A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data

The reproducibility of machine-learning analyses in computational psychiatry is a growing concern. In a multimodal neuropsychiatric dataset of antipsychotic-naïve, first-episode schizophrenia patients, we discuss a workflow aimed at reducing bias and overfitting by invoking simulated data in the des...

Full description

Saved in:
Bibliographic Details
Published in:Translational psychiatry Vol. 10; no. 1; p. 276
Main Authors: Ambrosen, Karen S., Skjerbæk, Martin W., Foldager, Jonathan, Axelsen, Martin C., Bak, Nikolaj, Arvastson, Lars, Christensen, Søren R., Johansen, Louise B., Raghava, Jayachandra M., Oranje, Bob, Rostrup, Egill, Nielsen, Mette Ø., Osler, Merete, Fagerlund, Birgitte, Pantelis, Christos, Kinon, Bruce J., Glenthøj, Birte Y., Hansen, Lars K., Ebdrup, Bjørn H.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 10.08.2020
Nature Publishing Group
Subjects:
ISSN:2158-3188, 2158-3188
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Be the first to leave a comment!
You must be logged in first