Decomposing causality into its synergistic, unique, and redundant components
Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, s...
Uloženo v:
| Vydáno v: | Nature communications Ročník 15; číslo 1; s. 9296 - 15 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Nature Publishing Group UK
01.11.2024
Nature Publishing Group Springer Science and Business Media LLC Nature Portfolio |
| Témata: | |
| ISSN: | 2041-1723, 2041-1723 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.
The methods for detection of cause-effect interactions in complex systems face challenges in the presence of nonlinear dependencies or stochastic interactions. The authors propose a framework for decomposition of causality into redundant, unique, and synergistic contributions, providing a measure of the causality from multiple or hidden system variables. |
|---|---|
| AbstractList | Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods. Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods. The methods for detection of cause-effect interactions in complex systems face challenges in the presence of nonlinear dependencies or stochastic interactions. The authors propose a framework for decomposition of causality into redundant, unique, and synergistic contributions, providing a measure of the causality from multiple or hidden system variables. Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods. Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.The methods for detection of cause-effect interactions in complex systems face challenges in the presence of nonlinear dependencies or stochastic interactions. The authors propose a framework for decomposition of causality into redundant, unique, and synergistic contributions, providing a measure of the causality from multiple or hidden system variables. Abstract Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods. |
| ArticleNumber | 9296 |
| Author | Lozano-Durán, Adrián Martínez-Sánchez, Álvaro Arranz, Gonzalo |
| Author_xml | – sequence: 1 givenname: Álvaro orcidid: 0000-0001-7169-2487 surname: Martínez-Sánchez fullname: Martínez-Sánchez, Álvaro email: alvaroms@mit.edu organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology – sequence: 2 givenname: Gonzalo orcidid: 0000-0001-6579-3791 surname: Arranz fullname: Arranz, Gonzalo organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology – sequence: 3 givenname: Adrián orcidid: 0000-0001-9306-0261 surname: Lozano-Durán fullname: Lozano-Durán, Adrián organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Graduate Aerospace Laboratories, California Institute of Technology |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39487116$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/3000741$$D View this record in Osti.gov |
| BookMark | eNp9Uk1v3CAURFWqJk3zB3qorPaSQ9yCAWOfoirpR6SVemnPiI9nh5UXtoAr7b8vu07aJIdwAT1m5g3De42OfPCA0FuCPxJMu0-JEdaKGjes5pQKWrMX6KTBjNRENPTowfkYnaW0xmXRnnSMvULHtGedIKQ9QatrMGGzDcn5sTJqTmpyeVc5n0PlcqrSzkMcXcrOXFSzd79nuKiUt1UEO3urfK4OfA8-pzfo5aCmBGd3-yn69fXLz6vv9erHt5urz6va8LbLdaOswUIQBaTrtVbEil4rCm3TG2wo1gZADy0daGe6hlrLORdGC0xER_XQ01N0s-jaoNZyG91GxZ0MyslDIcRRqlgcTyC5NT0MSvQCGOu78nCjeTtYA0Rb3JqidblobWe9gVL3OarpkejjG-9u5Rj-SEI4xS1nReH9ohBKSjIZl8HcmuA9mCxpiV0wUkDnd21iKBmmLDcuGZgm5SHMSVLSUM56gUWBfngCXYc5-hLoAUUEZWzf9d1D3_8M339tAXQLwMSQUoRBFmcqu7B_hpskwXI_SHIZJFkGSR4GSe61myfUe_VnSXQhpQL2I8T_tp9h_QXX5dr- |
| CitedBy_id | crossref_primary_10_2514_1_J065914 crossref_primary_10_1038_s41598_024_80698_3 crossref_primary_10_1007_s11071_025_11294_x crossref_primary_10_1016_j_compag_2025_110938 crossref_primary_10_1016_j_ecolind_2025_113939 crossref_primary_10_1016_j_actpsy_2025_105324 crossref_primary_10_3390_su17167198 crossref_primary_10_1103_b36b_m5hd crossref_primary_10_1007_s10904_025_03730_7 crossref_primary_10_1088_1873_7005_ade338 crossref_primary_10_1103_PhysRevResearch_7_023016 |
| Cites_doi | 10.1002/9783527609970.ch17 10.3390/e17074644 10.1098/rspa.2021.0110 10.3390/e19070318 10.1017/jfm.2023.423 10.1016/0165-1765(95)00791-1 10.1007/978-3-642-04898-2_110 10.1016/j.eneco.2008.02.002 10.1103/PhysRevLett.103.238701 10.1088/0954-898X_10_4_303 10.1016/j.jneumeth.2013.10.018 10.1063/1.1843135 10.1017/jfm.2019.209 10.1038/nphys1029 10.1007/978-3-642-66784-8_17 10.3390/e15010327 10.1177/089443939100900106 10.1017/jfm.2014.17 10.1088/1751-8113/42/12/123001 10.1007/978-3-642-53734-9_6 10.1111/j.1751-5823.2002.tb00354.x 10.1063/1.2047568 10.2307/1912791 10.1103/PhysRevE.78.031113 10.1098/rsta.2016.0077 10.1103/PhysRevE.74.016303 10.1103/PhysRevE.90.062903 10.1038/41966 10.5281/zenodo.13750918 10.1126/science.aad1386 10.1016/S0360-1285(01)00017-X 10.1016/j.physrep.2023.10.005 10.1126/sciadv.aau4996 10.1103/PhysRevE.83.051122 10.1143/JPSJ.74.3202 10.1038/nphys4227 10.1098/rspl.1895.0041 10.1007/s10208-023-09630-x 10.1017/S0022112006003946 10.1063/1.4935812 10.2105/AJPH.2004.059204 10.1103/PhysRevE.91.040101 10.1016/j.physd.2024.134246 10.1017/S0022112062000518 10.1038/s43017-023-00431-y 10.1103/PhysRevLett.95.244101 10.1038/srep14750 10.1109/TIT.1957.1057418 10.1126/science.aan7933 10.1063/1.5025050 10.1890/14-1479.1 10.2307/1422689 10.1063/1.3081558 10.1103/PhysRevE.72.026222 10.1017/jfm.2021.105 10.1063/1.858593 10.1201/9780367801694 10.1088/1742-6596/506/1/012006 10.1063/5.0020538 10.1038/116461b0 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 10.1103/PhysRevE.102.062201 10.1017/jfm.2019.801 10.1103/PhysRevResearch.4.023195 10.1038/s41467-020-16238-0 10.1038/s41467-023-37546-1 10.1098/rsta.2011.0613 10.1080/01621459.1984.10477110 10.1103/PhysRevE.61.5142 10.1017/S0022112006001534 10.1371/journal.pone.0169050 10.1038/261459a0 10.1086/525638 10.1103/PhysRevLett.85.461 10.34133/2022/9870149 10.1016/j.envpol.2007.06.012 10.1007/BFb0091924 10.1017/S0022112009006946 10.1126/science.1227079 10.1371/journal.pone.0205296 10.1016/j.physd.2005.05.018 10.1103/PhysRevE.94.052201 10.3390/e24030403 10.1017/CBO9781139170666 10.1126/science.1188765 10.1017/jfm.2022.123 10.1017/jfm.2013.137 10.1038/118558a0 10.1063/1.3266948 10.1126/science.1186091 10.1103/PhysRevE.77.026110 10.1103/PhysRevE.70.056221 10.3389/frobt.2014.00011 10.1007/s00348-015-2058-8 10.5194/egusphere-egu21-8259 10.1063/1.3486801 10.1016/j.future.2016.12.009 10.1038/nmeth.3587 10.1214/aoms/1177729694 10.1017/jfm.2012.408 10.1007/978-3-319-43222-9_1 10.1071/ZO9530291 10.1109/MSP.2015.2482121 10.1146/annurev.soc.012809.102632 10.1038/s41567-017-0018-3 10.1103/PhysRevE.97.042207 10.1002/(SICI)1096-9934(199808)18:5<519::AID-FUT2>3.0.CO;2-U 10.1002/j.1538-7305.1948.tb01338.x 10.7551/mitpress/1754.001.0001 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2024 2024 |
| Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2024 2024 |
| CorporateAuthor | Univ. of Maryland, College Park, MD (United States) |
| CorporateAuthor_xml | – name: Univ. of Maryland, College Park, MD (United States) |
| DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 OIOZB OTOTI 5PM DOA |
| DOI | 10.1038/s41467-024-53373-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2041-1723 |
| EndPage | 15 |
| ExternalDocumentID | oai_doaj_org_article_5dc9efa797e4498394cb56fdce1bd06c PMC11530654 3000741 39487116 10_1038_s41467_024_53373_4 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: 2140775 funderid: 100000001 – fundername: "la Caixa" Foundation (Caixa Foundation) grantid: 100010434 funderid: 100010434 – fundername: National Science Foundation (NSF) grantid: 2140775 – fundername: "la Caixa" Foundation (Caixa Foundation) grantid: 100010434 |
| GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LGEZI LK8 LOTEE M1P M48 M7P M~E NADUK NAO NXXTH O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX AFFHD CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO OIOZB OTOTI 5PM |
