Improved machine learning algorithm for predicting ground state properties

Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predi...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 15; no. 1; pp. 895 - 8
Main Authors: Lewis, Laura, Huang, Hsin-Yuan, Tran, Viet T., Lehner, Sebastian, Kueng, Richard, Preskill, John
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 30.01.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n -qubit gapped local Hamiltonian after learning from only O ( log ( n ) ) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require O ( n c ) data for a large constant c . Furthermore, the training and prediction time of the proposed ML model scale as O ( n log n ) in the number of qubits n . Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset. Recent work proposed a machine learning algorithm for predicting ground state properties of quantum many-body systems that outperforms any non-learning classical algorithm but requires extensive training data. Lewis et al. present an improved algorithm with exponentially reduced training data requirements.
AbstractList Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only $${{{\mathcal{O}}}(\log (n))$$ O(log(n)) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require $${{{\mathcal{O}}}({n}^{c})$$ O(nc) data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as $${{{\mathcal{O}}}(n\log n)$$ O(nlogn) in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset. Recent work proposed a machine learning algorithm for predicting ground state properties of quantum many-body systems that outperforms any non-learning classical algorithm but requires extensive training data. Lewis et al. present an improved algorithm with exponentially reduced training data requirements.
Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n -qubit gapped local Hamiltonian after learning from only O ( log ( n ) ) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require O ( n c ) data for a large constant c . Furthermore, the training and prediction time of the proposed ML model scale as O ( n log n ) in the number of qubits n . Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset. Recent work proposed a machine learning algorithm for predicting ground state properties of quantum many-body systems that outperforms any non-learning classical algorithm but requires extensive training data. Lewis et al. present an improved algorithm with exponentially reduced training data requirements.
Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only [Formula: see text] data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require [Formula: see text] data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as [Formula: see text] in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.
Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n -qubit gapped local Hamiltonian after learning from only $${{{\mathcal{O}}}(\log (n))$$ O ( log ( n ) ) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require $${{{\mathcal{O}}}({n}^{c})$$ O ( n c ) data for a large constant c . Furthermore, the training and prediction time of the proposed ML model scale as $${{{\mathcal{O}}}(n\log n)$$ O ( n log n ) in the number of qubits n . Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.
Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only [Formula: see text] data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require [Formula: see text] data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as [Formula: see text] in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only [Formula: see text] data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require [Formula: see text] data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as [Formula: see text] in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.
Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only $\mathcal{O}$(log(n)) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require $\mathcal{O}$(nc) data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as $\mathcal{O}$(n log n) in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.
Abstract Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only $${{{\mathcal{O}}}(\log (n))$$ O ( log ( n ) ) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require $${{{\mathcal{O}}}({n}^{c})$$ O ( n c ) data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as $${{{\mathcal{O}}}(n\log n)$$ O ( n log n ) in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.
Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML) algorithm for predicting ground state properties with an inductive bias encoding geometric locality. The proposed ML model can efficiently predict ground state properties of an n-qubit gapped local Hamiltonian after learning from only O(log(n)) data about other Hamiltonians in the same quantum phase of matter. This improves substantially upon previous results that require O(nc) data for a large constant c. Furthermore, the training and prediction time of the proposed ML model scale as O(nlogn) in the number of qubits n. Numerical experiments on physical systems with up to 45 qubits confirm the favorable scaling in predicting ground state properties using a small training dataset.Recent work proposed a machine learning algorithm for predicting ground state properties of quantum many-body systems that outperforms any non-learning classical algorithm but requires extensive training data. Lewis et al. present an improved algorithm with exponentially reduced training data requirements.
ArticleNumber 895
Author Lehner, Sebastian
Tran, Viet T.
Kueng, Richard
Preskill, John
Huang, Hsin-Yuan
Lewis, Laura
Author_xml – sequence: 1
  givenname: Laura
  surname: Lewis
  fullname: Lewis, Laura
  organization: California Institute of Technology, University of Cambridge
– sequence: 2
  givenname: Hsin-Yuan
  orcidid: 0000-0001-5317-2613
  surname: Huang
  fullname: Huang, Hsin-Yuan
  email: hsinyuan@caltech.edu
  organization: California Institute of Technology, Massachusetts Institute of Technology, Google Quantum AI
– sequence: 3
  givenname: Viet T.
  surname: Tran
  fullname: Tran, Viet T.
  organization: Johannes Kepler University
– sequence: 4
  givenname: Sebastian
  surname: Lehner
  fullname: Lehner, Sebastian
  organization: Johannes Kepler University
– sequence: 5
  givenname: Richard
  surname: Kueng
  fullname: Kueng, Richard
  organization: Johannes Kepler University
– sequence: 6
  givenname: John
  surname: Preskill
  fullname: Preskill, John
  organization: California Institute of Technology, AWS Center for Quantum Computing
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38291046$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2471829$$D View this record in Osti.gov
BookMark eNp9Uk1v1DAQjVAR_aB_gAOK4MIlYDt2Yp9QVUFZVIkLnC3HHme9Suxgeyvx7_E2pbQ91BdbM2_evBm_0-rIBw9V9Qajjxi1_FOimHZ9gwhtKEOYNv2L6oQgihvck_bowfu4Ok9ph8ppBeaUvqqOW04ERrQ7qb5v5iWGGzD1rPTWeagnUNE7P9ZqGkN0eTvXNsR6iWCczofEGMPemzpllaHEwwIxO0ivq5dWTQnO7-6z6tfXLz8vvzXXP642lxfXjWYdz40VzA4WW2UAOLSsMz1memiBY66QMJyZjrGinuKuR7YTnHFACCwRgwVM2rNqs_KaoHZyiW5W8Y8MysnbQIijVEWQnkDyHmFhTIc0YVQTqwbUDgMSjGkmEOoL1-eVa9kPMxgNPkc1PSJ9nPFuK8dwIzHihFNCC8O7lSGk7GTSLoPe6uA96CwJ7XFZdQF9uGsTw-89pCxnlzRMk_IQ9kkSQRDrW8J5gb5_At2FffRloQWFhSgT9V1BvX2o-17wv48tALICdAwpRbD3EIzkwUByNZAsBpK3BpKHbfAnRWUclV04zO6m50vbtTSVPn6E-F_2M1V_AUWW2Mc
CitedBy_id crossref_primary_10_1088_2058_9565_addee9
crossref_primary_10_1016_j_psep_2024_04_118
crossref_primary_10_1088_2632_2153_adcb89
crossref_primary_10_1126_science_adv8590
crossref_primary_10_1103_PRXQuantum_5_010352
crossref_primary_10_1103_PRXQuantum_5_030338
crossref_primary_10_1021_acs_jpclett_4c03366
crossref_primary_10_1103_h1dx_ps5p
crossref_primary_10_1038_s41567_025_02781_4
crossref_primary_10_1116_5_0204409
crossref_primary_10_1103_hrgr_klw3
crossref_primary_10_1103_PhysRevApplied_22_054005
crossref_primary_10_1103_1nml_xjqw
crossref_primary_10_1103_PRXQuantum_6_020346
crossref_primary_10_1103_PhysRevResearch_6_033035
crossref_primary_10_1088_2058_9565_addffd
crossref_primary_10_1016_j_trechm_2024_06_008
crossref_primary_10_1038_s41467_025_58881_5
crossref_primary_10_1038_s41534_025_01038_5
crossref_primary_10_1103_PhysRevResearch_6_043280
crossref_primary_10_1038_s41467_024_51932_3
crossref_primary_10_1103_PhysRevB_111_014501
crossref_primary_10_1038_s41467_024_51439_x
crossref_primary_10_1080_15367967_2025_2534331
Cites_doi 10.1103/PhysRevB.96.195145
10.1137/080734479
10.1007/s00220-011-1380-0
10.1038/s41567-020-0932-7
10.1103/PhysRevB.59.R14157
10.1103/PhysRevB.48.10345
10.1021/acs.jctc.7b00577
10.1038/s41567-019-0512-x
10.21468/SciPostPhys.11.2.025
10.1103/PhysRevLett.104.030502
10.1137/0907087
10.1126/science.231.4738.555
10.1038/s41567-018-0048-5
10.1137/050626090
10.1007/BF00994018
10.1103/PhysRevB.94.195105
10.1126/science.abn7293
10.1126/science.aag2302
10.1038/s41467-019-12875-2
10.1103/PhysRevE.102.033301
10.1016/j.aop.2010.09.012
10.1126/science.abk3333
10.1038/nphys4037
10.1103/RevModPhys.71.1253
10.1103/PhysRevLett.69.2863
10.1038/nphys4035
10.1063/5.0021955
10.1214/009053604000000067
10.1103/RevModPhys.91.045002
10.1103/PhysRevLett.108.058301
10.1038/nature17658
10.1103/PhysRevB.96.205152
10.1103/PhysRevLett.121.255702
10.1103/PhysRevA.75.032321
10.1002/cpa.20042
10.1103/PhysRev.136.B864
10.1038/s41467-020-15724-9
10.1103/PhysRevLett.126.190505
10.1103/PhysRevB.72.045141
10.1103/PhysRevB.94.165134
10.1103/PhysRevLett.99.070502
10.1103/PhysRevLett.125.076402
10.18637/jss.v033.i01
10.1021/acs.jpca.2c05904
10.1103/PhysRevLett.125.200501
10.1103/RevModPhys.90.015002
10.1103/PhysRevA.96.042113
10.1103/PhysRevA.65.012322
10.1038/s42254-022-00535-2
10.48550/arXiv.2204.13691
10.1017/9781316417041
10.48550/arXiv.2212.06084
10.5281/zenodo.10154894
10.1038/s41534-023-00801-w
10.1007/s00220-023-04844-0
10.1103/PRXQuantum.4.040337
10.1038/s41467-021-27922-0
10.48550/arXiv.2204.10268
10.48550/arXiv.2211.16943
10.48550/arXiv.quant-ph/0001106
10.48550/arXiv.2004.04164
10.1111/j.2517-6161.1996.tb02080.x
10.48550/arXiv.2301.12946
10.1038/s41467-020-20314-w
10.1109/CVPR.2009.5206848
10.1109/FOCS52979.2021.00063
ContentType Journal Article
Copyright The Author(s) 2024. corrected publication 2024
2024. The Author(s).
The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024. corrected publication 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024
CorporateAuthor California Institute of Technology (CalTech), Pasadena, CA (United States)
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
– name: California Institute of Technology (CalTech), Pasadena, CA (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-024-45014-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
CrossRef
MEDLINE - Academic


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Proquest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_87019dd60c254c2fab03bb0955c59007
PMC10828424
2471829
38291046
10_1038_s41467_024_45014_7
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c568t-f95fbf1fadee8e356d715cb3e818a09d85d65520441670f69858e00ef29bfe123
IEDL.DBID M7P
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001163662700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Tue Oct 14 19:09:17 EDT 2025
Tue Nov 04 02:05:59 EST 2025
Mon May 12 02:34:12 EDT 2025
Fri Sep 05 06:26:21 EDT 2025
Sat Nov 29 15:00:28 EST 2025
Mon Jul 21 06:07:21 EDT 2025
Sat Nov 29 03:29:47 EST 2025
Tue Nov 18 21:36:31 EST 2025
Fri Feb 21 02:39:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-f95fbf1fadee8e356d715cb3e818a09d85d65520441670f69858e00ef29bfe123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
SC0020290; NA0003525; PHY-1733907
National Science Foundation (NSF)
ORCID 0000-0001-5317-2613
0000000153172613
OpenAccessLink https://www.proquest.com/docview/2919970176?pq-origsite=%requestingapplication%
PMID 38291046
PQID 2919970176
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_87019dd60c254c2fab03bb0955c59007
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10828424
osti_scitechconnect_2471829
proquest_miscellaneous_2920573288
proquest_journals_2919970176
pubmed_primary_38291046
crossref_primary_10_1038_s41467_024_45014_7
crossref_citationtrail_10_1038_s41467_024_45014_7
springer_journals_10_1038_s41467_024_45014_7
PublicationCentury 2000
PublicationDate 2024-01-30
PublicationDateYYYYMMDD 2024-01-30
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-30
  day: 30
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Qiao, Welborn, Anandkumar, Manby, Miller III (CR24) 2020; 153
Huang, Rubenstein (CR33) 2022; 127
Rodriguez-Nieva, Scheurer (CR23) 2019; 15
Daubechies, Defrise, De Mol (CR54) 2004; 57
Glasser, Pancotti, August, Rodriguez, Cirac (CR21) 2018; 8
CR37
White (CR7) 1993; 48
Deng, Li, Das Sarma (CR10) 2017; 96
Du (CR43) 2010; 104
Osborne (CR80) 2007; 75
van Nieuwenburg, Liu, Huber (CR15) 2017; 13
Torlai (CR18) 2018; 14
CR75
CR30
CR74
CR73
CR72
CR71
Carleo, Troyer (CR12) 2017; 355
Huang, Kueng, Preskill (CR76) 2021; 126
Carrasquilla, Melko (CR11) 2017; 13
Wang (CR16) 2016; 94
Huang (CR77) 2022; 376
White (CR64) 1992; 69
Tibshirani (CR46) 1996; 58
CR5
Childs, Farhi, Preskill (CR39) 2001; 65
Vargas-Hernández, Sous, Berciu, Krems (CR19) 2018; 121
Hohenberg, Kohn (CR1) 1964; 136
CR47
Ceperley, Alder (CR3) 1986; 231
CR44
Kohn (CR2) 1999; 71
White (CR6) 1992; 69
Efron, Hastie, Johnstone, Tibshirani (CR53) 2004; 32
CR83
Moreno, Carleo, Georges (CR27) 2020; 125
CR82
CR81
Huang, Kueng, Torlai, Albert, Preskill (CR36) 2022; 377
Hastings, Wen (CR79) 2005; 72
Liu, Shao, Lin, Guo, W Sandvik (CR63) 2018; 8
Schütt, Gastegger, Tkatchenko, Müller, Maurer (CR20) 2019; 10
Faber (CR35) 2017; 13
Mizel, Lidar, Mitchell (CR38) 2007; 99
Schollwoeck (CR65) 2011; 326
Sandvik (CR4) 1999; 59
Barends (CR41) 2016; 534
Huang (CR61) 2021; 12
CR17
CR59
CR58
Albash, Lidar (CR42) 2018; 90
CR56
Cortes, Vapnik (CR66) 1995; 20
Nomura, Darmawan, Yamaji, Imada (CR14) 2017; 96
CR52
Torlai, Melko (CR13) 2016; 94
CR51
CR50
Brown (CR70) 2020; 33
Carrasquilla (CR9) 2020; 5
Combettes, Wajs (CR55) 2005; 4
Elben (CR49) 2020; 125
Huang, Kueng, Preskill (CR48) 2020; 16
Bachmann, Michalakis, Nachtergaele, Sims (CR78) 2012; 309
CR29
Santosa, Symes (CR45) 1986; 7
CR69
Kawai, Nakagawa (CR26) 2020; 1
CR68
CR67
Carleo (CR8) 2019; 91
CR22
Kottmann, Corboz, Lewenstein, Acín (CR28) 2021; 11
Choo, Mezzacapo, Carleo (CR25) 2020; 11
Rupp, Tkatchenko, Müller, Von Lilienfeld (CR34) 2012; 108
Mills, Spanner, Tamblyn (CR31) 2017; 96
CR62
CR60
Saraceni, Cantori, Pilati (CR32) 2020; 102
Friedman, Hastie, Tibshirani (CR57) 2010; 33
Aharonov (CR40) 2008; 50
45014_CR71
PL Combettes (45014_CR55) 2005; 4
45014_CR72
L Liu (45014_CR63) 2018; 8
J Du (45014_CR43) 2010; 104
SR White (45014_CR64) 1992; 69
45014_CR75
A Mizel (45014_CR38) 2007; 99
AM Childs (45014_CR39) 2001; 65
45014_CR73
45014_CR30
45014_CR74
I Daubechies (45014_CR54) 2004; 57
Y Nomura (45014_CR14) 2017; 96
JF Rodriguez-Nieva (45014_CR23) 2019; 15
45014_CR29
MB Hastings (45014_CR79) 2005; 72
G Torlai (45014_CR18) 2018; 14
D Ceperley (45014_CR3) 1986; 231
Hsin-Yuan Huang (45014_CR77) 2022; 376
Hsin-Yuan Huang (45014_CR48) 2020; 16
B Efron (45014_CR53) 2004; 32
P Hohenberg (45014_CR1) 1964; 136
T Albash (45014_CR42) 2018; 90
45014_CR60
45014_CR68
45014_CR69
45014_CR22
45014_CR67
45014_CR62
J Carrasquilla (45014_CR9) 2020; 5
RA Vargas-Hernández (45014_CR19) 2018; 121
J Carrasquilla (45014_CR11) 2017; 13
K Mills (45014_CR31) 2017; 96
45014_CR17
C Huang (45014_CR33) 2022; 127
45014_CR59
EvertPL van Nieuwenburg (45014_CR15) 2017; 13
JavierRobledo Moreno (45014_CR27) 2020; 125
T Brown (45014_CR70) 2020; 33
Z Qiao (45014_CR24) 2020; 153
G Carleo (45014_CR12) 2017; 355
Dong-Ling Deng (45014_CR10) 2017; 96
R Barends (45014_CR41) 2016; 534
45014_CR50
A Elben (45014_CR49) 2020; 125
C Cortes (45014_CR66) 1995; 20
Hsin-Yuan Huang (45014_CR36) 2022; 377
G Torlai (45014_CR13) 2016; 94
L Wang (45014_CR16) 2016; 94
SR White (45014_CR7) 1993; 48
45014_CR58
G Carleo (45014_CR8) 2019; 91
F Santosa (45014_CR45) 1986; 7
45014_CR56
H Kawai (45014_CR26) 2020; 1
K Kottmann (45014_CR28) 2021; 11
KT Schütt (45014_CR20) 2019; 10
M Rupp (45014_CR34) 2012; 108
45014_CR51
45014_CR5
45014_CR52
Hsin-Yuan Huang (45014_CR76) 2021; 126
H-Y Huang (45014_CR61) 2021; 12
S Bachmann (45014_CR78) 2012; 309
SR White (45014_CR6) 1992; 69
N Saraceni (45014_CR32) 2020; 102
TJ Osborne (45014_CR80) 2007; 75
45014_CR82
45014_CR83
45014_CR81
AW Sandvik (45014_CR4) 1999; 59
W Kohn (45014_CR2) 1999; 71
45014_CR47
J Friedman (45014_CR57) 2010; 33
45014_CR44
FA Faber (45014_CR35) 2017; 13
K Choo (45014_CR25) 2020; 11
I Glasser (45014_CR21) 2018; 8
D Aharonov (45014_CR40) 2008; 50
45014_CR37
R Tibshirani (45014_CR46) 1996; 58
U Schollwoeck (45014_CR65) 2011; 326
References_xml – volume: 96
  start-page: 195145
  year: 2017
  ident: CR10
  article-title: Machine learning topological states
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.195145
– ident: CR22
– volume: 50
  start-page: 755
  year: 2008
  end-page: 787
  ident: CR40
  article-title: Adiabatic quantum computation is equivalent to standard quantum computation
  publication-title: SIAM Rev.
  doi: 10.1137/080734479
– volume: 309
  start-page: 835
  year: 2012
  end-page: 871
  ident: CR78
  article-title: Automorphic equivalence within gapped phases of quantum lattice systems
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-011-1380-0
– ident: CR68
– ident: CR74
– volume: 16
  start-page: 1050
  year: 2020
  end-page: 1057
  ident: CR48
  article-title: Predicting many properties of a quantum system from very few measurements
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0932-7
– volume: 59
  start-page: R14157
  year: 1999
  end-page: R14160
  ident: CR4
  article-title: Stochastic series expansion method with operator-loop update
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.R14157
– ident: CR51
– volume: 48
  start-page: 10345
  year: 1993
  end-page: 10356
  ident: CR7
  article-title: Density-matrix algorithms for quantum renormalization groups
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.10345
– volume: 13
  start-page: 5255
  year: 2017
  end-page: 5264
  ident: CR35
  article-title: Prediction errors of molecular machine learning models lower than hybrid dft error
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00577
– volume: 8
  start-page: 041040
  year: 2018
  ident: CR63
  article-title: Random-singlet phase in disordered two-dimensional quantum magnets
  publication-title: Phys. Rev. X
– volume: 8
  start-page: 011006
  year: 2018
  ident: CR21
  article-title: Neural-network quantum states, string-bond states, and chiral topological states
  publication-title: Phys. Rev. X
– ident: CR29
– volume: 15
  start-page: 790
  year: 2019
  end-page: 795
  ident: CR23
  article-title: Identifying topological order through unsupervised machine learning
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0512-x
– ident: CR58
– volume: 11
  start-page: 025
  year: 2021
  ident: CR28
  article-title: Unsupervised mapping of phase diagrams of 2d systems from infinite projected entangled-pair states via deep anomaly detection
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.11.2.025
– volume: 104
  start-page: 030502
  year: 2010
  ident: CR43
  article-title: Nmr implementation of a molecular hydrogen quantum simulation with adiabatic state preparation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.030502
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: CR46
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.
– ident: CR71
– volume: 7
  start-page: 1307
  year: 1986
  end-page: 1330
  ident: CR45
  article-title: Linear inversion of band-limited reflection seismograms
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907087
– volume: 231
  start-page: 555
  year: 1986
  end-page: 560
  ident: CR3
  article-title: Quantum Monte Carlo
  publication-title: Science
  doi: 10.1126/science.231.4738.555
– ident: CR67
– ident: CR75
– ident: CR50
– volume: 14
  start-page: 447
  year: 2018
  end-page: 450
  ident: CR18
  article-title: Neural-network quantum state tomography
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0048-5
– volume: 4
  start-page: 1168
  year: 2005
  end-page: 1200
  ident: CR55
  article-title: Signal recovery by proximal forward-backward splitting
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR66
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: CR60
– ident: CR5
– ident: CR81
– volume: 94
  start-page: 195105
  year: 2016
  ident: CR16
  article-title: Discovering phase transitions with unsupervised learning
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.195105
– volume: 376
  start-page: 1182
  year: 2022
  end-page: 1186
  ident: CR77
  article-title: Quantum advantage in learning from experiments
  publication-title: Science
  doi: 10.1126/science.abn7293
– volume: 355
  start-page: 602
  year: 2017
  end-page: 606
  ident: CR12
  article-title: Solving the quantum many-body problem with artificial neural networks
  publication-title: Science
  doi: 10.1126/science.aag2302
– volume: 10
  start-page: 1
  year: 2019
  end-page: 10
  ident: CR20
  article-title: Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12875-2
– volume: 102
  start-page: 033301
  year: 2020
  ident: CR32
  article-title: Scalable neural networks for the efficient learning of disordered quantum systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.033301
– volume: 326
  start-page: 96
  year: 2011
  end-page: 192
  ident: CR65
  article-title: The density-matrix renormalization group in the age of matrix product states
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2010.09.012
– volume: 377
  start-page: eabk3333
  year: 2022
  ident: CR36
  article-title: Provably efficient machine learning for quantum many-body problems
  publication-title: Science
  doi: 10.1126/science.abk3333
– volume: 13
  start-page: 435
  year: 2017
  ident: CR15
  article-title: Learning phase transitions by confusion
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4037
– ident: CR47
– ident: CR72
– volume: 71
  start-page: 1253
  year: 1999
  end-page: 1266
  ident: CR2
  article-title: Nobel lecture: Electronic structure of matter—wave functions and density functionals
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.1253
– volume: 69
  start-page: 2863
  year: 1992
  end-page: 2866
  ident: CR6
  article-title: Density matrix formulation for quantum renormalization groups
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
– volume: 1
  start-page: 045027
  year: 2020
  ident: CR26
  article-title: Predicting excited states from ground state wavefunction by supervised quantum machine learning
  publication-title: Mach. Learn.
– ident: CR37
– volume: 13
  start-page: 431
  year: 2017
  ident: CR11
  article-title: Machine learning phases of matter
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4035
– volume: 153
  start-page: 124111
  year: 2020
  ident: CR24
  article-title: Orbnet: deep learning for quantum chemistry using symmetry-adapted atomic-orbital features
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0021955
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: CR53
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 91
  start-page: 045002
  year: 2019
  ident: CR8
  article-title: Machine learning and the physical sciences
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– ident: CR30
– volume: 108
  start-page: 058301
  year: 2012
  ident: CR34
  article-title: Fast and accurate modeling of molecular atomization energies with machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 534
  start-page: 222
  year: 2016
  end-page: 226
  ident: CR41
  article-title: Digitized adiabatic quantum computing with a superconducting circuit
  publication-title: Nature
  doi: 10.1038/nature17658
– volume: 96
  start-page: 205152
  year: 2017
  ident: CR14
  article-title: Restricted boltzmann machine learning for solving strongly correlated quantum systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.205152
– ident: CR82
– volume: 121
  start-page: 255702
  year: 2018
  ident: CR19
  article-title: Extrapolating quantum observables with machine learning: inferring multiple phase transitions from properties of a single phase
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.255702
– volume: 75
  start-page: 032321
  year: 2007
  ident: CR80
  article-title: Simulating adiabatic evolution of gapped spin systems
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032321
– volume: 33
  start-page: 1877
  year: 2020
  end-page: 1901
  ident: CR70
  article-title: Language models are few-shot learners
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1457
  ident: CR54
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– ident: CR56
– volume: 136
  start-page: B864
  year: 1964
  end-page: B871
  ident: CR1
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 11
  year: 2020
  ident: CR25
  article-title: Fermionic neural-network states for ab-initio electronic structure
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15724-9
– volume: 126
  start-page: 190505
  year: 2021
  ident: CR76
  article-title: Information-theoretic bounds on quantum advantage in machine learning
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.190505
– volume: 72
  start-page: 045141
  year: 2005
  ident: CR79
  article-title: Quasiadiabatic continuation of quantum states: the stability of topological ground-state degeneracy and emergent gauge invariance
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.045141
– volume: 94
  start-page: 165134
  year: 2016
  ident: CR13
  article-title: Learning thermodynamics with Boltzmann machines
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.165134
– ident: CR69
– volume: 99
  start-page: 070502
  year: 2007
  ident: CR38
  article-title: Simple proof of equivalence between adiabatic quantum computation and the circuit model
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.070502
– ident: CR44
– volume: 125
  start-page: 076402
  year: 2020
  ident: CR27
  article-title: Deep learning the hohenberg-kohn maps of density functional theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.076402
– volume: 33
  start-page: 1
  year: 2010
  ident: CR57
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– ident: CR73
– volume: 69
  start-page: 2863
  year: 1992
  ident: CR64
  article-title: Density matrix formulation for quantum renormalization groups
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
– volume: 127
  start-page: 339
  year: 2022
  end-page: 355
  ident: CR33
  article-title: Machine learning diffusion monte carlo forces
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c05904
– volume: 125
  start-page: 200501
  year: 2020
  ident: CR49
  article-title: Mixed-state entanglement from local randomized measurements
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.200501
– ident: CR52
– ident: CR17
– volume: 90
  start-page: 015002
  year: 2018
  ident: CR42
  article-title: Adiabatic quantum computation
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015002
– volume: 5
  start-page: 1797528
  year: 2020
  ident: CR9
  article-title: Machine learning for quantum matter
  publication-title: Adv. Phys. X
– volume: 12
  start-page: 1
  year: 2021
  end-page: 9
  ident: CR61
  article-title: Power of data in quantum machine learning
  publication-title: Nat. Commun.
– ident: CR59
– ident: CR83
– volume: 96
  start-page: 042113
  issue: Oct
  year: 2017
  ident: CR31
  article-title: Deep learning and the schrödinger equation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.042113
– ident: CR62
– volume: 65
  start-page: 012322
  year: 2001
  ident: CR39
  article-title: Robustness of adiabatic quantum computation
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.012322
– ident: 45014_CR50
  doi: 10.1038/s42254-022-00535-2
– volume: 90
  start-page: 015002
  year: 2018
  ident: 45014_CR42
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015002
– volume: 91
  start-page: 045002
  year: 2019
  ident: 45014_CR8
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 13
  start-page: 5255
  year: 2017
  ident: 45014_CR35
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00577
– ident: 45014_CR75
  doi: 10.48550/arXiv.2204.13691
– ident: 45014_CR5
  doi: 10.1017/9781316417041
– volume: 127
  start-page: 339
  year: 2022
  ident: 45014_CR33
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c05904
– volume: 94
  start-page: 165134
  year: 2016
  ident: 45014_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.165134
– volume: 14
  start-page: 447
  year: 2018
  ident: 45014_CR18
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0048-5
– ident: 45014_CR60
  doi: 10.48550/arXiv.2212.06084
– volume: 72
  start-page: 045141
  year: 2005
  ident: 45014_CR79
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.045141
– ident: 45014_CR58
– volume: 75
  start-page: 032321
  year: 2007
  ident: 45014_CR80
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.75.032321
– ident: 45014_CR83
  doi: 10.5281/zenodo.10154894
– volume: 534
  start-page: 222
  year: 2016
  ident: 45014_CR41
  publication-title: Nature
  doi: 10.1038/nature17658
– volume: 125
  start-page: 076402
  year: 2020
  ident: 45014_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.076402
– volume: 59
  start-page: R14157
  year: 1999
  ident: 45014_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.R14157
– volume: 104
  start-page: 030502
  year: 2010
  ident: 45014_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.030502
– ident: 45014_CR67
– volume: 7
  start-page: 1307
  year: 1986
  ident: 45014_CR45
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0907087
– ident: 45014_CR52
  doi: 10.1038/s41534-023-00801-w
– volume: 355
  start-page: 602
  year: 2017
  ident: 45014_CR12
  publication-title: Science
  doi: 10.1126/science.aag2302
– ident: 45014_CR51
  doi: 10.1007/s00220-023-04844-0
– ident: 45014_CR47
– volume: 99
  start-page: 070502
  year: 2007
  ident: 45014_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.070502
– volume: 8
  start-page: 041040
  year: 2018
  ident: 45014_CR63
  publication-title: Phys. Rev. X
– ident: 45014_CR68
– ident: 45014_CR81
  doi: 10.1103/PRXQuantum.4.040337
– volume: 153
  start-page: 124111
  year: 2020
  ident: 45014_CR24
  publication-title: J. Chem. Phys.
  doi: 10.1063/5.0021955
– volume: 96
  start-page: 042113
  issue: Oct
  year: 2017
  ident: 45014_CR31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.96.042113
– volume: 125
  start-page: 200501
  year: 2020
  ident: 45014_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.200501
– volume: 11
  year: 2020
  ident: 45014_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15724-9
– volume: 16
  start-page: 1050
  year: 2020
  ident: 45014_CR48
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-020-0932-7
– ident: 45014_CR73
  doi: 10.1038/s41467-021-27922-0
– ident: 45014_CR22
  doi: 10.48550/arXiv.2204.10268
– volume: 71
  start-page: 1253
  year: 1999
  ident: 45014_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.71.1253
– ident: 45014_CR29
  doi: 10.48550/arXiv.2211.16943
– volume: 13
  start-page: 431
  year: 2017
  ident: 45014_CR11
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4035
– ident: 45014_CR37
  doi: 10.48550/arXiv.quant-ph/0001106
– ident: 45014_CR44
  doi: 10.48550/arXiv.2004.04164
– volume: 69
  start-page: 2863
  year: 1992
  ident: 45014_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
– volume: 33
  start-page: 1
  year: 2010
  ident: 45014_CR57
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– volume: 32
  start-page: 407
  year: 2004
  ident: 45014_CR53
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 48
  start-page: 10345
  year: 1993
  ident: 45014_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.10345
– volume: 4
  start-page: 1168
  year: 2005
  ident: 45014_CR55
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 15
  start-page: 790
  year: 2019
  ident: 45014_CR23
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0512-x
– volume: 94
  start-page: 195105
  year: 2016
  ident: 45014_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.195105
– ident: 45014_CR69
– volume: 58
  start-page: 267
  year: 1996
  ident: 45014_CR46
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: 45014_CR17
– volume: 20
  start-page: 273
  year: 1995
  ident: 45014_CR66
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: 45014_CR56
– volume: 309
  start-page: 835
  year: 2012
  ident: 45014_CR78
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-011-1380-0
– volume: 96
  start-page: 195145
  year: 2017
  ident: 45014_CR10
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.195145
– volume: 126
  start-page: 190505
  year: 2021
  ident: 45014_CR76
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.190505
– ident: 45014_CR82
  doi: 10.48550/arXiv.2301.12946
– volume: 33
  start-page: 1877
  year: 2020
  ident: 45014_CR70
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 231
  start-page: 555
  year: 1986
  ident: 45014_CR3
  publication-title: Science
  doi: 10.1126/science.231.4738.555
– volume: 13
  start-page: 435
  year: 2017
  ident: 45014_CR15
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4037
– volume: 121
  start-page: 255702
  year: 2018
  ident: 45014_CR19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.255702
– volume: 326
  start-page: 96
  year: 2011
  ident: 45014_CR65
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2010.09.012
– volume: 5
  start-page: 1797528
  year: 2020
  ident: 45014_CR9
  publication-title: Adv. Phys. X
– volume: 136
  start-page: B864
  year: 1964
  ident: 45014_CR1
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 57
  start-page: 1413
  year: 2004
  ident: 45014_CR54
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– volume: 12
  start-page: 1
  year: 2021
  ident: 45014_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20314-w
– volume: 10
  start-page: 1
  year: 2019
  ident: 45014_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12875-2
– ident: 45014_CR72
– volume: 8
  start-page: 011006
  year: 2018
  ident: 45014_CR21
  publication-title: Phys. Rev. X
– ident: 45014_CR30
– volume: 96
  start-page: 205152
  year: 2017
  ident: 45014_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.205152
– volume: 108
  start-page: 058301
  year: 2012
  ident: 45014_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.058301
– volume: 50
  start-page: 755
  year: 2008
  ident: 45014_CR40
  publication-title: SIAM Rev.
  doi: 10.1137/080734479
– volume: 11
  start-page: 025
  year: 2021
  ident: 45014_CR28
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.11.2.025
– volume: 102
  start-page: 033301
  year: 2020
  ident: 45014_CR32
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.033301
– volume: 376
  start-page: 1182
  year: 2022
  ident: 45014_CR77
  publication-title: Science
  doi: 10.1126/science.abn7293
– volume: 65
  start-page: 012322
  year: 2001
  ident: 45014_CR39
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.012322
– ident: 45014_CR59
– volume: 377
  start-page: eabk3333
  year: 2022
  ident: 45014_CR36
  publication-title: Science
  doi: 10.1126/science.abk3333
– ident: 45014_CR62
– ident: 45014_CR71
  doi: 10.1109/CVPR.2009.5206848
– ident: 45014_CR74
  doi: 10.1109/FOCS52979.2021.00063
– volume: 1
  start-page: 045027
  year: 2020
  ident: 45014_CR26
  publication-title: Mach. Learn.
– volume: 69
  start-page: 2863
  year: 1992
  ident: 45014_CR64
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
SSID ssj0000391844
Score 2.6262171
Snippet Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning (ML)...
Abstract Finding the ground state of a quantum many-body system is a fundamental problem in quantum physics. In this work, we give a classical machine learning...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 895
SubjectTerms 639/705/117
639/766/483/1139
639/766/483/481
Algorithms
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Computer science
Ground state
Humanities and Social Sciences
Learning algorithms
Machine learning
MATHEMATICS AND COMPUTING
multidisciplinary
Quantum information
Quantum mechanics
Quantum theory
Qubits (quantum computing)
Science
Science & Technology
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiDehBQWJG0T1I34dC6JCHCoOIPVmxa92pTZZ7aZI_Pt6nOzS5XnhFMl2ong84xl7Zr4BeM28SynQ1FAadNOyEBondWxMEDTxwI33pBSbUCcn-vTUfL5R6gtjwiZ44IlwhxrxwkOQxOejjGepc4Q7h8BpHgteljxyosyNw1TZg7nJR5d2zpIhXB-u27InZJXUtOhLa9SOJiqA_fkxZMH6nbH5a8zkT47Too-O78O92ZCsj6YJPIBbsX8Id6bSkt8fwafptiCG-rKES8Z6rg9xVncXZ8NqMZ5f1tlgrZcrdNVg8HONGR59qEuOUW4flhhzHdeP4evxhy_vPzZz3YTGC6nHJhmRXKKpCzHqyIUMigrveMzKuSMmaBGkEIxkS0gqkqTRQkdCYmLGpZhV2RPY64c-PoOadSIbNJF71vG27YIxXrnoZKAqqtC2FdANDa2fQcWxtsWFLc5tru1Ed5vpbgvdrargzfad5QSp8dfR73BptiMRDrs0ZCaxM5PYfzFJBfu4sDZbFQiN6zGGyI-WoWZmpoKDzXrbWYLXlhkMwcn7lazg1bY7yx46VLo-Dlc4hiGeJNO6gqcTe2z_k-cPo_-8Ar3DODsT2e3pF-cF35sirGDLMnHfbnjsx3_9mVLP_wel9uEuQxkheCt5AHvj6iq-gNv-27hYr14WIbsGKOEoSA
  priority: 102
  providerName: Directory of Open Access Journals
Title Improved machine learning algorithm for predicting ground state properties
URI https://link.springer.com/article/10.1038/s41467-024-45014-7
https://www.ncbi.nlm.nih.gov/pubmed/38291046
https://www.proquest.com/docview/2919970176
https://www.proquest.com/docview/2920573288
https://www.osti.gov/servlets/purl/2471829
https://pubmed.ncbi.nlm.nih.gov/PMC10828424
https://doaj.org/article/87019dd60c254c2fab03bb0955c59007
Volume 15
WOSCitedRecordID wos001163662700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RFiQu5VkILasgcYOoiWPH9glR1AqQWEUIpIWLlfixrdQmyyatxL_H42S3Wh69cEmk2LHszIxnMjP-BuAl0bVzJnNJlhmRUGJMUhfCJtKwzOUml1qnodgEn07FbCbL0eHWjWmVqz0xbNSm1egjPyQSUyI8_xRvFj8SrBqF0dWxhMYW7CBKAgmpe-Xax4Lo54LS8axMmovDjoadwSumhGJELeEb-ijA9vtb68Xrbybnn5mTv4VPg1Y6ufe_67kPu6M9Gr8dGOgB3LLNQ7gzVKj8-Qg-Dk4Ha-KLkHVp47HMxDyuzud-vP70IvZ2b7xYYsQHc6hjPCjSmDgcVfLP2wWmbtvuMXw9Of7y7n0yll9INCtEnzjJXO0yVxlrhc1ZYXjGdJ1br-OrVBrBTMEYSb1BVfDUFVIwYdPUOiJrZ71G3IPtpm3sU4hJxbxdZHNNqpzSykipeW3rwmTcckNpBNmKCEqP2ORYIuNchRh5LtRAOOUJpwLhFI_g1fqdxYDMcWPvI6TtuieiaocH7XKuRiFVArHpjSlS7X-bNXFVneZ1jSB9Gour-kH2kTOUN04QYVdjKpLuFUEFT2QEBytKq3Ej6NQ1mSN4sW72Ioxxmaqx7SX2IQhLSYSI4MnAX-t55n5gDMNHIDY4b2Mhmy3N2WmACc8QnZAS_3Ffr5j0el7__lLPbl7GPtwlKD4pui0PYLtfXtrncFtf9WfdcgJbfMbDVUxg5-h4Wn6eBDfHJEimv5bsu28pP3wqv_0CHVM-RQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWxBcypuGFggSnCBq4tiJfUCIV9Wl7WoPRSonk_ixrdQmy24K6p_iN-Jxkq2WR289cFop8Ua288144hl_H8BzokprdWKjJNE8okTrqMy4iYRmiU11KpSKvdhEPhrxw0MxXoGf_VkYLKvsfaJ31LpWuEe-RQSWRDj8ZG-m3yJUjcLsai-h0cJi15z_cJ9s89fDD-79viBk--PB-52oUxWIFMt4E1nBbGkTW2hjuElZpvOEqTI1bukqYqE50xljJHZxQpbHNhOccRPHxhJRWpMg0YFz-asUwT6A1fFwf_xlsauDfOuc0u50TpzyrTn1vsgthRHFHF6UL62AXijA_dTOoP8W5P5Zq_lbwtavg9u3_rcZvA1rXcQdvm1N5A6smOouXG81OM_vwad2W8Xo8NTXlZqwE9KYhMXJxPW_OToNXWQfTmeY08Iq8RCPwlQ69Iex3PV6isXpZn4fPl_JQB7AoKorsw4hKZiL_EyqSJFSWmghVF6aMtNJbnJNaQBJ_9Kl6tjXUQTkRPoqgJTLFijSAUV6oMg8gJeL_0xb7pFLW79DLC1aIm-4v1DPJrJzQ5Ij-77WWawIo4rYoozTskQaQoXyse4hG4hE6cIv5BBWWGylGkkwhCEigM0eWbJzdXN5AasAni1uOyeFmaeiMvUZtiFIvEk4D-Bhi-dFP1P3YCw0CIAvIX1pIMt3quMjT4SeIP8iJW5yX_VGcdGvf8_Uo8uH8RRu7Bzs78m94Wh3A24SNN0YN2k3YdDMzsxjuKa-N8fz2ZPO-kP4etXm8guDzJWz
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V5SEu5Q2hBYIEJ4g2cezEPiAElBWlaLUHkCoubuLHtlKbbHdTUP8avw6P86iWR289cFop8Ua288144vn8DcBzokprdWKjJNE8okTrqMy4iYRmiU11KpSKfbGJfDLhe3tiugY_-7MwSKvsfaJ31LpWuEc-IgIpEQ4_2ch2tIjp9vjN_CTCClKYae3LabQQ2TVnP9zn2_L1zrZ71y8IGX_48v5j1FUYiBTLeBNZwWxpE1toY7hJWabzhKkyNW4ZK2KhOdMZYyR2MUOWxzYTnHETx8YSUVqToOiBc_9XcveNiXTCKfs27O-g8jqntDunE6d8tKTeK7lFMaKYzYvylbXQlwxwP7Uz7b-Fu3-yNn9L3foVcXzzf57LW7DRxeHh29ZwbsOaqe7AtbYy59ld-NRuthgdHnu2qQm78hqzsDiauf43B8ehi_fD-QIzXcgdD_GATKVDf0TLXa_nSFk3y3vw9VIGch_Wq7oyDyEkBXPxoEkVKVJKCy2EyktTZjrJTa4pDSDpASBVp8mOpUGOpOcGpFy2oJEONNKDRuYBvBz-M28VSS5s_Q5xNbRENXF_oV7MZOecJEdNfq2zWBFGFbFFGadlieKECovKuodsIiqlC8pQWVghBUs1kmBgQ0QAWz3KZOcAl_IcYgE8G24714X5qKIy9Sm2ISjHSTgP4EGL7aGfqXsw0g8C4CuoXxnI6p3q8MDLoyeoykiJm9xXvYGc9-vfM_Xo4mE8hevORuTnncnuJtwgaMUx7txuwXqzODWP4ar63hwuF0-8Gwhh_7Jt5Re6LZ0W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+machine+learning+algorithm+for+predicting+ground+state+properties&rft.jtitle=Nature+communications&rft.au=Lewis%2C+Laura&rft.au=Huang%2C+Hsin-Yuan&rft.au=Tran%2C+Viet+T.&rft.au=Lehner%2C+Sebastian&rft.date=2024-01-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-45014-7&rft.externalDocID=10_1038_s41467_024_45014_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon