Structure‐Property Correlations in CZTSe Domains within Semiconductor Nanocrystals as Photovoltaic Absorbers

Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced science Ročník 11; číslo 31; s. e2402154 - n/a
Hlavní autoři: Ngoipala, Apinya, Ren, Huan, Ryan, Kevin M., Vandichel, Matthias
Médium: Journal Article
Jazyk:angličtina
Vydáno: Germany John Wiley & Sons, Inc 01.08.2024
John Wiley and Sons Inc
Wiley
Témata:
ISSN:2198-3844, 2198-3844
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I4¯$\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Four identified domains within tetrapod‐shaped CZTSe nanocrystals have distinct electronic properties. Interestingly, the 3D periodic structure of only two domains exhibits a band gap. Moreover, the computationally predicted type‐II band alignment between these two semiconductor domains facilitates electron‐hole pair separation and enhances solar power conversion efficiency. These insights enable optimizing the design of next‐generation CZTSe‐based solar cells and optoelectronic arrays.
AbstractList Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I4¯$\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Four identified domains within tetrapod‐shaped CZTSe nanocrystals have distinct electronic properties. Interestingly, the 3D periodic structure of only two domains exhibits a band gap. Moreover, the computationally predicted type‐II band alignment between these two semiconductor domains facilitates electron‐hole pair separation and enhances solar power conversion efficiency. These insights enable optimizing the design of next‐generation CZTSe‐based solar cells and optoelectronic arrays.
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified Cu α Zn β Sn γ Se δ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I and monoclinic P 1 c 1 Cu 2 ZnSnSe 4 ). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 10 5 cm −1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod-shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I 4 ¯ $\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type-II band alignment, facilitating the separation of photogenerated electron-hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor "Schottky"-junctions. For the two photo-absorbing domains, the calculated absorption spectra yield maximum photon-absorption coefficients of about 105 cm-1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure-property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod-shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I 4 ¯ $\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type-II band alignment, facilitating the separation of photogenerated electron-hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor "Schottky"-junctions. For the two photo-absorbing domains, the calculated absorption spectra yield maximum photon-absorption coefficients of about 105 cm-1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure-property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I4¯$\bar 4$ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified Cu Zn Sn Se (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod-shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I and monoclinic P1c1 Cu ZnSnSe ). The heterojunction between these two semiconductor domains exhibits a staggered type-II band alignment, facilitating the separation of photogenerated electron-hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor "Schottky"-junctions. For the two photo-absorbing domains, the calculated absorption spectra yield maximum photon-absorption coefficients of about 10 cm in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure-property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.
Abstract Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I4¯ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod‐shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I 4¯ and monoclinic P1c1 Cu2ZnSnSe4). The heterojunction between these two semiconductor domains exhibits a staggered type‐II band alignment, facilitating the separation of photogenerated electron‐hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor “Schottky”‐junctions. For the two photo‐absorbing domains, the calculated absorption spectra yield maximum photon‐absorption coefficients of about 105 cm−1 in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure‐property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications. Four identified domains within tetrapod‐shaped CZTSe nanocrystals have distinct electronic properties. Interestingly, the 3D periodic structure of only two domains exhibits a band gap. Moreover, the computationally predicted type‐II band alignment between these two semiconductor domains facilitates electron‐hole pair separation and enhances solar power conversion efficiency. These insights enable optimizing the design of next‐generation CZTSe‐based solar cells and optoelectronic arrays.
Author Vandichel, Matthias
Ren, Huan
Ngoipala, Apinya
Ryan, Kevin M.
AuthorAffiliation 2 Department of Biological Sciences National University of Singapore 16 Science Drive 4 Singapore 117543 Singapore
1 Department of Chemical Sciences and Bernal Institute University of Limerick Limerick V94 TP9X Ireland
AuthorAffiliation_xml – name: 1 Department of Chemical Sciences and Bernal Institute University of Limerick Limerick V94 TP9X Ireland
– name: 2 Department of Biological Sciences National University of Singapore 16 Science Drive 4 Singapore 117543 Singapore
Author_xml – sequence: 1
  givenname: Apinya
  orcidid: 0000-0002-8463-964X
  surname: Ngoipala
  fullname: Ngoipala, Apinya
  organization: University of Limerick
– sequence: 2
  givenname: Huan
  orcidid: 0000-0002-4030-6210
  surname: Ren
  fullname: Ren, Huan
  organization: National University of Singapore
– sequence: 3
  givenname: Kevin M.