| ID | FETCH-LOGICAL-c568t-2adc0771ae189bba1d79ba3e629c0c30bceebf63f38c823dd5557cb701783bf93 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346598500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2041-1723 |
| IngestDate | Tue Oct 14 19:07:33 EDT 2025 Tue Nov 04 02:05:54 EST 2025 Mon Nov 10 02:22:24 EST 2025 Wed Oct 01 14:26:07 EDT 2025 Tue Oct 07 07:40:36 EDT 2025 Mon Jul 21 05:58:36 EDT 2025 Sat Nov 29 03:55:26 EST 2025 Tue Nov 18 22:15:46 EST 2025 Fri Feb 21 02:36:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c568t-2adc0771ae189bba1d79ba3e629c0c30bceebf63f38c823dd5557cb701783bf93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE National Nuclear Security Administration (NNSA) NA0003993 |
| ORCID | 0000-0001-7169-2487 0000-0001-6579-3791 0000-0001-9306-0261 0000000193060261 0000000165793791 0000000171692487 |
| OpenAccessLink | https://doaj.org/article/5dc9efa797e4498394cb56fdce1bd06c |
| PMID | 39487116 |
| PQID | 3123173444 |
| PQPubID | 546298 |
| PageCount | 15 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5dc9efa797e4498394cb56fdce1bd06c pubmedcentral_primary_oai_pubmedcentral_nih_gov_11530654 osti_scitechconnect_3000741 proquest_miscellaneous_3123549707 proquest_journals_3123173444 pubmed_primary_39487116 crossref_citationtrail_10_1038_s41467_024_53373_4 crossref_primary_10_1038_s41467_024_53373_4 springer_journals_10_1038_s41467_024_53373_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England – name: United States |
| PublicationTitle | Nature communications |
| PublicationTitleAbbrev | Nat Commun |
| PublicationTitleAlternate | Nat Commun |
| PublicationYear | 2024 |
| Publisher | Nature Publishing Group UK Nature Publishing Group Springer Science and Business Media LLC Nature Portfolio |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Springer Science and Business Media LLC – name: Nature Portfolio |
| References | HiemstraCJonesJDTesting for linear and nonlinear Granger causality in the stock price-volume relationJ. Financ.19944916391664 Javier, P. J. E. causal-ccm: a Python implementation of Convergent Cross Mapping (2021). SaggioroEde WiljesJKretschmerMRungeJReconstructing regime-dependent causal relationships from observational time seriesChaos2020301131152020Chaos..30k3115S41710993326132010.1063/5.0020538 GriffithVHoTQuantifying redundant information in predicting a target random variableEntropy201517464446532015Entrp..17.4644G10.3390/e17074644 DeWeeseMRMeisterMHow to measure the information gained from one symbolNetw. Comput. Neural Syst.1999103251:STN:280:DC%2BD3c7lvVejuw%3D%3D10.1088/0954-898X_10_4_303 BarnettLSethAKThe MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inferenceJ. Neurosci. Methods201422350682420050810.1016/j.jneumeth.2013.10.018 SpearmanCThe proof and measurement of association between two thingsAm. J. Psychol.19871004414711:STN:280:DyaL1c7gsVejsA%3D%3D332205210.2307/1422689 RungeJModern causal inference approaches to investigate biodiversity-ecosystem functioning relationshipsNat. Commun.2023142023NatCo..14.1917R1:CAS:528:DC%2BB3sXnslWlt7c%3D370244761007996310.1038/s41467-023-37546-1 Lizier, J. T. JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front. Robot. AI. 1, 11 (2014). VerdesPAssessing causality from multivariate time seriesPhys. Rev. E2005720262222005PhRvE..72b6222V1:STN:280:DC%2BD2MrisFKkug%3D%3D10.1103/PhysRevE.72.026222 EberhardtFScheinesRInterventions and causal inferencePhilos. Sci.200774981995244497910.1086/525638 Martínez-Sánchez, Á., Arranz, G. & Lozano-Durán, A. Decomposing causality in its synergistic, unique, and redundant components, SURD: Synergistic-Unique-Redundant Decomposition of causality. https://doi.org/10.5281/zenodo.13750918 (2024). QuirogaRQArnholdJGrassbergerPLearning driver-response relationships from synchronization patternsPhys. Rev. E200061514251482000PhRvE..61.5142Q1:CAS:528:DC%2BD3cXivFCkurY%3D10.1103/PhysRevE.61.5142 Wiener, N. The Theory of Prediction. Modern Mathematics for Engineers Vol. 165 (Dover Publications, 1956). Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction, and Search (The MIT Press, 2001). SirovichLKarlssonSTurbulent drag reduction by passive mechanismsNature19973887537551997Natur.388..753S1:CAS:528:DyaK2sXls1Gks7o%3D10.1038/41966 BaarsWJTalluruKMHutchinsNMarusicIWavelet analysis of wall turbulence to study large-scale modulation of small scalesExp. Fluids20155618810.1007/s00348-015-2058-8 Brouwer, E. D., Arany, A., Simm, J., & Moreau, Y. Latent convergent cross mapping. in International Conference on Learning Representations (2021). InceRAMeasuring multivariate redundant information with pointwise common change in surprisalEntropy2017193182017Entrp..19..318I1:CAS:528:DC%2BC1MXkslGqurY%3D10.3390/e19070318 Agresti, A. & Franklin, C. Statistics: The Art and Science of Learning from Data 5th edn (Pearson, 2024). Townsend, A. A. The Structure of Turbulent Shear Flow (Cambridge University Press, 1976). BodenschatzEClouds resolvedScience201535040412015Sci...350...40B1:CAS:528:DC%2BC2MXhs1Ogtb%2FJ2643010910.1126/science.aad1386 ChungDMontyJPOoiAAn idealised assessment of Townsend’s outer-layer similarity hypothesis for wall turbulenceJ. Fluid Mech.2014742R32014JFM...742R...3C10.1017/jfm.2014.17 Camps-VallsGDiscovering causal relations and equations from dataPhys. Rep.202310441682023PhR..1044....1C466501610.1016/j.physrep.2023.10.005 ZhouYDegrees of locality of energy transfer in the inertial rangePhys. Fluids19935109210941993PhFl....5.1092Z1:CAS:528:DyaK3sXksFajsbw%3D10.1063/1.858593 DuanR-RHaoKYangTAir pollution and chronic obstructive pulmonary diseaseChronic Dis. Transl. Med.20206260269333361717729117 Lizier, J. T., Prokopenko, M. & Zomaya, A. Y. Information modification and particle collisions in distributed computation. Chaos20, 037109 (2010). BellDKayJMalleyJA non-parametric approach to non-linear causality testingEcon. Lett.19965171810.1016/0165-1765(95)00791-1 BusseBSandhamAParametric forcing approach to rough-wall turbulent channel flowJ. Fluid Mech.20127121692022012JFM...712..169B299901110.1017/jfm.2012.408 LiangXSInformation flow within stochastic dynamical systemsPhys. Rev. E2008780311132008PhRvE..78c1113L10.1103/PhysRevE.78.031113 YeHDeyleERGilarranzLJSugiharaGDistinguishing time-delayed causal interactions using convergent cross mappingSci. Rep.201552015NatSR...514750Y1:CAS:528:DC%2BC2MXhs1Sksr7J26435402459297410.1038/srep14750 AluieHEyinkGLLocalness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filterPhys. Fluids2009211151082009PhFl...21k5108A10.1063/1.3266948 HutchinsNMarusicIEvidence of very long meandering features in the logarithmic region of turbulent boundary layersJ. Fluid Mech.20075791282007JFM...579....1H10.1017/S0022112006003946 Barndorff-Nielsen, O. E. & Kluppelberg, C. Complex stochastic systems (Chapman and Hall, CRC, 2001). MathisRHutchinsNMarusicILarge-scale amplitude modulation of the small-scale structures in turbulent boundary layersJ. Fluid Mech.20096283113372009JFM...628..311M10.1017/S0022112009006946 Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995). MoranPAThe statistical analysis of the Canadian lynx cycleAust. J. Zool.1953129129810.1071/ZO9530291 BarnettLBarrettABSethAKGranger causality and transfer entropy are equivalent for Gaussian variablesPhys. Rev. Lett.20091032387012009PhRvL.103w8701B2036618310.1103/PhysRevLett.103.238701 LiangXSInformation flow and causality as rigorous notions ab initioPhys. Rev. E2016940522012016PhRvE..94e2201L2796712010.1103/PhysRevE.94.052201 LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.1963201301411963JAtS...20..130L402143410.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 Lozano-DuránAArranzGInformation-theoretic formulation of dynamical systems: causality, modeling, and controlPhys. Rev. Res.2022402319510.1103/PhysRevResearch.4.023195 Marusic, I. Two-point high Reynolds number zero-pressure gradient turbulent boundary layer dataset. University of Melbournehttps://figshare.unimelb.edu.au/articles/dataset/Two-point_high_Reynolds_number_zero pressure_gradient_turbulent_boundary_layer_dataset/12101088 (2020). KolchinskyAA novel approach to the partial information decompositionEntropy2022244032022Entrp..24..403K440703735327914894737010.3390/e24030403 AltmanNKrzywinskiMAssociation, correlation and causationNat. Methods2015128999001:CAS:528:DC%2BC2MXhsFyqsL%2FO2668888210.1038/nmeth.3587 YamadaTAnatomy of plasma turbulenceNat. Phys.200847217251:CAS:528:DC%2BD1cXhtVGnsLzF10.1038/nphys1029 Lozano-DuránABaeHJCharacteristic scales of Townsend’s wall-attached eddiesJ. Fluid Mech.20198686987252019JFM...868..698L393958531631906680070810.1017/jfm.2019.209 AnconaNMarinazzoDStramagliaSRadial basis function approach to nonlinear Granger causality of time seriesPhys. Rev. E2004700562212004PhRvE..70e6221A10.1103/PhysRevE.70.056221 EichlerMCausal inference with multiple time series: principles and problemsPhilos. Trans. R. Soc. A2013371201106132013RSPTA.37110613E308117310.1098/rsta.2011.0613 DawidAPInfluence diagrams for causal modelling and inferenceInt. Stat. Rev.20027016118910.1111/j.1751-5823.2002.tb00354.x MizunoYJiménezJWall turbulence without wallsJ. Fluid Mech.20137234294552013JFM...723..429M10.1017/jfm.2013.137 Ying, X. et al. Continuity scaling: a rigorous framework for detecting and quantifying causality accurately. Research2022, 9870149 (2022). ObukhovAMOn the distribution of energy in the spectrum of turbulent flowIzv. Akad. Nauk USSR, Ser. Geogr. Geofiz.19415453466 SugiharaGDetecting causality in complex ecosystemsScience20123384965002012Sci...338..496S1:CAS:528:DC%2BC38XhsFGmtbnM2299713410.1126/science.1227079 SpirtesPGlymourCAn algorithm for fast recovery of sparse causal graphsSoc. Sci. Comput. Rev.19919627210.1177/089443939100900106 AbhyankarALinear and nonlinear Granger causality: evidence from the UK stock index futures marketJ. Futur. Mark.19981851910.1002/(SICI)1096-9934(199808)18:5<519::AID-FUT2>3.0.CO;2-U Massey, J. Causality, feedback and directed information. In Proc. 1990 Int. Symp. on Inform. Theory and its Applications, 27–30 (1990). KullbackSLeiblerRAOn information and sufficiencyAnn. Math. Stat.19512279863996810.1214/aoms/1177729694 PompeBRungeJMomentary information transfer as a coupling measure of time seriesPhys. Rev. E2011830511222011PhRvE..83e1122P10.1103/PhysRevE.83.051122 MarusicIMathisRHutchinsNPredictive model for wall-bounded turbulent flowScience20103291931962010Sci...329..193M26747571:CAS:528:DC%2BC3cXosVWgurw%3D2061627310.1126/science.1188765 KühnenJDestabilizing turbulence in pipe flowNat. Phys.20181438639010.1038/s41567-017-0018-3 RungeJGerhardusAVarandoGEyringVCamps-VallsGCausal inference for time seriesNat. Rev. Earth Environ.202344875052023NRvEE...4..487R10.1038/s43017-023-00431-y Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR30, 301–305 (1941). VeynanteDVervischLTurbulent combustion modelingProg. Energy Combust. Sci.2002281932661:CAS:528:DC%2BD38Xitlalu7k%3D10.1016/S0360-1285(01)00017-X Baptista, R., Marzouk, Y. & Zahm, O. On the representation and learning of monotone triangular transport maps. Found. Comput. Math. https://doi.org/10.1007/s10208-023-09630-x (2023). Vela-MartínASubgrid-scale models of isotropic turbulence need not produce energy backscatterJ. Fluid Mech.2022937A142022JFM...937A..14V438417810.1017/jfm.2022.123 BaarsWJHutchinsNMarusicIReynolds number trend of hierarchies and scale interactions in turbulent boundary layersPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2017375201600772017RSPTA.37560077B10.1098/rsta.2016.0077 Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980 (eds Rand, D. & Young, L.-S.) 366–381 (Springer Berlin Heidelberg, 1981). MayRMSimple mathematical models with very complicated dynamicsNature19762614594 J Runge (53373_CR23) 2019; 5 G Falkovich (53373_CR86) 2009; 42 J Runge (53373_CR3) 2023; 4 P Hedström (53373_CR7) 2010; 36 B Pompe (53373_CR54) 2011; 83 WJ Baars (53373_CR75) 2017; 375 E Saggioro (53373_CR64) 2020; 30 E Bodenschatz (53373_CR90) 2015; 350 A Lozano-Durán (53373_CR8) 2020; 882 JI Cardesa (53373_CR87) 2017; 357 T Yamada (53373_CR88) 2008; 4 G Sugihara (53373_CR36) 2012; 338 N Ancona (53373_CR34) 2004; 70 C Spearman (53373_CR17) 1987; 100 G Tissot (53373_CR33) 2014; 506 O Flores (53373_CR109) 2006; 566 N Altman (53373_CR15) 2015; 12 J Runge (53373_CR123) 2018; 28 53373_CR41 53373_CR42 H Ye (53373_CR39) 2015; 5 L Barnett (53373_CR29) 2015; 91 53373_CR43 J Runge (53373_CR61) 2023; 14 F Eberhardt (53373_CR22) 2007; 74 AT Clark (53373_CR38) 2015; 96 D Bell (53373_CR31) 1996; 51 L Barnett (53373_CR27) 2009; 103 P Spirtes (53373_CR59) 1991; 9 SZ Chiou-Wei (53373_CR5) 2008; 30 A Abhyankar (53373_CR32) 1998; 18 53373_CR47 53373_CR48 53373_CR52 53373_CR53 D Bueso (53373_CR35) 2020; 102 53373_CR126 53373_CR129 53373_CR125 A Razi (53373_CR4) 2016; 33 A Lozano-Durán (53373_CR45) 2022; 4 53373_CR120 I Marusic (53373_CR94) 2010; 329 XS Liang (53373_CR56) 2016; 94 A Vela-Martín (53373_CR97) 2022; 937 XS Liang (53373_CR55) 2006; 95 53373_CR63 AP Dawid (53373_CR13) 2002; 70 AJ Gutknecht (53373_CR118) 2021; 477 S Cobey (53373_CR121) 2016; 11 53373_CR62 53373_CR67 GL Eyink (53373_CR101) 2005; 207 CWJ Granger (53373_CR25) 1969; 37 J Kreer (53373_CR66) 1957; 3 A Lozano-Durán (53373_CR113) 2019; 868 R-R Duan (53373_CR20) 2020; 6 53373_CR60 JT Lizier (53373_CR51) 2008; 77 S Leng (53373_CR40) 2020; 11 L Sirovich (53373_CR92) 1997; 388 P Verdes (53373_CR50) 2005; 72 Y Mizuno (53373_CR111) 2013; 723 AJ Lotka (53373_CR68) 1925; 116 B Hof (53373_CR93) 2010; 327 53373_CR73 WJ Baars (53373_CR74) 2015; 56 53373_CR105 53373_CR76 53373_CR77 53373_CR71 D Chung (53373_CR112) 2014; 742 G Camps-Valls (53373_CR21) 2023; 1044 T Aoyama (53373_CR85) 2005; 74 Á Martínez-Sánchez (53373_CR9) 2023; 967 S Kullback (53373_CR65) 1951; 22 J Kühnen (53373_CR95) 2018; 14 A Kolchinsky (53373_CR119) 2022; 24 XS Liang (53373_CR58) 2013; 15 PA Moran (53373_CR70) 1953; 1 MR DeWeese (53373_CR124) 1999; 10 53373_CR83 GI Taylor (53373_CR98) 1935; 151 R Mathis (53373_CR107) 2009; 628 JA Domaradzki (53373_CR104) 2009; 21 53373_CR115 K Pearson (53373_CR16) 1895; 58 Y Zhou (53373_CR100) 1993; 5 KA Flack (53373_CR108) 2005; 17 53373_CR114 P Mininni (53373_CR102) 2006; 74 XS Liang (53373_CR57) 2008; 78 EN Lorenz (53373_CR79) 1963; 20 53373_CR80 JI Cardesa (53373_CR127) 2015; 27 C Hiemstra (53373_CR30) 1994; 49 B Busse (53373_CR110) 2012; 712 D Mønster (53373_CR122) 2017; 73 A Krakovská (53373_CR82) 2018; 97 RA Ince (53373_CR117) 2017; 19 KJ Horn (53373_CR19) 2018; 13 N Hutchins (53373_CR106) 2007; 579 C Rosales (53373_CR128) 2005; 17 D Veynante (53373_CR89) 2002; 28 V Griffith (53373_CR116) 2015; 17 53373_CR12 RM May (53373_CR78) 1976; 261 53373_CR11 53373_CR99 KJ Rothman (53373_CR6) 2005; 95 M Eichler (53373_CR10) 2013; 371 JM McCracken (53373_CR37) 2014; 90 AN Kolmogorov (53373_CR84) 1962; 13 V Volterra (53373_CR69) 1926; 118 AM Obukhov (53373_CR72) 1941; 5 CE Shannon (53373_CR44) 1948; 27 RQ Quiroga (53373_CR81) 2000; 61 T Schreiber (53373_CR49) 2000; 85 53373_CR1 53373_CR18 53373_CR2 A Vela-Martín (53373_CR96) 2021; 915 53373_CR24 L Barnett (53373_CR28) 2014; 223 JF Geweke (53373_CR26) 1984; 79 Y Yuan (53373_CR46) 2024; 467 M Kampa (53373_CR14) 2008; 151 RMB Young (53373_CR91) 2017; 13 H Aluie (53373_CR103) 2009; 21 |
| References_xml | – reference: Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. In Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 12615–12625 (Curran Associates, Inc., 2020). – reference: MoranPAThe statistical analysis of the Canadian lynx cycleAust. J. Zool.1953129129810.1071/ZO9530291 – reference: BarnettLSethAKThe MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inferenceJ. Neurosci. Methods201422350682420050810.1016/j.jneumeth.2013.10.018 – reference: Martínez-Sánchez, Á., Arranz, G. & Lozano-Durán, A. Decomposing causality in its synergistic, unique, and redundant components, SURD: Synergistic-Unique-Redundant Decomposition of causality. https://doi.org/10.5281/zenodo.13750918 (2024). – reference: RungeJCausal network reconstruction from time series: From theoretical assumptions to practical estimationChaos2018280753102018Chaos..28g5310R38310501:STN:280:DC%2BB3c7ktl2qsA%3D%3D3007053310.1063/1.5025050 – reference: Pearl, J. Causality: Models, Reasoning, and Inference (Cambridge University Press, 2000). – reference: KampaMCastanasEHuman health effects of air pollutionEnviron. Pollut.20081513623671:CAS:528:DC%2BD1cXhsVGqsbg%3D1764604010.1016/j.envpol.2007.06.012 – reference: ClarkATSpatial convergent cross mapping to detect causal relationships from short time seriesEcology201596117411812623683210.1890/14-1479.1 – reference: PompeBRungeJMomentary information transfer as a coupling measure of time seriesPhys. Rev. E2011830511222011PhRvE..83e1122P10.1103/PhysRevE.83.051122 – reference: Rössler, O. E. Continuous chaos. In Synergetics: A Workshop Proceedings of the International Workshop on Synergetics at Schloss Elmau, Bavaria, May 2–7 184–197. (Springer, 1977). – reference: GutknechtAJWibralMMakkehABits and pieces: understanding information decomposition from part-whole relationships and formal logicProc. R. Soc. A2021477202101102021RSPSA.47710110G43023661:STN:280:DC%2BB2M3kvFCmuw%3D%3D35197799826122910.1098/rspa.2021.0110 – reference: MarusicIMathisRHutchinsNPredictive model for wall-bounded turbulent flowScience20103291931962010Sci...329..193M26747571:CAS:528:DC%2BC3cXosVWgurw%3D2061627310.1126/science.1188765 – reference: Ince, R. A. A. Measuring multivariate redundant information with pointwise common change in surprisal. Entropy19, 318 (2017). – reference: SpirtesPGlymourCAn algorithm for fast recovery of sparse causal graphsSoc. Sci. Comput. Rev.19919627210.1177/089443939100900106 – reference: Marusic, I. Two-point high Reynolds number zero-pressure gradient turbulent boundary layer dataset. University of Melbournehttps://figshare.unimelb.edu.au/articles/dataset/Two-point_high_Reynolds_number_zero pressure_gradient_turbulent_boundary_layer_dataset/12101088 (2020). – reference: DomaradzkiJATeacaBCaratiDLocality properties of the energy flux in turbulencePhys. Fluids2009210251062009PhFl...21b5106D10.1063/1.3081558 – reference: Bunge, M. Causality and Modern Science (Dover Publications, 1979). – reference: Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction, and Search (The MIT Press, 2001). – reference: Javier, P. J. E. causal-ccm: a Python implementation of Convergent Cross Mapping (2021). – reference: Williams, P. L. & Beer, R. D. Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515 (2010). – reference: BodenschatzEClouds resolvedScience201535040412015Sci...350...40B1:CAS:528:DC%2BC2MXhs1Ogtb%2FJ2643010910.1126/science.aad1386 – reference: DeWeeseMRMeisterMHow to measure the information gained from one symbolNetw. Comput. Neural Syst.1999103251:STN:280:DC%2BD3c7lvVejuw%3D%3D10.1088/0954-898X_10_4_303 – reference: Lizier, J. T., Prokopenko, M. & Zomaya, A. Y. Information modification and particle collisions in distributed computation. Chaos20, 037109 (2010). – reference: BaarsWJHutchinsNMarusicIReynolds number trend of hierarchies and scale interactions in turbulent boundary layersPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2017375201600772017RSPTA.37560077B10.1098/rsta.2016.0077 – reference: BellDKayJMalleyJA non-parametric approach to non-linear causality testingEcon. Lett.19965171810.1016/0165-1765(95)00791-1 – reference: Vela-MartínASubgrid-scale models of isotropic turbulence need not produce energy backscatterJ. Fluid Mech.2022937A142022JFM...937A..14V438417810.1017/jfm.2022.123 – reference: LengSPartial cross mapping eliminates indirect causal influencesNat. Commun.2020112020NatCo..11.2632L1:CAS:528:DC%2BB3cXhtVCmtLfO32457301725113110.1038/s41467-020-16238-0 – reference: SpearmanCThe proof and measurement of association between two thingsAm. J. Psychol.19871004414711:STN:280:DyaL1c7gsVejsA%3D%3D332205210.2307/1422689 – reference: YoungRMBReadPLForward and inverse kinetic energy cascades in Jupiter’s turbulent weather layerNat. Phys.201713113511401:CAS:528:DC%2BC2sXhtlGku7zO10.1038/nphys4227 – reference: Agresti, A. & Franklin, C. Statistics: The Art and Science of Learning from Data 5th edn (Pearson, 2024). – reference: HiemstraCJonesJDTesting for linear and nonlinear Granger causality in the stock price-volume relationJ. Financ.19944916391664 – reference: LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.1963201301411963JAtS...20..130L402143410.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – reference: TaylorGIStatistical theory of turbulenceProc. R. Soc. Lond.19351514444541935RSPSA.151..444T – reference: RosalesCMeneveauCLinear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence propertiesPhys. Fluids2005170951062005PhFl...17i5106R217138210.1063/1.2047568 – reference: RaziAFristonKJThe connected brain: causality, models, and intrinsic dynamicsIEEE Signal Process. Mag.20163314352016ISPM...33...14R10.1109/MSP.2015.2482121 – reference: SchreiberTMeasuring information transferPhys. Rev. Lett.2000854612000PhRvL..85..461S1:CAS:528:DC%2BD3cXks1ersL4%3D1099130810.1103/PhysRevLett.85.461 – reference: Bossomaier, T., Barnett, L., Harré, M. & Lizier, J. T. An Introduction to Transfer Entropy: Information Flow in Complex Systems 1st edn (Springer International Publishing, 2016). – reference: ShannonCEA mathematical theory of communicationBell Labs Tech. J.1948273794232628610.1002/j.1538-7305.1948.tb01338.x – reference: KreerJA question of terminologyIEEE Trans. Inf. Theory1957320820810.1109/TIT.1957.1057418 – reference: Camps-VallsGDiscovering causal relations and equations from dataPhys. Rep.202310441682023PhR..1044....1C466501610.1016/j.physrep.2023.10.005 – reference: AbhyankarALinear and nonlinear Granger causality: evidence from the UK stock index futures marketJ. Futur. Mark.19981851910.1002/(SICI)1096-9934(199808)18:5<519::AID-FUT2>3.0.CO;2-U – reference: VolterraVFluctuations in the abundance of a species considered mathematicallyNature19261185585601926Natur.118..558V10.1038/118558a0 – reference: CobeySBaskervilleEBLimits to causal inference with state-space reconstruction for infectious diseasePLoS ONE20161112210.1371/journal.pone.0169050 – reference: RothmanKJGreenlandSCausation and causal inference in epidemiologyAm. J. Public Health200595S144S1501603033110.2105/AJPH.2004.059204 – reference: LotkaAJElements of physical biologyNature19251164614611925Natur.116..457L10.1038/116461b0 – reference: FalkovichGSymmetries of the turbulent stateJ. Phys. A2009421230012009JPhA...42l3001F248581310.1088/1751-8113/42/12/123001 – reference: BarnettLSethAKGranger causality for state-space modelsPhys. Rev. E2015910401012015PhRvE..91d0101B347095710.1103/PhysRevE.91.040101 – reference: MininniPAlexakisAPouquetALarge-scale flow effects, energy transfer, and self-similarity on turbulencePhys. Rev. E2006740163032006PhRvE..74a6303M1:STN:280:DC%2BD28vosVOruw%3D%3D10.1103/PhysRevE.74.016303 – reference: Townsend, A. A. The Structure of Turbulent Shear Flow (Cambridge University Press, 1976). – reference: Wiener, N. The Theory of Prediction. Modern Mathematics for Engineers Vol. 165 (Dover Publications, 1956). – reference: EichlerMCausal inference with multiple time series: principles and problemsPhilos. Trans. R. Soc. A2013371201106132013RSPTA.37110613E308117310.1098/rsta.2011.0613 – reference: Richardson, L. F. Weather Prediction by Numerical Process (Cambridge University Press, 1922). – reference: RungeJNowackPKretschmerMFlaxmanSSejdinovicDDetecting and quantifying causal associations in large nonlinear time series datasetsSci. Adv.20195eaau49962019SciA....5.4996R31807692688115110.1126/sciadv.aau4996 – reference: ObukhovAMOn the distribution of energy in the spectrum of turbulent flowIzv. Akad. Nauk USSR, Ser. Geogr. Geofiz.19415453466 – reference: LizierJTProkopenkoMZomayaAYLocal information transfer as a spatiotemporal filter for complex systemsPhys. Rev. E2008770261102008PhRvE..77b6110L245328810.1103/PhysRevE.77.026110 – reference: Massey, J. Causality, feedback and directed information. In Proc. 1990 Int. Symp. on Inform. Theory and its Applications, 27–30 (1990). – reference: RungeJModern causal inference approaches to investigate biodiversity-ecosystem functioning relationshipsNat. Commun.2023142023NatCo..14.1917R1:CAS:528:DC%2BB3sXnslWlt7c%3D370244761007996310.1038/s41467-023-37546-1 – reference: FlackKASchultzMPShapiroTAExperimental support for Townsend’s Reynolds number similarity hypothesis on rough wallsPhys. Fluids2005170351022005PhFl...17c5102F10.1063/1.1843135 – reference: Baptista, R., Marzouk, Y. & Zahm, O. On the representation and learning of monotone triangular transport maps. Found. Comput. Math. https://doi.org/10.1007/s10208-023-09630-x (2023). – reference: Lizier, J. T. JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front. Robot. AI. 1, 11 (2014). – reference: YeHDeyleERGilarranzLJSugiharaGDistinguishing time-delayed causal interactions using convergent cross mappingSci. Rep.201552015NatSR...514750Y1:CAS:528:DC%2BC2MXhs1Sksr7J26435402459297410.1038/srep14750 – reference: AluieHEyinkGLLocalness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filterPhys. Fluids2009211151082009PhFl...21k5108A10.1063/1.3266948 – reference: KühnenJDestabilizing turbulence in pipe flowNat. Phys.20181438639010.1038/s41567-017-0018-3 – reference: BaarsWJTalluruKMHutchinsNMarusicIWavelet analysis of wall turbulence to study large-scale modulation of small scalesExp. Fluids20155618810.1007/s00348-015-2058-8 – reference: KrakovskáAComparison of six methods for the detection of causality in a bivariate time seriesPhys. Rev. E2018970422072018PhRvE..97d2207K2975859710.1103/PhysRevE.97.042207 – reference: AnconaNMarinazzoDStramagliaSRadial basis function approach to nonlinear Granger causality of time seriesPhys. Rev. E2004700562212004PhRvE..70e6221A10.1103/PhysRevE.70.056221 – reference: AltmanNKrzywinskiMAssociation, correlation and causationNat. Methods2015128999001:CAS:528:DC%2BC2MXhsFyqsL%2FO2668888210.1038/nmeth.3587 – reference: Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR30, 301–305 (1941). – reference: QuirogaRQArnholdJGrassbergerPLearning driver-response relationships from synchronization patternsPhys. Rev. E200061514251482000PhRvE..61.5142Q1:CAS:528:DC%2BD3cXivFCkurY%3D10.1103/PhysRevE.61.5142 – reference: Brouwer, E. D., Arany, A., Simm, J., & Moreau, Y. Latent convergent cross mapping. in International Conference on Learning Representations (2021). – reference: Runge, J. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. In Conference on Uncertainty in Artificial Intelligence 1388–1397 (PMLR, 2020). – reference: MathisRHutchinsNMarusicILarge-scale amplitude modulation of the small-scale structures in turbulent boundary layersJ. Fluid Mech.20096283113372009JFM...628..311M10.1017/S0022112009006946 – reference: GrangerCWJInvestigating causal relations by econometric models and cross-spectral methodsEconometrica19693742443810.2307/1912791 – reference: HofBDe LozarAAvilaMTuXSchneiderTMEliminating turbulence in spatially intermittent flowsScience2010327149114942010Sci...327.1491H1:CAS:528:DC%2BC3cXjt1Gntbg%3D2029959010.1126/science.1186091 – reference: Vela-MartínAJiménezJEntropy, irreversibility and cascades in the inertial range of isotropic turbulenceJ. Fluid Mech.2021915A362021JFM...915A..36V423227810.1017/jfm.2021.105 – reference: Lozano-DuránABaeHJEncinarMPCausality of energy-containing eddies in wall turbulenceJ. Fluid Mech.2020882A22020JFM...882A...2L402949810.1017/jfm.2019.801 – reference: BuesoDPilesMCamps-VallsGExplicit Granger causality in kernel Hilbert spacesPhys. Rev. E20201020622012020PhRvE.102f2201B41990311:CAS:528:DC%2BB3MXivVOqsbs%3D3346598010.1103/PhysRevE.102.062201 – reference: Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995). – reference: Runge, J. Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. In Proc. Twenty-First International Conference on Artificial Intelligence and Statistics, Vol. 84 (eds Storkey, A. & Perez-Cruz, F.) 938–947 (PMLR, 2018). – reference: KolchinskyAA novel approach to the partial information decompositionEntropy2022244032022Entrp..24..403K440703735327914894737010.3390/e24030403 – reference: FloresOJiménezJEffect of wall-boundary disturbances on turbulent channel flowsJ. Fluid Mech.20065663573762006JFM...566..357F10.1017/S0022112006001534 – reference: YamadaTAnatomy of plasma turbulenceNat. Phys.200847217251:CAS:528:DC%2BD1cXhtVGnsLzF10.1038/nphys1029 – reference: DuanR-RHaoKYangTAir pollution and chronic obstructive pulmonary diseaseChronic Dis. Transl. Med.20206260269333361717729117 – reference: AoyamaTStatistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic boxJ. Phys. Soc. Jpn.200574320232122005JPSJ...74.3202A1:CAS:528:DC%2BD28XitF2rtbY%3D10.1143/JPSJ.74.3202 – reference: PearsonKGaltonFVII. Note on regression and inheritance in the case of two parentsProc. R. Soc. Lond.18955824024210.1098/rspl.1895.0041 – reference: RungeJGerhardusAVarandoGEyringVCamps-VallsGCausal inference for time seriesNat. Rev. Earth Environ.202344875052023NRvEE...4..487R10.1038/s43017-023-00431-y – reference: VeynanteDVervischLTurbulent combustion modelingProg. Energy Combust. Sci.2002281932661:CAS:528:DC%2BD38Xitlalu7k%3D10.1016/S0360-1285(01)00017-X – reference: GriffithVHoTQuantifying redundant information in predicting a target random variableEntropy201517464446532015Entrp..17.4644G10.3390/e17074644 – reference: HedströmPYlikoskiPCausal mechanisms in the social sciencesAnnu. Rev. Sociol.201036496710.1146/annurev.soc.012809.102632 – reference: EberhardtFScheinesRInterventions and causal inferencePhilos. Sci.200774981995244497910.1086/525638 – reference: LiangXSKleemanRInformation transfer between dynamical system componentsPhys. Rev. Lett.2006952441012005PhRvL..95x4101L10.1103/PhysRevLett.95.244101 – reference: InceRAMeasuring multivariate redundant information with pointwise common change in surprisalEntropy2017193182017Entrp..19..318I1:CAS:528:DC%2BC1MXkslGqurY%3D10.3390/e19070318 – reference: McCrackenJMWeigelRSConvergent cross-mapping and pairwise asymmetric inferencePhys. Rev. E2014900629032014PhRvE..90f2903M1:CAS:528:DC%2BC2MXhslGiu74%3D10.1103/PhysRevE.90.062903 – reference: Ying, X. et al. Continuity scaling: a rigorous framework for detecting and quantifying causality accurately. Research2022, 9870149 (2022). – reference: ZhouYDegrees of locality of energy transfer in the inertial rangePhys. Fluids19935109210941993PhFl....5.1092Z1:CAS:528:DyaK3sXksFajsbw%3D10.1063/1.858593 – reference: SaggioroEde WiljesJKretschmerMRungeJReconstructing regime-dependent causal relationships from observational time seriesChaos2020301131152020Chaos..30k3115S41710993326132010.1063/5.0020538 – reference: BusseBSandhamAParametric forcing approach to rough-wall turbulent channel flowJ. Fluid Mech.20127121692022012JFM...712..169B299901110.1017/jfm.2012.408 – reference: Chiou-WeiSZChenCFZhuZEconomic growth and energy consumption revisited—evidence from linear and nonlinear Granger causalityEnergy Econ.2008303063307610.1016/j.eneco.2008.02.002 – reference: MizunoYJiménezJWall turbulence without wallsJ. Fluid Mech.20137234294552013JFM...723..429M10.1017/jfm.2013.137 – reference: Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980 (eds Rand, D. & Young, L.-S.) 366–381 (Springer Berlin Heidelberg, 1981). – reference: LiangXSInformation flow within stochastic dynamical systemsPhys. Rev. E2008780311132008PhRvE..78c1113L10.1103/PhysRevE.78.031113 – reference: Barndorff-Nielsen, O. E. & Kluppelberg, C. Complex stochastic systems (Chapman and Hall, CRC, 2001). – reference: Akaike, H. Akaike’s Information Criterion. in International Encyclopedia of Statistical Science (ed Lovric, M.) (Springer, 2011). – reference: ChungDMontyJPOoiAAn idealised assessment of Townsend’s outer-layer similarity hypothesis for wall turbulenceJ. Fluid Mech.2014742R32014JFM...742R...3C10.1017/jfm.2014.17 – reference: YuanYLozano-DuránALimits to extreme event forecasting in chaotic systemsPhys. D2024467134246475958610.1016/j.physd.2024.134246 – reference: SirovichLKarlssonSTurbulent drag reduction by passive mechanismsNature19973887537551997Natur.388..753S1:CAS:528:DyaK2sXls1Gks7o%3D10.1038/41966 – reference: CardesaJIVela-MartínAJiménezJThe turbulent cascade in five dimensionsScience201735778278436774351:CAS:528:DC%2BC2sXhtlKntrzJ2881896810.1126/science.aan7933 – reference: KullbackSLeiblerRAOn information and sufficiencyAnn. Math. Stat.19512279863996810.1214/aoms/1177729694 – reference: MønsterDFusaroliRTylénKRoepstorffAShersonJFCausal inference from noisy time-series data—testing the convergent cross-mapping algorithm in the presence of noise and external influenceFuture Gener. Comput. Syst.201773526210.1016/j.future.2016.12.009 – reference: CardesaJIVela-MartínADongSJiménezJThe temporal evolution of the energy flux across scales in homogeneous turbulencePhys. Fluids2015271117022015PhFl...27k1702C10.1063/1.4935812 – reference: Griffith, V. & Koch, C. Quantifying synergistic mutual information. in Guided Self-Organization: Inception 159–190 (Springer, 2014). – reference: Lozano-DuránAArranzGInformation-theoretic formulation of dynamical systems: causality, modeling, and controlPhys. Rev. Res.2022402319510.1103/PhysRevResearch.4.023195 – reference: HutchinsNMarusicIEvidence of very long meandering features in the logarithmic region of turbulent boundary layersJ. Fluid Mech.20075791282007JFM...579....1H10.1017/S0022112006003946 – reference: VerdesPAssessing causality from multivariate time seriesPhys. Rev. E2005720262222005PhRvE..72b6222V1:STN:280:DC%2BD2MrisFKkug%3D%3D10.1103/PhysRevE.72.026222 – reference: Lozano-DuránABaeHJCharacteristic scales of Townsend’s wall-attached eddiesJ. Fluid Mech.20198686987252019JFM...868..698L393958531631906680070810.1017/jfm.2019.209 – reference: GewekeJFMeasures of conditional linear dependence and feedback between time seriesJ. Am. Stat. Assoc.19847990791577028610.1080/01621459.1984.10477110 – reference: BarnettLBarrettABSethAKGranger causality and transfer entropy are equivalent for Gaussian variablesPhys. Rev. Lett.20091032387012009PhRvL.103w8701B2036618310.1103/PhysRevLett.103.238701 – reference: EyinkGLLocality of turbulent cascadesPhysica D2005207911162005PhyD..207...91E216697710.1016/j.physd.2005.05.018 – reference: Martínez-SánchezÁCausality analysis of large-scale structures in the flow around a wall-mounted square cylinderJ. Fluid Mech.2023967A1461342510.1017/jfm.2023.423 – reference: Kramer, G. Directed information for channels with feedback. PhD Thesis, ETH Zürich (1998). – reference: MayRMSimple mathematical models with very complicated dynamicsNature19762614594671976Natur.261..459M1:STN:280:DyaE283itVCjsw%3D%3D93428010.1038/261459a0 – reference: TissotGLozano-DuránAJiménezJCordierLNoackBRGranger causality in wall-bounded turbulenceJ. Phys. Conf. Ser201450601200610.1088/1742-6596/506/1/012006 – reference: LiangXSThe Liang-Kleeman information flow: theory and applicationsEntropy2013153273602013Entrp..15..327L301890510.3390/e15010327 – reference: DawidAPInfluence diagrams for causal modelling and inferenceInt. Stat. Rev.20027016118910.1111/j.1751-5823.2002.tb00354.x – reference: LiangXSInformation flow and causality as rigorous notions ab initioPhys. Rev. E2016940522012016PhRvE..94e2201L2796712010.1103/PhysRevE.94.052201 – reference: SugiharaGDetecting causality in complex ecosystemsScience20123384965002012Sci...338..496S1:CAS:528:DC%2BC38XhsFGmtbnM2299713410.1126/science.1227079 – reference: KolmogorovANA refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numberJ. Fluid Mech.19621382851962JFM....13...82K13932910.1017/S0022112062000518 – reference: Ding, M., Chen, Y. & Bressler, S. Granger causality: basic theory and application to neuroscience. In Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, (eds Schelter, B., Winterhalder, M. & Timmer, J.) 2437–2459 (Wiley-VCH, 2006). – reference: HornKJGrowth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.SPLOS ONE20181311910.1371/journal.pone.0205296 – ident: 53373_CR77 doi: 10.1002/9783527609970.ch17 – volume: 17 start-page: 4644 year: 2015 ident: 53373_CR116 publication-title: Entropy doi: 10.3390/e17074644 – volume: 477 start-page: 20210110 year: 2021 ident: 53373_CR118 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2021.0110 – ident: 53373_CR67 doi: 10.3390/e19070318 – volume: 967 start-page: A1 year: 2023 ident: 53373_CR9 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2023.423 – volume: 6 start-page: 260 year: 2020 ident: 53373_CR20 publication-title: Chronic Dis. Transl. Med. – ident: 53373_CR73 – volume: 51 start-page: 7 year: 1996 ident: 53373_CR31 publication-title: Econ. Lett. doi: 10.1016/0165-1765(95)00791-1 – ident: 53373_CR126 doi: 10.1007/978-3-642-04898-2_110 – volume: 30 start-page: 3063 year: 2008 ident: 53373_CR5 publication-title: Energy Econ. doi: 10.1016/j.eneco.2008.02.002 – volume: 103 start-page: 238701 year: 2009 ident: 53373_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.238701 – volume: 10 start-page: 325 year: 1999 ident: 53373_CR124 publication-title: Netw. Comput. Neural Syst. doi: 10.1088/0954-898X_10_4_303 – volume: 223 start-page: 50 year: 2014 ident: 53373_CR28 publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.10.018 – volume: 17 start-page: 035102 year: 2005 ident: 53373_CR108 publication-title: Phys. Fluids doi: 10.1063/1.1843135 – ident: 53373_CR47 – volume: 868 start-page: 698 year: 2019 ident: 53373_CR113 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.209 – volume: 4 start-page: 721 year: 2008 ident: 53373_CR88 publication-title: Nat. Phys. doi: 10.1038/nphys1029 – ident: 53373_CR80 doi: 10.1007/978-3-642-66784-8_17 – volume: 15 start-page: 327 year: 2013 ident: 53373_CR58 publication-title: Entropy doi: 10.3390/e15010327 – volume: 9 start-page: 62 year: 1991 ident: 53373_CR59 publication-title: Soc. Sci. Comput. Rev. doi: 10.1177/089443939100900106 – volume: 742 start-page: R3 year: 2014 ident: 53373_CR112 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.17 – volume: 42 start-page: 123001 year: 2009 ident: 53373_CR86 publication-title: J. Phys. A doi: 10.1088/1751-8113/42/12/123001 – ident: 53373_CR115 doi: 10.1007/978-3-642-53734-9_6 – volume: 70 start-page: 161 year: 2002 ident: 53373_CR13 publication-title: Int. Stat. Rev. doi: 10.1111/j.1751-5823.2002.tb00354.x – volume: 17 start-page: 095106 year: 2005 ident: 53373_CR128 publication-title: Phys. Fluids doi: 10.1063/1.2047568 – volume: 37 start-page: 424 year: 1969 ident: 53373_CR25 publication-title: Econometrica doi: 10.2307/1912791 – volume: 78 start-page: 031113 year: 2008 ident: 53373_CR57 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.031113 – volume: 375 start-page: 20160077 year: 2017 ident: 53373_CR75 publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2016.0077 – volume: 74 start-page: 016303 year: 2006 ident: 53373_CR102 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.016303 – volume: 90 start-page: 062903 year: 2014 ident: 53373_CR37 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.90.062903 – volume: 388 start-page: 753 year: 1997 ident: 53373_CR92 publication-title: Nature doi: 10.1038/41966 – ident: 53373_CR129 doi: 10.5281/zenodo.13750918 – volume: 350 start-page: 40 year: 2015 ident: 53373_CR90 publication-title: Science doi: 10.1126/science.aad1386 – volume: 28 start-page: 193 year: 2002 ident: 53373_CR89 publication-title: Prog. Energy Combust. Sci. doi: 10.1016/S0360-1285(01)00017-X – volume: 1044 start-page: 1 year: 2023 ident: 53373_CR21 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2023.10.005 – ident: 53373_CR105 – volume: 5 start-page: eaau4996 year: 2019 ident: 53373_CR23 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau4996 – volume: 83 start-page: 051122 year: 2011 ident: 53373_CR54 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.051122 – volume: 74 start-page: 3202 year: 2005 ident: 53373_CR85 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.74.3202 – volume: 13 start-page: 1135 year: 2017 ident: 53373_CR91 publication-title: Nat. Phys. doi: 10.1038/nphys4227 – volume: 58 start-page: 240 year: 1895 ident: 53373_CR16 publication-title: Proc. R. Soc. Lond. doi: 10.1098/rspl.1895.0041 – ident: 53373_CR120 doi: 10.1007/s10208-023-09630-x – volume: 579 start-page: 1 year: 2007 ident: 53373_CR106 publication-title: J. Fluid Mech. doi: 10.1017/S0022112006003946 – volume: 27 start-page: 111702 year: 2015 ident: 53373_CR127 publication-title: Phys. Fluids doi: 10.1063/1.4935812 – volume: 95 start-page: S144 year: 2005 ident: 53373_CR6 publication-title: Am. J. Public Health doi: 10.2105/AJPH.2004.059204 – volume: 91 start-page: 040101 year: 2015 ident: 53373_CR29 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.040101 – volume: 467 start-page: 134246 year: 2024 ident: 53373_CR46 publication-title: Phys. D doi: 10.1016/j.physd.2024.134246 – volume: 13 start-page: 82 year: 1962 ident: 53373_CR84 publication-title: J. Fluid Mech. doi: 10.1017/S0022112062000518 – volume: 4 start-page: 487 year: 2023 ident: 53373_CR3 publication-title: Nat. Rev. Earth Environ. doi: 10.1038/s43017-023-00431-y – volume: 95 start-page: 244101 year: 2006 ident: 53373_CR55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.244101 – volume: 5 year: 2015 ident: 53373_CR39 publication-title: Sci. Rep. doi: 10.1038/srep14750 – ident: 53373_CR2 – ident: 53373_CR18 – volume: 3 start-page: 208 year: 1957 ident: 53373_CR66 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1957.1057418 – volume: 357 start-page: 782 year: 2017 ident: 53373_CR87 publication-title: Science doi: 10.1126/science.aan7933 – volume: 28 start-page: 075310 year: 2018 ident: 53373_CR123 publication-title: Chaos doi: 10.1063/1.5025050 – volume: 96 start-page: 1174 year: 2015 ident: 53373_CR38 publication-title: Ecology doi: 10.1890/14-1479.1 – volume: 100 start-page: 441 year: 1987 ident: 53373_CR17 publication-title: Am. J. Psychol. doi: 10.2307/1422689 – ident: 53373_CR83 – volume: 21 start-page: 025106 year: 2009 ident: 53373_CR104 publication-title: Phys. Fluids doi: 10.1063/1.3081558 – volume: 72 start-page: 026222 year: 2005 ident: 53373_CR50 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.72.026222 – volume: 915 start-page: A36 year: 2021 ident: 53373_CR96 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.105 – ident: 53373_CR24 – volume: 5 start-page: 1092 year: 1993 ident: 53373_CR100 publication-title: Phys. Fluids doi: 10.1063/1.858593 – ident: 53373_CR11 doi: 10.1201/9780367801694 – ident: 53373_CR41 – volume: 506 start-page: 012006 year: 2014 ident: 53373_CR33 publication-title: J. Phys. Conf. Ser doi: 10.1088/1742-6596/506/1/012006 – volume: 30 start-page: 113115 year: 2020 ident: 53373_CR64 publication-title: Chaos doi: 10.1063/5.0020538 – volume: 116 start-page: 461 year: 1925 ident: 53373_CR68 publication-title: Nature doi: 10.1038/116461b0 – volume: 20 start-page: 130 year: 1963 ident: 53373_CR79 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 – volume: 102 start-page: 062201 year: 2020 ident: 53373_CR35 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.102.062201 – volume: 882 start-page: A2 year: 2020 ident: 53373_CR8 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.801 – volume: 4 start-page: 023195 year: 2022 ident: 53373_CR45 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.4.023195 – volume: 11 year: 2020 ident: 53373_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16238-0 – volume: 14 year: 2023 ident: 53373_CR61 publication-title: Nat. Commun. doi: 10.1038/s41467-023-37546-1 – ident: 53373_CR48 – volume: 371 start-page: 20110613 year: 2013 ident: 53373_CR10 publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2011.0613 – volume: 79 start-page: 907 year: 1984 ident: 53373_CR26 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1984.10477110 – volume: 19 start-page: 318 year: 2017 ident: 53373_CR117 publication-title: Entropy doi: 10.3390/e19070318 – volume: 61 start-page: 5142 year: 2000 ident: 53373_CR81 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.5142 – volume: 566 start-page: 357 year: 2006 ident: 53373_CR109 publication-title: J. Fluid Mech. doi: 10.1017/S0022112006001534 – volume: 11 start-page: 1 year: 2016 ident: 53373_CR121 publication-title: PLoS ONE doi: 10.1371/journal.pone.0169050 – volume: 261 start-page: 459 year: 1976 ident: 53373_CR78 publication-title: Nature doi: 10.1038/261459a0 – volume: 74 start-page: 981 year: 2007 ident: 53373_CR22 publication-title: Philos. Sci. doi: 10.1086/525638 – volume: 85 start-page: 461 year: 2000 ident: 53373_CR49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.461 – ident: 53373_CR43 doi: 10.34133/2022/9870149 – volume: 151 start-page: 362 year: 2008 ident: 53373_CR14 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2007.06.012 – ident: 53373_CR42 doi: 10.1007/BFb0091924 – volume: 628 start-page: 311 year: 2009 ident: 53373_CR107 publication-title: J. Fluid Mech. doi: 10.1017/S0022112009006946 – volume: 338 start-page: 496 year: 2012 ident: 53373_CR36 publication-title: Science doi: 10.1126/science.1227079 – ident: 53373_CR60 – volume: 151 start-page: 444 year: 1935 ident: 53373_CR98 publication-title: Proc. R. Soc. Lond. – ident: 53373_CR71 – volume: 13 start-page: 1 year: 2018 ident: 53373_CR19 publication-title: PLOS ONE doi: 10.1371/journal.pone.0205296 – volume: 5 start-page: 453 year: 1941 ident: 53373_CR72 publication-title: Izv. Akad. Nauk USSR, Ser. Geogr. Geofiz. – volume: 207 start-page: 91 year: 2005 ident: 53373_CR101 publication-title: Physica D doi: 10.1016/j.physd.2005.05.018 – volume: 94 start-page: 052201 year: 2016 ident: 53373_CR56 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.052201 – volume: 24 start-page: 403 year: 2022 ident: 53373_CR119 publication-title: Entropy doi: 10.3390/e24030403 – ident: 53373_CR99 doi: 10.1017/CBO9781139170666 – volume: 329 start-page: 193 year: 2010 ident: 53373_CR94 publication-title: Science doi: 10.1126/science.1188765 – volume: 937 start-page: A14 year: 2022 ident: 53373_CR97 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.123 – volume: 723 start-page: 429 year: 2013 ident: 53373_CR111 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2013.137 – ident: 53373_CR1 – volume: 118 start-page: 558 year: 1926 ident: 53373_CR69 publication-title: Nature doi: 10.1038/118558a0 – volume: 21 start-page: 115108 year: 2009 ident: 53373_CR103 publication-title: Phys. Fluids doi: 10.1063/1.3266948 – volume: 327 start-page: 1491 year: 2010 ident: 53373_CR93 publication-title: Science doi: 10.1126/science.1186091 – volume: 77 start-page: 026110 year: 2008 ident: 53373_CR51 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.77.026110 – volume: 70 start-page: 056221 year: 2004 ident: 53373_CR34 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.056221 – ident: 53373_CR125 doi: 10.3389/frobt.2014.00011 – volume: 56 start-page: 188 year: 2015 ident: 53373_CR74 publication-title: Exp. Fluids doi: 10.1007/s00348-015-2058-8 – ident: 53373_CR63 doi: 10.5194/egusphere-egu21-8259 – ident: 53373_CR52 doi: 10.1063/1.3486801 – ident: 53373_CR114 – volume: 73 start-page: 52 year: 2017 ident: 53373_CR122 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2016.12.009 – volume: 12 start-page: 899 year: 2015 ident: 53373_CR15 publication-title: Nat. Methods doi: 10.1038/nmeth.3587 – volume: 22 start-page: 79 year: 1951 ident: 53373_CR65 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – volume: 712 start-page: 169 year: 2012 ident: 53373_CR110 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.408 – ident: 53373_CR53 doi: 10.1007/978-3-319-43222-9_1 – ident: 53373_CR76 – volume: 1 start-page: 291 year: 1953 ident: 53373_CR70 publication-title: Aust. J. Zool. doi: 10.1071/ZO9530291 – volume: 33 start-page: 14 year: 2016 ident: 53373_CR4 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2015.2482121 – volume: 36 start-page: 49 year: 2010 ident: 53373_CR7 publication-title: Annu. Rev. Sociol. doi: 10.1146/annurev.soc.012809.102632 – volume: 49 start-page: 1639 year: 1994 ident: 53373_CR30 publication-title: J. Financ. – volume: 14 start-page: 386 year: 2018 ident: 53373_CR95 publication-title: Nat. Phys. doi: 10.1038/s41567-017-0018-3 – volume: 97 start-page: 042207 year: 2018 ident: 53373_CR82 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.042207 – volume: 18 start-page: 519 year: 1998 ident: 53373_CR32 publication-title: J. Futur. Mark. doi: 10.1002/(SICI)1096-9934(199808)18:5<519::AID-FUT2>3.0.CO;2-U – volume: 27 start-page: 379 year: 1948 ident: 53373_CR44 publication-title: Bell Labs Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: 53373_CR62 – ident: 53373_CR12 doi: 10.7551/mitpress/1754.001.0001 |
| SSID | ssj0000391844 |
| Score | 2.552545 |
| Snippet | Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite... Abstract Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical... |
| SourceID | doaj pubmedcentral osti proquest pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 9296 |
| SubjectTerms | 631/553/2393 631/553/2701 639/705/1041 639/766/189 639/766/259 applied mathematics Causality Complex systems Decomposition dynamical systems fluid dynamics Humanities and Social Sciences Inference information theory and computation multidisciplinary Nonlinear systems Redundant components Science Science (multidisciplinary) time series |
| SummonAdditionalLinks | – databaseName: Biological Science Database dbid: M7P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70doQUbixkZNYie2T4hXxaGqegCpN8uvwEooKZssUv89M052q-XRC6eVNo7W3nn483jmG4BXVVsFxAU-byl8L7zVuapKnotSFipIXnOXSFyP5cmJOjvTp3PAbZjTKjc-MTnq0HuKkR9ydLGl5EKIN-c_cuoaRbercwuN63CDWBKqlLp3uo2xEPu5EmKulSm4OhxE8gy4MeWIcyTOaWc_SrT9-NGjef0Ncv6ZOfnb9WnalY7u_u967sGdGY-yt5MC3YdrsXsAt6YOlRcP4fhDpKTzniIKzNv1kGA7W3Zjz5bjwIYLqh1MZM8Ltk5ksAtmu8BWkcrTUGwsvd9RvsYj-HL08fP7T_ncgCH3daPGvLLBF1KWNpZKO2fLILWzPDaV9oXnhcMd1rUNb7nyquIh1HUtvZNo5Yq7VvPHsNfhLzwF5rhFMFehu7BRtAhqLMeDedMWFiGJdjyDciMG42d2cmqS8d2kW3KuzCQ6g6IzSXRGZPB6-875xM1x5eh3JN3tSOLVTl_0q69mNlNTB69ja6WWUQiN4FF4Vzctyrt0oWh8BvukGwbhCXHsekpG8qPhEzTL4GAjazO7gsFcCjqDl9vHaMR0M2O72K-nMXhQl4XM4MmkYdt54hzwUFs2Gagd3dtZyO6TbvktEYUj2udUPJzBYqOml_P69z_17Opl7MPtigwoFWQewN64WsfncNP_HJfD6kWywF8DiTbn priority: 102 providerName: ProQuest |
| Title | Decomposing causality into its synergistic, unique, and redundant components |
| URI | https://link.springer.com/article/10.1038/s41467-024-53373-4 https://www.ncbi.nlm.nih.gov/pubmed/39487116 https://www.proquest.com/docview/3123173444 https://www.proquest.com/docview/3123549707 https://www.osti.gov/servlets/purl/3000741 https://pubmed.ncbi.nlm.nih.gov/PMC11530654 https://doaj.org/article/5dc9efa797e4498394cb56fdce1bd06c |
| Volume | 15 |
| WOSCitedRecordID | wos001346598500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: M7P dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest_Health & Medical Collection customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: 7X7 dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2041-1723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000391844 issn: 2041-1723 databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BAIkXxDdhozISbzRaEjux_cjYJpBGFSGQCi-WvyIqTenUpEj77zk7aVlhwAsviVQ76uV85_tdfP4Z4FXRFA5xgU2b8PmeWS1TUeQ0ZTnPhOO0pCaSuJ7x2UzM57K-ctRXqAkb6IEHxR2WzkrfaC65Z0xiOGfWlFXjrM-NyyobZt-MyyvJVJyDqcTUhY27ZDIqDjsW5wQMSSkiHI7S7ESiSNiPtyU61nVg8_eayV8WTmM8Or0P90YgSd4ML_AAbvj2IdwZjpa8fARnxz5Uiy_DpwBi9bqLeJss2n5JFn1Husuw6S-yNE_JOrK4ToluHVn5sK8M9U3i820otHgMn09PPr19l44nJ6S2rESfFtrZjPNc-1xIY3TuuDSa-qqQNrM0MxgaTVPRhgorCupcWZbcGo7uKahpJH0Cey3-wzMghmpEYQX6ufasQTSiKWbUVZNpxBLS0ATyjRaVHWnFw-kW5youb1OhBs0r1LyKmlcsgdfbZy4GUo2_9j4Kg7PtGQix4w9oJmo0E_UvM0lgPwytQlwRyHFtqCKyvaIDpkrgYDPiavThTlEM6jmnjKEEL7fN6H1hSUW3frke-mCGzTOewNPBQLZyogyYjeZVAmLHdHZeZLelXXyLDN8I02nY9ZvAdGNlP-X6s6ae_w9N7cPdInhJ3G95AHv9au1fwG37vV90qwnc5HMer2ICt45OZvXHSXS9SaiarfFal1-xpX7_of7yA_0mMWk |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWxBceD9CCwQJTmzUJHbi5IAQUKquul3toUjlZGwngZVQUjZZ0P4pfiMzzqNaHr31wGmlxNHGzjfjz_bMNwDPwyLMkBcYr6Dte25U6iVhwDweCD_JBIuYtiKuUzGbJaen6XwLfva5MBRW2ftE66izytAe-R5DFxsIxjl_ffbNo6pRdLral9BoYXGUr3_gkq1-NdnH7_siDA_en7w79LqqAp6J4qTxQpUZX4hA5UGSaq2CTKRasTwOU-Mb5mucNnQRs4IlJglZlkVRJIwWVMee6YLEl9Dlb3MC-wi255Pj-cdhV4f01hPOu-wcnyV7Nbe-CKdCD5mVwFHYmAFtoQD8qdCg_0Zy_4zV_O3A1s6DBzf_txG8BTc6xu2-aU3kNmzl5R242tbgXN-F6X5OYfUV7Zm4Rq1quzBxF2VTuYumdus1ZUdaOeuxu7Jyt2NXlZm7zCkBD4Hp2udLiki5Bx8upSv3YVTiPzwEVzOFdDVEh6hyXiBtU4zHaVz4CklXqpkDQf_Zpen016kMyFdp4wBYIluoSISKtFCR3IGXwzNnrfrIha3fEpqGlqQcbi9Uy8-yc0QyykyaF0qkIuc8RXrMjY7iAvEV6MyPjQM7hEWJBIxUhA2FW5lGspZ8OrDbY0t2zq6W58By4NlwG90UnT2pMq9WbZuIp8IXDjxoET28J74DLtuD2IFkA-sbHdm8Uy6-WCl0XM8wSo92YNybxfl7_XukHl3cjadw7fDkeCqnk9nRDlwPyXht-ukujJrlKn8MV8z3ZlEvn3T278KnyzaYX2pQl0g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tloe48F4Iu0CQ4MRGTWInTg4IAaVitVXVA0grLsZ2HKiEkqVJQf1r_DpmnKSr8tjbHjhVahzVdr_5PLZnvgF4GpdxgX6BCUo6vudG5UEWRyzgkQizQrCEaSfiOhWzWXZyks934OeQC0NhlQMnOqIuakNn5COGFBsJxjkflX1YxHw8eXn6LaAKUnTTOpTT6CBybNc_cPvWvDga43_9LI4nb9-_eRf0FQYCk6RZG8SqMKEQkbJRlmutokLkWjGbxrkJDQs1LiG6TFnJMpPFrCiSJBFGC6ppz3RJQkxI_5cE7jEpnHCefNyc75DyesZ5n6cTsmzUcMdKuCgG6GMJnI-ttdCVDMCPGk37b-7un1Gbv13duhVxcuN_nsubcL33w_1XneHcgh1b3YYrXWXO9R2Yji0F29d0kuIbtWrcdsVfVG3tL9rGb9aUM-lErg_9lRPBPfRVVfhLS2l5CFffvV9RnMpd-HAhQ9mD3Qp_4T74mil0YmOkSWV5ic6cYgiWtAwVumK5Zh5EAwSk6VXZqTjIV-miA1gmO9hIhI10sJHcg-ebd047TZJzW78mZG1akp64-6JefpY9PcmkMLktlciF5TxHp5kbnaQlYi3SRZgaD_YJlxLdMtIWNhSEZVrJOpfUg4MBZ7KnwEaegcyDJ5vHSF50I6UqW6-6NgnPRSg8uNehe9NP7ANu5qPUg2wL91sD2X5SLb44gXTc5TBKmvbgcDCRs379e6YenD-Mx3AVrUROj2bH-3AtJjt2OakHsNsuV_YhXDbf20WzfOSIwIdPF20tvwCRUp6r |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposing+causality+into+its+synergistic%2C+unique%2C+and+redundant+components&rft.jtitle=Nature+communications&rft.au=Mart%C3%ADnez-S%C3%A1nchez%2C+%C3%81lvaro&rft.au=Arranz%2C+Gonzalo&rft.au=Lozano-Dur%C3%A1n%2C+Adri%C3%A1n&rft.date=2024-11-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-53373-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_53373_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |