Mapping Entity Sets in News Archives Across Time
We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing...
Uložené v:
| Vydané v: | Data Science and Engineering Ročník 4; číslo 3; s. 208 - 222 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2019
Springer Springer Nature B.V SpringerOpen |
| Predmet: | |
| ISSN: | 2364-1185, 2364-1541 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing entity-oriented mapping between different times. We introduce an effective method to solve the aforementioned task based on a concise integer linear programming framework. In particular, our model first conducts typicality analysis to estimate entity representativeness. It next constructs orthogonal transformation between the two entity collections. The result is a set of typical across-time comparables. We demonstrate the effectiveness of our approach on the New York Times dataset through both qualitative and quantitative tests. |
|---|---|
| AbstractList | We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing entity-oriented mapping between different times. We introduce an effective method to solve the aforementioned task based on a concise integer linear programming framework. In particular, our model first conducts typicality analysis to estimate entity representativeness. It next constructs orthogonal transformation between the two entity collections. The result is a set of typical across-time comparables. We demonstrate the effectiveness of our approach on the New York Times dataset through both qualitative and quantitative tests. Abstract We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to automatically generate similar entity pairs given two sets of entities, one from the past and one representing the present. This allows performing entity-oriented mapping between different times. We introduce an effective method to solve the aforementioned task based on a concise integer linear programming framework. In particular, our model first conducts typicality analysis to estimate entity representativeness. It next constructs orthogonal transformation between the two entity collections. The result is a set of typical across-time comparables. We demonstrate the effectiveness of our approach on the New York Times dataset through both qualitative and quantitative tests. |
| Audience | Academic |
| Author | Jatowt, Adam Yoshikawa, Masatoshi Bhowmick, Sourav S. Duan, Yijun |
| Author_xml | – sequence: 1 givenname: Yijun orcidid: 0000-0002-5098-8593 surname: Duan fullname: Duan, Yijun email: minsak1020@gmail.com organization: Graduate School of Informatics, Kyoto University – sequence: 2 givenname: Adam surname: Jatowt fullname: Jatowt, Adam organization: Graduate School of Informatics, Kyoto University – sequence: 3 givenname: Sourav S. surname: Bhowmick fullname: Bhowmick, Sourav S. organization: School of Computer Science and Engineering, Nanyang Technological University – sequence: 4 givenname: Masatoshi surname: Yoshikawa fullname: Yoshikawa, Masatoshi organization: Graduate School of Informatics, Kyoto University |
| BookMark | eNp9UU1v1DAQtVCRKKV_gFMkThyyHX_EsY-rqsBKLUi0nK2JYwevdpPF9rb03-Pd8KFyqKyRx6P33njmvSYn4zQ6Qt5SWFCA9iIJClTXxwAKrOYvyCnjUtS0EfTkT05V84qcp7QGAFZeQshTAje424VxqK7GHPJjdetyqsJYfXYPqVpG-z3cu5LYOKVU3YWte0Neetwkd_77PiPfPlzdXX6qr798XF0ur2vbSJVriehsi9xS6_sOARuPClUnZKc7wfoGte6Y4tJ7IUC5njvLOeW0UbrXgPyMrGbdfsK12cWwxfhoJgzmWJjiYDDmYDfOtJKDROW7ljLRS-hawQRH2XrQArqmaL2btXZx-rF3KZv1tI9j-b5hnAtGW60PqMWMGrCIhtFPOaItp3fbYMvKfSj1pQTaKqU0K4T3TwgFk93PPOA-JbO6_foUy2bscZPR-b8jUTAHF83sojnGwUXDC0n9R7IhYw6lT8SweZ7KZ2oqfcbBxX8jP8P6BcLlrsg |
| CitedBy_id | crossref_primary_10_1007_s00799_023_00377_y |
| Cites_doi | 10.1145/1242572.1242646 10.1145/2505515.2505666 10.1145/2619088 10.1109/TKDE.2017.2754499 10.3115/v1/D14-1162 10.1145/1871437.1871730 10.1109/ICDM.2007.27 10.1145/1148170.1148215 10.1007/978-3-030-18576-3_21 10.1017/S0269888902000371 10.1038/nature06176 10.1002/int.4550060205 10.1145/1390334.1390386 10.1145/1645953.1646198 10.1080/00401706.1977.10489521 10.1038/nature06137 10.3115/v1/P15-1063 10.1145/1816123.1816135 10.3115/v1/E14-1049 10.3115/v1/N15-1104 10.18653/v1/P16-1141 10.3115/v1/N15-1028 10.1126/science.1136800 10.1145/988672.988687 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 COPYRIGHT 2019 Springer Data Science and Engineering is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2019 – notice: COPYRIGHT 2019 Springer – notice: Data Science and Engineering is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION ISR 7SC 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
| DOI | 10.1007/s41019-019-00102-3 |
| DatabaseName | Springer Nature Open Access Journals CrossRef In Context: Science Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ : Directory of Open Access Journals [open access] |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Physics Computer Science |
| EISSN | 2364-1541 |
| EndPage | 222 |
| ExternalDocumentID | oai_doaj_org_article_76306a8fb7124d60b74243a67f0940b5 A601788892 10_1007_s41019_019_00102_3 |
| GrantInformation_xml | – fundername: JSPS KAKENHI grants grantid: 17H01828; 18K19841 |
| GroupedDBID | 0R~ AAFWJ AAKKN ABEEZ ABFTD ACACY ACGFS ACULB ADBBV ADINQ AFGXO AFKRA AFPKN AHBYD AHSBF ALMA_UNASSIGNED_HOLDINGS AMKLP ASPBG AVWKF BAPOH BCNDV BENPR C24 C6C CCPQU EBS EJD GROUPED_DOAJ H13 IAO ISR ITC M~E OK1 PIMPY RSV SOJ AAYXX ABJCF AFFHD ARAPS BGLVJ CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS ADMLS ARCSS 7SC 8FD 8FE 8FG ABUWG AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c568t-6aaec7a3c1cfdba0a5fa8a8b46b9b42d5a99b2836ff4408ed3ec33131589d90a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657151400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2364-1185 |
| IngestDate | Fri Oct 03 12:46:47 EDT 2025 Wed Oct 08 14:20:55 EDT 2025 Wed Feb 12 06:32:02 EST 2025 Fri Feb 14 03:02:07 EST 2025 Sat Nov 29 06:46:06 EST 2025 Tue Nov 18 22:17:49 EST 2025 Fri Feb 21 02:32:39 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Integer linear programming Typicality analysis Comparable entity mining Temporal embeddings alignment |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c568t-6aaec7a3c1cfdba0a5fa8a8b46b9b42d5a99b2836ff4408ed3ec33131589d90a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5098-8593 |
| OpenAccessLink | https://doaj.org/article/76306a8fb7124d60b74243a67f0940b5 |
| PQID | 2334217995 |
| PQPubID | 4402891 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_76306a8fb7124d60b74243a67f0940b5 proquest_journals_2334217995 gale_infotracacademiconefile_A601788892 gale_incontextgauss_ISR_A601788892 crossref_primary_10_1007_s41019_019_00102_3 crossref_citationtrail_10_1007_s41019_019_00102_3 springer_journals_10_1007_s41019_019_00102_3 |
| PublicationCentury | 2000 |
| PublicationDate | 20190900 2019-09-00 20190901 2019-09-01 |
| PublicationDateYYYYMMDD | 2019-09-01 |
| PublicationDate_xml | – month: 9 year: 2019 text: 20190900 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Berlin |
| PublicationTitle | Data Science and Engineering |
| PublicationTitleAbbrev | Data Sci. Eng |
| PublicationYear | 2019 |
| Publisher | Springer Berlin Heidelberg Springer Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer – name: Springer Nature B.V – name: SpringerOpen |
| References | Jiang Z, Ji L, Zhang J, Yan J, Guo P, Liu N (2013) Learning open-domain comparable entity graphs from user search queries. In: Proceedings of the 22nd ACM CIKM. ACM, pp 2339–2344 FreyBJDueckDClustering by passing messages between data pointsScience20073155814972976229217410.1126/science.1136800 Jindal N, Liu B (2006) Mining comparative sentences and relations. In: AAAI, vol 22, pp 1331–1336 Gurobi Optimization I (2016) Gurobi optimizer reference manual. http://www.gurobi.com. Accessed 24 Aug 2018 WangQMaoZWangBGuoLKnowledge graph embedding: a survey of approaches and applicationsIEEE Trans Knowl Data Eng201729122724274310.1109/TKDE.2017.2754499 Wan X, Yang J (2008) Multi-document summarization using cluster-based link analysis. In: Proceedings of ACM SIGIR. ACM, pp 299–306 RodríguezMAEgenhoferMJDetermining semantic similarity among entity classes from different ontologiesIEEE TKDE2003152442456 TammaVBench-CaponTAn ontology model to facilitate knowledge-sharing in multi-agent systemsKnowl Eng Rev2002171416010.1017/S0269888902000371 Berberich K, Bedathur SJ, Sozio M, Weikum G (2009) Bridging the terminology gap in web archive search. In: WebDB Etzioni O, Cafarella M, Downey D, Kok S, Popescu AM, Shaked T, Soderland S, Weld DS, Yates A (2004) Web-scale information extraction in knowitall: (preliminary results). In: Proceedings of the 13th WWW. ACM, pp 100–110 Yu HT, Jatowt A, Blanco R, Joho H, Jose J, Chen L, Yuan F (2017) A concise integer linear programming formulation for implicit search result diversification. In: Proceedings of the tenth ACM WSDM. ACM, pp 191–200 Kaluarachchi AC, Varde AS, Bedathur S, Weikum G, Peng J, Feldman A (2010) Incorporating terminology evolution for query translation in text retrieval with association rules. In: CIKM. ACM, pp 1789–1792 Hamilton WL, Leskovec J, Jurafsky D (2016) Diachronic word embeddings reveal statistical laws of semantic change. arXiv preprint arXiv:160509096 McCallum A, Jensen D (2003) A note on the unification of information extraction and data mining using conditional-probability, relational models Mikolov T, Le QV, Sutskever I (2013) Exploiting similarities among languages for machine translation. arXiv preprint arXiv:13094168 HuangXWanXXiaoJLearning to find comparable entities on the webWeb Inf Syst Eng WISE201220121629 Xing C, Wang D, Liu C, Lin Y (2015) Normalized word embedding and orthogonal transform for bilingual word translation. In: NAACL HLT, pp 1006–1011 Faruqui M, Dyer C (2014) Improving vector space word representations using multilingual correlation. In: EACL, pp 462–471 Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543 Kanhabua N, Nørvåg K (2010) Exploiting time-based synonyms in searching document archives. In: JCDL. ACM, pp 79–88 LiebermanEMichelJBJacksonJTangTNowakMAQuantifying the evolutionary dynamics of languageNature2007449716371310.1038/nature06137 Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231 Smith SL, Turban DH, Hamblin S, Hammerla NY (2017) Offline bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv preprint arXiv:170203859 Duan Y, Jatowt A, Bhowmick SS, Yoshikawa M (2019) Typicality-based across-time mapping of entity sets in document archives. In: International conference on database systems for advanced applications. Springer, pp 350–366 Jindal N, Liu B (2006) Identifying comparative sentences in text documents. In: Proceedings of ACM SIGIR. ACM, pp 244–251 Liu J, Wagner E, Birnbaum L (2007) Compare&contrast: using the web to discover comparable cases for news stories. In: Proceedings of the 16th WWW. ACM, pp 541–550 Tahmasebi N, Gossen G, Kanhabua N, Holzmann H, Risse T (2012) Neer: an unsupervised method for named entity evolution recognition. In: COLING, pp 2553–2568 Jain A, Pantel P (2009) Identifying comparable entities on the web. In: Proceedings of the 18th ACM CIKM. ACM, pp 1661–1664 Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781 Zhang Y, Jatowt A, Bhowmick S, Tanaka K (2015) Omnia mutantur, nihil interit: Connecting past with present by finding corresponding terms across time. In: ACL vol 1, pp 645–655 PagelMAtkinsonQDMeadeAFrequency of word-use predicts rates of lexical evolution throughout indo-european historyNature2007449716371710.1038/nature06176 Lu A, Wang W, Bansal M, Gimpel K, Livescu K (2015) Deep multilingual correlation for improved word embeddings. In: NAACL HLT, pp 250–256 Sandhaus E (2008) The New York times annotated corpus overview. The New York Times Company, Research and Development, pp 1–22 CamposRDiasGJorgeAMJatowtASurvey of temporal information retrieval and related applicationsACM Comput Surv (CSUR)201547215 Hua M, Pei J, Fu AW, Lin X, Leung HF (2007) Efficiently answering top-k typicality queries on large databases. In: Proceedings of VLDB, VLDB endowment, pp 890–901 Feldman R, Fresco M, Goldenberg J, Netzer O, Ungar L (2007) Extracting product comparisons from discussion boards. In: Data mining, 2007. ICDM 2007. IEEE, pp 469–474 Řehůřek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, ELRA, Valletta, Malta, pp 45–50. http://is.muni.cz/publication/884893/en. Accessed 10 Oct 2018 Sarawagi S, Cohen WW (2005) Semi-Markov conditional random fields for information extraction. In: NIPS, pp 1185–1192 DuboisDPradeHRossazzaJPVagueness, typicality, and uncertainty in class hierarchiesInt J Intell Syst19916216718310.1002/int.4550060205 LiSLinCYSongYILiZComparable entity mining from comparative questionsIEEE TKDE201325714981509 Chen YN, Metze F (2012) Two-layer mutually reinforced random walk for improved multi-party meeting summarization. In: SLT, 2012 IEEE. IEEE, pp 461–466 ScottDWSainSRMultidimensional density estimation. HandbStat200524229261 BreimanLMeiselWPurcellEVariable kernel estimates of multivariate densitiesTechnometrics197719213514410.1080/00401706.1977.10489521 Reed SE, Zhang Y, Zhang Y, Lee H (2015) Deep visual analogy-making. In: Advances in neural information processing systems, pp 1252–1260 S Li (102_CR22) 2013; 25 BJ Frey (102_CR11) 2007; 315 102_CR40 DW Scott (102_CR36) 2005; 24 V Tamma (102_CR39) 2002; 17 102_CR20 102_CR42 X Huang (102_CR15) 2012; 2012 102_CR44 102_CR21 102_CR43 102_CR24 102_CR26 MA Rodríguez (102_CR33) 2003; 15 102_CR25 102_CR17 102_CR16 102_CR38 102_CR19 102_CR18 Q Wang (102_CR41) 2017; 29 E Lieberman (102_CR23) 2007; 449 D Dubois (102_CR6) 1991; 6 R Campos (102_CR3) 2015; 47 102_CR31 102_CR30 L Breiman (102_CR2) 1977; 19 102_CR10 102_CR32 102_CR13 102_CR35 102_CR12 102_CR34 102_CR37 102_CR14 102_CR1 102_CR28 102_CR27 102_CR9 102_CR7 102_CR8 102_CR5 M Pagel (102_CR29) 2007; 449 102_CR4 |
| References_xml | – reference: FreyBJDueckDClustering by passing messages between data pointsScience20073155814972976229217410.1126/science.1136800 – reference: Xing C, Wang D, Liu C, Lin Y (2015) Normalized word embedding and orthogonal transform for bilingual word translation. In: NAACL HLT, pp 1006–1011 – reference: DuboisDPradeHRossazzaJPVagueness, typicality, and uncertainty in class hierarchiesInt J Intell Syst19916216718310.1002/int.4550060205 – reference: TammaVBench-CaponTAn ontology model to facilitate knowledge-sharing in multi-agent systemsKnowl Eng Rev2002171416010.1017/S0269888902000371 – reference: HuangXWanXXiaoJLearning to find comparable entities on the webWeb Inf Syst Eng WISE201220121629 – reference: Hua M, Pei J, Fu AW, Lin X, Leung HF (2007) Efficiently answering top-k typicality queries on large databases. In: Proceedings of VLDB, VLDB endowment, pp 890–901 – reference: Mikolov T, Le QV, Sutskever I (2013) Exploiting similarities among languages for machine translation. arXiv preprint arXiv:13094168 – reference: Faruqui M, Dyer C (2014) Improving vector space word representations using multilingual correlation. In: EACL, pp 462–471 – reference: Reed SE, Zhang Y, Zhang Y, Lee H (2015) Deep visual analogy-making. In: Advances in neural information processing systems, pp 1252–1260 – reference: WangQMaoZWangBGuoLKnowledge graph embedding: a survey of approaches and applicationsIEEE Trans Knowl Data Eng201729122724274310.1109/TKDE.2017.2754499 – reference: Tahmasebi N, Gossen G, Kanhabua N, Holzmann H, Risse T (2012) Neer: an unsupervised method for named entity evolution recognition. In: COLING, pp 2553–2568 – reference: Yu HT, Jatowt A, Blanco R, Joho H, Jose J, Chen L, Yuan F (2017) A concise integer linear programming formulation for implicit search result diversification. In: Proceedings of the tenth ACM WSDM. ACM, pp 191–200 – reference: Gurobi Optimization I (2016) Gurobi optimizer reference manual. http://www.gurobi.com. Accessed 24 Aug 2018 – reference: Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), pp 1532–1543 – reference: Chen YN, Metze F (2012) Two-layer mutually reinforced random walk for improved multi-party meeting summarization. In: SLT, 2012 IEEE. IEEE, pp 461–466 – reference: Duan Y, Jatowt A, Bhowmick SS, Yoshikawa M (2019) Typicality-based across-time mapping of entity sets in document archives. In: International conference on database systems for advanced applications. Springer, pp 350–366 – reference: Sarawagi S, Cohen WW (2005) Semi-Markov conditional random fields for information extraction. In: NIPS, pp 1185–1192 – reference: Berberich K, Bedathur SJ, Sozio M, Weikum G (2009) Bridging the terminology gap in web archive search. In: WebDB – reference: Hamilton WL, Leskovec J, Jurafsky D (2016) Diachronic word embeddings reveal statistical laws of semantic change. arXiv preprint arXiv:160509096 – reference: LiebermanEMichelJBJacksonJTangTNowakMAQuantifying the evolutionary dynamics of languageNature2007449716371310.1038/nature06137 – reference: McCallum A, Jensen D (2003) A note on the unification of information extraction and data mining using conditional-probability, relational models – reference: Jindal N, Liu B (2006) Mining comparative sentences and relations. In: AAAI, vol 22, pp 1331–1336 – reference: PagelMAtkinsonQDMeadeAFrequency of word-use predicts rates of lexical evolution throughout indo-european historyNature2007449716371710.1038/nature06176 – reference: Jiang Z, Ji L, Zhang J, Yan J, Guo P, Liu N (2013) Learning open-domain comparable entity graphs from user search queries. In: Proceedings of the 22nd ACM CIKM. ACM, pp 2339–2344 – reference: Kanhabua N, Nørvåg K (2010) Exploiting time-based synonyms in searching document archives. In: JCDL. ACM, pp 79–88 – reference: Sandhaus E (2008) The New York times annotated corpus overview. The New York Times Company, Research and Development, pp 1–22 – reference: Etzioni O, Cafarella M, Downey D, Kok S, Popescu AM, Shaked T, Soderland S, Weld DS, Yates A (2004) Web-scale information extraction in knowitall: (preliminary results). In: Proceedings of the 13th WWW. ACM, pp 100–110 – reference: Feldman R, Fresco M, Goldenberg J, Netzer O, Ungar L (2007) Extracting product comparisons from discussion boards. In: Data mining, 2007. ICDM 2007. IEEE, pp 469–474 – reference: Smith SL, Turban DH, Hamblin S, Hammerla NY (2017) Offline bilingual word vectors, orthogonal transformations and the inverted softmax. arXiv preprint arXiv:170203859 – reference: RodríguezMAEgenhoferMJDetermining semantic similarity among entity classes from different ontologiesIEEE TKDE2003152442456 – reference: Lu A, Wang W, Bansal M, Gimpel K, Livescu K (2015) Deep multilingual correlation for improved word embeddings. In: NAACL HLT, pp 250–256 – reference: Wan X, Yang J (2008) Multi-document summarization using cluster-based link analysis. In: Proceedings of ACM SIGIR. ACM, pp 299–306 – reference: BreimanLMeiselWPurcellEVariable kernel estimates of multivariate densitiesTechnometrics197719213514410.1080/00401706.1977.10489521 – reference: ScottDWSainSRMultidimensional density estimation. HandbStat200524229261 – reference: Zhang Y, Jatowt A, Bhowmick S, Tanaka K (2015) Omnia mutantur, nihil interit: Connecting past with present by finding corresponding terms across time. In: ACL vol 1, pp 645–655 – reference: Jain A, Pantel P (2009) Identifying comparable entities on the web. In: Proceedings of the 18th ACM CIKM. ACM, pp 1661–1664 – reference: Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781 – reference: Liu J, Wagner E, Birnbaum L (2007) Compare&contrast: using the web to discover comparable cases for news stories. In: Proceedings of the 16th WWW. ACM, pp 541–550 – reference: Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol 96, pp 226–231 – reference: Jindal N, Liu B (2006) Identifying comparative sentences in text documents. In: Proceedings of ACM SIGIR. ACM, pp 244–251 – reference: Kaluarachchi AC, Varde AS, Bedathur S, Weikum G, Peng J, Feldman A (2010) Incorporating terminology evolution for query translation in text retrieval with association rules. In: CIKM. ACM, pp 1789–1792 – reference: LiSLinCYSongYILiZComparable entity mining from comparative questionsIEEE TKDE201325714981509 – reference: Řehůřek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 workshop on new challenges for NLP frameworks, ELRA, Valletta, Malta, pp 45–50. http://is.muni.cz/publication/884893/en. Accessed 10 Oct 2018 – reference: CamposRDiasGJorgeAMJatowtASurvey of temporal information retrieval and related applicationsACM Comput Surv (CSUR)201547215 – ident: 102_CR28 – ident: 102_CR24 doi: 10.1145/1242572.1242646 – ident: 102_CR17 doi: 10.1145/2505515.2505666 – volume: 47 start-page: 15 issue: 2 year: 2015 ident: 102_CR3 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/2619088 – volume: 29 start-page: 2724 issue: 12 year: 2017 ident: 102_CR41 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2017.2754499 – ident: 102_CR30 doi: 10.3115/v1/D14-1162 – ident: 102_CR20 doi: 10.1145/1871437.1871730 – ident: 102_CR26 – ident: 102_CR10 doi: 10.1109/ICDM.2007.27 – ident: 102_CR18 doi: 10.1145/1148170.1148215 – ident: 102_CR34 – ident: 102_CR5 doi: 10.1007/978-3-030-18576-3_21 – ident: 102_CR32 – volume: 17 start-page: 41 issue: 1 year: 2002 ident: 102_CR39 publication-title: Knowl Eng Rev doi: 10.1017/S0269888902000371 – volume: 449 start-page: 717 issue: 7163 year: 2007 ident: 102_CR29 publication-title: Nature doi: 10.1038/nature06176 – volume: 6 start-page: 167 issue: 2 year: 1991 ident: 102_CR6 publication-title: Int J Intell Syst doi: 10.1002/int.4550060205 – ident: 102_CR19 – ident: 102_CR43 – volume: 25 start-page: 1498 issue: 7 year: 2013 ident: 102_CR22 publication-title: IEEE TKDE – ident: 102_CR38 – ident: 102_CR4 – ident: 102_CR40 doi: 10.1145/1390334.1390386 – ident: 102_CR27 – ident: 102_CR16 doi: 10.1145/1645953.1646198 – ident: 102_CR31 – volume: 19 start-page: 135 issue: 2 year: 1977 ident: 102_CR2 publication-title: Technometrics doi: 10.1080/00401706.1977.10489521 – volume: 24 start-page: 229 year: 2005 ident: 102_CR36 publication-title: Stat – volume: 449 start-page: 713 issue: 7163 year: 2007 ident: 102_CR23 publication-title: Nature doi: 10.1038/nature06137 – ident: 102_CR44 doi: 10.3115/v1/P15-1063 – ident: 102_CR21 doi: 10.1145/1816123.1816135 – ident: 102_CR35 – ident: 102_CR9 doi: 10.3115/v1/E14-1049 – ident: 102_CR12 – ident: 102_CR42 doi: 10.3115/v1/N15-1104 – volume: 15 start-page: 442 issue: 2 year: 2003 ident: 102_CR33 publication-title: IEEE TKDE – ident: 102_CR14 – ident: 102_CR37 – ident: 102_CR13 doi: 10.18653/v1/P16-1141 – volume: 2012 start-page: 16 year: 2012 ident: 102_CR15 publication-title: Web Inf Syst Eng WISE – ident: 102_CR25 doi: 10.3115/v1/N15-1028 – volume: 315 start-page: 972 issue: 5814 year: 2007 ident: 102_CR11 publication-title: Science doi: 10.1126/science.1136800 – ident: 102_CR7 – ident: 102_CR1 – ident: 102_CR8 doi: 10.1145/988672.988687 |
| SSID | ssj0002118446 ssib044734210 ssib048876940 |
| Score | 2.1144068 |
| Snippet | We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is to... Abstract We propose a novel way of utilizing and accessing information stored in news archives as well as a new style of investigating the history. Our idea is... |
| SourceID | doaj proquest gale crossref springer |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 208 |
| SubjectTerms | Algorithm Analysis and Problem Complexity Archives & records Artificial Intelligence Chemistry and Earth Sciences Comparable entity mining Computer Science Data Mining and Knowledge Discovery Database Management Integer linear programming Integer programming Linear programming Mapping Physics Statistics for Engineering Systems and Data Security Temporal embeddings alignment Typicality analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-2dg976dZ9MLddEWWwjc3MtmTZehrJSFlhC6VZS9-EvhwKxWnjtLD_fjpVTgilfdmDXuSzsXSnO91J9zuAD6XzRrHUNBWOi5Qxm6VKOe291spoNIg8gPqc_arG4_r8XBzHgFsXr1X2OjEoajszGCP_VlDKigBf9v3qOsWqUXi6GktoPIVNRCrzcr45HI2PT5ZRFt9be4cnZsuEnDnmhRCvCPmGeGopXbNIAbj_vnq-d04azM_hi__98ZewFTeeZHAnKdvwxLWvYDsu7Y58ivjTn19D9lshaMOUjDCF9y-ZuEVHLlqC-pD0SLVkEEZDMIXkDZwejv78-JnGwgqpKXm9SLlnh6kUNblprFaZKhtVq1ozroVmhS2VENrvO3jTYEFqZ6kzlOY0L2thRaboW9hoZ617B0R4d4NmqlKMMiYcE8xlthCs4XltLa8SyPvJlSaijmPxi0u5xEsODJGhIUMkTeDL8p2rO8yNR6mHyLMlJeJlh47ZfCrj8pNei2Zc1Y2u_H7G8kxXrGBU8apB_EBdJnCAHJeIiNHilZupuuk6eTQ5kQPvsmKcQBQJfIxEzcyPwaiYweBnAkG01ij3elmQUSd0ciUICXztpWn1-OER7jz-tV14XgRxRqneg43F_Ma9h2fmdnHRzffjivgHhPUNDA priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ha9UwED90KvjFuafD6pQggsostM01aT4-x4aCDnE69i0kafoYSJ-8vgn-9-by0vcYmwP9kA9tr5Qkv9zlmrvfAbyqfTCKteW58kLliG2RG-Nt8Fqls2QQRST1Of0kj4-bszP1JSWFDWO0-3gkGTX1OtkNA3ootic0IkLL-W24Q3RiFMh1sOEcR5Qcq41RCwiVYiSJI_0cXJ4GcVV1TmAeruqUTXP9Zy5ZrEjsf1V9XzlHjebpaPv_OvYQHqTtKJuu8LMDt3w_ge2x1ANLK38C92KkqBsmsJPuDexNoqx--wiKz4Z4HmbskLJ-f7MTvxzYec9IhbKR3JZNYwcZZZ08hu9Hh98OPuSpFkPuatEscxFm0EnDXem61prC1J1pTGNRWGWxamujlA1bFdF1VMPat9w7zkte1o1qVWH4Lmz1894_AaaCh8ILIw1yROVRoS_aSmEnyqZthcygHMdbu0RUTvUyfug1xXIcMR0bjZjmGeyv3_m5oum4Ufo9TeNakii24435YqbTitVB8RbCNJ2VYQvUisJKrJAbITuiHLR1Bi8JBJpINHqK0pmZi2HQH0--6mnwcunXgqoyeJ2EunnogzMp6SGMBPFuXZLcG8GkkxoZdMUJysTZl8G7ETybx3_v4dN_E38G96uIP4LhHmwtFxf-Odx1v5bnw-JFXF5_AJk6Ezw priority: 102 providerName: Springer Nature |
| Title | Mapping Entity Sets in News Archives Across Time |
| URI | https://link.springer.com/article/10.1007/s41019-019-00102-3 https://www.proquest.com/docview/2334217995 https://doaj.org/article/76306a8fb7124d60b74243a67f0940b5 |
| Volume | 4 |
| WOSCitedRecordID | wos000657151400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734210 issn: 2364-1185 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: K7- dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: M7S dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: BENPR dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: PIMPY dateStart: 20160301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2364-1541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002118446 issn: 2364-1185 databaseCode: C24 dateStart: 20160301 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3fb9MwEMctGDzwghg_RNioLIQECCKS-GLHj93UiQlWVSug8WTZiTNNQhlaukm88Ldz5zjdpgl44SGR2l6l-PK1L9f6PsfYy9JjUCydSLWXOgVostRa7zBrVbWjgCgD1OfrJzWfV0dHenGl1RftCRvwwIPj3qP-M2mr1imMRI3MHOZyIKxULZHfXKCXZkpfSaZQSQBKQHEZ2FClSo6gOFqjMe2pAIbOcxJSfFXGippQVwcoVNpGhAcx11JxLWoFuP_NJfzGf6khRO09YPfjsyWfDmPaZLd895Btxtnb89cRMf3mEcsOLHEZjvmMqnR_8qVf9fyk47Tk8RFGy6fhYjhViTxmX_Zmn3c_pLF3QlqXslqlEj1eKyvqvG4bZzNbtraylQPptIOiKa3WDh8tZNtSz2nfCF8LkYu8rHSjMyuesI3utPNPGdeYUYjMKgsCQHvQ4LOm0NDKvGoaqRKWj74xdQSLU3-L72aNRA7-NOEgfxqRsLfr7_wYsBp_td4hl68tCYkd3kChmCgU8y-hJOwF3TBD0IuOdtUc2_O-N_vLQzPFrJR-CtBFwl5Fo_YUx1DbWKSAniBO1jXL7fHGmzjte1MIkh0x9hL2bhTD5cd_HuGz_zHCLXavCJol6W6zjdXZuX_O7tYXq5P-bMLu7Mzmi8MJu71bwCRMFzx_VOmE9rsu6fxrhlaL_YPFt99bigxI |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJcgPIQgQIWAgGCiCR2nPiA0AKtuuruakULKidjx86qEsqWzRbUP8VvxON1tqoqeuuBQy7JxPLj84zH9nwD8Cy3zijmmsbCchEzZpJYKaud11pUGg0i96Q-X4fFeFweHIjJGvzpYmHwWmWnE72iNrMK98jfZpSyzNOXvT_6GWPWKDxd7VJoLGGxa09-O5etfTf45Mb3eZZtb-1_3IlDVoG4ynm5iLmrS1UoWqVVbbRKVF6rUpWacS00y0yuhNDO6PK6xmzM1lBbUZrSNC-FEYmirtwrsM4c2JMerE8Go8m31a6Oc6dK52CF6Bwfo8cc6PFKknuQvy2mZyygTxRw3hycO5f15m775v_WUbfgRlhYk_5yJmzAmm1uw0ZQXS15Gfi1X92BZKSQlGJKtjBE-YTs2UVLDhuC-p50TLyk73uPYIjMXfhyKTW_B71m1tj7QIRzp2iiCsUoY8IywWxiMsFqnpbG8CKCtBtMWQVWdUzu8UOu-KA9AKR_EACSRvB69c_RklPkQukPiJGVJPKB-xez-VQG9SKdlUi4KmtduPWa4YkuWMao4kWN_Ig6j-ApIkwi40eDV4qm6rht5WDvs-w7lxz3QUQWwYsgVM9cGyoVIjRcTyBJ2BnJzQ57Mui8Vp4CL4I3HXpPP_-7hQ8uLu0JXNvZHw3lcDDefQjXMz-VcEZtQm8xP7aP4Gr1a3HYzh-H2Ujg-2Xj-i9lWmye |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Rb9MwEMdPMGDihbECIjDAQkiAIFoSO3b8WMYqJkY1MUB7s2zHqSZN6dRkSHx7fK7TMg2QEA95aHpVZeefO1_i-x3Ai9L5oFgamkrHZcpYnaVaO-OzVmENBkQeoD7fDsV0Wp2cyKNfqvjDbvfhleSypgEpTW2_e143u6vCN-aVhPt8_IFQtJRehxs-NRGo6701f5wxQVmxDnBerYIPwDj01T79qRhbdqDjLPWfylhZ8_u_uRS9AuT_qiu_8k41hKrJ1v8P8i7cictUMl7qahuuuXYEW0MLCBI9wghuhR2kthvBdjzXkVcRZf36HmSfNPIfZmQfq4F_kGPXd-S0JehayQC9JeMwWILVKPfh62T_y96HNPZoSG3Jqz7l_spaoanNbVMbnemy0ZWuDONGGlbUpZbS-CUMbxrsbe1q6iylOc3LStYy0_QBbLTz1j0EIn3mQjMtNKOMScckc1ldSNbwvKprLhLIh7lXNgLMsY_GmVqhl8OMqXDgjCmawJvVb86X-I6_Wr_DS7qyRPR2ODFfzFS8k5V3yBnXVWOEXxrVPDOCFYxqLhpEEZoygecoCIVwjRZ378z0Rdepg-PPauyzX3zkIIsEXkajZu7HYHUshvAzgTyuS5Y7g7BUdC-dKijKGll-CbwdhLT--s8jfPRv5s9g8-j9RB0eTD8-httFkCIqcgc2-sWFewI37ff-tFs8DXfdT2oGHwU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+Entity+Sets+in+News+Archives+Across+Time&rft.jtitle=Data+Science+and+Engineering&rft.au=Duan%2C+Yijun&rft.au=Jatowt%2C+Adam&rft.au=Bhowmick%2C+Sourav+S&rft.au=Yoshikawa%2C+Masatoshi&rft.date=2019-09-01&rft.pub=Springer&rft.issn=2364-1185&rft.volume=4&rft.issue=3&rft.spage=208&rft_id=info:doi/10.1007%2Fs41019-019-00102-3&rft.externalDBID=ISR&rft.externalDocID=A601788892 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-1185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-1185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-1185&client=summon |