  orcidid: 0000-0003-3670-8505
  surname: Ryan
  fullname: Ryan, Kevin M.
  organization: University of Limerick
– sequence: 4
  givenname: Matthias
  orcidid: 0000-0003-1592-0726
  surname: Vandichel
  fullname: Vandichel, Matthias
  email: matthias.vandichel@ul.ie
  organization: University of Limerick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38889237$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEQtVARLaFXjmglLlwS_Llrn1CU8lGpgkopHLhYttduHG3Wqe1NlRs_gd_IL8Ft0qqthPBlrPF7b55n5iU46ENvAXiN4ARBiN-rdpMmGGIKMWL0GTjCSPAx4ZQePLgfguOUlhBCxEhDEX8BDgnnXGDSHIF-nuNg8hDtn1-_z2NY25i31SzEaDuVfehT5ftq9vNibquTsFK-JK59XpTk3K68CX1b6CFWX1UfTNymrLpUqVSdL0IOm9Bl5U011SlEbWN6BZ67ArDH-zgC3z99vJh9GZ99-3w6m56NDasFHiuCNWuNYCUo7RBrNbSkFnX5K2OaW964hrawaYirqaPOCqNrIixmrWPEkRE43em2QS3lOvqVilsZlJe3iRAvpYrZm85KQwTRHFoINaeOGY1oaSZqXYuwxrQuWh92WutBr2xrbJ-j6h6JPn7p_UJeho1EiBTPjBWFd3uFGK4Gm7Jc-WRs16nehiFJAhvYiIaUMwJvn0CXYYh96VVBCQZRLSgvqDcPLd17uZtrAdAdwMSQUrROGp9v51kc-k4iKG82SN5skLzfoEKbPKHdKf-TsK9z7Tu7_Q9aTk9-zDktBv8CM6baqg
CitedBy_id crossref_primary_10_1021_acs_nanolett_5c03311
crossref_primary_10_1021_acs_nanolett_5c02739
Cites_doi 10.1103/PhysRevB.73.045112
10.1038/s41560-018-0206-0
10.1002/pssr.201409520
10.3389/fchem.2018.00005
10.1021/acs.chemmater.8b03398
10.1103/PhysRevMaterials.4.054602
10.1103/PhysRevB.94.235418
10.1016/j.rser.2016.12.028
10.1016/j.scitotenv.2021.150924
10.1002/aenm.202102730
10.1039/C7CP02192E
10.1021/acs.chemmater.0c01663
10.1002/adma.200501717
10.1016/j.mssp.2021.106214
10.1039/C9SE00040B
10.1063/1.3600060
10.1021/acs.chemrev.0c00831
10.1103/PhysRevB.82.205204
10.1021/acsaem.0c01146
10.1038/nmat3789
10.1016/j.matchemphys.2015.06.034
10.1016/j.spmi.2018.04.003
10.1088/2515-7655/abc07b
10.1038/srep00952
10.1021/ja909498c
10.1002/pssb.201046303
10.1021/nn303815z
10.1039/C7TA01090G
10.1021/acsami.9b09813
10.1557/s43578-022-00593-3
10.1039/C5CS00067J
10.1021/acs.jpcc.6b12613
10.1002/adfm.201807672
10.1021/jz101565j
10.1038/s41467-023-39127-8
10.1002/pip.1078
10.15863/TAS.2013.09.5.1
10.1021/acsami.5b01617
10.1039/C5RA00477B
10.1021/ct400235w
10.1038/s41524-019-0160-9
10.1016/j.commatsci.2021.110456
10.1002/pip.2741
10.1063/1.3074499
10.1021/cm2031812
10.1016/j.tsf.2012.10.078
10.1021/acs.chemrev.6b00376
10.1103/PhysRevLett.91.266401
10.1088/0022-3727/41/20/205305
10.1063/1.4858400
10.1016/j.tsf.2004.11.024
10.1088/1367-2630/10/6/063020
10.1063/1.4704191
10.1063/1.3457172
10.1016/j.solener.2021.04.043
10.1039/c0ce00779j
10.1063/1.2955460
10.1002/pssa.200723144
10.1103/PhysRevB.73.205421
10.1103/PhysRevB.87.245203
10.1002/pssc.200881236
10.1039/D2SC01715F
10.1021/nn3052296
10.1039/c2jm33809b
10.1016/j.tsf.2008.11.002
10.1038/s41560-023-01251-6
10.1021/acs.nanolett.3c02810
10.1088/2515-7655/ab29a0
10.1002/aenm.201401372
10.1017/CBO9781139165037
10.1016/j.solener.2020.07.065
10.1103/PhysRevB.87.155206
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH
– notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1002/advs.202402154
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Collection (ProQuest)
Research Library (ProQuest)
Science Database
Research Library (Corporate)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (WRLC)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_c393b80e00b84f5cb141541dfd12b246
PMC11336955
38889237
10_1002_advs_202402154
ADVS8492
Genre article
Journal Article
GrantInformation_xml – fundername: Irish Research Council (IRC)
  funderid: GOIPG/2021/867
– fundername: Science Foundation Ireland (SFI)
  funderid: 12/RC/2275_P2
– fundername: Irish Research Council (IRC)
  grantid: GOIPG/2021/867
– fundername: Science Foundation Ireland (SFI)
  grantid: 12/RC/2275_P2
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AFPKN
AGXDD
AIDQK
AIDYY
CITATION
EJD
IGS
PHGZM
PHGZT
NPM
3V.
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c5692-a32b5dc952b5abf15db0e369602455b8e87f74d0773f64f4fe9cb639e25df53f3
IEDL.DBID BENPR
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001250153700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2198-3844
IngestDate Fri Oct 03 12:50:51 EDT 2025
Tue Nov 04 02:05:30 EST 2025
Fri Sep 05 11:58:33 EDT 2025
Sat Jul 26 02:32:57 EDT 2025
Mon Jul 21 05:50:15 EDT 2025
Sat Nov 29 07:24:00 EST 2025
Tue Nov 18 22:31:03 EST 2025
Wed Jan 22 17:14:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords structure‐optical property relationships
material interfaces
CZTSe nanocrystals
DFT calculations
Language English
License Attribution
2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5692-a32b5dc952b5abf15db0e369602455b8e87f74d0773f64f4fe9cb639e25df53f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3670-8505
0000-0002-8463-964X
0000-0003-1592-0726
0000-0002-4030-6210
OpenAccessLink https://www.proquest.com/docview/3095016948?pq-origsite=%requestingapplication%
PMID 38889237
PQID 3095016948
PQPubID 4365299
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_c393b80e00b84f5cb141541dfd12b246
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11336955
proquest_miscellaneous_3070797333
proquest_journals_3095016948
pubmed_primary_38889237
crossref_citationtrail_10_1002_advs_202402154
crossref_primary_10_1002_advs_202402154
wiley_primary_10_1002_advs_202402154_ADVS8492
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Advanced science
PublicationTitleAlternate Adv Sci (Weinh)
PublicationYear 2024
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 2018 2017 2018 2021; 6 5 30 221
2023 2022; 14 13
2007; 204
2019; 5
2006; 73
2015 2009 2010 2009; 5 1165 82 6
2006 2022; 73 37
2012
2009 2010 2008 2019 2005 2009; 94 97 41 1 480 517
2019; 11
2023; 8
2010 2012 2013 2011 2012; 132 24 7 13 111
2020 2024; 32 24
2015 2018; 5 3
2011; 98
2013; 5
2015; 7
2017 2017; 117 70
2011; 248
2011 2013 2015 2013 2020 2003; 19 535 9 12 207 91
2022 2011 2008 2013; 137 2 129 9
2012; 2
2020; 4
2014 2012; 1 22
2020; 3
2015 2018; 162 119
2015 2020; 44 121
2006 2012; 18 6
2008 2016; 10 94
2021 2005; 194
2022; 12
2017 2013 2013; 19 87 87
2019; 29
2022 2017; 806 121
2019 2016; 3 24
e_1_2_7_3_4
e_1_2_7_5_2
e_1_2_7_3_3
e_1_2_7_5_1
e_1_2_7_3_2
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_3_6
e_1_2_7_3_5
e_1_2_7_7_1
e_1_2_7_17_4
e_1_2_7_17_3
e_1_2_7_19_1
e_1_2_7_17_2
e_1_2_7_17_1
e_1_2_7_1_2
e_1_2_7_11_5
e_1_2_7_15_1
e_1_2_7_1_1
e_1_2_7_11_4
e_1_2_7_11_3
e_1_2_7_13_1
e_1_2_7_11_2
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_26_2
e_1_2_7_28_1
e_1_2_7_28_2
Maeda T. (e_1_2_7_21_2) 2009; 1165
e_1_2_7_25_2
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_21_4
e_1_2_7_21_3
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_35_2
e_1_2_7_2_5
e_1_2_7_6_1
e_1_2_7_2_4
e_1_2_7_2_3
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_4
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_2_6
e_1_2_7_6_2
e_1_2_7_18_3
e_1_2_7_18_2
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_10_2
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_29_2
e_1_2_7_30_1
e_1_2_7_24_2
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_20_1
e_1_2_7_36_1
References_xml – volume: 204
  start-page: 3373
  year: 2007
  publication-title: Physica Status Solidi
– volume: 10 94
  year: 2008 2016
  publication-title: New J. Phys. Phys. Rev. B
– volume: 194
  year: 2021 2005
  publication-title: Comput. Mater. Sci.
– volume: 132 24 7 13 111
  start-page: 4514 562 1454 2222
  year: 2010 2012 2013 2011 2012
  publication-title: J. Am. Chem. Soc. Chem. Mater. ACS Nano CrystEngComm J. Appl. Phys.
– volume: 94 97 41 1 480 517
  start-page: 426 2455
  year: 2009 2010 2008 2019 2005 2009
  publication-title: Appl. Phys. Lett. Appl. Phys. Lett. J. Phys. D: Appl. Phys. J. Phys.: Energy Thin Solid Films Thin Solid Films
– volume: 117 70
  start-page: 5865 1286
  year: 2017 2017
  publication-title: Chem. Rev. Renew. Sustain. Energy Rev.
– volume: 2
  start-page: 952
  year: 2012
  publication-title: Sci. Rep.
– volume: 7
  start-page: 9752
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 19 535 9 12 207 91
  start-page: 894 362 28 1107 1146
  year: 2011 2013 2015 2013 2020 2003
  publication-title: Prog. Photovoltaics Thin Solid Films Physica Status Solidi (RRL)–Rapid Res. Lett. Nat. Mater. Sol. Energy Phys. Rev. Lett.
– volume: 44 121
  start-page: 8714 3186
  year: 2015 2020
  publication-title: Chem. Soc. Rev. Chem. Rev.
– volume: 162 119
  start-page: 608 59
  year: 2015 2018
  publication-title: Mater. Chem. Phys. Superlattices Microstruct.
– volume: 19 87 87
  year: 2017 2013 2013
  publication-title: Phys. Chem. Chem. Phys. Phys. Rev. B Phys. Rev. B
– volume: 32 24
  start-page: 7254 2125
  year: 2020 2024
  publication-title: Chem. Mater. Nano Lett.
– volume: 248
  start-page: 767
  year: 2011
  publication-title: Physica Status Solidi
– volume: 3
  year: 2020
  publication-title: J. Phys.: Energy
– volume: 73 37
  start-page: 1859
  year: 2006 2022
  publication-title: Phys. Rev. B J. Mater. Res.
– volume: 4
  year: 2020
  publication-title: Phys. Rev. Mater.
– volume: 5 3
  start-page: 764
  year: 2015 2018
  publication-title: Adv. Energy Mater. Nat. Energy
– volume: 806 121
  start-page: 3648
  year: 2022 2017
  publication-title: Sci. Total Environ. J. Phys. Chem. C
– volume: 8
  start-page: 526
  year: 2023
  publication-title: Nat. Energy
– year: 2012
– volume: 137 2 129 9
  start-page: 212 2950
  year: 2022 2011 2008 2013
  publication-title: Mater. Sci. Semicond. Process. J. Phys. Chem. Lett. J. Chem. Phys. J. Chem. Theory Comput.
– volume: 5
  start-page: 1
  year: 2013
  publication-title: Int. J. Theor. Appl. Sci.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3 24
  start-page: 1365 879
  year: 2019 2016
  publication-title: Sustainable Energy Fuels Prog. Photovoltaics
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 73
  year: 2006
  publication-title: Phys. Rev. B
– volume: 5
  start-page: 19
  year: 2019
  publication-title: npj Comput. Mater.
– volume: 6 5 30 221
  start-page: 5 6606 7860 314
  year: 2018 2017 2018 2021
  publication-title: Front. Chem. J. Mater. Chem. A Chem. Mater. Sol. Energy
– volume: 98
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 14 13
  start-page: 3394 5432
  year: 2023 2022
  publication-title: Nat. Commun. Chem. Sci.
– volume: 18 6
  start-page: 789
  year: 2006 2012
  publication-title: Adv. Mater. ACS Nano
– volume: 1 22
  year: 2014 2012
  publication-title: Appl. Phys. Rev. J. Mater. Chem.
– volume: 12
  year: 2022
  publication-title: Adv. Energy Mater.
– volume: 5 1165 82 6
  start-page: 1165 1261
  year: 2015 2009 2010 2009
  publication-title: RSC Adv. MRS Online Proc. Lib. (OPL) Phys. Rev. B Physica Status Solidi C
– ident: e_1_2_7_31_1
  doi: 10.1103/PhysRevB.73.045112
– ident: e_1_2_7_35_2
  doi: 10.1038/s41560-018-0206-0
– ident: e_1_2_7_2_3
  doi: 10.1002/pssr.201409520
– ident: e_1_2_7_6_1
  doi: 10.3389/fchem.2018.00005
– ident: e_1_2_7_6_3
  doi: 10.1021/acs.chemmater.8b03398
– ident: e_1_2_7_14_1
  doi: 10.1103/PhysRevMaterials.4.054602
– ident: e_1_2_7_28_2
  doi: 10.1103/PhysRevB.94.235418
– ident: e_1_2_7_1_2
  doi: 10.1016/j.rser.2016.12.028
– ident: e_1_2_7_26_1
  doi: 10.1016/j.scitotenv.2021.150924
– ident: e_1_2_7_36_1
  doi: 10.1002/aenm.202102730
– ident: e_1_2_7_18_1
  doi: 10.1039/C7CP02192E
– ident: e_1_2_7_10_1
  doi: 10.1021/acs.chemmater.0c01663
– ident: e_1_2_7_34_1
  doi: 10.1002/adma.200501717
– ident: e_1_2_7_17_1
  doi: 10.1016/j.mssp.2021.106214
– ident: e_1_2_7_5_1
  doi: 10.1039/C9SE00040B
– ident: e_1_2_7_22_1
  doi: 10.1063/1.3600060
– ident: e_1_2_7_33_2
  doi: 10.1021/acs.chemrev.0c00831
– ident: e_1_2_7_21_3
  doi: 10.1103/PhysRevB.82.205204
– ident: e_1_2_7_8_1
  doi: 10.1021/acsaem.0c01146
– ident: e_1_2_7_2_4
  doi: 10.1038/nmat3789
– ident: e_1_2_7_20_1
  doi: 10.1016/j.matchemphys.2015.06.034
– ident: e_1_2_7_30_1
– ident: e_1_2_7_20_2
  doi: 10.1016/j.spmi.2018.04.003
– ident: e_1_2_7_16_1
  doi: 10.1088/2515-7655/abc07b
– ident: e_1_2_7_9_1
  doi: 10.1038/srep00952
– ident: e_1_2_7_11_1
  doi: 10.1021/ja909498c
– ident: e_1_2_7_15_1
  doi: 10.1002/pssb.201046303
– ident: e_1_2_7_34_2
  doi: 10.1021/nn303815z
– ident: e_1_2_7_6_2
  doi: 10.1039/C7TA01090G
– ident: e_1_2_7_7_1
  doi: 10.1021/acsami.9b09813
– ident: e_1_2_7_24_2
  doi: 10.1557/s43578-022-00593-3
– ident: e_1_2_7_33_1
  doi: 10.1039/C5CS00067J
– ident: e_1_2_7_26_2
  doi: 10.1021/acs.jpcc.6b12613
– ident: e_1_2_7_27_1
  doi: 10.1002/adfm.201807672
– ident: e_1_2_7_17_2
  doi: 10.1021/jz101565j
– ident: e_1_2_7_25_1
  doi: 10.1038/s41467-023-39127-8
– ident: e_1_2_7_2_1
  doi: 10.1002/pip.1078
– ident: e_1_2_7_12_1
  doi: 10.15863/TAS.2013.09.5.1
– ident: e_1_2_7_19_1
  doi: 10.1021/acsami.5b01617
– ident: e_1_2_7_21_1
  doi: 10.1039/C5RA00477B
– ident: e_1_2_7_17_4
  doi: 10.1021/ct400235w
– ident: e_1_2_7_23_1
  doi: 10.1038/s41524-019-0160-9
– ident: e_1_2_7_32_1
  doi: 10.1016/j.commatsci.2021.110456
– ident: e_1_2_7_5_2
  doi: 10.1002/pip.2741
– ident: e_1_2_7_3_1
  doi: 10.1063/1.3074499
– volume: 1165
  start-page: 1165
  year: 2009
  ident: e_1_2_7_21_2
  publication-title: MRS Online Proc. Lib. (OPL)
– ident: e_1_2_7_11_2
  doi: 10.1021/cm2031812
– ident: e_1_2_7_2_2
  doi: 10.1016/j.tsf.2012.10.078
– ident: e_1_2_7_1_1
  doi: 10.1021/acs.chemrev.6b00376
– ident: e_1_2_7_2_6
  doi: 10.1103/PhysRevLett.91.266401
– ident: e_1_2_7_3_3
  doi: 10.1088/0022-3727/41/20/205305
– ident: e_1_2_7_29_1
  doi: 10.1063/1.4858400
– ident: e_1_2_7_3_5
  doi: 10.1016/j.tsf.2004.11.024
– ident: e_1_2_7_28_1
  doi: 10.1088/1367-2630/10/6/063020
– ident: e_1_2_7_11_5
  doi: 10.1063/1.4704191
– ident: e_1_2_7_3_2
  doi: 10.1063/1.3457172
– ident: e_1_2_7_6_4
  doi: 10.1016/j.solener.2021.04.043
– ident: e_1_2_7_11_4
  doi: 10.1039/c0ce00779j
– ident: e_1_2_7_17_3
  doi: 10.1063/1.2955460
– ident: e_1_2_7_13_1
  doi: 10.1002/pssa.200723144
– ident: e_1_2_7_24_1
  doi: 10.1103/PhysRevB.73.205421
– ident: e_1_2_7_18_3
  doi: 10.1103/PhysRevB.87.245203
– ident: e_1_2_7_21_4
  doi: 10.1002/pssc.200881236
– ident: e_1_2_7_25_2
  doi: 10.1039/D2SC01715F
– ident: e_1_2_7_11_3
  doi: 10.1021/nn3052296
– ident: e_1_2_7_29_2
  doi: 10.1039/c2jm33809b
– ident: e_1_2_7_3_6
  doi: 10.1016/j.tsf.2008.11.002
– ident: e_1_2_7_4_1
  doi: 10.1038/s41560-023-01251-6
– ident: e_1_2_7_10_2
  doi: 10.1021/acs.nanolett.3c02810
– ident: e_1_2_7_3_4
  doi: 10.1088/2515-7655/ab29a0
– ident: e_1_2_7_35_1
  doi: 10.1002/aenm.201401372
– ident: e_1_2_7_32_2
  doi: 10.1017/CBO9781139165037
– ident: e_1_2_7_2_5
  doi: 10.1016/j.solener.2020.07.065
– ident: e_1_2_7_18_2
  doi: 10.1103/PhysRevB.87.155206
SSID ssj0001537418
Score 2.3327808
Snippet Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains demonstrate...
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified Cu α Zn β Sn γ Se δ (CZTSe) domains...
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified Cu Zn Sn Se (CZTSe) domains demonstrate...
Abstract Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuαZnβSnγSeδ (CZTSe) domains...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2402154
SubjectTerms CZTSe nanocrystals
DFT calculations
Efficiency
material interfaces
Nanocrystals
Optical properties
Semiconductors
structure‐optical property relationships
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9VAFB6kuHAj1me0ygiCughN5pFMlvVqcSHlwq1S3AzzpIGaSHJb6M6f4G_0l3hOkhvuRaUbV4HJIQznMeebmZPvEPLKGUxSuUkDCyEVhYlp5ZyFXUoBeI57a4cuCl8-lScn6uysWm61-sKasJEeeFTcoeMVtyoLWWaViNLZHFKOyH30ObNMDGTbgHq2NlPj_8EcaVk2LI0ZOzT-Ctm58TIhl2InCw1k_X9DmH8WSm4D2CEDHd8jdyfoSI_GKe-TW6G5T_an4Ozpm4lB-u0D0qwGVtjLLvz68XOJx-3d-pousBHHVPpG64Yuvp6uAn3ffjM1DOCBLAyusFi-bZAFtu0orL2t664BQV701PR0ed6uW1jQ1qZ29Mj2bWcBPj4kn48_nC4-plNjhdTJomKp4cxK7yoJD2NjLr3NAjb2w3tYaVVQZSyFz8qSx0JEEUPlLECZwKSPkkf-iOw1bROeEMoy8AFXCQQiIuZGKZl5sIuXTBUicwlJN4rWbmIdx-YXF3rkS2YaDaNnwyTk9Sz_feTb-KfkO7TbLIU82cMAeI-evEff5D0JOdhYXU_B22sOsBNJaoRKyMv5NYQd3qWYJrSXKIPUgiXnPCGPRyeZZ8KVUoCby4SoHffZmerum6Y-H6i985yDHaQEtQ2edoMONGCXlRIVe_o_lPGM3MEvj-WNB2QPXDU8J7fd1bruuxdDgP0GWPwrgw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagcOAClN9AQUZCAg5RE_8kzrEsVBxQtdIWVHGJbMemkUqMkm2l3ngEnpEnYSbJpo0AIcQpkj2KnPHM-PPY-YaQ51bjIpXq2DHnYpFpHxfWGtilZIDneGVMX0Xh4_v84EAdHRXLS3_xD_wQU8INPaOP1-jg2nS7F6ShujpDum08HQAYcJVcS1OusHgDE8uLLIvkSM-CFeZgdx1zJcSGuTFhu_NXzFamnsD_d6jz18uTl0Ftvyrt3_r_77lNbo6IlO4NJrRNrrjmDtkefb6jL0di6ld3SbPqyWZPW_fj2_clZvHb9TldYH2P8UYdrRu6-HS4cvRN-KJraMA8LzSu8A5-aJBcNrQUQnqw7TkA05OO6o4uj8M6QJxc69rSPdOF1gAqvUc-7L89XLyLx3oNsZVZwWLNmZGVLSQ8tPGprEzisF4gHu9Ko5zKfS6qJM-5z4QX3hXWAEJyTFZecs_vk60mNO4hoSwB07KFQHwjfKqVkkllmKgkU5lIbETizVyVdiQzx5oaJ-VAw8xKVGc5qTMiLyb5rwONxx8lX-PUT1JIv903hPZzOXpzaXnBjUpckhglvLQmBRwk0spXKYNRZhHZ2RhOOcaEruSAZpH7RqiIPJu6wZvxiEY3LpyiDDIW5pzziDwY7GwaCVdKARzPI6JmFjgb6rynqY97xnBwDZgHKUFtvQn-RQclQKKVEgV79I_yj8kNbBwuSO6QLbBK94Rct2frumuf9q75E47HPNc
  priority: 102
  providerName: Wiley-Blackwell
Title Structure‐Property Correlations in CZTSe Domains within Semiconductor Nanocrystals as Photovoltaic Absorbers
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202402154
https://www.ncbi.nlm.nih.gov/pubmed/38889237
https://www.proquest.com/docview/3095016948
https://www.proquest.com/docview/3070797333
https://pubmed.ncbi.nlm.nih.gov/PMC11336955
https://doaj.org/article/c393b80e00b84f5cb141541dfd12b246
Volume 11
WOSCitedRecordID wos001250153700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2O
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: PIMPY
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: M2P
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: WIN
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (WRLC)
  customDbUrl:
  eissn: 2198-3844
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001537418
  issn: 2198-3844
  databaseCode: 24P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELboLgcuQHmmlFWQkIBD1MSPxDmhdmlFJbpEbIGllyh-hK7UJiXZVuqNn8Bv5Jcwk_VuWfE6cHEU25Fsz3j8ZTz6hpCnusBDKioCS60NeFyUQaq1gr-UGPAcM0p1WRQ-vElGIzmZpJlzuLUurHJhEztDbWqNPvItBlgAmUO4fHn2JcCsUXi76lJorJE-MpXxHunv7I6yd1deFsGQnmXB1hjSrcJcIEs3XipEgq-cRh1p_--Q5q8Bkz8D2e4k2rv1v3O4TW46DOpvz5VmnVyz1R2y7nZ56z93VNQv7pJq3NHLnjf2-9dvGfrtm9mlP8SMHi6Gzp9W_vDocGz9V_VpMYUK9OxC5Rij7usK6WTrxgcjXuvmEqDoSesXrZ8d17MaLOOsmGp_W7V1owCH3iPv93YPh68Dl6Eh0CJOaVAwqoTRqYBHocpIGBVazBCIF7pCSSuTMuEmTBJWxrzkpU21AkxkqTClYCW7T3pVXdmHxKchKJNOOSIaXkaFlCI0inIjqIx5qD0SLCSVa0dfjlk0TvI58TLNUbL5UrIeebbsfzYn7vhjzx0U_LIXEm53FXXzOXf7N9csZUqGNgyV5KXQKgLkwyNTmojCKGOPbC5Enjsr0OZX8vbIk2Uz7F-8lCkqW59jH-QoTBhjHnkw17LlSJiUEgB44hG5on8rQ11tqabHHUd4FDGQgxCwbJ2q_mMNcgBBY8lTuvH3eTwiN_CbeQTkJumBEtrH5Lq-mE3bZkDWKM-gTCZy4HbioHNyQHlA33YltPez_YPsE7x93B_9AMwOQrg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VFAkuQPk1FFgkEHCwau-PvT4gVFKqRk2jSAmo5WK86zWNVOxip0W58Qg8CQ_FkzBjOykRf6ceOEVar6P1-puZb3fW3xDy2CQYpPzEtcxaVwRJ5kbGaFilBMDneKp1XUXhbT8cDNT-fjRcId_m38Lgscq5T6wddVoY3CPf4MAFUDlEqJfHn1ysGoXZ1XkJjQYWu3b2GZZs1YveFrzfJ4xtvx53d9y2qoBrZBAxN-FMy9REEn4Snfky1Z7FqnaYhJRaWRVmoUi9MORZIDKR2choiOOWyTSTPOPwvxfIqgCwqw5ZHfb2hgdnuzqSoxzMXB3SYxtJeoqq4JjE8KVYin51kYDfMdtfD2j-TJzryLd99X-bs2vkSsux6WZjFGtkxebXyVrrxSr6rJXafn6D5KNaPvektN-_fB1iXqKczmgXK5a0ZwTpJKfdd-ORpVvFx2QCDbhzDY0j_KqgyFEutygpBKnClDOg2kcVTSo6PCymBXj-aTIxdFNXRamBZ98kb87luW-RTl7k9g6hzANjMZFAxiYyP1FKeqlmIpVMBcIzDnHnyIhNK8-OVUKO4kZYmsWIpHiBJIc8XfQ_boRJ_tjzFQJt0QsFxeuGovwQt_4pNjziWnnW87QSmTTaB2Yn_DRLfQajDByyPodY3Hq5Kj7Dl0MeLS6Df8KkU5Lb4gT7oAZjyDl3yO0G1YuRcKUULDBCh6glvC8NdflKPjmsNdB9n8N7kBKmrTaNf8xBDCRvpETE7v79OR6SSzvjvX7c7w1275HLeH9z2nOddACQ9j65aE6nk6p80Fo-Je_P23B-AKJQmFQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VghAXoDwNBRYJBBys2Puw1weESkJE1VIipaCKi_Gud2mkYhc7LcqNn8Dv4efwS5ixnZSI16kHTpHW42i9nse3O-NvCHlgMgxSYeZbZq0vosz5iTEadikR4Dmea910UXi7He_sqL29ZLRCvs2_hcGyyrlPbBx1Xho8I-9xwALIHCJUz3VlEaPB8NnhJx87SGGmdd5Oo1WRLTv7DNu3-unmAN71Q8aGL3b7L_2uw4BvZJQwP-NMy9wkEn4y7UKZ68BihztMSEqtrIpdLPIgjrmLhBPOJkZDTLdM5k5yx-F_z5CzMQgjb_8r9vrkfEdyJIaZ80QGrJflx8gPjumMUIqlONi0C_gdxv21VPNnCN3EwOGl_3n1LpOLHfKmG62prJEVW1wha51vq-njjoD7yVVSjBtS3aPKfv_ydYTZimo6o33sY9JVDtJJQfvvdseWDsqP2QQG8DwbBsf4rUFZIIluWVEIXaWpZgDAD2qa1XS0X05LiAfTbGLohq7LSgP6vkbenMpzXyerRVnYm4SyAEzIJAJxnHBhppQMcs1ELpmKRGA84s-1JDUdaTv2DjlIW7pplqJWpQut8sijhfxhS1fyR8nnqHQLKaQZbwbK6kPaea3U8IRrFdgg0Eo4aXQIeE-EuctDBrOMPLI-V7e08311eqJrHrm_uAxeC1NRWWHLI5RBZsaYc-6RG62GL2bClVKw7Yg9opZ0f2mqy1eKyX7DjB6GHN6DlLBsjZn8Yw1SgH5jJRJ26-_PcY-cB2tJtzd3tm6TC3h7WwK6TlZBH-0dcs4cTyd1dbdxAZS8P22r-QFMNJ-O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure-Property+Correlations+in+CZTSe+Domains+within+Semiconductor+Nanocrystals+as+Photovoltaic+Absorbers&rft.jtitle=Advanced+science&rft.au=Ngoipala%2C+Apinya&rft.au=Ren%2C+Huan&rft.au=Ryan%2C+Kevin+M&rft.au=Vandichel%2C+Matthias&rft.date=2024-08-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=11&rft.issue=31&rft.spage=e2402154&rft_id=info:doi/10.1002%2Fadvs.202402154&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon