Mapping Entity Sets in News Archives Across Time

We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Data Science and Engineering Ročník 4; číslo 3; s. 208 - 222
Hlavní autoři: Duan, Yijun, Jatowt, Adam, Bhowmick, Sourav S., Yoshikawa, Masatoshi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer
Springer Nature B.V
SpringerOpen
Témata:
ISSN:2364-1185, 2364-1541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing entity-oriented mapping between different times. We introduce an effective method to solve the aforementioned task based on a concise integer linear programming framework. In particular, our model first conducts typicality analysis to estimate entity representativeness. It next constructs orthogonal transformation between the two entity collections. The result is a set of typical across-time comparables. We demonstrate the effectiveness of our approach on the New York Times dataset through both qualitative and quantitative tests.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2364-1185
2364-1541
DOI:10.1007/s41019-019-00102-3