Mapping Entity Sets in News Archives Across Time

We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Data Science and Engineering Jg. 4; H. 3; S. 208 - 222
Hauptverfasser: Duan, Yijun, Jatowt, Adam, Bhowmick, Sourav S., Yoshikawa, Masatoshi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer
Springer Nature B.V
SpringerOpen
Schlagworte:
ISSN:2364-1185, 2364-1541
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing entity-oriented mapping between different times. We introduce an effective method to solve the aforementioned task based on a concise integer linear programming framework. In particular, our model first conducts typicality analysis to estimate entity representativeness. It next constructs orthogonal transformation between the two entity collections. The result is a set of typical across-time comparables. We demonstrate the effectiveness of our approach on the New York Times dataset through both qualitative and quantitative tests.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2364-1185
2364-1541
DOI:10.1007/s41019-019-00102-3