Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene

Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been att...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications Vol. 15; no. 1; pp. 3176 - 13
Main Authors: Lowry, Daniel P., Han, Holly K., Golledge, Nicholas R., Gomez, Natalya, Johnson, Katelyn M., McKay, Robert M.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 23.04.2024
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2041-1723, 2041-1723
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation. Using ice sheet model and glacio-isostatic adjustment model simulations and paleoclimate proxies, this work demonstrates that the most likely cause of past West Antarctic grounding-line reversal was a regime shift from a warm to cold ocean cavity.
AbstractList Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation.Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation.
Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation.
Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation. Using ice sheet model and glacio-isostatic adjustment model simulations and paleoclimate proxies, this work demonstrates that the most likely cause of past West Antarctic grounding-line reversal was a regime shift from a warm to cold ocean cavity.
Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation. Using ice sheet model and glacio-isostatic adjustment model simulations and paleoclimate proxies, this work demonstrates that the most likely cause of past West Antarctic grounding-line reversal was a regime shift from a warm to cold ocean cavity.
Abstract Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of kilometers beyond its present position in the middle to late Holocene and readvanced within the past 1.7 ka. This grounding line reversal has been attributed to both changing rates of isostatic rebound and regional climate change. Here, we test these two hypotheses using a proxy-informed ensemble of ice sheet model simulations with varying ocean thermal forcing, global glacioisostatic adjustment (GIA) model simulations, and coupled ice sheet-GIA simulations that consider the interactions between these processes. Our results indicate that a warm to cold ocean cavity regime shift is the most likely cause of this grounding line reversal, but that GIA influences the rate of ice sheet response to oceanic changes. This implies that the grounding line here is sensitive to future changes in sub-ice shelf ocean circulation.
ArticleNumber 3176
Author Lowry, Daniel P.
Han, Holly K.
Gomez, Natalya
Golledge, Nicholas R.
Johnson, Katelyn M.
McKay, Robert M.
Author_xml – sequence: 1
  givenname: Daniel P.
  orcidid: 0000-0002-9668-0850
  surname: Lowry
  fullname: Lowry, Daniel P.
  email: d.lowry@gns.cri.nz
  organization: Department of Surface Geosciences, GNS Science
– sequence: 2
  givenname: Holly K.
  orcidid: 0000-0002-3819-5275
  surname: Han
  fullname: Han, Holly K.
  organization: Fluid Dynamics and Solid Mechanics Group, Los Alamos National Laboratory, Jet Propulsion Laboratory, California Institute of Technology
– sequence: 3
  givenname: Nicholas R.
  orcidid: 0000-0001-7676-8970
  surname: Golledge
  fullname: Golledge, Nicholas R.
  organization: Antarctic Research Centre, Victoria University of Wellington
– sequence: 4
  givenname: Natalya
  orcidid: 0000-0002-2463-7917
  surname: Gomez
  fullname: Gomez, Natalya
  organization: Department of Earth and Planetary Sciences, McGill University
– sequence: 5
  givenname: Katelyn M.
  orcidid: 0000-0002-6152-9712
  surname: Johnson
  fullname: Johnson, Katelyn M.
  organization: Department of Surface Geosciences, GNS Science
– sequence: 6
  givenname: Robert M.
  orcidid: 0000-0002-5602-6985
  surname: McKay
  fullname: McKay, Robert M.
  organization: Antarctic Research Centre, Victoria University of Wellington
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38653971$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/2470460$$D View this record in Osti.gov
BookMark eNp9UstuFDEQtFAQCUt-gAMawYXLgJ9j-4SiCJJIkXIBcUKW19Mz69WsHWzvSvl7vJkkJDnEF7-qqru6-y06CDEAQu8J_kIwU18zJ7yTLaa85ZJ1umWv0BHFnLREUnbw6HyIjnNe47qYJorzN-iQqU4wLckR-nPlwIbG2Z0vN02C0W-gySs_lHrZQcrQN78hl-YkFJtc8a4ZU9yG3oexmXyACisJbGl8aMoKmskWaM7jFB0EeIdeD3bKcHy3L9CvH99_np63l1dnF6cnl60TnSqtFtR1kjrHlqxXDJNegcCUwcCk0HpJtHKd5W4QAhiQThFNtBi07gXDQgNboItZt492ba6T39h0Y6L15vYhptHYVHOfwFA8SMEYpUoqTnu2XDLKbU-566iCoa9a32at6-1yA321UZKdnog-_Ql-Zca4M6T2RXeyqwofZ4WYizfZ-QJu5WII4IqhXGLe4Qr6fBcmxb_bWmGz8dnBNNkAcZsNw1wQwqv9Cv30DLqO2xRqQfcoJaRQtc0L9OFx3g8J3_e6AugMcCnmnGB4gBBs9jNl5pkydabM7UwZVknqGanascXHvXc_vUxlMzXXOGGE9D_tF1j_AIAY3i0
CitedBy_id crossref_primary_10_1038_s41467_024_54535_0
crossref_primary_10_5194_tc_19_1995_2025
crossref_primary_10_5194_tc_18_4233_2024
crossref_primary_10_5194_tc_19_2935_2025
Cites_doi 10.1038/s43017-022-00309-5
10.5194/tc-6-273-2012
10.1016/j.epsl.2013.09.042
10.1111/j.1365-246X.2009.04419.x
10.1029/JC090iC01p01100
10.1016/j.quascirev.2010.02.001
10.1029/2021GL097371
10.1073/pnas.1812883116
10.5194/tc-16-4053-2022
10.1016/j.epsl.2014.12.039
10.1029/2017PA003297
10.1002/(SICI)1099-1417(199912)14:7<641::AID-JQS466>3.0.CO;2-B
10.1126/science.aav7908
10.1038/s41586-018-0208-x
10.1038/s41561-021-00816-y
10.1126/science.aao1447
10.5194/tc-15-3329-2021
10.3189/2014JoG14J051
10.3189/1998AoG27-1-305-310
10.1017/S0954102089000490
10.1146/annurev.earth.32.082503.144359
10.5194/jm-40-15-2021
10.1038/s41561-019-0510-8
10.1016/j.tecto.2017.07.011
10.1126/science.1244341
10.1038/s41558-022-01328-2
10.1073/pnas.1910760117
10.1017/jog.2017.42
10.5194/tc-17-5197-2023
10.1002/jqs.825
10.1175/JCLI-D-16-0420.1
10.1038/nature10902
10.1038/nature11822
10.1029/2021GL094513
10.3189/172756402781816609
10.3189/172756407782871567
10.1126/science.1171041
10.1016/j.quascirev.2012.11.021
10.1029/2019GL086729
10.1175/JCLI-D-17-0352.1
10.1038/s43247-023-00727-3
10.5194/tc-17-1497-2023
10.1016/j.qsa.2020.100002
10.1016/0031-9201(81)90046-7
10.1029/2019JC015848
10.1016/j.tecto.2017.06.012
10.5194/tc-15-4655-2021
10.1038/s41586-020-2916-2
10.1016/j.gloplacha.2010.11.002
10.5194/tc-17-1787-2023
10.1038/s41467-017-01455-x
10.5194/gmd-15-1355-2022
10.1111/j.1365-246X.2005.02553.x
10.1038/462856a
10.1038/nature07809
10.1038/s41586-020-1931-7
10.1029/2022AV000846
10.1126/science.1066875
10.1038/s41586-019-0889-9
10.1016/j.quascirev.2022.107800
10.1002/2016GL068356
10.1029/2021GL094545
10.1038/s41467-022-33009-1
10.1029/2018JC013965
10.1038/s41561-019-0370-2
10.5194/tc-14-599-2020
10.1126/sciadv.aav8754
10.1038/nature12567
10.1038/s41467-018-08068-y
10.1126/science.1228026
10.3189/2014JoG13J093
10.1029/2020GL089237
10.1038/ngeo1012
10.1002/2017GL074216
10.1016/j.quascirev.2023.107991
10.1038/s41586-022-05411-8
10.5194/tc-16-1543-2022
10.1029/2020GL088476
10.5194/tc-5-727-2011
10.1126/science.1141038
10.1002/esp.5701
10.5194/tc-14-633-2020
10.1594/PANGAEA.441706
10.1029/2008JF001179
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-024-47369-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_20f75332287842d3bb324ad24c628efd
PMC11039676
2470460
38653971
10_1038_s41467_024_47369_3
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Business, Innovation and Employment (MBIE)
  grantid: ANTA1801
  funderid: 501100003524
– fundername: Ministry of Business, Innovation and Employment (MBIE)
  grantid: ANTA1801
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c568t-952c672cc3b3d8301d8e5023ef37599b198c6a4cf55e3e16819195f99d53059e3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001207290500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Tue Oct 14 14:25:39 EDT 2025
Tue Nov 04 02:05:41 EST 2025
Mon Mar 24 04:18:03 EDT 2025
Fri Sep 05 06:55:20 EDT 2025
Tue Oct 07 07:20:19 EDT 2025
Mon Jul 21 05:57:11 EDT 2025
Tue Nov 18 21:21:16 EST 2025
Sat Nov 29 03:29:57 EST 2025
Fri Feb 21 02:37:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-952c672cc3b3d8301d8e5023ef37599b198c6a4cf55e3e16819195f99d53059e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
89233218CNA000001
ORCID 0000-0001-7676-8970
0000-0002-6152-9712
0000-0002-5602-6985
0000-0002-3819-5275
0000-0002-2463-7917
0000-0002-9668-0850
0000000296680850
0000000238195275
0000000261529712
0000000176768970
0000000256026985
0000000224637917
OpenAccessLink https://doaj.org/article/20f75332287842d3bb324ad24c628efd
PMID 38653971
PQID 3048575872
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_20f75332287842d3bb324ad24c628efd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11039676
osti_scitechconnect_2470460
proquest_miscellaneous_3045114599
proquest_journals_3048575872
pubmed_primary_38653971
crossref_primary_10_1038_s41467_024_47369_3
crossref_citationtrail_10_1038_s41467_024_47369_3
springer_journals_10_1038_s41467_024_47369_3
PublicationCentury 2000
PublicationDate 2024-04-23
PublicationDateYYYYMMDD 2024-04-23
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References He (CR38) 2013; 494
Ji (CR69) 2017; 717
He, Clark (CR42) 2022; 12
Piccione (CR66) 2022; 13
Baggenstos (CR90) 2018; 33
Kingslake (CR11) 2018; 558
Roach (CR73) 2020; 47
Feldmann, Albrecht, Khroulev, Pattyn, Levermann (CR74) 2014; 60
Siahaan (CR64) 2022; 16
Kendall, Mitrovica, Milne (CR26) 2005; 161
Lee (CR72) 2023; 4
Bradley, Hindmarsh, Whitehouse, Bentley, King (CR4) 2015; 413
CR77
Jendersie, Williams, Langhorne, Robertson (CR18) 2018; 123
Xu, Yang, Gao, Sun, Xie (CR47) 2021; 48
CR76
Ivins, van der Wal, Wiens, Lloyd, Caron (CR25) 2022; 56
Peltier (CR89) 2004; 32
Golledge (CR30) 2021; 48
Hamilton (CR56) 2002; 35
Whitehouse, Gomez, King, Wiens (CR24) 2019; 10
Levermann (CR75) 2012; 6
Ashley (CR22) 2021; 17
Lingle, Clark (CR32) 1985; 90
Marcott, Shakun, Clark, Mix (CR3) 2013; 339
Pollard, DeConto (CR39) 2009; 458
CR2
Clark (CR40) 2020; 577
Mezgec (CR21) 2017; 8
Golledge (CR80) 2019; 566
Morlighem (CR1) 2020; 13
Crosta (CR68) 2022; 18
Lowry (CR85) 2020; 1
Jones (CR6) 2022; 3
CR46
CR86
Gomez, Weber, Clark, Mitrovica, Han (CR51) 2020; 587
Fudge (CR35) 2016; 43
CR81
Rignot (CR15) 2019; 116
Lowry, Golledge, Menviel, Bertler (CR41) 2019; 15
Johnson (CR67) 2021; 14
Melis (CR65) 2021; 40
Barletta (CR23) 2018; 360
Jones (CR60) 2023; 613
Liu (CR37) 2009; 325
Briggs, Tarasov (CR54) 2013; 63
Depoorter (CR55) 2013; 502
Tankersley, Horgan, Siddoway, Caratori Tontini, Tinto (CR71) 2022; 49
Van Wessem (CR36) 2014; 60
Baroni, Hall (CR53) 2004; 19
Todd, Stone, Conway, Hall, Bromley (CR43) 2010; 29
Larour (CR49) 2019; 364
Clark, Huybers (CR82) 2009; 462
Hillebrand (CR45) 2021; 15
Stanford (CR83) 2011; 79
Hazel, Stewart (CR61) 2020; 125
Lowry, Golledge, Bertler, Jones, McKay (CR13) 2019; 5
Hall, Denton (CR52) 1999; 14
Daae (CR63) 2020; 47
Seroussi (CR16) 2023; 17
Dutrieux (CR19) 2014; 343
Bodart (CR57) 2023; 17
Joughin, Tulaczyk (CR14) 2002; 295
Pittard, Whitehouse, Bentley, Small (CR12) 2022; 298
Albrecht, Winkelmann, Levermann (CR34) 2020; 14
Hall (CR59) 2023; 303
Johnson (CR5) 2022; 16
Hellmer, Olbers (CR78) 1989; 1
Steig (CR58) 1998; 27
Bernales, Rogozhina, Thomas (CR79) 2017; 63
CR29
CR28
Stevens (CR17) 2020; 117
Gomez, Latychev, Pollard (CR31) 2018; 31
Gomez, Pollard, Mitrovica (CR50) 2013; 384
Dziewonski, Anderson (CR88) 1981; 25
Gomez, Mitrovica, Tamisiea, Clark (CR87) 2010; 180
Han, Gomez, Wan (CR27) 2022; 15
Gomez, Mitrovica, Huybers, Clark (CR48) 2010; 3
Chen, Haeger, Kaban, Petrunin (CR70) 2018; 746
Tinto (CR20) 2019; 12
Bueler, Lingle, Brown (CR33) 2007; 46
Balco (CR7) 2023; 17
Venturelli (CR8) 2020; 47
Deschamps (CR84) 2012; 483
Neuhaus (CR10) 2021; 15
Spector (CR44) 2017; 44
Hellmer, Kauker, Timmermann, Hattermann (CR62) 2017; 30
Venturelli (CR9) 2023; 4
SU Neuhaus (47369_CR10) 2021; 15
C Baroni (47369_CR53) 2004; 19
HH Hellmer (47369_CR62) 2017; 30
DP Lowry (47369_CR41) 2019; 15
E Larour (47369_CR49) 2019; 364
N Gomez (47369_CR87) 2010; 180
E Rignot (47369_CR15) 2019; 116
C Todd (47369_CR43) 2010; 29
C Stevens (47369_CR17) 2020; 117
TR Hillebrand (47369_CR45) 2021; 15
F Ji (47369_CR69) 2017; 717
A Siahaan (47369_CR64) 2022; 16
EJ Steig (47369_CR58) 1998; 27
TR Jones (47369_CR60) 2023; 613
PU Clark (47369_CR82) 2009; 462
H Seroussi (47369_CR16) 2023; 17
NR Golledge (47369_CR80) 2019; 566
G Piccione (47369_CR66) 2022; 13
PL Whitehouse (47369_CR24) 2019; 10
JS Johnson (47369_CR5) 2022; 16
G Balco (47369_CR7) 2023; 17
MD Tankersley (47369_CR71) 2022; 49
RD Briggs (47369_CR54) 2013; 63
J Van Wessem (47369_CR36) 2014; 60
A Levermann (47369_CR75) 2012; 6
PU Clark (47369_CR40) 2020; 577
BL Hall (47369_CR52) 1999; 14
RA Venturelli (47369_CR9) 2023; 4
K Tinto (47369_CR20) 2019; 12
P Spector (47369_CR44) 2017; 44
47369_CR2
I Joughin (47369_CR14) 2002; 295
CS Lingle (47369_CR32) 1985; 90
X Crosta (47369_CR68) 2022; 18
D Baggenstos (47369_CR90) 2018; 33
47369_CR86
47369_CR46
K Mezgec (47369_CR21) 2017; 8
N Gomez (47369_CR50) 2013; 384
T Albrecht (47369_CR34) 2020; 14
Q Xu (47369_CR47) 2021; 48
BL Hall (47369_CR59) 2023; 303
JE Hazel (47369_CR61) 2020; 125
KE Ashley (47369_CR22) 2021; 17
K Daae (47369_CR63) 2020; 47
KM Johnson (47369_CR67) 2021; 14
NR Golledge (47369_CR30) 2021; 48
RA Kendall (47369_CR26) 2005; 161
47369_CR81
B Chen (47369_CR70) 2018; 746
J Bernales (47369_CR79) 2017; 63
WR Peltier (47369_CR89) 2004; 32
JD Stanford (47369_CR83) 2011; 79
47369_CR28
RS Jones (47369_CR6) 2022; 3
E Ivins (47369_CR25) 2022; 56
D Pollard (47369_CR39) 2009; 458
47369_CR29
J Kingslake (47369_CR11) 2018; 558
GS Hamilton (47369_CR56) 2002; 35
E Bueler (47369_CR33) 2007; 46
N Gomez (47369_CR48) 2010; 3
47369_CR77
47369_CR76
F He (47369_CR42) 2022; 12
P Dutrieux (47369_CR19) 2014; 343
S-K Lee (47369_CR72) 2023; 4
R Venturelli (47369_CR8) 2020; 47
HH Hellmer (47369_CR78) 1989; 1
N Gomez (47369_CR51) 2020; 587
F He (47369_CR38) 2013; 494
SA Marcott (47369_CR3) 2013; 339
M Morlighem (47369_CR1) 2020; 13
S Jendersie (47369_CR18) 2018; 123
HK Han (47369_CR27) 2022; 15
DP Lowry (47369_CR13) 2019; 5
MA Depoorter (47369_CR55) 2013; 502
SL Bradley (47369_CR4) 2015; 413
LA Roach (47369_CR73) 2020; 47
TJ Fudge (47369_CR35) 2016; 43
JA Bodart (47369_CR57) 2023; 17
ML Pittard (47369_CR12) 2022; 298
R Melis (47369_CR65) 2021; 40
P Deschamps (47369_CR84) 2012; 483
Z Liu (47369_CR37) 2009; 325
DP Lowry (47369_CR85) 2020; 1
AM Dziewonski (47369_CR88) 1981; 25
VR Barletta (47369_CR23) 2018; 360
J Feldmann (47369_CR74) 2014; 60
N Gomez (47369_CR31) 2018; 31
References_xml – volume: 3
  start-page: 500
  year: 2022
  end-page: 515
  ident: CR6
  article-title: Stability of the Antarctic ice sheet during the pre-industrial Holocene
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-022-00309-5
– volume: 6
  start-page: 273
  year: 2012
  end-page: 286
  ident: CR75
  article-title: Kinematic first-order calving law implies potential for abrupt ice-shelf retreat
  publication-title: Cryosphere
  doi: 10.5194/tc-6-273-2012
– volume: 384
  start-page: 88
  year: 2013
  end-page: 99
  ident: CR50
  article-title: A 3-d coupled ice sheet–sea level model applied to Antarctica through the last 40 ky
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.09.042
– volume: 180
  start-page: 623
  year: 2010
  end-page: 634
  ident: CR87
  article-title: A new projection of sea level change in response to collapse of marine sectors of the Antarctic ice sheet
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04419.x
– volume: 90
  start-page: 1100
  year: 1985
  end-page: 1114
  ident: CR32
  article-title: A numerical model of interactions between a marine ice sheet and the solid earth: application to a west antarctic ice stream
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/JC090iC01p01100
– volume: 15
  start-page: 189
  year: 2019
  end-page: 215
  ident: CR41
  article-title: Deglacial evolution of regional antarctic climate and southern ocean conditions in transient climate simulations
  publication-title: Climate
– volume: 29
  start-page: 1328
  year: 2010
  end-page: 1341
  ident: CR43
  article-title: Late quaternary evolution of reedy glacier, Antarctica
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2010.02.001
– volume: 49
  start-page: e2021GL097371
  year: 2022
  ident: CR71
  article-title: Basement topography and sediment thickness beneath Antarctica’s Ross ice shelf
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL097371
– volume: 116
  start-page: 1095
  year: 2019
  end-page: 1103
  ident: CR15
  article-title: Four decades of antarctic ice sheet mass balance from 1979–2017
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1812883116
– volume: 16
  start-page: 4053
  year: 2022
  end-page: 4086
  ident: CR64
  article-title: The antarctic contribution to 21st-century sea-level rise predicted by the UK earth system model with an interactive ice sheet
  publication-title: Cryosphere
  doi: 10.5194/tc-16-4053-2022
– volume: 413
  start-page: 79
  year: 2015
  end-page: 89
  ident: CR4
  article-title: Low post-glacial rebound rates in the Weddell sea due to late Holocene ice-sheet readvance
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2014.12.039
– volume: 33
  start-page: 778
  year: 2018
  end-page: 794
  ident: CR90
  article-title: A horizontal ice core from Taylor glacier, its implications for antarctic climate history, and an improved Taylor dome ice core time scale
  publication-title: Paleoceanogr. Paleoclimatol.
  doi: 10.1029/2017PA003297
– ident: CR29
– volume: 14
  start-page: 641
  year: 1999
  end-page: 650
  ident: CR52
  article-title: New relative sea-level curves for the southern Scott coast, Antarctica: evidence for Holocene deglaciation of the western Ross Sea
  publication-title: J. Quat. Sci.
  doi: 10.1002/(SICI)1099-1417(199912)14:7<641::AID-JQS466>3.0.CO;2-B
– volume: 364
  start-page: eaav7908
  year: 2019
  ident: CR49
  article-title: Slowdown in antarctic mass loss from solid earth and sea-level feedbacks
  publication-title: Science
  doi: 10.1126/science.aav7908
– ident: CR77
– volume: 558
  start-page: 430
  year: 2018
  end-page: 434
  ident: CR11
  article-title: Extensive retreat and re-advance of the west antarctic ice sheet during the Holocene
  publication-title: Nature
  doi: 10.1038/s41586-018-0208-x
– volume: 14
  start-page: 762
  year: 2021
  end-page: 768
  ident: CR67
  article-title: Sensitivity of Holocene east antarctic productivity to subdecadal variability set by sea ice
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-021-00816-y
– volume: 360
  start-page: 1335
  year: 2018
  end-page: 1339
  ident: CR23
  article-title: Observed rapid bedrock uplift in Amundsen sea embayment promotes ice-sheet stability
  publication-title: Science
  doi: 10.1126/science.aao1447
– volume: 15
  start-page: 3329
  year: 2021
  end-page: 3354
  ident: CR45
  article-title: Holocene thinning of Darwin and Hatherton glaciers, Antarctica, and implications for grounding-line retreat in the Ross Sea
  publication-title: Cryosphere
  doi: 10.5194/tc-15-3329-2021
– volume: 60
  start-page: 761
  year: 2014
  end-page: 770
  ident: CR36
  article-title: Improved representation of east antarctic surface mass balance in a regional atmospheric climate model
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG14J051
– volume: 27
  start-page: 305
  year: 1998
  end-page: 310
  ident: CR58
  article-title: Changes in climate, ocean and ice-sheet conditions in the Ross embayment, Antarctica, at 6 ka
  publication-title: Ann. Glaciol.
  doi: 10.3189/1998AoG27-1-305-310
– volume: 1
  start-page: 325
  year: 1989
  end-page: 336
  ident: CR78
  article-title: A two-dimensional model for the thermohaline circulation under an ice shelf
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102089000490
– volume: 32
  start-page: 111
  year: 2004
  end-page: 149
  ident: CR89
  article-title: Global glacial isostasy and the surface of the ice-age earth: the ice-5g (vm2) model and grace
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.32.082503.144359
– ident: CR46
– volume: 40
  start-page: 15
  year: 2021
  end-page: 35
  ident: CR65
  article-title: Last glacial maximum to Holocene paleoceanography of the northwestern Ross Sea inferred from sediment core geochemistry and micropaleontology at Hallett ridge
  publication-title: J. Micropalaeontol.
  doi: 10.5194/jm-40-15-2021
– volume: 13
  start-page: 132
  year: 2020
  end-page: 137
  ident: CR1
  article-title: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0510-8
– volume: 717
  start-page: 127
  year: 2017
  end-page: 138
  ident: CR69
  article-title: Variations of the effective elastic thickness over the Ross Sea and Transantarctic mountains and implications for their structure and tectonics
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2017.07.011
– volume: 343
  start-page: 174
  year: 2014
  end-page: 178
  ident: CR19
  article-title: Strong sensitivity of Pine Island ice-shelf melting to climatic variability
  publication-title: Science
  doi: 10.1126/science.1244341
– volume: 12
  start-page: 449
  year: 2022
  end-page: 454
  ident: CR42
  article-title: Freshwater forcing of the atlantic meridional overturning circulation revisited
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-022-01328-2
– volume: 117
  start-page: 16799
  year: 2020
  end-page: 16804
  ident: CR17
  article-title: Ocean mixing and heat transport processes observed under the Ross ice shelf control its basal melting
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1910760117
– volume: 63
  start-page: 731
  year: 2017
  end-page: 744
  ident: CR79
  article-title: Melting and freezing under antarctic ice shelves from a combination of ice-sheet modelling and observations
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2017.42
– volume: 17
  start-page: 5197
  year: 2023
  end-page: 5217
  ident: CR16
  article-title: Insights into the vulnerability of antarctic glaciers from the ismip6 ice sheet model ensemble and associated uncertainty
  publication-title: Cryosphere
  doi: 10.5194/tc-17-5197-2023
– volume: 19
  start-page: 377
  year: 2004
  end-page: 396
  ident: CR53
  article-title: A new Holocene relative sea-level curve for Terra Nova Bay, Victoria land, Antarctica
  publication-title: J. Quat. Sci.
  doi: 10.1002/jqs.825
– volume: 30
  start-page: 4337
  year: 2017
  end-page: 4350
  ident: CR62
  article-title: The fate of the southern Weddell sea continental shelf in a warming climate
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0420.1
– volume: 483
  start-page: 559
  year: 2012
  end-page: 564
  ident: CR84
  article-title: Ice-sheet collapse and sea-level rise at the bølling warming 14,600 years ago
  publication-title: Nature
  doi: 10.1038/nature10902
– volume: 494
  start-page: 81
  year: 2013
  end-page: 85
  ident: CR38
  article-title: Northern hemisphere forcing of southern hemisphere climate during the last deglaciation
  publication-title: Nature
  doi: 10.1038/nature11822
– ident: CR81
– volume: 48
  start-page: e2021GL094513
  year: 2021
  ident: CR30
  article-title: Retreat of the antarctic ice sheet during the last interglaciation and implications for future change
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL094513
– volume: 35
  start-page: 102
  year: 2002
  end-page: 106
  ident: CR56
  article-title: Mass balance and accumulation rate across siple dome, west Antarctica
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756402781816609
– volume: 46
  start-page: 97
  year: 2007
  end-page: 105
  ident: CR33
  article-title: Fast computation of a viscoelastic deformable earth model for ice-sheet simulations
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756407782871567
– volume: 325
  start-page: 310
  year: 2009
  end-page: 314
  ident: CR37
  article-title: Transient simulation of last deglaciation with a new mechanism for bølling-allerød warming
  publication-title: Science
  doi: 10.1126/science.1171041
– volume: 63
  start-page: 109
  year: 2013
  end-page: 127
  ident: CR54
  article-title: How to evaluate model-derived deglaciation chronologies: a case study using Antarctica
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2012.11.021
– volume: 47
  start-page: e2019GL086729
  year: 2020
  ident: CR73
  article-title: Antarctic sea ice area in cmip6
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL086729
– volume: 31
  start-page: 4041
  year: 2018
  end-page: 4054
  ident: CR31
  article-title: A coupled ice sheet–sea level model incorporating 3d earth structure: variations in Antarctica during the last deglacial retreat
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-17-0352.1
– volume: 4
  start-page: 69
  year: 2023
  ident: CR72
  article-title: Human-induced changes in the global meridional overturning circulation are emerging from the southern ocean
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-023-00727-3
– volume: 17
  start-page: 1497
  year: 2023
  end-page: 1512
  ident: CR57
  article-title: High mid-holocene accumulation rates over west Antarctica inferred from a pervasive ice-penetrating radar reflector
  publication-title: Cryosphere
  doi: 10.5194/tc-17-1497-2023
– ident: CR2
– volume: 1
  start-page: 100002
  year: 2020
  ident: CR85
  article-title: Geologic controls on ice sheet sensitivity to deglacial climate forcing in the Ross Embayment, Antarctica
  publication-title: Quat. Sci. Adv.
  doi: 10.1016/j.qsa.2020.100002
– volume: 25
  start-page: 297
  year: 1981
  end-page: 356
  ident: CR88
  article-title: Preliminary reference earth model
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(81)90046-7
– volume: 125
  start-page: e2019JC015848
  year: 2020
  ident: CR61
  article-title: Bistability of the Filchner-ronne ice shelf cavity circulation and basal melt
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2019JC015848
– volume: 746
  start-page: 412
  year: 2018
  end-page: 424
  ident: CR70
  article-title: Variations of the effective elastic thickness reveal tectonic fragmentation of the antarctic lithosphere
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2017.06.012
– volume: 15
  start-page: 4655
  year: 2021
  end-page: 4673
  ident: CR10
  article-title: Did Holocene climate changes drive West Antarctic grounding line retreat and readvance?
  publication-title: Cryosphere
  doi: 10.5194/tc-15-4655-2021
– volume: 587
  start-page: 600
  year: 2020
  end-page: 604
  ident: CR51
  article-title: Antarctic ice dynamics amplified by northern hemisphere sea-level forcing
  publication-title: Nature
  doi: 10.1038/s41586-020-2916-2
– ident: CR86
– volume: 17
  start-page: 1
  year: 2021
  end-page: 19
  ident: CR22
  article-title: Mid-holocene antarctic sea-ice increase driven by marine ice sheet retreat
  publication-title: Climate
– volume: 79
  start-page: 193
  year: 2011
  end-page: 203
  ident: CR83
  article-title: Sea-level probability for the last deglaciation: a statistical analysis of far-field records
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2010.11.002
– volume: 17
  start-page: 1787
  year: 2023
  end-page: 1801
  ident: CR7
  article-title: Reversible ice sheet thinning in the Amundsen sea embayment during the late Holocene
  publication-title: Cryosphere
  doi: 10.5194/tc-17-1787-2023
– volume: 8
  year: 2017
  ident: CR21
  article-title: Holocene sea ice variability driven by wind and polynya efficiency in the Ross Sea
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01455-x
– volume: 15
  start-page: 1355
  year: 2022
  end-page: 1373
  ident: CR27
  article-title: Capturing the interactions between ice sheets, sea level and the solid earth on a range of timescales: a new “time window” algorithm
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-15-1355-2022
– volume: 161
  start-page: 679
  year: 2005
  end-page: 706
  ident: CR26
  article-title: On post-glacial sea level–ii. numerical formulation and comparative results on spherically symmetric models
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2005.02553.x
– volume: 462
  start-page: 856
  year: 2009
  end-page: 857
  ident: CR82
  article-title: Interglacial and future sea level
  publication-title: Nature
  doi: 10.1038/462856a
– volume: 458
  start-page: 329
  year: 2009
  end-page: 332
  ident: CR39
  article-title: Modelling west antarctic ice sheet growth and collapse through the past five million years
  publication-title: Nature
  doi: 10.1038/nature07809
– volume: 577
  start-page: 660
  year: 2020
  end-page: 664
  ident: CR40
  article-title: Oceanic forcing of penultimate deglacial and last interglacial sea-level rise
  publication-title: Nature
  doi: 10.1038/s41586-020-1931-7
– volume: 4
  start-page: e2022AV000846
  year: 2023
  ident: CR9
  article-title: Constraints on the timing and extent of deglacial grounding line retreat in west Antarctica
  publication-title: AGU Adv.
  doi: 10.1029/2022AV000846
– volume: 295
  start-page: 476
  year: 2002
  end-page: 480
  ident: CR14
  article-title: Positive mass balance of the Ross ice streams, west Antarctica
  publication-title: Science
  doi: 10.1126/science.1066875
– volume: 566
  start-page: 65
  year: 2019
  end-page: 72
  ident: CR80
  article-title: Global environmental consequences of twenty-first-century ice-sheet melt
  publication-title: Nature
  doi: 10.1038/s41586-019-0889-9
– volume: 298
  start-page: 107800
  year: 2022
  ident: CR12
  article-title: An ensemble of antarctic deglacial simulations constrained by geological observations
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2022.107800
– volume: 43
  start-page: 3795
  year: 2016
  end-page: 3803
  ident: CR35
  article-title: Variable relationship between accumulation and temperature in west Antarctica for the past 31,000 years
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068356
– volume: 48
  start-page: e2021GL094545
  year: 2021
  ident: CR47
  article-title: 6,000-year reconstruction of modified circumpolar deep water intrusion and its effects on sea ice and penguin in the Ross Sea
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL094545
– volume: 13
  year: 2022
  ident: CR66
  article-title: Subglacial precipitates record antarctic ice sheet response to late Pleistocene millennial climate cycles
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33009-1
– volume: 123
  start-page: 7702
  year: 2018
  end-page: 7724
  ident: CR18
  article-title: The density-driven winter intensification of the Ross sea circulation
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2018JC013965
– volume: 12
  start-page: 441
  year: 2019
  end-page: 449
  ident: CR20
  article-title: Ross ice shelf response to climate driven by the tectonic imprint on seafloor bathymetry
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0370-2
– volume: 14
  start-page: 599
  year: 2020
  end-page: 632
  ident: CR34
  article-title: Glacial-cycle simulations of the antarctic ice sheet with the parallel ice sheet model (pism)–part 1: boundary conditions and climatic forcing
  publication-title: Cryosphere
  doi: 10.5194/tc-14-599-2020
– volume: 5
  start-page: eaav8754
  year: 2019
  ident: CR13
  article-title: Deglacial grounding-line retreat in the Ross embayment, Antarctica, controlled by ocean and atmosphere forcing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8754
– volume: 502
  start-page: 89
  year: 2013
  end-page: 92
  ident: CR55
  article-title: Calving fluxes and basal melt rates of Antarctic ice shelves
  publication-title: Nature
  doi: 10.1038/nature12567
– volume: 10
  year: 2019
  ident: CR24
  article-title: Solid earth change and the evolution of the Antarctic ice sheet
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08068-y
– volume: 339
  start-page: 1198
  year: 2013
  end-page: 1201
  ident: CR3
  article-title: A reconstruction of regional and global temperature for the past 11,300 years
  publication-title: Science
  doi: 10.1126/science.1228026
– volume: 60
  start-page: 353
  year: 2014
  end-page: 360
  ident: CR74
  article-title: Resolution-dependent performance of grounding line motion in a shallow model compared with a full-stokes model according to the mismip3d intercomparison
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J093
– volume: 18
  start-page: 1729
  year: 2022
  end-page: 1756
  ident: CR68
  article-title: Antarctic sea ice over the past 130 000 years–part 1: a review of what proxy records tell us
  publication-title: Climate
– ident: CR76
– volume: 47
  start-page: e2020GL089237
  year: 2020
  ident: CR63
  article-title: Necessary conditions for warm inflow toward the Filchner ice shelf, Weddell sea
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL089237
– ident: CR28
– volume: 3
  start-page: 850
  year: 2010
  end-page: 853
  ident: CR48
  article-title: Sea level as a stabilizing factor for marine-ice-sheet grounding lines
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1012
– volume: 56
  start-page: M56
  year: 2022
  end-page: 2020
  ident: CR25
  article-title: Antarctic upper mantle rheology
  publication-title: Geol. Soc. Lond. Mem.
– volume: 44
  start-page: 7817
  year: 2017
  end-page: 7825
  ident: CR44
  article-title: Rapid early-Holocene deglaciation in the Ross Sea, Antarctica
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074216
– volume: 303
  start-page: 107991
  year: 2023
  ident: CR59
  article-title: Widespread southern elephant seal occupation of the Victoria land coast implies a warmer-than-present Ross Sea in the mid-to-late Holocene
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2023.107991
– volume: 613
  start-page: 292
  year: 2023
  end-page: 297
  ident: CR60
  article-title: Seasonal temperatures in west Antarctica during the Holocene
  publication-title: Nature
  doi: 10.1038/s41586-022-05411-8
– volume: 16
  start-page: 1543
  year: 2022
  end-page: 1562
  ident: CR5
  article-title: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica
  publication-title: Cryosphere
  doi: 10.5194/tc-16-1543-2022
– volume: 47
  start-page: e2020GL088476
  year: 2020
  ident: CR8
  article-title: Mid-Holocene grounding line retreat and readvance at Whillans ice stream, west Antarctica
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL088476
– volume: 161
  start-page: 679
  year: 2005
  ident: 47369_CR26
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2005.02553.x
– volume: 17
  start-page: 1497
  year: 2023
  ident: 47369_CR57
  publication-title: Cryosphere
  doi: 10.5194/tc-17-1497-2023
– volume: 13
  start-page: 132
  year: 2020
  ident: 47369_CR1
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0510-8
– volume: 116
  start-page: 1095
  year: 2019
  ident: 47369_CR15
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1812883116
– volume: 343
  start-page: 174
  year: 2014
  ident: 47369_CR19
  publication-title: Science
  doi: 10.1126/science.1244341
– volume: 15
  start-page: 4655
  year: 2021
  ident: 47369_CR10
  publication-title: Cryosphere
  doi: 10.5194/tc-15-4655-2021
– volume: 117
  start-page: 16799
  year: 2020
  ident: 47369_CR17
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1910760117
– volume: 15
  start-page: 3329
  year: 2021
  ident: 47369_CR45
  publication-title: Cryosphere
  doi: 10.5194/tc-15-3329-2021
– volume: 3
  start-page: 500
  year: 2022
  ident: 47369_CR6
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-022-00309-5
– ident: 47369_CR2
– volume: 5
  start-page: eaav8754
  year: 2019
  ident: 47369_CR13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav8754
– volume: 60
  start-page: 353
  year: 2014
  ident: 47369_CR74
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG13J093
– volume: 295
  start-page: 476
  year: 2002
  ident: 47369_CR14
  publication-title: Science
  doi: 10.1126/science.1066875
– volume: 483
  start-page: 559
  year: 2012
  ident: 47369_CR84
  publication-title: Nature
  doi: 10.1038/nature10902
– volume: 49
  start-page: e2021GL097371
  year: 2022
  ident: 47369_CR71
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL097371
– volume: 303
  start-page: 107991
  year: 2023
  ident: 47369_CR59
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2023.107991
– volume: 60
  start-page: 761
  year: 2014
  ident: 47369_CR36
  publication-title: J. Glaciol.
  doi: 10.3189/2014JoG14J051
– volume: 717
  start-page: 127
  year: 2017
  ident: 47369_CR69
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2017.07.011
– volume: 462
  start-page: 856
  year: 2009
  ident: 47369_CR82
  publication-title: Nature
  doi: 10.1038/462856a
– volume: 29
  start-page: 1328
  year: 2010
  ident: 47369_CR43
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2010.02.001
– volume: 577
  start-page: 660
  year: 2020
  ident: 47369_CR40
  publication-title: Nature
  doi: 10.1038/s41586-020-1931-7
– volume: 12
  start-page: 441
  year: 2019
  ident: 47369_CR20
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0370-2
– ident: 47369_CR29
  doi: 10.5194/tc-5-727-2011
– volume: 31
  start-page: 4041
  year: 2018
  ident: 47369_CR31
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-17-0352.1
– volume: 14
  start-page: 762
  year: 2021
  ident: 47369_CR67
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-021-00816-y
– volume: 16
  start-page: 1543
  year: 2022
  ident: 47369_CR5
  publication-title: Cryosphere
  doi: 10.5194/tc-16-1543-2022
– volume: 25
  start-page: 297
  year: 1981
  ident: 47369_CR88
  publication-title: Phys. Earth Planet. Inter.
  doi: 10.1016/0031-9201(81)90046-7
– volume: 90
  start-page: 1100
  year: 1985
  ident: 47369_CR32
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/JC090iC01p01100
– volume: 47
  start-page: e2020GL088476
  year: 2020
  ident: 47369_CR8
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL088476
– volume: 47
  start-page: e2020GL089237
  year: 2020
  ident: 47369_CR63
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL089237
– volume: 19
  start-page: 377
  year: 2004
  ident: 47369_CR53
  publication-title: J. Quat. Sci.
  doi: 10.1002/jqs.825
– ident: 47369_CR76
  doi: 10.1126/science.1141038
– volume: 1
  start-page: 325
  year: 1989
  ident: 47369_CR78
  publication-title: Antarct. Sci.
  doi: 10.1017/S0954102089000490
– volume: 413
  start-page: 79
  year: 2015
  ident: 47369_CR4
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2014.12.039
– volume: 558
  start-page: 430
  year: 2018
  ident: 47369_CR11
  publication-title: Nature
  doi: 10.1038/s41586-018-0208-x
– volume: 56
  start-page: M56
  year: 2022
  ident: 47369_CR25
  publication-title: Geol. Soc. Lond. Mem.
– volume: 17
  start-page: 1
  year: 2021
  ident: 47369_CR22
  publication-title: Climate
– volume: 180
  start-page: 623
  year: 2010
  ident: 47369_CR87
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.2009.04419.x
– volume: 14
  start-page: 599
  year: 2020
  ident: 47369_CR34
  publication-title: Cryosphere
  doi: 10.5194/tc-14-599-2020
– volume: 44
  start-page: 7817
  year: 2017
  ident: 47369_CR44
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2017GL074216
– volume: 12
  start-page: 449
  year: 2022
  ident: 47369_CR42
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-022-01328-2
– volume: 458
  start-page: 329
  year: 2009
  ident: 47369_CR39
  publication-title: Nature
  doi: 10.1038/nature07809
– volume: 32
  start-page: 111
  year: 2004
  ident: 47369_CR89
  publication-title: Annu. Rev. Earth Planet. Sci.
  doi: 10.1146/annurev.earth.32.082503.144359
– volume: 48
  start-page: e2021GL094545
  year: 2021
  ident: 47369_CR47
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL094545
– volume: 566
  start-page: 65
  year: 2019
  ident: 47369_CR80
  publication-title: Nature
  doi: 10.1038/s41586-019-0889-9
– volume: 298
  start-page: 107800
  year: 2022
  ident: 47369_CR12
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2022.107800
– volume: 6
  start-page: 273
  year: 2012
  ident: 47369_CR75
  publication-title: Cryosphere
  doi: 10.5194/tc-6-273-2012
– volume: 48
  start-page: e2021GL094513
  year: 2021
  ident: 47369_CR30
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2021GL094513
– volume: 746
  start-page: 412
  year: 2018
  ident: 47369_CR70
  publication-title: Tectonophysics
  doi: 10.1016/j.tecto.2017.06.012
– volume: 47
  start-page: e2019GL086729
  year: 2020
  ident: 47369_CR73
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2019GL086729
– volume: 14
  start-page: 641
  year: 1999
  ident: 47369_CR52
  publication-title: J. Quat. Sci.
  doi: 10.1002/(SICI)1099-1417(199912)14:7<641::AID-JQS466>3.0.CO;2-B
– volume: 384
  start-page: 88
  year: 2013
  ident: 47369_CR50
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2013.09.042
– volume: 35
  start-page: 102
  year: 2002
  ident: 47369_CR56
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756402781816609
– volume: 43
  start-page: 3795
  year: 2016
  ident: 47369_CR35
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068356
– volume: 18
  start-page: 1729
  year: 2022
  ident: 47369_CR68
  publication-title: Climate
– volume: 4
  start-page: 69
  year: 2023
  ident: 47369_CR72
  publication-title: Commun. Earth Environ.
  doi: 10.1038/s43247-023-00727-3
– volume: 30
  start-page: 4337
  year: 2017
  ident: 47369_CR62
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-16-0420.1
– volume: 63
  start-page: 731
  year: 2017
  ident: 47369_CR79
  publication-title: J. Glaciol.
  doi: 10.1017/jog.2017.42
– volume: 79
  start-page: 193
  year: 2011
  ident: 47369_CR83
  publication-title: Glob. Planet. Change
  doi: 10.1016/j.gloplacha.2010.11.002
– volume: 123
  start-page: 7702
  year: 2018
  ident: 47369_CR18
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2018JC013965
– volume: 13
  year: 2022
  ident: 47369_CR66
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-33009-1
– volume: 1
  start-page: 100002
  year: 2020
  ident: 47369_CR85
  publication-title: Quat. Sci. Adv.
  doi: 10.1016/j.qsa.2020.100002
– volume: 15
  start-page: 189
  year: 2019
  ident: 47369_CR41
  publication-title: Climate
– ident: 47369_CR46
  doi: 10.1002/esp.5701
– volume: 587
  start-page: 600
  year: 2020
  ident: 47369_CR51
  publication-title: Nature
  doi: 10.1038/s41586-020-2916-2
– volume: 63
  start-page: 109
  year: 2013
  ident: 47369_CR54
  publication-title: Quat. Sci. Rev.
  doi: 10.1016/j.quascirev.2012.11.021
– volume: 17
  start-page: 5197
  year: 2023
  ident: 47369_CR16
  publication-title: Cryosphere
  doi: 10.5194/tc-17-5197-2023
– volume: 16
  start-page: 4053
  year: 2022
  ident: 47369_CR64
  publication-title: Cryosphere
  doi: 10.5194/tc-16-4053-2022
– volume: 40
  start-page: 15
  year: 2021
  ident: 47369_CR65
  publication-title: J. Micropalaeontol.
  doi: 10.5194/jm-40-15-2021
– volume: 17
  start-page: 1787
  year: 2023
  ident: 47369_CR7
  publication-title: Cryosphere
  doi: 10.5194/tc-17-1787-2023
– volume: 27
  start-page: 305
  year: 1998
  ident: 47369_CR58
  publication-title: Ann. Glaciol.
  doi: 10.3189/1998AoG27-1-305-310
– volume: 10
  year: 2019
  ident: 47369_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08068-y
– volume: 364
  start-page: eaav7908
  year: 2019
  ident: 47369_CR49
  publication-title: Science
  doi: 10.1126/science.aav7908
– volume: 360
  start-page: 1335
  year: 2018
  ident: 47369_CR23
  publication-title: Science
  doi: 10.1126/science.aao1447
– volume: 33
  start-page: 778
  year: 2018
  ident: 47369_CR90
  publication-title: Paleoceanogr. Paleoclimatol.
  doi: 10.1029/2017PA003297
– volume: 339
  start-page: 1198
  year: 2013
  ident: 47369_CR3
  publication-title: Science
  doi: 10.1126/science.1228026
– ident: 47369_CR86
  doi: 10.5194/tc-14-633-2020
– volume: 125
  start-page: e2019JC015848
  year: 2020
  ident: 47369_CR61
  publication-title: J. Geophys. Res. Oceans
  doi: 10.1029/2019JC015848
– volume: 46
  start-page: 97
  year: 2007
  ident: 47369_CR33
  publication-title: Ann. Glaciol.
  doi: 10.3189/172756407782871567
– ident: 47369_CR81
  doi: 10.1594/PANGAEA.441706
– volume: 502
  start-page: 89
  year: 2013
  ident: 47369_CR55
  publication-title: Nature
  doi: 10.1038/nature12567
– volume: 4
  start-page: e2022AV000846
  year: 2023
  ident: 47369_CR9
  publication-title: AGU Adv.
  doi: 10.1029/2022AV000846
– volume: 613
  start-page: 292
  year: 2023
  ident: 47369_CR60
  publication-title: Nature
  doi: 10.1038/s41586-022-05411-8
– volume: 8
  year: 2017
  ident: 47369_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01455-x
– volume: 3
  start-page: 850
  year: 2010
  ident: 47369_CR48
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1012
– ident: 47369_CR77
  doi: 10.1002/2016GL068356
– volume: 325
  start-page: 310
  year: 2009
  ident: 47369_CR37
  publication-title: Science
  doi: 10.1126/science.1171041
– volume: 494
  start-page: 81
  year: 2013
  ident: 47369_CR38
  publication-title: Nature
  doi: 10.1038/nature11822
– volume: 15
  start-page: 1355
  year: 2022
  ident: 47369_CR27
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-15-1355-2022
– ident: 47369_CR28
  doi: 10.1029/2008JF001179
SSID ssj0000391844
Score 2.475018
Snippet Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of...
Abstract Recent geologic and modeled evidence suggests that the grounding line of the Siple Coast of the West Antarctic Ice Sheet (WAIS) retreated hundreds of...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3176
SubjectTerms 704/106/125
704/106/413
704/2151/210
Climate change
Cryospheric science
Geodynamics
GEOSCIENCES
Holocene
Humanities and Social Sciences
Ice
Ice sheets
Ice shelves
Land ice
multidisciplinary
Ocean circulation
Ocean currents
Ocean models
Palaeoclimate
Paleoclimate
Science
Science (multidisciplinary)
Sheet modelling
Simulation
Water circulation
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9UwEB5BAYkL-xJakJG4QdQX2_FyQgVR9YBKD4B6QVZiO_RJJSkvKRL_nhknL9Vj6YVTosSJ4szuGc8H8MJG1Qg0y3ms6xIDFB1yG4qAZ00sVGWKKvXp_vxeHx6a42N7NC249VNZ5VonJkUdOk9r5LsYdhOYpNH89dn3nFCjKLs6QWhchWvUJUGk0r2jeY2Fup8bKae9MgthdnuZNAMaplxqoWwuNuxRatuPhw7F628u55-Vk7-lT5NV2r_9v_O5A7cmf5TtjQx0F67E9h7cGBEqf96HLx98rFrmK4KYYITi8C2y_mTZDIx6P636GBiB07C9dkCRwZcw2ieStsow8mBxWKplZ8uWoa_JTtG3ZQf4dpxbfACf9t99fHuQT4gMuS-VGXJbcq80917UIhjUDcHEEq1-bIQura0La7yqpG_KMgqkNUWDtmysDSXqFRvFQ9hquzY-BoYP19JjcFM1tWzqUFGoJH2hgq0wxNQZFGu6OD-1KyfUjFOX0ubCuJGWDmnpEi2dyODl_MzZ2Kzj0tFviNzzSGq0nS50q69uklvHFw0GdKj1jDaSB1HX6IFWgUuvuIlNyGCbmMWhv0JNdz1VJ_nBcakp45zBzpr4btINvbugfAbP59so1ZSqqdrYnacx6AlL_KcZPBpZbv5OQmlFL7LIwGww48ZENu-0y5PUObygxL_SKoNXa769-K5__6knl09jG25ykqiFzLnYga1hdR6fwnX_Y1j2q2dJJH8BkB47jQ
  priority: 102
  providerName: ProQuest
Title Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene
URI https://link.springer.com/article/10.1038/s41467-024-47369-3
https://www.ncbi.nlm.nih.gov/pubmed/38653971
https://www.proquest.com/docview/3048575872
https://www.proquest.com/docview/3045114599
https://www.osti.gov/servlets/purl/2470460
https://pubmed.ncbi.nlm.nih.gov/PMC11039676
https://doaj.org/article/20f75332287842d3bb324ad24c628efd
Volume 15
WOSCitedRecordID wos001207290500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0VLgX8fOsdy4RfNPitUmb5PFO7jhB1yIqqyAhTVJu4ewe257gf-9M2l1v_Xzxpbs0aUnnI_MbZjID8ESHsuFoltNQ1wU6KNKn2mce_zUhK63KbKzT_eGVnE7VbKarS62-KCdsKA88EA6d8wYRNYqdkkrkntc1QgDrc-HKXIXG0-6LqOeSMxX3YK7RdRHjKZl9rp53Iu4JaJJSIXmpU75hiWLBfvxZoGL9Dmz-mjP5U-A02qPjW3BzBJLsYPiA23AltHfgxtBa8ttd-PzGBdsyZ6k3BKP2C18C607nTc-oaNOyC55RVxl20PYo6_gSRgc84hkXRtATp8UkdDZvGYJEdoaglJ3g23Fp4R68Pz569-IkHVsppK4oVZ_qInelzJ3jNfcKldqrUKC5Dg2XhdZ1ppUrrXBNUQSOTCI3TheN1r7ADUEHfh-22kUbHgDDh2vh0CuxTS2a2lvycYTLSq8t-oYygWxFVuPGOuPU7uLMxHg3V2ZghUFWmMgKwxN4un7mfKiy8dfZh8St9UyqkB1voNyYUW7Mv-QmgV3itUGgQdVyHaUVud7kQlKoOIG9lQiYUak7w3G3Q3SrZJ7A4_UwqiPFWGwbFhdxDkJYgTRNYGeQmPU6qb0qwr8sAbUhSxsfsjnSzk9jye-MIvalLBN4thK7H-v6M6Ue_g9K7cJ2TmqzL9Kc78FWv7wIj-C6-9rPu-UErsqZjFc1gWuHR9Pq7STq4oTSaCu8VsUnHKlevq4-fgf9pTO7
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQguvB-hBYwEJ4i6iZ3EPiBUHlVX3S57KKgckElsh65UsmWTgvqn-I3MeJOtlkdvPXDKKnEs2_vNKx7PB_BEubTkaJZDVxQJBiiZDZWNLP4qXZTmMsp9ne4Pw2w0kvv7arwCP7uzMJRW2elEr6jt1NA38g0Mu4lMUmbxy6NvIbFG0e5qR6Exh8WOO_mBIVv9YvAG_9-ncbz1du_1dtiyCoQmSWUTqiQ2aRYbwwtuJeLbSpeg5XIlzxKlCozCTZoLUyaJ4zheimhUUiplE5QN5Tj2ewFWBYJd9mB1PNgdf1x81aF661KI9nROn8uNWnhdhKYwFBlPVciXLKAnCsDLFAX6b07un7mav23Yeju4de1_W8HrcLX1uNnmXERuwIqrbsKlOQfnyS349M64vGImJxINRjwVXx2rDyZlw6i61ax2lhH9DtusGhw7dsLoJIw_DMTIR8dmPlufTSqG3jQ7RO-dbWPvuJbuNrw_l7ndgV41rdw9YPhyIQyGb3lZiLKwOQWDwkSpVTkG0VkAUYcDbdqC7MQLcqh9YgCXeo4djdjRHjuaB_Bs8c7RvBzJma1fEbwWLamUuL8xnX3RrWbScb_EkBX1usykiC0vCvSxcxsLk8bSlTaANQKnRo-Mygobyr8yjY5FRnvqAax3YNOt9qv1KdICeLx4jHqLNqPyyk2PfRv09QWuaQB35xBfjJN4aNFPjgKQS-Bfmsjyk2py4GujR5TakGZpAM87OTkd179X6v7Z03gEl7f3dod6OBjtrMGVmKS5L8KYr0OvmR27B3DRfG8m9exhqxAYfD5vCfoFkcSXWQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6V8hAX3o_QAkaCE0S7sZ3EPiBUKFWrVsseAPWCTGI7dKWSLZsU1L_Gr2PGm2y1PHrrgVNWiWPZ3m9e8Xg-gKfaZ5VAsxz7skwxQMldrF3i8Fflk6xQSRHqdH_cy0cjtb-vxyvwsz8LQ2mVvU4MitpNLX0jH2DYTWSSKueDqkuLGG9uvTr6FhODFO209nQac4js-pMfGL41L3c28b9-xvnW2_dvtuOOYSC2aabaWKfcZjm3VpTCKcS6Uz5FK-YrkadalxiR26yQtkpTL3DsFN3otNLapSgn2gvs9wJczKloeUgbHC--71DldSVld05nKNSgkUEroVGMZS4yHYslWxgoA_AyRdH-m7v7Z9bmb1u3wSJuXf-f1_IGXOv8cLYxF5ybsOLrW3B5zsx5chs-vbO-qJktiFqDEXvFV8-ag0nVMqp5NWu8Y0TKwzbqFseOnTA6HxOOCDHy3LFZyOFnk5qhj80O0adn29g7rqu_Ax_OZW53YbWe1v4-MHy5lBaDuqIqZVW6gkJEaZPM6QJD6zyCpMeEsV2ZdmILOTQhXUAoM8eRQRyZgCMjIni-eOdoXqTkzNavCWqLllRgPNyYzr6YTl8ZPqwwkEVtr3IluRNliZ534bi0GVe-chGsEVAN-mlUbNhSVpZtDZc57bRHsN4Dz3Q6sTGnqIvgyeIxajPaoipqPz0ObTACkLimEdybw30xTmKnRe85iUAtCcLSRJaf1JODUDE9oYSHLM8ieNHLzOm4_r1SD86exmO4gmJj9nZGu2twlZNgD2XMxTqstrNj_xAu2e_tpJk9CpqBwefzFp9f0mGemA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ocean+cavity+regime+shift+reversed+West+Antarctic+grounding+line+retreat+in+the+late+Holocene&rft.jtitle=Nature+communications&rft.au=Lowry%2C+Daniel+P.&rft.au=Han%2C+Holly+K.&rft.au=Golledge%2C+Nicholas+R.&rft.au=Gomez%2C+Natalya&rft.date=2024-04-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-47369-3&rft.externalDocID=10_1038_s41467_024_47369_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon