Mapping Entity Sets in News Archives Across Time

We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Data Science and Engineering Ročník 4; číslo 3; s. 208 - 222
Hlavní autori: Duan, Yijun, Jatowt, Adam, Bhowmick, Sourav S., Yoshikawa, Masatoshi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2019
Springer
Springer Nature B.V
SpringerOpen
Predmet:
ISSN:2364-1185, 2364-1541
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing entity-oriented mapping between different times. We introduce an effective method to solve the aforementioned task based on a concise integer linear programming framework. In particular, our model first conducts typicality analysis to estimate entity representativeness. It next constructs orthogonal transformation between the two entity collections. The result is a set of typical across-time comparables. We demonstrate the effectiveness of our approach on the New York Times dataset through both qualitative and quantitative tests.
AbstractList We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing entity-oriented mapping between different times. We introduce an effective method to solve the aforementioned task based on a concise integer linear programming framework. In particular, our model first conducts typicality analysis to estimate entity representativeness. It next constructs orthogonal transformation between the two entity collections. The result is a set of typical across-time comparables. We demonstrate the effectiveness of our approach on the New York Times dataset through both qualitative and quantitative tests.
Abstract We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing entity-oriented mapping between different times. We introduce an effective method to solve the aforementioned task based on a concise integer linear programming framework. In particular, our model first conducts typicality analysis to estimate entity representativeness. It next constructs orthogonal transformation between the two entity collections. The result is a set of typical across-time comparables. We demonstrate the effectiveness of our approach on the New York Times dataset through both qualitative and quantitative tests.
Audience Academic
Author Jatowt, Adam
Yoshikawa, Masatoshi
Bhowmick, Sourav S.
Duan, Yijun
Author_xml – sequence: 1
  givenname: Yijun
  orcidid: 0000-0002-5098-8593
  surname: Duan
  fullname: Duan, Yijun
  email: minsak1020@gmail.com
  organization: Graduate School of Informatics, Kyoto University
– sequence: 2
  givenname: Adam
  surname: Jatowt
  fullname: Jatowt, Adam
  organization: Graduate School of Informatics, Kyoto University
– sequence: 3
  givenname: Sourav S.
  surname: Bhowmick
  fullname: Bhowmick, Sourav S.
  organization: School of Computer Science and Engineering, Nanyang Technological University
– sequence: 4
  givenname: Masatoshi
  surname: Yoshikawa
  fullname: Yoshikawa, Masatoshi
  organization: Graduate School of Informatics, Kyoto University
BookMark eNp9UU1v1DAQtVCRKKV_gFMkThyyHX_EsY-rqsBKLUi0nK2JYwevdpPF9rb03-Pd8KFyqKyRx6P33njmvSYn4zQ6Qt5SWFCA9iIJClTXxwAKrOYvyCnjUtS0EfTkT05V84qcp7QGAFZeQshTAje424VxqK7GHPJjdetyqsJYfXYPqVpG-z3cu5LYOKVU3YWte0Neetwkd_77PiPfPlzdXX6qr798XF0ur2vbSJVriehsi9xS6_sOARuPClUnZKc7wfoGte6Y4tJ7IUC5njvLOeW0UbrXgPyMrGbdfsK12cWwxfhoJgzmWJjiYDDmYDfOtJKDROW7ljLRS-hawQRH2XrQArqmaL2btXZx-rF3KZv1tI9j-b5hnAtGW60PqMWMGrCIhtFPOaItp3fbYMvKfSj1pQTaKqU0K4T3TwgFk93PPOA-JbO6_foUy2bscZPR-b8jUTAHF83sojnGwUXDC0n9R7IhYw6lT8SweZ7KZ2oqfcbBxX8jP8P6BcLlrsg
CitedBy_id crossref_primary_10_1007_s00799_023_00377_y
Cites_doi 10.1145/1242572.1242646
10.1145/2505515.2505666
10.1145/2619088
10.1109/TKDE.2017.2754499
10.3115/v1/D14-1162
10.1145/1871437.1871730
10.1109/ICDM.2007.27
10.1145/1148170.1148215
10.1007/978-3-030-18576-3_21
10.1017/S0269888902000371
10.1038/nature06176
10.1002/int.4550060205
10.1145/1390334.1390386
10.1145/1645953.1646198
10.1080/00401706.1977.10489521
10.1038/nature06137
10.3115/v1/P15-1063
10.1145/1816123.1816135
10.3115/v1/E14-1049
10.3115/v1/N15-1104
10.18653/v1/P16-1141
10.3115/v1/N15-1028
10.1126/science.1136800
10.1145/988672.988687
ContentType Journal Article
Copyright The Author(s) 2019
COPYRIGHT 2019 Springer
Data Science and Engineering is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: COPYRIGHT 2019 Springer
– notice: Data Science and Engineering is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
7SC
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1007/s41019-019-00102-3
DatabaseName Springer Nature Open Access Journals
CrossRef
In Context: Science
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Computer Science
EISSN 2364-1541
EndPage 222
ExternalDocumentID oai_doaj_org_article_76306a8fb7124d60b74243a67f0940b5
A601788892
10_1007_s41019_019_00102_3
GrantInformation_xml – fundername: JSPS KAKENHI grants
  grantid: 17H01828; 18K19841
GroupedDBID 0R~
AAFWJ
AAKKN
ABEEZ
ABFTD
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AFGXO
AFKRA
AFPKN
AHBYD
AHSBF
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ASPBG
AVWKF
BAPOH
BCNDV
BENPR
C24
C6C
CCPQU
EBS
EJD
GROUPED_DOAJ
H13
IAO
ISR
ITC
M~E
OK1
PIMPY
RSV
SOJ
AAYXX
ABJCF
AFFHD
ARAPS
BGLVJ
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ADMLS
ARCSS
7SC
8FD
8FE
8FG
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c568t-6aaec7a3c1cfdba0a5fa8a8b46b9b42d5a99b2836ff4408ed3ec33131589d90a3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657151400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2364-1185
IngestDate Fri Oct 03 12:46:47 EDT 2025
Wed Oct 08 14:20:55 EDT 2025
Wed Feb 12 06:32:02 EST 2025
Fri Feb 14 03:02:07 EST 2025
Sat Nov 29 06:46:06 EST 2025
Tue Nov 18 22:17:49 EST 2025
Fri Feb 21 02:32:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Integer linear programming
Typicality analysis
Comparable entity mining
Temporal embeddings alignment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-6aaec7a3c1cfdba0a5fa8a8b46b9b42d5a99b2836ff4408ed3ec33131589d90a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5098-8593
OpenAccessLink https://doaj.org/article/76306a8fb7124d60b74243a67f0940b5
PQID 2334217995
PQPubID 4402891
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_76306a8fb7124d60b74243a67f0940b5
proquest_journals_2334217995
gale_infotracacademiconefile_A601788892
gale_incontextgauss_ISR_A601788892
crossref_primary_10_1007_s41019_019_00102_3
crossref_citationtrail_10_1007_s41019_019_00102_3
springer_journals_10_1007_s41019_019_00102_3
PublicationCentury 2000
PublicationDate 20190900
2019-09-00
20190901
2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 9
  year: 2019
  text: 20190900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Berlin
PublicationTitle Data Science and Engineering
PublicationTitleAbbrev Data Sci. Eng
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
– name: Springer Nature B.V
– name: SpringerOpen
References Jiang Z, Ji L, Zhang J, Yan J, Guo P, Liu N (2013) Learning open-domain comparable entity graphs from user search queries. In: Proceedings of the 22nd ACM CIKM. ACM, pp 2339–2344
FreyBJDueckDClustering by passing messages between data pointsScience20073155814972976229217410.1126/science.1136800
Jindal N, Liu B (2006) Mining comparative sentences and relations. In: AAAI, vol 22, pp 1331–1336
Gurobi Optimization I (2016) Gurobi optimizer reference manual. http://www.gurobi.com. Accessed 24 Aug 2018
WangQMaoZWangBGuoLKnowledge graph embedding: a survey of approaches and applicationsIEEE Trans Knowl Data Eng201729122724274310.1109/TKDE.2017.2754499
Wan X, Yang J (2008) Multi-document summarization using cluster-based link analysis. In: Proceedings of ACM SIGIR. ACM, pp 299–306
RodríguezMAEgenhoferMJDetermining semantic similarity among entity classes from different ontologiesIEEE TKDE2003152442456
TammaVBench-CaponTAn ontology model to facilitate knowledge-sharing in multi-agent systemsKnowl Eng Rev2002171416010.1017/S0269888902000371
Berberich K, Bedathur SJ, Sozio M, Weikum G (2009) Bridging the terminology gap in web archive search. In: WebDB
Etzioni O, Cafarella M, Downey D, Kok S, Popescu AM, Shaked T, Soderland S, Weld DS, Yates A (2004) Web-scale information extraction in knowitall: (preliminary results). In: Proceedings of the 13th WWW. ACM, pp 100–110
Yu HT, Jatowt A, Blanco R, Joho H, Jose J, Chen L, Yuan F (2017) A concise integer linear programming formulation for implicit search result diversification. In: Proceedings of the tenth ACM WSDM. ACM, pp 191–200
Kaluarachchi AC, Varde AS, Bedathur S, Weikum G, Peng J, Feldman A (2010) Incorporating terminology evolution for query translation in text retrieval with association rules. In: CIKM. ACM, pp 1789–1792
Hamilton WL, Leskovec J, Jurafsky D (2016) Diachronic word embeddings reveal statistical laws of semantic change. arXiv preprint arXiv:160509096
McCallum A, Jensen D (2003) A note on the unification of information extraction and data mining using conditional-probability, relational models
Mikolov T, Le QV, Sutskever I (2013) Exploiting similarities among languages for machine translation. arXiv preprint arXiv:13094168
HuangXWanXXiaoJLearning to find comparable entities on the webWeb Inf Syst Eng WISE201220121629
Xing C, Wang D, Liu C, Lin Y (2015) Normalized word embedding and orthogonal transform for bilingual word translation. In: NAACL HLT, pp 1006–1011
Faruqui M, Dyer C (2014) Improving vector space word representations using multilingual correlation. In: EACL, pp 462–471
Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543
Kanhabua N, Nørvåg K (2010) Exploiting time-based synonyms in searching document archives. In: JCDL. ACM, pp 79–88
LiebermanEMichelJBJacksonJTangTNowakMAQuantifying the evolutionary dynamics of languageNature2007449716371310.1038/nature06137
Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231
Smith SL, Turban DH, Hamblin S, Hammerla NY (2017) Offline bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv preprint arXiv:170203859
Duan Y, Jatowt A, Bhowmick SS, Yoshikawa M (2019) Typicality-based across-time mapping of entity sets in document archives. In: International conference on database systems for advanced applications. Springer, pp 350–366
Jindal N, Liu B (2006) Identifying comparative sentences in text documents. In: Proceedings of ACM SIGIR. ACM, pp 244–251
Liu J, Wagner E, Birnbaum L (2007) Compare&contrast: using the web to discover comparable cases for news stories. In: Proceedings of the 16th WWW. ACM, pp 541–550
Tahmasebi N, Gossen G, Kanhabua N, Holzmann H, Risse T (2012) Neer: an unsupervised method for named entity evolution recognition. In: COLING, pp 2553–2568
Jain A, Pantel P (2009) Identifying comparable entities on the web. In: Proceedings of the 18th ACM CIKM. ACM, pp 1661–1664
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781
Zhang Y, Jatowt A, Bhowmick S, Tanaka K (2015) Omnia mutantur, nihil interit: Connecting past with present by finding corresponding terms across time. In: ACL vol 1, pp 645–655
PagelMAtkinsonQDMeadeAFrequency of word-use predicts rates of lexical evolution throughout indo-european historyNature2007449716371710.1038/nature06176
Lu A, Wang W, Bansal M, Gimpel K, Livescu K (2015) Deep multilingual correlation for improved word embeddings. In: NAACL HLT, pp 250–256
Sandhaus E (2008) The New York times annotated corpus overview. The New York Times Company, Research and Development, pp 1–22
CamposRDiasGJorgeAMJatowtASurvey of temporal information retrieval and related applicationsACM Comput Surv (CSUR)201547215
Hua M, Pei J, Fu AW, Lin X, Leung HF (2007) Efficiently answering top-k typicality queries on large databases. In: Proceedings of VLDB, VLDB endowment, pp 890–901
Feldman R, Fresco M, Goldenberg J, Netzer O, Ungar L (2007) Extracting product comparisons from discussion boards. In: Data mining, 2007. ICDM 2007. IEEE, pp 469–474
Řehůřek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, ELRA, Valletta, Malta, pp 45–50. http://is.muni.cz/publication/884893/en. Accessed 10 Oct 2018
Sarawagi S, Cohen WW (2005) Semi-Markov conditional random fields for information extraction. In: NIPS, pp 1185–1192
DuboisDPradeHRossazzaJPVagueness, typicality, and uncertainty in class hierarchiesInt J Intell Syst19916216718310.1002/int.4550060205
LiSLinCYSongYILiZComparable entity mining from comparative questionsIEEE TKDE201325714981509
Chen YN, Metze F (2012) Two-layer mutually reinforced random walk for improved multi-party meeting summarization. In: SLT, 2012 IEEE. IEEE, pp 461–466
ScottDWSainSRMultidimensional density estimation. HandbStat200524229261
BreimanLMeiselWPurcellEVariable kernel estimates of multivariate densitiesTechnometrics197719213514410.1080/00401706.1977.10489521
Reed SE, Zhang Y, Zhang Y, Lee H (2015) Deep visual analogy-making. In: Advances in neural information processing systems, pp 1252–1260
S Li (102_CR22) 2013; 25
BJ Frey (102_CR11) 2007; 315
102_CR40
DW Scott (102_CR36) 2005; 24
V Tamma (102_CR39) 2002; 17
102_CR20
102_CR42
X Huang (102_CR15) 2012; 2012
102_CR44
102_CR21
102_CR43
102_CR24
102_CR26
MA Rodríguez (102_CR33) 2003; 15
102_CR25
102_CR17
102_CR16
102_CR38
102_CR19
102_CR18
Q Wang (102_CR41) 2017; 29
E Lieberman (102_CR23) 2007; 449
D Dubois (102_CR6) 1991; 6
R Campos (102_CR3) 2015; 47
102_CR31
102_CR30
L Breiman (102_CR2) 1977; 19
102_CR10
102_CR32
102_CR13
102_CR35
102_CR12
102_CR34
102_CR37
102_CR14
102_CR1
102_CR28
102_CR27
102_CR9
102_CR7
102_CR8
102_CR5
M Pagel (102_CR29) 2007; 449
102_CR4
References_xml – reference: FreyBJDueckDClustering by passing messages between data pointsScience20073155814972976229217410.1126/science.1136800
– reference: Xing C, Wang D, Liu C, Lin Y (2015) Normalized word embedding and orthogonal transform for bilingual word translation. In: NAACL HLT, pp 1006–1011
– reference: DuboisDPradeHRossazzaJPVagueness, typicality, and uncertainty in class hierarchiesInt J Intell Syst19916216718310.1002/int.4550060205
– reference: TammaVBench-CaponTAn ontology model to facilitate knowledge-sharing in multi-agent systemsKnowl Eng Rev2002171416010.1017/S0269888902000371
– reference: HuangXWanXXiaoJLearning to find comparable entities on the webWeb Inf Syst Eng WISE201220121629
– reference: Hua M, Pei J, Fu AW, Lin X, Leung HF (2007) Efficiently answering top-k typicality queries on large databases. In: Proceedings of VLDB, VLDB endowment, pp 890–901
– reference: Mikolov T, Le QV, Sutskever I (2013) Exploiting similarities among languages for machine translation. arXiv preprint arXiv:13094168
– reference: Faruqui M, Dyer C (2014) Improving vector space word representations using multilingual correlation. In: EACL, pp 462–471
– reference: Reed SE, Zhang Y, Zhang Y, Lee H (2015) Deep visual analogy-making. In: Advances in neural information processing systems, pp 1252–1260
– reference: WangQMaoZWangBGuoLKnowledge graph embedding: a survey of approaches and applicationsIEEE Trans Knowl Data Eng201729122724274310.1109/TKDE.2017.2754499
– reference: Tahmasebi N, Gossen G, Kanhabua N, Holzmann H, Risse T (2012) Neer: an unsupervised method for named entity evolution recognition. In: COLING, pp 2553–2568
– reference: Yu HT, Jatowt A, Blanco R, Joho H, Jose J, Chen L, Yuan F (2017) A concise integer linear programming formulation for implicit search result diversification. In: Proceedings of the tenth ACM WSDM. ACM, pp 191–200
– reference: Gurobi Optimization I (2016) Gurobi optimizer reference manual. http://www.gurobi.com. Accessed 24 Aug 2018
– reference: Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543
– reference: Chen YN, Metze F (2012) Two-layer mutually reinforced random walk for improved multi-party meeting summarization. In: SLT, 2012 IEEE. IEEE, pp 461–466
– reference: Duan Y, Jatowt A, Bhowmick SS, Yoshikawa M (2019) Typicality-based across-time mapping of entity sets in document archives. In: International conference on database systems for advanced applications. Springer, pp 350–366
– reference: Sarawagi S, Cohen WW (2005) Semi-Markov conditional random fields for information extraction. In: NIPS, pp 1185–1192
– reference: Berberich K, Bedathur SJ, Sozio M, Weikum G (2009) Bridging the terminology gap in web archive search. In: WebDB
– reference: Hamilton WL, Leskovec J, Jurafsky D (2016) Diachronic word embeddings reveal statistical laws of semantic change. arXiv preprint arXiv:160509096
– reference: LiebermanEMichelJBJacksonJTangTNowakMAQuantifying the evolutionary dynamics of languageNature2007449716371310.1038/nature06137
– reference: McCallum A, Jensen D (2003) A note on the unification of information extraction and data mining using conditional-probability, relational models
– reference: Jindal N, Liu B (2006) Mining comparative sentences and relations. In: AAAI, vol 22, pp 1331–1336
– reference: PagelMAtkinsonQDMeadeAFrequency of word-use predicts rates of lexical evolution throughout indo-european historyNature2007449716371710.1038/nature06176
– reference: Jiang Z, Ji L, Zhang J, Yan J, Guo P, Liu N (2013) Learning open-domain comparable entity graphs from user search queries. In: Proceedings of the 22nd ACM CIKM. ACM, pp 2339–2344
– reference: Kanhabua N, Nørvåg K (2010) Exploiting time-based synonyms in searching document archives. In: JCDL. ACM, pp 79–88
– reference: Sandhaus E (2008) The New York times annotated corpus overview. The New York Times Company, Research and Development, pp 1–22
– reference: Etzioni O, Cafarella M, Downey D, Kok S, Popescu AM, Shaked T, Soderland S, Weld DS, Yates A (2004) Web-scale information extraction in knowitall: (preliminary results). In: Proceedings of the 13th WWW. ACM, pp 100–110
– reference: Feldman R, Fresco M, Goldenberg J, Netzer O, Ungar L (2007) Extracting product comparisons from discussion boards. In: Data mining, 2007. ICDM 2007. IEEE, pp 469–474
– reference: Smith SL, Turban DH, Hamblin S, Hammerla NY (2017) Offline bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv preprint arXiv:170203859
– reference: RodríguezMAEgenhoferMJDetermining semantic similarity among entity classes from different ontologiesIEEE TKDE2003152442456
– reference: Lu A, Wang W, Bansal M, Gimpel K, Livescu K (2015) Deep multilingual correlation for improved word embeddings. In: NAACL HLT, pp 250–256
– reference: Wan X, Yang J (2008) Multi-document summarization using cluster-based link analysis. In: Proceedings of ACM SIGIR. ACM, pp 299–306
– reference: BreimanLMeiselWPurcellEVariable kernel estimates of multivariate densitiesTechnometrics197719213514410.1080/00401706.1977.10489521
– reference: ScottDWSainSRMultidimensional density estimation. HandbStat200524229261
– reference: Zhang Y, Jatowt A, Bhowmick S, Tanaka K (2015) Omnia mutantur, nihil interit: Connecting past with present by finding corresponding terms across time. In: ACL vol 1, pp 645–655
– reference: Jain A, Pantel P (2009) Identifying comparable entities on the web. In: Proceedings of the 18th ACM CIKM. ACM, pp 1661–1664
– reference: Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781
– reference: Liu J, Wagner E, Birnbaum L (2007) Compare&contrast: using the web to discover comparable cases for news stories. In: Proceedings of the 16th WWW. ACM, pp 541–550
– reference: Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231
– reference: Jindal N, Liu B (2006) Identifying comparative sentences in text documents. In: Proceedings of ACM SIGIR. ACM, pp 244–251
– reference: Kaluarachchi AC, Varde AS, Bedathur S, Weikum G, Peng J, Feldman A (2010) Incorporating terminology evolution for query translation in text retrieval with association rules. In: CIKM. ACM, pp 1789–1792
– reference: LiSLinCYSongYILiZComparable entity mining from comparative questionsIEEE TKDE201325714981509
– reference: Řehůřek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, ELRA, Valletta, Malta, pp 45–50. http://is.muni.cz/publication/884893/en. Accessed 10 Oct 2018
– reference: CamposRDiasGJorgeAMJatowtASurvey of temporal information retrieval and related applicationsACM Comput Surv (CSUR)201547215
– ident: 102_CR28
– ident: 102_CR24
  doi: 10.1145/1242572.1242646
– ident: 102_CR17
  doi: 10.1145/2505515.2505666
– volume: 47
  start-page: 15
  issue: 2
  year: 2015
  ident: 102_CR3
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/2619088
– volume: 29
  start-page: 2724
  issue: 12
  year: 2017
  ident: 102_CR41
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2017.2754499
– ident: 102_CR30
  doi: 10.3115/v1/D14-1162
– ident: 102_CR20
  doi: 10.1145/1871437.1871730
– ident: 102_CR26
– ident: 102_CR10
  doi: 10.1109/ICDM.2007.27
– ident: 102_CR18
  doi: 10.1145/1148170.1148215
– ident: 102_CR34
– ident: 102_CR5
  doi: 10.1007/978-3-030-18576-3_21
– ident: 102_CR32
– volume: 17
  start-page: 41
  issue: 1
  year: 2002
  ident: 102_CR39
  publication-title: Knowl Eng Rev
  doi: 10.1017/S0269888902000371
– volume: 449
  start-page: 717
  issue: 7163
  year: 2007
  ident: 102_CR29
  publication-title: Nature
  doi: 10.1038/nature06176
– volume: 6
  start-page: 167
  issue: 2
  year: 1991
  ident: 102_CR6
  publication-title: Int J Intell Syst
  doi: 10.1002/int.4550060205
– ident: 102_CR19
– ident: 102_CR43
– volume: 25
  start-page: 1498
  issue: 7
  year: 2013
  ident: 102_CR22
  publication-title: IEEE TKDE
– ident: 102_CR38
– ident: 102_CR4
– ident: 102_CR40
  doi: 10.1145/1390334.1390386
– ident: 102_CR27
– ident: 102_CR16
  doi: 10.1145/1645953.1646198
– ident: 102_CR31
– volume: 19
  start-page: 135
  issue: 2
  year: 1977
  ident: 102_CR2
  publication-title: Technometrics
  doi: 10.1080/00401706.1977.10489521
– volume: 24
  start-page: 229
  year: 2005
  ident: 102_CR36
  publication-title: Stat
– volume: 449
  start-page: 713
  issue: 7163
  year: 2007
  ident: 102_CR23
  publication-title: Nature
  doi: 10.1038/nature06137
– ident: 102_CR44
  doi: 10.3115/v1/P15-1063
– ident: 102_CR21
  doi: 10.1145/1816123.1816135
– ident: 102_CR35
– ident: 102_CR9
  doi: 10.3115/v1/E14-1049
– ident: 102_CR12
– ident: 102_CR42
  doi: 10.3115/v1/N15-1104
– volume: 15
  start-page: 442
  issue: 2
  year: 2003
  ident: 102_CR33
  publication-title: IEEE TKDE
– ident: 102_CR14
– ident: 102_CR37
– ident: 102_CR13
  doi: 10.18653/v1/P16-1141
– volume: 2012
  start-page: 16
  year: 2012
  ident: 102_CR15
  publication-title: Web Inf Syst Eng WISE
– ident: 102_CR25
  doi: 10.3115/v1/N15-1028
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 102_CR11
  publication-title: Science
  doi: 10.1126/science.1136800
– ident: 102_CR7
– ident: 102_CR1
– ident: 102_CR8
  doi: 10.1145/988672.988687
SSID ssj0002118446
ssib044734210
ssib048876940
Score 2.1144068
Snippet We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to...
Abstract We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is...
SourceID doaj
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 208
SubjectTerms Algorithm Analysis and Problem Complexity
Archives & records
Artificial Intelligence
Chemistry and Earth Sciences
Comparable entity mining
Computer Science
Data Mining and Knowledge Discovery
Database Management
Integer linear programming
Integer programming
Linear programming
Mapping
Physics
Statistics for Engineering
Systems and Data Security
Temporal embeddings alignment
Typicality analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-2dg976dZ9MLddEWWwjc3MtmTZehrJSFlhC6VZS9-EvhwKxWnjtLD_fjpVTgilfdmDXuSzsXSnO91J9zuAD6XzRrHUNBWOi5Qxm6VKOe291spoNIg8gPqc_arG4_r8XBzHgFsXr1X2OjEoajszGCP_VlDKigBf9v3qOsWqUXi6GktoPIVNRCrzcr45HI2PT5ZRFt9be4cnZsuEnDnmhRCvCPmGeGopXbNIAbj_vnq-d04azM_hi__98ZewFTeeZHAnKdvwxLWvYDsu7Y58ivjTn19D9lshaMOUjDCF9y-ZuEVHLlqC-pD0SLVkEEZDMIXkDZwejv78-JnGwgqpKXm9SLlnh6kUNblprFaZKhtVq1ozroVmhS2VENrvO3jTYEFqZ6kzlOY0L2thRaboW9hoZ617B0R4d4NmqlKMMiYcE8xlthCs4XltLa8SyPvJlSaijmPxi0u5xEsODJGhIUMkTeDL8p2rO8yNR6mHyLMlJeJlh47ZfCrj8pNei2Zc1Y2u_H7G8kxXrGBU8apB_EBdJnCAHJeIiNHilZupuuk6eTQ5kQPvsmKcQBQJfIxEzcyPwaiYweBnAkG01ij3elmQUSd0ciUICXztpWn1-OER7jz-tV14XgRxRqneg43F_Ma9h2fmdnHRzffjivgHhPUNDA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9UwED90KvjFuafD6pQggsostM01aT4-x4aCDnE69i0kafoYSJ-8vgn-9-by0vcYmwP9kA9tr5Qkv9zlmrvfAbyqfTCKteW58kLliG2RG-Nt8Fqls2QQRST1Of0kj4-bszP1JSWFDWO0-3gkGTX1OtkNA3ootic0IkLL-W24Q3RiFMh1sOEcR5Qcq41RCwiVYiSJI_0cXJ4GcVV1TmAeruqUTXP9Zy5ZrEjsf1V9XzlHjebpaPv_OvYQHqTtKJuu8LMDt3w_ge2x1ANLK38C92KkqBsmsJPuDexNoqx--wiKz4Z4HmbskLJ-f7MTvxzYec9IhbKR3JZNYwcZZZ08hu9Hh98OPuSpFkPuatEscxFm0EnDXem61prC1J1pTGNRWGWxamujlA1bFdF1VMPat9w7zkte1o1qVWH4Lmz1894_AaaCh8ILIw1yROVRoS_aSmEnyqZthcygHMdbu0RUTvUyfug1xXIcMR0bjZjmGeyv3_m5oum4Ufo9TeNakii24435YqbTitVB8RbCNJ2VYQvUisJKrJAbITuiHLR1Bi8JBJpINHqK0pmZi2HQH0--6mnwcunXgqoyeJ2EunnogzMp6SGMBPFuXZLcG8GkkxoZdMUJysTZl8G7ETybx3_v4dN_E38G96uIP4LhHmwtFxf-Odx1v5bnw-JFXF5_AJk6Ezw
  priority: 102
  providerName: Springer Nature
Title Mapping Entity Sets in News Archives Across Time
URI https://link.springer.com/article/10.1007/s41019-019-00102-3
https://www.proquest.com/docview/2334217995
https://doaj.org/article/76306a8fb7124d60b74243a67f0940b5
Volume 4
WOSCitedRecordID wos000657151400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734210
  issn: 2364-1185
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: K7-
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: M7S
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: BENPR
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: PIMPY
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2364-1541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002118446
  issn: 2364-1185
  databaseCode: C24
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fb9MwEMctGDzwghg_RNioLIQECCKS-GLHj93UiQlWVSug8WTZiTNNQhlaukm88Ldz5zjdpgl44SGR2l6l-PK1L9f6PsfYy9JjUCydSLWXOgVostRa7zBrVbWjgCgD1OfrJzWfV0dHenGl1RftCRvwwIPj3qP-M2mr1imMRI3MHOZyIKxULZHfXKCXZkpfSaZQSQBKQHEZ2FClSo6gOFqjMe2pAIbOcxJSfFXGippQVwcoVNpGhAcx11JxLWoFuP_NJfzGf6khRO09YPfjsyWfDmPaZLd895Btxtnb89cRMf3mEcsOLHEZjvmMqnR_8qVf9fyk47Tk8RFGy6fhYjhViTxmX_Zmn3c_pLF3QlqXslqlEj1eKyvqvG4bZzNbtraylQPptIOiKa3WDh8tZNtSz2nfCF8LkYu8rHSjMyuesI3utPNPGdeYUYjMKgsCQHvQ4LOm0NDKvGoaqRKWj74xdQSLU3-L72aNRA7-NOEgfxqRsLfr7_wYsBp_td4hl68tCYkd3kChmCgU8y-hJOwF3TBD0IuOdtUc2_O-N_vLQzPFrJR-CtBFwl5Fo_YUx1DbWKSAniBO1jXL7fHGmzjte1MIkh0x9hL2bhTD5cd_HuGz_zHCLXavCJol6W6zjdXZuX_O7tYXq5P-bMLu7Mzmi8MJu71bwCRMFzx_VOmE9rsu6fxrhlaL_YPFt99bigxI
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJcgPIQgQIWAgGCiCR2nPiA0AKtuuruakULKidjx86qEsqWzRbUP8VvxON1tqoqeuuBQy7JxPLj84zH9nwD8Cy3zijmmsbCchEzZpJYKaud11pUGg0i96Q-X4fFeFweHIjJGvzpYmHwWmWnE72iNrMK98jfZpSyzNOXvT_6GWPWKDxd7VJoLGGxa09-O5etfTf45Mb3eZZtb-1_3IlDVoG4ynm5iLmrS1UoWqVVbbRKVF6rUpWacS00y0yuhNDO6PK6xmzM1lBbUZrSNC-FEYmirtwrsM4c2JMerE8Go8m31a6Oc6dK52CF6Bwfo8cc6PFKknuQvy2mZyygTxRw3hycO5f15m775v_WUbfgRlhYk_5yJmzAmm1uw0ZQXS15Gfi1X92BZKSQlGJKtjBE-YTs2UVLDhuC-p50TLyk73uPYIjMXfhyKTW_B71m1tj7QIRzp2iiCsUoY8IywWxiMsFqnpbG8CKCtBtMWQVWdUzu8UOu-KA9AKR_EACSRvB69c_RklPkQukPiJGVJPKB-xez-VQG9SKdlUi4KmtduPWa4YkuWMao4kWN_Ig6j-ApIkwi40eDV4qm6rht5WDvs-w7lxz3QUQWwYsgVM9cGyoVIjRcTyBJ2BnJzQ57Mui8Vp4CL4I3HXpPP_-7hQ8uLu0JXNvZHw3lcDDefQjXMz-VcEZtQm8xP7aP4Gr1a3HYzh-H2Ujg-2Xj-i9lWmye
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Rb9MwEMdPMGDihbECIjDAQkiAIFoSO3b8WMYqJkY1MUB7s2zHqSZN6dRkSHx7fK7TMg2QEA95aHpVZeefO1_i-x3Ai9L5oFgamkrHZcpYnaVaO-OzVmENBkQeoD7fDsV0Wp2cyKNfqvjDbvfhleSypgEpTW2_e143u6vCN-aVhPt8_IFQtJRehxs-NRGo6701f5wxQVmxDnBerYIPwDj01T79qRhbdqDjLPWfylhZ8_u_uRS9AuT_qiu_8k41hKrJ1v8P8i7cictUMl7qahuuuXYEW0MLCBI9wghuhR2kthvBdjzXkVcRZf36HmSfNPIfZmQfq4F_kGPXd-S0JehayQC9JeMwWILVKPfh62T_y96HNPZoSG3Jqz7l_spaoanNbVMbnemy0ZWuDONGGlbUpZbS-CUMbxrsbe1q6iylOc3LStYy0_QBbLTz1j0EIn3mQjMtNKOMScckc1ldSNbwvKprLhLIh7lXNgLMsY_GmVqhl8OMqXDgjCmawJvVb86X-I6_Wr_DS7qyRPR2ODFfzFS8k5V3yBnXVWOEXxrVPDOCFYxqLhpEEZoygecoCIVwjRZ378z0Rdepg-PPauyzX3zkIIsEXkajZu7HYHUshvAzgTyuS5Y7g7BUdC-dKijKGll-CbwdhLT--s8jfPRv5s9g8-j9RB0eTD8-httFkCIqcgc2-sWFewI37ff-tFs8DXfdT2oGHwU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Entity+Sets+in+News+Archives+Across+Time&rft.jtitle=Data+Science+and+Engineering&rft.au=Duan%2C+Yijun&rft.au=Jatowt%2C+Adam&rft.au=Bhowmick%2C+Sourav+S&rft.au=Yoshikawa%2C+Masatoshi&rft.date=2019-09-01&rft.pub=Springer&rft.issn=2364-1185&rft.volume=4&rft.issue=3&rft.spage=208&rft_id=info:doi/10.1007%2Fs41019-019-00102-3&rft.externalDBID=ISR&rft.externalDocID=A601788892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon