.1039/c2jm33809b – ident: e_1_2_7_3_6 doi: 10.1016/j.tsf.2008.11.002 – ident: e_1_2_7_4_1 doi: 10.1038/s41560-023-01251-6 – ident: e_1_2_7_10_2 doi: 10.1021/acs.nanolett.3c02810 – ident: e_1_2_7_3_4 doi: 10.1088/2515-7655/ab29a0 – ident: e_1_2_7_35_1 doi: 10.1002/aenm.201401372 – ident: e_1_2_7_32_2 doi: 10.1017/CBO9781139165037 – ident: e_1_2_7_2_5 doi: 10.1016/j.solener.2020.07.065 – ident: e_1_2_7_18_2 doi: 10.1103/PhysRevB.87.155206 |
| SSID | ssj0001537418 |
| Score | 2.3327808 |
| Snippet | Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate... Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified Cu α Zn β Sn γ Se δ (CZTSe) domains... Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified Cu Zn Sn Se (CZTSe) domains demonstrate... Abstract Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains... |
| SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2402154 |
| SubjectTerms | CZTSe nanocrystals DFT calculations Efficiency material interfaces Nanocrystals Optical properties Semiconductors structure‐optical property relationships |
| SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kuHAj1me0ygiCughN5pFMlvVqcSHlwq1S3AzzpIGaSHJb6M6f4G_0l3hOkhvuRaUbV4HJIQznMeebmZPvEPLKGUxSuUkDCyEVhYlp5ZyFXUoBeI57a4cuCl8-lScn6uysWm61-sKasJEeeFTcoeMVtyoLWWaViNLZHFKOyH30ObNMDGTbgHq2NlPj_8EcaVk2LI0ZOzT-Ctm58TIhl2InCw1k_X9DmH8WSm4D2CEDHd8jdyfoSI_GKe-TW6G5T_an4Ozpm4lB-u0D0qwGVtjLLvz68XOJx-3d-pousBHHVPpG64Yuvp6uAn3ffjM1DOCBLAyusFi-bZAFtu0orL2t664BQV701PR0ed6uW1jQ1qZ29Mj2bWcBPj4kn48_nC4-plNjhdTJomKp4cxK7yoJD2NjLr3NAjb2w3tYaVVQZSyFz8qSx0JEEUPlLECZwKSPkkf-iOw1bROeEMoy8AFXCQQiIuZGKZl5sIuXTBUicwlJN4rWbmIdx-YXF3rkS2YaDaNnwyTk9Sz_feTb-KfkO7TbLIU82cMAeI-evEff5D0JOdhYXU_B22sOsBNJaoRKyMv5NYQd3qWYJrSXKIPUgiXnPCGPRyeZZ8KVUoCby4SoHffZmerum6Y-H6i985yDHaQEtQ2edoMONGCXlRIVe_o_lPGM3MEvj-WNB2QPXDU8J7fd1bruuxdDgP0GWPwrgw priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagcOAClN9AQUZCAg5RE_8kzrEsVBxQtdIWVHGJbMemkUqMkm2l3ngEnpEnYSbJpo0AIcQpkj2KnPHM-PPY-YaQ51bjIpXq2DHnYpFpHxfWGtilZIDneGVMX0Xh4_v84EAdHRXLS3_xD_wQU8INPaOP1-jg2nS7F6ShujpDum08HQAYcJVcS1OusHgDE8uLLIvkSM-CFeZgdx1zJcSGuTFhu_NXzFamnsD_d6jz18uTl0Ftvyrt3_r_77lNbo6IlO4NJrRNrrjmDtkefb6jL0di6ld3SbPqyWZPW_fj2_clZvHb9TldYH2P8UYdrRu6-HS4cvRN-KJraMA8LzSu8A5-aJBcNrQUQnqw7TkA05OO6o4uj8M6QJxc69rSPdOF1gAqvUc-7L89XLyLx3oNsZVZwWLNmZGVLSQ8tPGprEzisF4gHu9Ko5zKfS6qJM-5z4QX3hXWAEJyTFZecs_vk60mNO4hoSwB07KFQHwjfKqVkkllmKgkU5lIbETizVyVdiQzx5oaJ-VAw8xKVGc5qTMiLyb5rwONxx8lX-PUT1JIv903hPZzOXpzaXnBjUpckhglvLQmBRwk0spXKYNRZhHZ2RhOOcaEruSAZpH7RqiIPJu6wZvxiEY3LpyiDDIW5pzziDwY7GwaCVdKARzPI6JmFjgb6rynqY97xnBwDZgHKUFtvQn-RQclQKKVEgV79I_yj8kNbBwuSO6QLbBK94Rct2frumuf9q75E47HPNc priority: 102 providerName: Wiley-Blackwell |
| Title | Structure‐Property Correlations in CZTSe Domains within Semiconductor Nanocrystals as Photovoltaic Absorbers |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202402154 https://www.ncbi.nlm.nih.gov/pubmed/38889237 https://www.proquest.com/docview/3095016948 https://www.proquest.com/docview/3070797333 https://pubmed.ncbi.nlm.nih.gov/PMC11336955 https://doaj.org/article/c393b80e00b84f5cb141541dfd12b246 |
| Volume | 11 |
| WOSCitedRecordID | wos001250153700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2O dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: PIMPY dateStart: 20141201 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: M2P dateStart: 20141201 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: WIN dateStart: 20140101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access (WRLC) customDbUrl: eissn: 2198-3844 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001537418 issn: 2198-3844 databaseCode: 24P dateStart: 20140101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboLgcuQHmmlFWQkIBD1MSPxDmhdmlFJbpEbIGllyh-hK7UJiXZVuqNn8Bv5Jcwk_VuWfE6cHEU25Fsz3j8ZTz6hpCnusBDKioCS60NeFyUQaq1gr-UGPAcM0p1WRQ-vElGIzmZpJlzuLUurHJhEztDbWqNPvItBlgAmUO4fHn2JcCsUXi76lJorJE-MpXxHunv7I6yd1deFsGQnmXB1hjSrcJcIEs3XipEgq-cRh1p_--Q5q8Bkz8D2e4k2rv1v3O4TW46DOpvz5VmnVyz1R2y7nZ56z93VNQv7pJq3NHLnjf2-9dvGfrtm9mlP8SMHi6Gzp9W_vDocGz9V_VpMYUK9OxC5Rij7usK6WTrxgcjXuvmEqDoSesXrZ8d17MaLOOsmGp_W7V1owCH3iPv93YPh68Dl6Eh0CJOaVAwqoTRqYBHocpIGBVazBCIF7pCSSuTMuEmTBJWxrzkpU21AkxkqTClYCW7T3pVXdmHxKchKJNOOSIaXkaFlCI0inIjqIx5qD0SLCSVa0dfjlk0TvI58TLNUbL5UrIeebbsfzYn7vhjzx0U_LIXEm53FXXzOXf7N9csZUqGNgyV5KXQKgLkwyNTmojCKGOPbC5Enjsr0OZX8vbIk2Uz7F-8lCkqW59jH-QoTBhjHnkw17LlSJiUEgB44hG5on8rQ11tqabHHUd4FDGQgxCwbJ2q_mMNcgBBY8lTuvH3eTwiN_CbeQTkJumBEtrH5Lq-mE3bZkDWKM-gTCZy4HbioHNyQHlA33YltPez_YPsE7x93B_9AMwOQrg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFAkuQPk1FFgkEHCwau-PvT4gVFKqRk2jSAmo5WK86zWNVOxip0W58Qg8CQ_FkzBjOykRf6ceOEVar6P1-puZb3fW3xDy2CQYpPzEtcxaVwRJ5kbGaFilBMDneKp1XUXhbT8cDNT-fjRcId_m38Lgscq5T6wddVoY3CPf4MAFUDlEqJfHn1ysGoXZ1XkJjQYWu3b2GZZs1YveFrzfJ4xtvx53d9y2qoBrZBAxN-FMy9REEn4Snfky1Z7FqnaYhJRaWRVmoUi9MORZIDKR2choiOOWyTSTPOPwvxfIqgCwqw5ZHfb2hgdnuzqSoxzMXB3SYxtJeoqq4JjE8KVYin51kYDfMdtfD2j-TJzryLd99X-bs2vkSsux6WZjFGtkxebXyVrrxSr6rJXafn6D5KNaPvektN-_fB1iXqKczmgXK5a0ZwTpJKfdd-ORpVvFx2QCDbhzDY0j_KqgyFEutygpBKnClDOg2kcVTSo6PCymBXj-aTIxdFNXRamBZ98kb87luW-RTl7k9g6hzANjMZFAxiYyP1FKeqlmIpVMBcIzDnHnyIhNK8-OVUKO4kZYmsWIpHiBJIc8XfQ_boRJ_tjzFQJt0QsFxeuGovwQt_4pNjziWnnW87QSmTTaB2Yn_DRLfQajDByyPodY3Hq5Kj7Dl0MeLS6Df8KkU5Lb4gT7oAZjyDl3yO0G1YuRcKUULDBCh6glvC8NdflKPjmsNdB9n8N7kBKmrTaNf8xBDCRvpETE7v79OR6SSzvjvX7c7w1275HLeH9z2nOddACQ9j65aE6nk6p80Fo-Je_P23B-AKJQmFQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAXoDwNBRYJBBys2Puw1weESkJE1VIipaCKi_Gud2mkYhc7LcqNn8Dv4efwS5ixnZSI16kHTpHW42i9nse3O-NvCHlgMgxSYeZbZq0vosz5iTEadikR4Dmea910UXi7He_sqL29ZLRCvs2_hcGyyrlPbBx1Xho8I-9xwALIHCJUz3VlEaPB8NnhJx87SGGmdd5Oo1WRLTv7DNu3-unmAN71Q8aGL3b7L_2uw4BvZJQwP-NMy9wkEn4y7UKZ68BihztMSEqtrIpdLPIgjrmLhBPOJkZDTLdM5k5yx-F_z5CzMQgjb_8r9vrkfEdyJIaZ80QGrJflx8gPjumMUIqlONi0C_gdxv21VPNnCN3EwOGl_3n1LpOLHfKmG62prJEVW1wha51vq-njjoD7yVVSjBtS3aPKfv_ydYTZimo6o33sY9JVDtJJQfvvdseWDsqP2QQG8DwbBsf4rUFZIIluWVEIXaWpZgDAD2qa1XS0X05LiAfTbGLohq7LSgP6vkbenMpzXyerRVnYm4SyAEzIJAJxnHBhppQMcs1ELpmKRGA84s-1JDUdaTv2DjlIW7pplqJWpQut8sijhfxhS1fyR8nnqHQLKaQZbwbK6kPaea3U8IRrFdgg0Eo4aXQIeE-EuctDBrOMPLI-V7e08311eqJrHrm_uAxeC1NRWWHLI5RBZsaYc-6RG62GL2bClVKw7Yg9opZ0f2mqy1eKyX7DjB6GHN6DlLBsjZn8Yw1SgH5jJRJ26-_PcY-cB2tJtzd3tm6TC3h7WwK6TlZBH-0dcs4cTyd1dbdxAZS8P22r-QFMNJ-O |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Property+Correlations+in+CZTSe+Domains+within+Semiconductor+Nanocrystals+as+Photovoltaic+Absorbers&rft.jtitle=Advanced+science&rft.au=Ngoipala%2C+Apinya&rft.au=Ren%2C+Huan&rft.au=Ryan%2C+Kevin+M&rft.au=Vandichel%2C+Matthias&rft.date=2024-08-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=31&rft.spage=e2402154&rft_id=info:doi/10.1002%2Fadvs.202402154&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |