Decomposing causality into its synergistic, unique, and redundant components

Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nature communications Ročník 15; číslo 1; s. 9296 - 15
Hlavní autoři: Martínez-Sánchez, Álvaro, Arranz, Gonzalo, Lozano-Durán, Adrián
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Nature Publishing Group UK 01.11.2024
Nature Publishing Group
Springer Science and Business Media LLC
Nature Portfolio
Témata:
ISSN:2041-1723, 2041-1723
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods. The methods for detection of cause-effect interactions in complex systems face challenges in the presence of nonlinear dependencies or stochastic interactions. The authors propose a framework for decomposition of causality into redundant, unique, and synergistic contributions, providing a measure of the causality from multiple or hidden system variables.
AbstractList Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.
Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods. The methods for detection of cause-effect interactions in complex systems face challenges in the presence of nonlinear dependencies or stochastic interactions. The authors propose a framework for decomposition of causality into redundant, unique, and synergistic contributions, providing a measure of the causality from multiple or hidden system variables.
Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.
Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.The methods for detection of cause-effect interactions in complex systems face challenges in the presence of nonlinear dependencies or stochastic interactions. The authors propose a framework for decomposition of causality into redundant, unique, and synergistic contributions, providing a measure of the causality from multiple or hidden system variables.
Abstract Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite its central role, current methods for causal inference face significant challenges due to nonlinear dependencies, stochastic interactions, self-causation, collider effects, and influences from exogenous factors, among others. While existing methods can effectively address some of these challenges, no single approach has successfully integrated all these aspects. Here, we address these challenges with SURD: Synergistic-Unique-Redundant Decomposition of causality. SURD quantifies causality as the increments of redundant, unique, and synergistic information gained about future events from past observations. The formulation is non-intrusive and applicable to both computational and experimental investigations, even when samples are scarce. We benchmark SURD in scenarios that pose significant challenges for causal inference and demonstrate that it offers a more reliable quantification of causality compared to previous methods.
ArticleNumber 9296
Author Lozano-Durán, Adrián
Martínez-Sánchez, Álvaro
Arranz, Gonzalo
Author_xml – sequence: 1
  givenname: Álvaro
  orcidid: 0000-0001-7169-2487
  surname: Martínez-Sánchez
  fullname: Martínez-Sánchez, Álvaro
  email: alvaroms@mit.edu
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
– sequence: 2
  givenname: Gonzalo
  orcidid: 0000-0001-6579-3791
  surname: Arranz
  fullname: Arranz, Gonzalo
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology
– sequence: 3
  givenname: Adrián
  orcidid: 0000-0001-9306-0261
  surname: Lozano-Durán
  fullname: Lozano-Durán, Adrián
  organization: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Graduate Aerospace Laboratories, California Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39487116$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/3000741$$D View this record in Osti.gov
BookMark eNp9Uk1v3CAURFWqJk3zB3qorPaSQ9yCAWOfoirpR6SVemnPiI9nh5UXtoAr7b8vu07aJIdwAT1m5g3De42OfPCA0FuCPxJMu0-JEdaKGjes5pQKWrMX6KTBjNRENPTowfkYnaW0xmXRnnSMvULHtGedIKQ9QatrMGGzDcn5sTJqTmpyeVc5n0PlcqrSzkMcXcrOXFSzd79nuKiUt1UEO3urfK4OfA8-pzfo5aCmBGd3-yn69fXLz6vv9erHt5urz6va8LbLdaOswUIQBaTrtVbEil4rCm3TG2wo1gZADy0daGe6hlrLORdGC0xER_XQ01N0s-jaoNZyG91GxZ0MyslDIcRRqlgcTyC5NT0MSvQCGOu78nCjeTtYA0Rb3JqidblobWe9gVL3OarpkejjG-9u5Rj-SEI4xS1nReH9ohBKSjIZl8HcmuA9mCxpiV0wUkDnd21iKBmmLDcuGZgm5SHMSVLSUM56gUWBfngCXYc5-hLoAUUEZWzf9d1D3_8M339tAXQLwMSQUoRBFmcqu7B_hpskwXI_SHIZJFkGSR4GSe61myfUe_VnSXQhpQL2I8T_tp9h_QXX5dr-
CitedBy_id crossref_primary_10_2514_1_J065914
crossref_primary_10_1038_s41598_024_80698_3
crossref_primary_10_1007_s11071_025_11294_x
crossref_primary_10_1016_j_compag_2025_110938
crossref_primary_10_1016_j_ecolind_2025_113939
crossref_primary_10_1016_j_actpsy_2025_105324
crossref_primary_10_3390_su17167198
crossref_primary_10_1103_b36b_m5hd
crossref_primary_10_1007_s10904_025_03730_7
crossref_primary_10_1088_1873_7005_ade338
crossref_primary_10_1103_PhysRevResearch_7_023016
Cites_doi 10.1002/9783527609970.ch17
10.3390/e17074644
10.1098/rspa.2021.0110
10.3390/e19070318
10.1017/jfm.2023.423
10.1016/0165-1765(95)00791-1
10.1007/978-3-642-04898-2_110
10.1016/j.eneco.2008.02.002
10.1103/PhysRevLett.103.238701
10.1088/0954-898X_10_4_303
10.1016/j.jneumeth.2013.10.018
10.1063/1.1843135
10.1017/jfm.2019.209
10.1038/nphys1029
10.1007/978-3-642-66784-8_17
10.3390/e15010327
10.1177/089443939100900106
10.1017/jfm.2014.17
10.1088/1751-8113/42/12/123001
10.1007/978-3-642-53734-9_6
10.1111/j.1751-5823.2002.tb00354.x
10.1063/1.2047568
10.2307/1912791
10.1103/PhysRevE.78.031113
10.1098/rsta.2016.0077
10.1103/PhysRevE.74.016303
10.1103/PhysRevE.90.062903
10.1038/41966
10.5281/zenodo.13750918
10.1126/science.aad1386
10.1016/S0360-1285(01)00017-X
10.1016/j.physrep.2023.10.005
10.1126/sciadv.aau4996
10.1103/PhysRevE.83.051122
10.1143/JPSJ.74.3202
10.1038/nphys4227
10.1098/rspl.1895.0041
10.1007/s10208-023-09630-x
10.1017/S0022112006003946
10.1063/1.4935812
10.2105/AJPH.2004.059204
10.1103/PhysRevE.91.040101
10.1016/j.physd.2024.134246
10.1017/S0022112062000518
10.1038/s43017-023-00431-y
10.1103/PhysRevLett.95.244101
10.1038/srep14750
10.1109/TIT.1957.1057418
10.1126/science.aan7933
10.1063/1.5025050
10.1890/14-1479.1
10.2307/1422689
10.1063/1.3081558
10.1103/PhysRevE.72.026222
10.1017/jfm.2021.105
10.1063/1.858593
10.1201/9780367801694
10.1088/1742-6596/506/1/012006
10.1063/5.0020538
10.1038/116461b0
10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
10.1103/PhysRevE.102.062201
10.1017/jfm.2019.801
10.1103/PhysRevResearch.4.023195
10.1038/s41467-020-16238-0
10.1038/s41467-023-37546-1
10.1098/rsta.2011.0613
10.1080/01621459.1984.10477110
10.1103/PhysRevE.61.5142
10.1017/S0022112006001534
10.1371/journal.pone.0169050
10.1038/261459a0
10.1086/525638
10.1103/PhysRevLett.85.461
10.34133/2022/9870149
10.1016/j.envpol.2007.06.012
10.1007/BFb0091924
10.1017/S0022112009006946
10.1126/science.1227079
10.1371/journal.pone.0205296
10.1016/j.physd.2005.05.018
10.1103/PhysRevE.94.052201
10.3390/e24030403
10.1017/CBO9781139170666
10.1126/science.1188765
10.1017/jfm.2022.123
10.1017/jfm.2013.137
10.1038/118558a0
10.1063/1.3266948
10.1126/science.1186091
10.1103/PhysRevE.77.026110
10.1103/PhysRevE.70.056221
10.3389/frobt.2014.00011
10.1007/s00348-015-2058-8
10.5194/egusphere-egu21-8259
10.1063/1.3486801
10.1016/j.future.2016.12.009
10.1038/nmeth.3587
10.1214/aoms/1177729694
10.1017/jfm.2012.408
10.1007/978-3-319-43222-9_1
10.1071/ZO9530291
10.1109/MSP.2015.2482121
10.1146/annurev.soc.012809.102632
10.1038/s41567-017-0018-3
10.1103/PhysRevE.97.042207
10.1002/(SICI)1096-9934(199808)18:5<519::AID-FUT2>3.0.CO;2-U
10.1002/j.1538-7305.1948.tb01338.x
10.7551/mitpress/1754.001.0001
ContentType Journal Article
Copyright The Author(s) 2024
2024. The Author(s).
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024
Copyright_xml – notice: The Author(s) 2024
– notice: 2024. The Author(s).
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024
CorporateAuthor Univ. of Maryland, College Park, MD (United States)
CorporateAuthor_xml – name: Univ. of Maryland, College Park, MD (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41467-024-53373-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 15
ExternalDocumentID oai_doaj_org_article_5dc9efa797e4498394cb56fdce1bd06c
PMC11530654
3000741
39487116
10_1038_s41467_024_53373_4
Genre Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: 2140775
  funderid: 100000001
– fundername: "la Caixa" Foundation (Caixa Foundation)
  grantid: 100010434
  funderid: 100010434
– fundername: National Science Foundation (NSF)
  grantid: 2140775
– fundername: "la Caixa" Foundation (Caixa Foundation)
  grantid: 100010434
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LGEZI
LK8
LOTEE
M1P
M48
M7P
M~E
NADUK
NAO
NXXTH
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
AFFHD
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c568t-2adc0771ae189bba1d79ba3e629c0c30bceebf63f38c823dd5557cb701783bf93
IEDL.DBID DOA
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346598500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2041-1723
IngestDate Tue Oct 14 19:07:33 EDT 2025
Tue Nov 04 02:05:54 EST 2025
Mon Nov 10 02:22:24 EST 2025
Wed Oct 01 14:26:07 EDT 2025
Tue Oct 07 07:40:36 EDT 2025
Mon Jul 21 05:58:36 EDT 2025
Sat Nov 29 03:55:26 EST 2025
Tue Nov 18 22:15:46 EST 2025
Fri Feb 21 02:36:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2024. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-2adc0771ae189bba1d79ba3e629c0c30bceebf63f38c823dd5557cb701783bf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE National Nuclear Security Administration (NNSA)
NA0003993
ORCID 0000-0001-7169-2487
0000-0001-6579-3791
0000-0001-9306-0261
0000000193060261
0000000165793791
0000000171692487
OpenAccessLink https://doaj.org/article/5dc9efa797e4498394cb56fdce1bd06c
PMID 39487116
PQID 3123173444
PQPubID 546298
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_5dc9efa797e4498394cb56fdce1bd06c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11530654
osti_scitechconnect_3000741
proquest_miscellaneous_3123549707
proquest_journals_3123173444
pubmed_primary_39487116
crossref_citationtrail_10_1038_s41467_024_53373_4
crossref_primary_10_1038_s41467_024_53373_4
springer_journals_10_1038_s41467_024_53373_4
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2024
Publisher Nature Publishing Group UK
Nature Publishing Group
Springer Science and Business Media LLC
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Springer Science and Business Media LLC
– name: Nature Portfolio
References HiemstraCJonesJDTesting for linear and nonlinear Granger causality in the stock price-volume relationJ. Financ.19944916391664
Javier, P. J. E. causal-ccm: a Python implementation of Convergent Cross Mapping (2021).
SaggioroEde WiljesJKretschmerMRungeJReconstructing regime-dependent causal relationships from observational time seriesChaos2020301131152020Chaos..30k3115S41710993326132010.1063/5.0020538
GriffithVHoTQuantifying redundant information in predicting a target random variableEntropy201517464446532015Entrp..17.4644G10.3390/e17074644
DeWeeseMRMeisterMHow to measure the information gained from one symbolNetw. Comput. Neural Syst.1999103251:STN:280:DC%2BD3c7lvVejuw%3D%3D10.1088/0954-898X_10_4_303
BarnettLSethAKThe MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inferenceJ. Neurosci. Methods201422350682420050810.1016/j.jneumeth.2013.10.018
SpearmanCThe proof and measurement of association between two thingsAm. J. Psychol.19871004414711:STN:280:DyaL1c7gsVejsA%3D%3D332205210.2307/1422689
RungeJModern causal inference approaches to investigate biodiversity-ecosystem functioning relationshipsNat. Commun.2023142023NatCo..14.1917R1:CAS:528:DC%2BB3sXnslWlt7c%3D370244761007996310.1038/s41467-023-37546-1
Lizier, J. T. JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front. Robot. AI. 1, 11 (2014).
VerdesPAssessing causality from multivariate time seriesPhys. Rev. E2005720262222005PhRvE..72b6222V1:STN:280:DC%2BD2MrisFKkug%3D%3D10.1103/PhysRevE.72.026222
EberhardtFScheinesRInterventions and causal inferencePhilos. Sci.200774981995244497910.1086/525638
Martínez-Sánchez, Á., Arranz, G. & Lozano-Durán, A. Decomposing causality in its synergistic, unique, and redundant components, SURD: Synergistic-Unique-Redundant Decomposition of causality. https://doi.org/10.5281/zenodo.13750918 (2024).
QuirogaRQArnholdJGrassbergerPLearning driver-response relationships from synchronization patternsPhys. Rev. E200061514251482000PhRvE..61.5142Q1:CAS:528:DC%2BD3cXivFCkurY%3D10.1103/PhysRevE.61.5142
Wiener, N. The Theory of Prediction. Modern Mathematics for Engineers Vol. 165 (Dover Publications, 1956).
Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction, and Search (The MIT Press, 2001).
SirovichLKarlssonSTurbulent drag reduction by passive mechanismsNature19973887537551997Natur.388..753S1:CAS:528:DyaK2sXls1Gks7o%3D10.1038/41966
BaarsWJTalluruKMHutchinsNMarusicIWavelet analysis of wall turbulence to study large-scale modulation of small scalesExp. Fluids20155618810.1007/s00348-015-2058-8
Brouwer, E. D., Arany, A., Simm, J., & Moreau, Y. Latent convergent cross mapping. in International Conference on Learning Representations (2021).
InceRAMeasuring multivariate redundant information with pointwise common change in surprisalEntropy2017193182017Entrp..19..318I1:CAS:528:DC%2BC1MXkslGqurY%3D10.3390/e19070318
Agresti, A. & Franklin, C. Statistics: The Art and Science of Learning from Data 5th edn (Pearson, 2024).
Townsend, A. A. The Structure of Turbulent Shear Flow (Cambridge University Press, 1976).
BodenschatzEClouds resolvedScience201535040412015Sci...350...40B1:CAS:528:DC%2BC2MXhs1Ogtb%2FJ2643010910.1126/science.aad1386
ChungDMontyJPOoiAAn idealised assessment of Townsend’s outer-layer similarity hypothesis for wall turbulenceJ. Fluid Mech.2014742R32014JFM...742R...3C10.1017/jfm.2014.17
Camps-VallsGDiscovering causal relations and equations from dataPhys. Rep.202310441682023PhR..1044....1C466501610.1016/j.physrep.2023.10.005
ZhouYDegrees of locality of energy transfer in the inertial rangePhys. Fluids19935109210941993PhFl....5.1092Z1:CAS:528:DyaK3sXksFajsbw%3D10.1063/1.858593
DuanR-RHaoKYangTAir pollution and chronic obstructive pulmonary diseaseChronic Dis. Transl. Med.20206260269333361717729117
Lizier, J. T., Prokopenko, M. & Zomaya, A. Y. Information modification and particle collisions in distributed computation. Chaos20, 037109 (2010).
BellDKayJMalleyJA non-parametric approach to non-linear causality testingEcon. Lett.19965171810.1016/0165-1765(95)00791-1
BusseBSandhamAParametric forcing approach to rough-wall turbulent channel flowJ. Fluid Mech.20127121692022012JFM...712..169B299901110.1017/jfm.2012.408
LiangXSInformation flow within stochastic dynamical systemsPhys. Rev. E2008780311132008PhRvE..78c1113L10.1103/PhysRevE.78.031113
YeHDeyleERGilarranzLJSugiharaGDistinguishing time-delayed causal interactions using convergent cross mappingSci. Rep.201552015NatSR...514750Y1:CAS:528:DC%2BC2MXhs1Sksr7J26435402459297410.1038/srep14750
AluieHEyinkGLLocalness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filterPhys. Fluids2009211151082009PhFl...21k5108A10.1063/1.3266948
HutchinsNMarusicIEvidence of very long meandering features in the logarithmic region of turbulent boundary layersJ. Fluid Mech.20075791282007JFM...579....1H10.1017/S0022112006003946
Barndorff-Nielsen, O. E. & Kluppelberg, C. Complex stochastic systems (Chapman and Hall, CRC, 2001).
MathisRHutchinsNMarusicILarge-scale amplitude modulation of the small-scale structures in turbulent boundary layersJ. Fluid Mech.20096283113372009JFM...628..311M10.1017/S0022112009006946
Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995).
MoranPAThe statistical analysis of the Canadian lynx cycleAust. J. Zool.1953129129810.1071/ZO9530291
BarnettLBarrettABSethAKGranger causality and transfer entropy are equivalent for Gaussian variablesPhys. Rev. Lett.20091032387012009PhRvL.103w8701B2036618310.1103/PhysRevLett.103.238701
LiangXSInformation flow and causality as rigorous notions ab initioPhys. Rev. E2016940522012016PhRvE..94e2201L2796712010.1103/PhysRevE.94.052201
LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.1963201301411963JAtS...20..130L402143410.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
Lozano-DuránAArranzGInformation-theoretic formulation of dynamical systems: causality, modeling, and controlPhys. Rev. Res.2022402319510.1103/PhysRevResearch.4.023195
Marusic, I. Two-point high Reynolds number zero-pressure gradient turbulent boundary layer dataset. University of Melbournehttps://figshare.unimelb.edu.au/articles/dataset/Two-point_high_Reynolds_number_zero pressure_gradient_turbulent_boundary_layer_dataset/12101088 (2020).
KolchinskyAA novel approach to the partial information decompositionEntropy2022244032022Entrp..24..403K440703735327914894737010.3390/e24030403
AltmanNKrzywinskiMAssociation, correlation and causationNat. Methods2015128999001:CAS:528:DC%2BC2MXhsFyqsL%2FO2668888210.1038/nmeth.3587
YamadaTAnatomy of plasma turbulenceNat. Phys.200847217251:CAS:528:DC%2BD1cXhtVGnsLzF10.1038/nphys1029
Lozano-DuránABaeHJCharacteristic scales of Townsend’s wall-attached eddiesJ. Fluid Mech.20198686987252019JFM...868..698L393958531631906680070810.1017/jfm.2019.209
AnconaNMarinazzoDStramagliaSRadial basis function approach to nonlinear Granger causality of time seriesPhys. Rev. E2004700562212004PhRvE..70e6221A10.1103/PhysRevE.70.056221
EichlerMCausal inference with multiple time series: principles and problemsPhilos. Trans. R. Soc. A2013371201106132013RSPTA.37110613E308117310.1098/rsta.2011.0613
DawidAPInfluence diagrams for causal modelling and inferenceInt. Stat. Rev.20027016118910.1111/j.1751-5823.2002.tb00354.x
MizunoYJiménezJWall turbulence without wallsJ. Fluid Mech.20137234294552013JFM...723..429M10.1017/jfm.2013.137
Ying, X. et al. Continuity scaling: a rigorous framework for detecting and quantifying causality accurately. Research2022, 9870149 (2022).
ObukhovAMOn the distribution of energy in the spectrum of turbulent flowIzv. Akad. Nauk USSR, Ser. Geogr. Geofiz.19415453466
SugiharaGDetecting causality in complex ecosystemsScience20123384965002012Sci...338..496S1:CAS:528:DC%2BC38XhsFGmtbnM2299713410.1126/science.1227079
SpirtesPGlymourCAn algorithm for fast recovery of sparse causal graphsSoc. Sci. Comput. Rev.19919627210.1177/089443939100900106
AbhyankarALinear and nonlinear Granger causality: evidence from the UK stock index futures marketJ. Futur. Mark.19981851910.1002/(SICI)1096-9934(199808)18:5<519::AID-FUT2>3.0.CO;2-U
Massey, J. Causality, feedback and directed information. In Proc. 1990 Int. Symp. on Inform. Theory and its Applications, 27–30 (1990).
KullbackSLeiblerRAOn information and sufficiencyAnn. Math. Stat.19512279863996810.1214/aoms/1177729694
PompeBRungeJMomentary information transfer as a coupling measure of time seriesPhys. Rev. E2011830511222011PhRvE..83e1122P10.1103/PhysRevE.83.051122
MarusicIMathisRHutchinsNPredictive model for wall-bounded turbulent flowScience20103291931962010Sci...329..193M26747571:CAS:528:DC%2BC3cXosVWgurw%3D2061627310.1126/science.1188765
KühnenJDestabilizing turbulence in pipe flowNat. Phys.20181438639010.1038/s41567-017-0018-3
RungeJGerhardusAVarandoGEyringVCamps-VallsGCausal inference for time seriesNat. Rev. Earth Environ.202344875052023NRvEE...4..487R10.1038/s43017-023-00431-y
Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR30, 301–305 (1941).
VeynanteDVervischLTurbulent combustion modelingProg. Energy Combust. Sci.2002281932661:CAS:528:DC%2BD38Xitlalu7k%3D10.1016/S0360-1285(01)00017-X
Baptista, R., Marzouk, Y. & Zahm, O. On the representation and learning of monotone triangular transport maps. Found. Comput. Math. https://doi.org/10.1007/s10208-023-09630-x (2023).
Vela-MartínASubgrid-scale models of isotropic turbulence need not produce energy backscatterJ. Fluid Mech.2022937A142022JFM...937A..14V438417810.1017/jfm.2022.123
BaarsWJHutchinsNMarusicIReynolds number trend of hierarchies and scale interactions in turbulent boundary layersPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2017375201600772017RSPTA.37560077B10.1098/rsta.2016.0077
Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980 (eds Rand, D. & Young, L.-S.) 366–381 (Springer Berlin Heidelberg, 1981).
MayRMSimple mathematical models with very complicated dynamicsNature19762614594
J Runge (53373_CR23) 2019; 5
G Falkovich (53373_CR86) 2009; 42
J Runge (53373_CR3) 2023; 4
P Hedström (53373_CR7) 2010; 36
B Pompe (53373_CR54) 2011; 83
WJ Baars (53373_CR75) 2017; 375
E Saggioro (53373_CR64) 2020; 30
E Bodenschatz (53373_CR90) 2015; 350
A Lozano-Durán (53373_CR8) 2020; 882
JI Cardesa (53373_CR87) 2017; 357
T Yamada (53373_CR88) 2008; 4
G Sugihara (53373_CR36) 2012; 338
N Ancona (53373_CR34) 2004; 70
C Spearman (53373_CR17) 1987; 100
G Tissot (53373_CR33) 2014; 506
O Flores (53373_CR109) 2006; 566
N Altman (53373_CR15) 2015; 12
J Runge (53373_CR123) 2018; 28
53373_CR41
53373_CR42
H Ye (53373_CR39) 2015; 5
L Barnett (53373_CR29) 2015; 91
53373_CR43
J Runge (53373_CR61) 2023; 14
F Eberhardt (53373_CR22) 2007; 74
AT Clark (53373_CR38) 2015; 96
D Bell (53373_CR31) 1996; 51
L Barnett (53373_CR27) 2009; 103
P Spirtes (53373_CR59) 1991; 9
SZ Chiou-Wei (53373_CR5) 2008; 30
A Abhyankar (53373_CR32) 1998; 18
53373_CR47
53373_CR48
53373_CR52
53373_CR53
D Bueso (53373_CR35) 2020; 102
53373_CR126
53373_CR129
53373_CR125
A Razi (53373_CR4) 2016; 33
A Lozano-Durán (53373_CR45) 2022; 4
53373_CR120
I Marusic (53373_CR94) 2010; 329
XS Liang (53373_CR56) 2016; 94
A Vela-Martín (53373_CR97) 2022; 937
XS Liang (53373_CR55) 2006; 95
53373_CR63
AP Dawid (53373_CR13) 2002; 70
AJ Gutknecht (53373_CR118) 2021; 477
S Cobey (53373_CR121) 2016; 11
53373_CR62
53373_CR67
GL Eyink (53373_CR101) 2005; 207
CWJ Granger (53373_CR25) 1969; 37
J Kreer (53373_CR66) 1957; 3
A Lozano-Durán (53373_CR113) 2019; 868
R-R Duan (53373_CR20) 2020; 6
53373_CR60
JT Lizier (53373_CR51) 2008; 77
S Leng (53373_CR40) 2020; 11
L Sirovich (53373_CR92) 1997; 388
P Verdes (53373_CR50) 2005; 72
Y Mizuno (53373_CR111) 2013; 723
AJ Lotka (53373_CR68) 1925; 116
B Hof (53373_CR93) 2010; 327
53373_CR73
WJ Baars (53373_CR74) 2015; 56
53373_CR105
53373_CR76
53373_CR77
53373_CR71
D Chung (53373_CR112) 2014; 742
G Camps-Valls (53373_CR21) 2023; 1044
T Aoyama (53373_CR85) 2005; 74
Á Martínez-Sánchez (53373_CR9) 2023; 967
S Kullback (53373_CR65) 1951; 22
J Kühnen (53373_CR95) 2018; 14
A Kolchinsky (53373_CR119) 2022; 24
XS Liang (53373_CR58) 2013; 15
PA Moran (53373_CR70) 1953; 1
MR DeWeese (53373_CR124) 1999; 10
53373_CR83
GI Taylor (53373_CR98) 1935; 151
R Mathis (53373_CR107) 2009; 628
JA Domaradzki (53373_CR104) 2009; 21
53373_CR115
K Pearson (53373_CR16) 1895; 58
Y Zhou (53373_CR100) 1993; 5
KA Flack (53373_CR108) 2005; 17
53373_CR114
P Mininni (53373_CR102) 2006; 74
XS Liang (53373_CR57) 2008; 78
EN Lorenz (53373_CR79) 1963; 20
53373_CR80
JI Cardesa (53373_CR127) 2015; 27
C Hiemstra (53373_CR30) 1994; 49
B Busse (53373_CR110) 2012; 712
D Mønster (53373_CR122) 2017; 73
A Krakovská (53373_CR82) 2018; 97
RA Ince (53373_CR117) 2017; 19
KJ Horn (53373_CR19) 2018; 13
N Hutchins (53373_CR106) 2007; 579
C Rosales (53373_CR128) 2005; 17
D Veynante (53373_CR89) 2002; 28
V Griffith (53373_CR116) 2015; 17
53373_CR12
RM May (53373_CR78) 1976; 261
53373_CR11
53373_CR99
KJ Rothman (53373_CR6) 2005; 95
M Eichler (53373_CR10) 2013; 371
JM McCracken (53373_CR37) 2014; 90
AN Kolmogorov (53373_CR84) 1962; 13
V Volterra (53373_CR69) 1926; 118
AM Obukhov (53373_CR72) 1941; 5
CE Shannon (53373_CR44) 1948; 27
RQ Quiroga (53373_CR81) 2000; 61
T Schreiber (53373_CR49) 2000; 85
53373_CR1
53373_CR18
53373_CR2
A Vela-Martín (53373_CR96) 2021; 915
53373_CR24
L Barnett (53373_CR28) 2014; 223
JF Geweke (53373_CR26) 1984; 79
Y Yuan (53373_CR46) 2024; 467
M Kampa (53373_CR14) 2008; 151
RMB Young (53373_CR91) 2017; 13
H Aluie (53373_CR103) 2009; 21
References_xml – reference: Gerhardus, A. & Runge, J. High-recall causal discovery for autocorrelated time series with latent confounders. In Advances in Neural Information Processing Systems Vol. 33 (eds Larochelle, H. et al.) 12615–12625 (Curran Associates, Inc., 2020).
– reference: MoranPAThe statistical analysis of the Canadian lynx cycleAust. J. Zool.1953129129810.1071/ZO9530291
– reference: BarnettLSethAKThe MVGC multivariate Granger causality toolbox: a new approach to Granger-causal inferenceJ. Neurosci. Methods201422350682420050810.1016/j.jneumeth.2013.10.018
– reference: Martínez-Sánchez, Á., Arranz, G. & Lozano-Durán, A. Decomposing causality in its synergistic, unique, and redundant components, SURD: Synergistic-Unique-Redundant Decomposition of causality. https://doi.org/10.5281/zenodo.13750918 (2024).
– reference: RungeJCausal network reconstruction from time series: From theoretical assumptions to practical estimationChaos2018280753102018Chaos..28g5310R38310501:STN:280:DC%2BB3c7ktl2qsA%3D%3D3007053310.1063/1.5025050
– reference: Pearl, J. Causality: Models, Reasoning, and Inference (Cambridge University Press, 2000).
– reference: KampaMCastanasEHuman health effects of air pollutionEnviron. Pollut.20081513623671:CAS:528:DC%2BD1cXhsVGqsbg%3D1764604010.1016/j.envpol.2007.06.012
– reference: ClarkATSpatial convergent cross mapping to detect causal relationships from short time seriesEcology201596117411812623683210.1890/14-1479.1
– reference: PompeBRungeJMomentary information transfer as a coupling measure of time seriesPhys. Rev. E2011830511222011PhRvE..83e1122P10.1103/PhysRevE.83.051122
– reference: Rössler, O. E. Continuous chaos. In Synergetics: A Workshop Proceedings of the International Workshop on Synergetics at Schloss Elmau, Bavaria, May 2–7 184–197. (Springer, 1977).
– reference: GutknechtAJWibralMMakkehABits and pieces: understanding information decomposition from part-whole relationships and formal logicProc. R. Soc. A2021477202101102021RSPSA.47710110G43023661:STN:280:DC%2BB2M3kvFCmuw%3D%3D35197799826122910.1098/rspa.2021.0110
– reference: MarusicIMathisRHutchinsNPredictive model for wall-bounded turbulent flowScience20103291931962010Sci...329..193M26747571:CAS:528:DC%2BC3cXosVWgurw%3D2061627310.1126/science.1188765
– reference: Ince, R. A. A. Measuring multivariate redundant information with pointwise common change in surprisal. Entropy19, 318 (2017).
– reference: SpirtesPGlymourCAn algorithm for fast recovery of sparse causal graphsSoc. Sci. Comput. Rev.19919627210.1177/089443939100900106
– reference: Marusic, I. Two-point high Reynolds number zero-pressure gradient turbulent boundary layer dataset. University of Melbournehttps://figshare.unimelb.edu.au/articles/dataset/Two-point_high_Reynolds_number_zero pressure_gradient_turbulent_boundary_layer_dataset/12101088 (2020).
– reference: DomaradzkiJATeacaBCaratiDLocality properties of the energy flux in turbulencePhys. Fluids2009210251062009PhFl...21b5106D10.1063/1.3081558
– reference: Bunge, M. Causality and Modern Science (Dover Publications, 1979).
– reference: Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction, and Search (The MIT Press, 2001).
– reference: Javier, P. J. E. causal-ccm: a Python implementation of Convergent Cross Mapping (2021).
– reference: Williams, P. L. & Beer, R. D. Nonnegative decomposition of multivariate information. arXiv preprint arXiv:1004.2515 (2010).
– reference: BodenschatzEClouds resolvedScience201535040412015Sci...350...40B1:CAS:528:DC%2BC2MXhs1Ogtb%2FJ2643010910.1126/science.aad1386
– reference: DeWeeseMRMeisterMHow to measure the information gained from one symbolNetw. Comput. Neural Syst.1999103251:STN:280:DC%2BD3c7lvVejuw%3D%3D10.1088/0954-898X_10_4_303
– reference: Lizier, J. T., Prokopenko, M. & Zomaya, A. Y. Information modification and particle collisions in distributed computation. Chaos20, 037109 (2010).
– reference: BaarsWJHutchinsNMarusicIReynolds number trend of hierarchies and scale interactions in turbulent boundary layersPhilos. Trans. R. Soc. A Math. Phys. Eng. Sci.2017375201600772017RSPTA.37560077B10.1098/rsta.2016.0077
– reference: BellDKayJMalleyJA non-parametric approach to non-linear causality testingEcon. Lett.19965171810.1016/0165-1765(95)00791-1
– reference: Vela-MartínASubgrid-scale models of isotropic turbulence need not produce energy backscatterJ. Fluid Mech.2022937A142022JFM...937A..14V438417810.1017/jfm.2022.123
– reference: LengSPartial cross mapping eliminates indirect causal influencesNat. Commun.2020112020NatCo..11.2632L1:CAS:528:DC%2BB3cXhtVCmtLfO32457301725113110.1038/s41467-020-16238-0
– reference: SpearmanCThe proof and measurement of association between two thingsAm. J. Psychol.19871004414711:STN:280:DyaL1c7gsVejsA%3D%3D332205210.2307/1422689
– reference: YoungRMBReadPLForward and inverse kinetic energy cascades in Jupiter’s turbulent weather layerNat. Phys.201713113511401:CAS:528:DC%2BC2sXhtlGku7zO10.1038/nphys4227
– reference: Agresti, A. & Franklin, C. Statistics: The Art and Science of Learning from Data 5th edn (Pearson, 2024).
– reference: HiemstraCJonesJDTesting for linear and nonlinear Granger causality in the stock price-volume relationJ. Financ.19944916391664
– reference: LorenzENDeterministic nonperiodic flowJ. Atmos. Sci.1963201301411963JAtS...20..130L402143410.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– reference: TaylorGIStatistical theory of turbulenceProc. R. Soc. Lond.19351514444541935RSPSA.151..444T
– reference: RosalesCMeneveauCLinear forcing in numerical simulations of isotropic turbulence: physical space implementations and convergence propertiesPhys. Fluids2005170951062005PhFl...17i5106R217138210.1063/1.2047568
– reference: RaziAFristonKJThe connected brain: causality, models, and intrinsic dynamicsIEEE Signal Process. Mag.20163314352016ISPM...33...14R10.1109/MSP.2015.2482121
– reference: SchreiberTMeasuring information transferPhys. Rev. Lett.2000854612000PhRvL..85..461S1:CAS:528:DC%2BD3cXks1ersL4%3D1099130810.1103/PhysRevLett.85.461
– reference: Bossomaier, T., Barnett, L., Harré, M. & Lizier, J. T. An Introduction to Transfer Entropy: Information Flow in Complex Systems 1st edn (Springer International Publishing, 2016).
– reference: ShannonCEA mathematical theory of communicationBell Labs Tech. J.1948273794232628610.1002/j.1538-7305.1948.tb01338.x
– reference: KreerJA question of terminologyIEEE Trans. Inf. Theory1957320820810.1109/TIT.1957.1057418
– reference: Camps-VallsGDiscovering causal relations and equations from dataPhys. Rep.202310441682023PhR..1044....1C466501610.1016/j.physrep.2023.10.005
– reference: AbhyankarALinear and nonlinear Granger causality: evidence from the UK stock index futures marketJ. Futur. Mark.19981851910.1002/(SICI)1096-9934(199808)18:5<519::AID-FUT2>3.0.CO;2-U
– reference: VolterraVFluctuations in the abundance of a species considered mathematicallyNature19261185585601926Natur.118..558V10.1038/118558a0
– reference: CobeySBaskervilleEBLimits to causal inference with state-space reconstruction for infectious diseasePLoS ONE20161112210.1371/journal.pone.0169050
– reference: RothmanKJGreenlandSCausation and causal inference in epidemiologyAm. J. Public Health200595S144S1501603033110.2105/AJPH.2004.059204
– reference: LotkaAJElements of physical biologyNature19251164614611925Natur.116..457L10.1038/116461b0
– reference: FalkovichGSymmetries of the turbulent stateJ. Phys. A2009421230012009JPhA...42l3001F248581310.1088/1751-8113/42/12/123001
– reference: BarnettLSethAKGranger causality for state-space modelsPhys. Rev. E2015910401012015PhRvE..91d0101B347095710.1103/PhysRevE.91.040101
– reference: MininniPAlexakisAPouquetALarge-scale flow effects, energy transfer, and self-similarity on turbulencePhys. Rev. E2006740163032006PhRvE..74a6303M1:STN:280:DC%2BD28vosVOruw%3D%3D10.1103/PhysRevE.74.016303
– reference: Townsend, A. A. The Structure of Turbulent Shear Flow (Cambridge University Press, 1976).
– reference: Wiener, N. The Theory of Prediction. Modern Mathematics for Engineers Vol. 165 (Dover Publications, 1956).
– reference: EichlerMCausal inference with multiple time series: principles and problemsPhilos. Trans. R. Soc. A2013371201106132013RSPTA.37110613E308117310.1098/rsta.2011.0613
– reference: Richardson, L. F. Weather Prediction by Numerical Process (Cambridge University Press, 1922).
– reference: RungeJNowackPKretschmerMFlaxmanSSejdinovicDDetecting and quantifying causal associations in large nonlinear time series datasetsSci. Adv.20195eaau49962019SciA....5.4996R31807692688115110.1126/sciadv.aau4996
– reference: ObukhovAMOn the distribution of energy in the spectrum of turbulent flowIzv. Akad. Nauk USSR, Ser. Geogr. Geofiz.19415453466
– reference: LizierJTProkopenkoMZomayaAYLocal information transfer as a spatiotemporal filter for complex systemsPhys. Rev. E2008770261102008PhRvE..77b6110L245328810.1103/PhysRevE.77.026110
– reference: Massey, J. Causality, feedback and directed information. In Proc. 1990 Int. Symp. on Inform. Theory and its Applications, 27–30 (1990).
– reference: RungeJModern causal inference approaches to investigate biodiversity-ecosystem functioning relationshipsNat. Commun.2023142023NatCo..14.1917R1:CAS:528:DC%2BB3sXnslWlt7c%3D370244761007996310.1038/s41467-023-37546-1
– reference: FlackKASchultzMPShapiroTAExperimental support for Townsend’s Reynolds number similarity hypothesis on rough wallsPhys. Fluids2005170351022005PhFl...17c5102F10.1063/1.1843135
– reference: Baptista, R., Marzouk, Y. & Zahm, O. On the representation and learning of monotone triangular transport maps. Found. Comput. Math. https://doi.org/10.1007/s10208-023-09630-x (2023).
– reference: Lizier, J. T. JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front. Robot. AI. 1, 11 (2014).
– reference: YeHDeyleERGilarranzLJSugiharaGDistinguishing time-delayed causal interactions using convergent cross mappingSci. Rep.201552015NatSR...514750Y1:CAS:528:DC%2BC2MXhs1Sksr7J26435402459297410.1038/srep14750
– reference: AluieHEyinkGLLocalness of energy cascade in hydrodynamic turbulence. II. Sharp spectral filterPhys. Fluids2009211151082009PhFl...21k5108A10.1063/1.3266948
– reference: KühnenJDestabilizing turbulence in pipe flowNat. Phys.20181438639010.1038/s41567-017-0018-3
– reference: BaarsWJTalluruKMHutchinsNMarusicIWavelet analysis of wall turbulence to study large-scale modulation of small scalesExp. Fluids20155618810.1007/s00348-015-2058-8
– reference: KrakovskáAComparison of six methods for the detection of causality in a bivariate time seriesPhys. Rev. E2018970422072018PhRvE..97d2207K2975859710.1103/PhysRevE.97.042207
– reference: AnconaNMarinazzoDStramagliaSRadial basis function approach to nonlinear Granger causality of time seriesPhys. Rev. E2004700562212004PhRvE..70e6221A10.1103/PhysRevE.70.056221
– reference: AltmanNKrzywinskiMAssociation, correlation and causationNat. Methods2015128999001:CAS:528:DC%2BC2MXhsFyqsL%2FO2668888210.1038/nmeth.3587
– reference: Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl. Akad. Nauk SSSR30, 301–305 (1941).
– reference: QuirogaRQArnholdJGrassbergerPLearning driver-response relationships from synchronization patternsPhys. Rev. E200061514251482000PhRvE..61.5142Q1:CAS:528:DC%2BD3cXivFCkurY%3D10.1103/PhysRevE.61.5142
– reference: Brouwer, E. D., Arany, A., Simm, J., & Moreau, Y. Latent convergent cross mapping. in International Conference on Learning Representations (2021).
– reference: Runge, J. Discovering contemporaneous and lagged causal relations in autocorrelated nonlinear time series datasets. In Conference on Uncertainty in Artificial Intelligence 1388–1397 (PMLR, 2020).
– reference: MathisRHutchinsNMarusicILarge-scale amplitude modulation of the small-scale structures in turbulent boundary layersJ. Fluid Mech.20096283113372009JFM...628..311M10.1017/S0022112009006946
– reference: GrangerCWJInvestigating causal relations by econometric models and cross-spectral methodsEconometrica19693742443810.2307/1912791
– reference: HofBDe LozarAAvilaMTuXSchneiderTMEliminating turbulence in spatially intermittent flowsScience2010327149114942010Sci...327.1491H1:CAS:528:DC%2BC3cXjt1Gntbg%3D2029959010.1126/science.1186091
– reference: Vela-MartínAJiménezJEntropy, irreversibility and cascades in the inertial range of isotropic turbulenceJ. Fluid Mech.2021915A362021JFM...915A..36V423227810.1017/jfm.2021.105
– reference: Lozano-DuránABaeHJEncinarMPCausality of energy-containing eddies in wall turbulenceJ. Fluid Mech.2020882A22020JFM...882A...2L402949810.1017/jfm.2019.801
– reference: BuesoDPilesMCamps-VallsGExplicit Granger causality in kernel Hilbert spacesPhys. Rev. E20201020622012020PhRvE.102f2201B41990311:CAS:528:DC%2BB3MXivVOqsbs%3D3346598010.1103/PhysRevE.102.062201
– reference: Frisch, U. Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995).
– reference: Runge, J. Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. In Proc. Twenty-First International Conference on Artificial Intelligence and Statistics, Vol. 84 (eds Storkey, A. & Perez-Cruz, F.) 938–947 (PMLR, 2018).
– reference: KolchinskyAA novel approach to the partial information decompositionEntropy2022244032022Entrp..24..403K440703735327914894737010.3390/e24030403
– reference: FloresOJiménezJEffect of wall-boundary disturbances on turbulent channel flowsJ. Fluid Mech.20065663573762006JFM...566..357F10.1017/S0022112006001534
– reference: YamadaTAnatomy of plasma turbulenceNat. Phys.200847217251:CAS:528:DC%2BD1cXhtVGnsLzF10.1038/nphys1029
– reference: DuanR-RHaoKYangTAir pollution and chronic obstructive pulmonary diseaseChronic Dis. Transl. Med.20206260269333361717729117
– reference: AoyamaTStatistics of energy transfer in high-resolution direct numerical simulation of turbulence in a periodic boxJ. Phys. Soc. Jpn.200574320232122005JPSJ...74.3202A1:CAS:528:DC%2BD28XitF2rtbY%3D10.1143/JPSJ.74.3202
– reference: PearsonKGaltonFVII. Note on regression and inheritance in the case of two parentsProc. R. Soc. Lond.18955824024210.1098/rspl.1895.0041
– reference: RungeJGerhardusAVarandoGEyringVCamps-VallsGCausal inference for time seriesNat. Rev. Earth Environ.202344875052023NRvEE...4..487R10.1038/s43017-023-00431-y
– reference: VeynanteDVervischLTurbulent combustion modelingProg. Energy Combust. Sci.2002281932661:CAS:528:DC%2BD38Xitlalu7k%3D10.1016/S0360-1285(01)00017-X
– reference: GriffithVHoTQuantifying redundant information in predicting a target random variableEntropy201517464446532015Entrp..17.4644G10.3390/e17074644
– reference: HedströmPYlikoskiPCausal mechanisms in the social sciencesAnnu. Rev. Sociol.201036496710.1146/annurev.soc.012809.102632
– reference: EberhardtFScheinesRInterventions and causal inferencePhilos. Sci.200774981995244497910.1086/525638
– reference: LiangXSKleemanRInformation transfer between dynamical system componentsPhys. Rev. Lett.2006952441012005PhRvL..95x4101L10.1103/PhysRevLett.95.244101
– reference: InceRAMeasuring multivariate redundant information with pointwise common change in surprisalEntropy2017193182017Entrp..19..318I1:CAS:528:DC%2BC1MXkslGqurY%3D10.3390/e19070318
– reference: McCrackenJMWeigelRSConvergent cross-mapping and pairwise asymmetric inferencePhys. Rev. E2014900629032014PhRvE..90f2903M1:CAS:528:DC%2BC2MXhslGiu74%3D10.1103/PhysRevE.90.062903
– reference: Ying, X. et al. Continuity scaling: a rigorous framework for detecting and quantifying causality accurately. Research2022, 9870149 (2022).
– reference: ZhouYDegrees of locality of energy transfer in the inertial rangePhys. Fluids19935109210941993PhFl....5.1092Z1:CAS:528:DyaK3sXksFajsbw%3D10.1063/1.858593
– reference: SaggioroEde WiljesJKretschmerMRungeJReconstructing regime-dependent causal relationships from observational time seriesChaos2020301131152020Chaos..30k3115S41710993326132010.1063/5.0020538
– reference: BusseBSandhamAParametric forcing approach to rough-wall turbulent channel flowJ. Fluid Mech.20127121692022012JFM...712..169B299901110.1017/jfm.2012.408
– reference: Chiou-WeiSZChenCFZhuZEconomic growth and energy consumption revisited—evidence from linear and nonlinear Granger causalityEnergy Econ.2008303063307610.1016/j.eneco.2008.02.002
– reference: MizunoYJiménezJWall turbulence without wallsJ. Fluid Mech.20137234294552013JFM...723..429M10.1017/jfm.2013.137
– reference: Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980 (eds Rand, D. & Young, L.-S.) 366–381 (Springer Berlin Heidelberg, 1981).
– reference: LiangXSInformation flow within stochastic dynamical systemsPhys. Rev. E2008780311132008PhRvE..78c1113L10.1103/PhysRevE.78.031113
– reference: Barndorff-Nielsen, O. E. & Kluppelberg, C. Complex stochastic systems (Chapman and Hall, CRC, 2001).
– reference: Akaike, H. Akaike’s Information Criterion. in International Encyclopedia of Statistical Science (ed Lovric, M.) (Springer, 2011).
– reference: ChungDMontyJPOoiAAn idealised assessment of Townsend’s outer-layer similarity hypothesis for wall turbulenceJ. Fluid Mech.2014742R32014JFM...742R...3C10.1017/jfm.2014.17
– reference: YuanYLozano-DuránALimits to extreme event forecasting in chaotic systemsPhys. D2024467134246475958610.1016/j.physd.2024.134246
– reference: SirovichLKarlssonSTurbulent drag reduction by passive mechanismsNature19973887537551997Natur.388..753S1:CAS:528:DyaK2sXls1Gks7o%3D10.1038/41966
– reference: CardesaJIVela-MartínAJiménezJThe turbulent cascade in five dimensionsScience201735778278436774351:CAS:528:DC%2BC2sXhtlKntrzJ2881896810.1126/science.aan7933
– reference: KullbackSLeiblerRAOn information and sufficiencyAnn. Math. Stat.19512279863996810.1214/aoms/1177729694
– reference: MønsterDFusaroliRTylénKRoepstorffAShersonJFCausal inference from noisy time-series data—testing the convergent cross-mapping algorithm in the presence of noise and external influenceFuture Gener. Comput. Syst.201773526210.1016/j.future.2016.12.009
– reference: CardesaJIVela-MartínADongSJiménezJThe temporal evolution of the energy flux across scales in homogeneous turbulencePhys. Fluids2015271117022015PhFl...27k1702C10.1063/1.4935812
– reference: Griffith, V. & Koch, C. Quantifying synergistic mutual information. in Guided Self-Organization: Inception 159–190 (Springer, 2014).
– reference: Lozano-DuránAArranzGInformation-theoretic formulation of dynamical systems: causality, modeling, and controlPhys. Rev. Res.2022402319510.1103/PhysRevResearch.4.023195
– reference: HutchinsNMarusicIEvidence of very long meandering features in the logarithmic region of turbulent boundary layersJ. Fluid Mech.20075791282007JFM...579....1H10.1017/S0022112006003946
– reference: VerdesPAssessing causality from multivariate time seriesPhys. Rev. E2005720262222005PhRvE..72b6222V1:STN:280:DC%2BD2MrisFKkug%3D%3D10.1103/PhysRevE.72.026222
– reference: Lozano-DuránABaeHJCharacteristic scales of Townsend’s wall-attached eddiesJ. Fluid Mech.20198686987252019JFM...868..698L393958531631906680070810.1017/jfm.2019.209
– reference: GewekeJFMeasures of conditional linear dependence and feedback between time seriesJ. Am. Stat. Assoc.19847990791577028610.1080/01621459.1984.10477110
– reference: BarnettLBarrettABSethAKGranger causality and transfer entropy are equivalent for Gaussian variablesPhys. Rev. Lett.20091032387012009PhRvL.103w8701B2036618310.1103/PhysRevLett.103.238701
– reference: EyinkGLLocality of turbulent cascadesPhysica D2005207911162005PhyD..207...91E216697710.1016/j.physd.2005.05.018
– reference: Martínez-SánchezÁCausality analysis of large-scale structures in the flow around a wall-mounted square cylinderJ. Fluid Mech.2023967A1461342510.1017/jfm.2023.423
– reference: Kramer, G. Directed information for channels with feedback. PhD Thesis, ETH Zürich (1998).
– reference: MayRMSimple mathematical models with very complicated dynamicsNature19762614594671976Natur.261..459M1:STN:280:DyaE283itVCjsw%3D%3D93428010.1038/261459a0
– reference: TissotGLozano-DuránAJiménezJCordierLNoackBRGranger causality in wall-bounded turbulenceJ. Phys. Conf. Ser201450601200610.1088/1742-6596/506/1/012006
– reference: LiangXSThe Liang-Kleeman information flow: theory and applicationsEntropy2013153273602013Entrp..15..327L301890510.3390/e15010327
– reference: DawidAPInfluence diagrams for causal modelling and inferenceInt. Stat. Rev.20027016118910.1111/j.1751-5823.2002.tb00354.x
– reference: LiangXSInformation flow and causality as rigorous notions ab initioPhys. Rev. E2016940522012016PhRvE..94e2201L2796712010.1103/PhysRevE.94.052201
– reference: SugiharaGDetecting causality in complex ecosystemsScience20123384965002012Sci...338..496S1:CAS:528:DC%2BC38XhsFGmtbnM2299713410.1126/science.1227079
– reference: KolmogorovANA refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numberJ. Fluid Mech.19621382851962JFM....13...82K13932910.1017/S0022112062000518
– reference: Ding, M., Chen, Y. & Bressler, S. Granger causality: basic theory and application to neuroscience. In Handbook of Time Series Analysis: Recent Theoretical Developments and Applications, (eds Schelter, B., Winterhalder, M. & Timmer, J.) 2437–2459 (Wiley-VCH, 2006).
– reference: HornKJGrowth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.SPLOS ONE20181311910.1371/journal.pone.0205296
– ident: 53373_CR77
  doi: 10.1002/9783527609970.ch17
– volume: 17
  start-page: 4644
  year: 2015
  ident: 53373_CR116
  publication-title: Entropy
  doi: 10.3390/e17074644
– volume: 477
  start-page: 20210110
  year: 2021
  ident: 53373_CR118
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2021.0110
– ident: 53373_CR67
  doi: 10.3390/e19070318
– volume: 967
  start-page: A1
  year: 2023
  ident: 53373_CR9
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2023.423
– volume: 6
  start-page: 260
  year: 2020
  ident: 53373_CR20
  publication-title: Chronic Dis. Transl. Med.
– ident: 53373_CR73
– volume: 51
  start-page: 7
  year: 1996
  ident: 53373_CR31
  publication-title: Econ. Lett.
  doi: 10.1016/0165-1765(95)00791-1
– ident: 53373_CR126
  doi: 10.1007/978-3-642-04898-2_110
– volume: 30
  start-page: 3063
  year: 2008
  ident: 53373_CR5
  publication-title: Energy Econ.
  doi: 10.1016/j.eneco.2008.02.002
– volume: 103
  start-page: 238701
  year: 2009
  ident: 53373_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.238701
– volume: 10
  start-page: 325
  year: 1999
  ident: 53373_CR124
  publication-title: Netw. Comput. Neural Syst.
  doi: 10.1088/0954-898X_10_4_303
– volume: 223
  start-page: 50
  year: 2014
  ident: 53373_CR28
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.10.018
– volume: 17
  start-page: 035102
  year: 2005
  ident: 53373_CR108
  publication-title: Phys. Fluids
  doi: 10.1063/1.1843135
– ident: 53373_CR47
– volume: 868
  start-page: 698
  year: 2019
  ident: 53373_CR113
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.209
– volume: 4
  start-page: 721
  year: 2008
  ident: 53373_CR88
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1029
– ident: 53373_CR80
  doi: 10.1007/978-3-642-66784-8_17
– volume: 15
  start-page: 327
  year: 2013
  ident: 53373_CR58
  publication-title: Entropy
  doi: 10.3390/e15010327
– volume: 9
  start-page: 62
  year: 1991
  ident: 53373_CR59
  publication-title: Soc. Sci. Comput. Rev.
  doi: 10.1177/089443939100900106
– volume: 742
  start-page: R3
  year: 2014
  ident: 53373_CR112
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.17
– volume: 42
  start-page: 123001
  year: 2009
  ident: 53373_CR86
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/42/12/123001
– ident: 53373_CR115
  doi: 10.1007/978-3-642-53734-9_6
– volume: 70
  start-page: 161
  year: 2002
  ident: 53373_CR13
  publication-title: Int. Stat. Rev.
  doi: 10.1111/j.1751-5823.2002.tb00354.x
– volume: 17
  start-page: 095106
  year: 2005
  ident: 53373_CR128
  publication-title: Phys. Fluids
  doi: 10.1063/1.2047568
– volume: 37
  start-page: 424
  year: 1969
  ident: 53373_CR25
  publication-title: Econometrica
  doi: 10.2307/1912791
– volume: 78
  start-page: 031113
  year: 2008
  ident: 53373_CR57
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.031113
– volume: 375
  start-page: 20160077
  year: 2017
  ident: 53373_CR75
  publication-title: Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2016.0077
– volume: 74
  start-page: 016303
  year: 2006
  ident: 53373_CR102
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.016303
– volume: 90
  start-page: 062903
  year: 2014
  ident: 53373_CR37
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.90.062903
– volume: 388
  start-page: 753
  year: 1997
  ident: 53373_CR92
  publication-title: Nature
  doi: 10.1038/41966
– ident: 53373_CR129
  doi: 10.5281/zenodo.13750918
– volume: 350
  start-page: 40
  year: 2015
  ident: 53373_CR90
  publication-title: Science
  doi: 10.1126/science.aad1386
– volume: 28
  start-page: 193
  year: 2002
  ident: 53373_CR89
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/S0360-1285(01)00017-X
– volume: 1044
  start-page: 1
  year: 2023
  ident: 53373_CR21
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2023.10.005
– ident: 53373_CR105
– volume: 5
  start-page: eaau4996
  year: 2019
  ident: 53373_CR23
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau4996
– volume: 83
  start-page: 051122
  year: 2011
  ident: 53373_CR54
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.051122
– volume: 74
  start-page: 3202
  year: 2005
  ident: 53373_CR85
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.74.3202
– volume: 13
  start-page: 1135
  year: 2017
  ident: 53373_CR91
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4227
– volume: 58
  start-page: 240
  year: 1895
  ident: 53373_CR16
  publication-title: Proc. R. Soc. Lond.
  doi: 10.1098/rspl.1895.0041
– ident: 53373_CR120
  doi: 10.1007/s10208-023-09630-x
– volume: 579
  start-page: 1
  year: 2007
  ident: 53373_CR106
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006003946
– volume: 27
  start-page: 111702
  year: 2015
  ident: 53373_CR127
  publication-title: Phys. Fluids
  doi: 10.1063/1.4935812
– volume: 95
  start-page: S144
  year: 2005
  ident: 53373_CR6
  publication-title: Am. J. Public Health
  doi: 10.2105/AJPH.2004.059204
– volume: 91
  start-page: 040101
  year: 2015
  ident: 53373_CR29
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.040101
– volume: 467
  start-page: 134246
  year: 2024
  ident: 53373_CR46
  publication-title: Phys. D
  doi: 10.1016/j.physd.2024.134246
– volume: 13
  start-page: 82
  year: 1962
  ident: 53373_CR84
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112062000518
– volume: 4
  start-page: 487
  year: 2023
  ident: 53373_CR3
  publication-title: Nat. Rev. Earth Environ.
  doi: 10.1038/s43017-023-00431-y
– volume: 95
  start-page: 244101
  year: 2006
  ident: 53373_CR55
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.244101
– volume: 5
  year: 2015
  ident: 53373_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/srep14750
– ident: 53373_CR2
– ident: 53373_CR18
– volume: 3
  start-page: 208
  year: 1957
  ident: 53373_CR66
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1957.1057418
– volume: 357
  start-page: 782
  year: 2017
  ident: 53373_CR87
  publication-title: Science
  doi: 10.1126/science.aan7933
– volume: 28
  start-page: 075310
  year: 2018
  ident: 53373_CR123
  publication-title: Chaos
  doi: 10.1063/1.5025050
– volume: 96
  start-page: 1174
  year: 2015
  ident: 53373_CR38
  publication-title: Ecology
  doi: 10.1890/14-1479.1
– volume: 100
  start-page: 441
  year: 1987
  ident: 53373_CR17
  publication-title: Am. J. Psychol.
  doi: 10.2307/1422689
– ident: 53373_CR83
– volume: 21
  start-page: 025106
  year: 2009
  ident: 53373_CR104
  publication-title: Phys. Fluids
  doi: 10.1063/1.3081558
– volume: 72
  start-page: 026222
  year: 2005
  ident: 53373_CR50
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.72.026222
– volume: 915
  start-page: A36
  year: 2021
  ident: 53373_CR96
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.105
– ident: 53373_CR24
– volume: 5
  start-page: 1092
  year: 1993
  ident: 53373_CR100
  publication-title: Phys. Fluids
  doi: 10.1063/1.858593
– ident: 53373_CR11
  doi: 10.1201/9780367801694
– ident: 53373_CR41
– volume: 506
  start-page: 012006
  year: 2014
  ident: 53373_CR33
  publication-title: J. Phys. Conf. Ser
  doi: 10.1088/1742-6596/506/1/012006
– volume: 30
  start-page: 113115
  year: 2020
  ident: 53373_CR64
  publication-title: Chaos
  doi: 10.1063/5.0020538
– volume: 116
  start-page: 461
  year: 1925
  ident: 53373_CR68
  publication-title: Nature
  doi: 10.1038/116461b0
– volume: 20
  start-page: 130
  year: 1963
  ident: 53373_CR79
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
– volume: 102
  start-page: 062201
  year: 2020
  ident: 53373_CR35
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.102.062201
– volume: 882
  start-page: A2
  year: 2020
  ident: 53373_CR8
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.801
– volume: 4
  start-page: 023195
  year: 2022
  ident: 53373_CR45
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.4.023195
– volume: 11
  year: 2020
  ident: 53373_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16238-0
– volume: 14
  year: 2023
  ident: 53373_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37546-1
– ident: 53373_CR48
– volume: 371
  start-page: 20110613
  year: 2013
  ident: 53373_CR10
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2011.0613
– volume: 79
  start-page: 907
  year: 1984
  ident: 53373_CR26
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1984.10477110
– volume: 19
  start-page: 318
  year: 2017
  ident: 53373_CR117
  publication-title: Entropy
  doi: 10.3390/e19070318
– volume: 61
  start-page: 5142
  year: 2000
  ident: 53373_CR81
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.5142
– volume: 566
  start-page: 357
  year: 2006
  ident: 53373_CR109
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112006001534
– volume: 11
  start-page: 1
  year: 2016
  ident: 53373_CR121
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169050
– volume: 261
  start-page: 459
  year: 1976
  ident: 53373_CR78
  publication-title: Nature
  doi: 10.1038/261459a0
– volume: 74
  start-page: 981
  year: 2007
  ident: 53373_CR22
  publication-title: Philos. Sci.
  doi: 10.1086/525638
– volume: 85
  start-page: 461
  year: 2000
  ident: 53373_CR49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.85.461
– ident: 53373_CR43
  doi: 10.34133/2022/9870149
– volume: 151
  start-page: 362
  year: 2008
  ident: 53373_CR14
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2007.06.012
– ident: 53373_CR42
  doi: 10.1007/BFb0091924
– volume: 628
  start-page: 311
  year: 2009
  ident: 53373_CR107
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009006946
– volume: 338
  start-page: 496
  year: 2012
  ident: 53373_CR36
  publication-title: Science
  doi: 10.1126/science.1227079
– ident: 53373_CR60
– volume: 151
  start-page: 444
  year: 1935
  ident: 53373_CR98
  publication-title: Proc. R. Soc. Lond.
– ident: 53373_CR71
– volume: 13
  start-page: 1
  year: 2018
  ident: 53373_CR19
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0205296
– volume: 5
  start-page: 453
  year: 1941
  ident: 53373_CR72
  publication-title: Izv. Akad. Nauk USSR, Ser. Geogr. Geofiz.
– volume: 207
  start-page: 91
  year: 2005
  ident: 53373_CR101
  publication-title: Physica D
  doi: 10.1016/j.physd.2005.05.018
– volume: 94
  start-page: 052201
  year: 2016
  ident: 53373_CR56
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.94.052201
– volume: 24
  start-page: 403
  year: 2022
  ident: 53373_CR119
  publication-title: Entropy
  doi: 10.3390/e24030403
– ident: 53373_CR99
  doi: 10.1017/CBO9781139170666
– volume: 329
  start-page: 193
  year: 2010
  ident: 53373_CR94
  publication-title: Science
  doi: 10.1126/science.1188765
– volume: 937
  start-page: A14
  year: 2022
  ident: 53373_CR97
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.123
– volume: 723
  start-page: 429
  year: 2013
  ident: 53373_CR111
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2013.137
– ident: 53373_CR1
– volume: 118
  start-page: 558
  year: 1926
  ident: 53373_CR69
  publication-title: Nature
  doi: 10.1038/118558a0
– volume: 21
  start-page: 115108
  year: 2009
  ident: 53373_CR103
  publication-title: Phys. Fluids
  doi: 10.1063/1.3266948
– volume: 327
  start-page: 1491
  year: 2010
  ident: 53373_CR93
  publication-title: Science
  doi: 10.1126/science.1186091
– volume: 77
  start-page: 026110
  year: 2008
  ident: 53373_CR51
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.026110
– volume: 70
  start-page: 056221
  year: 2004
  ident: 53373_CR34
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.056221
– ident: 53373_CR125
  doi: 10.3389/frobt.2014.00011
– volume: 56
  start-page: 188
  year: 2015
  ident: 53373_CR74
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-015-2058-8
– ident: 53373_CR63
  doi: 10.5194/egusphere-egu21-8259
– ident: 53373_CR52
  doi: 10.1063/1.3486801
– ident: 53373_CR114
– volume: 73
  start-page: 52
  year: 2017
  ident: 53373_CR122
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.12.009
– volume: 12
  start-page: 899
  year: 2015
  ident: 53373_CR15
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3587
– volume: 22
  start-page: 79
  year: 1951
  ident: 53373_CR65
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 712
  start-page: 169
  year: 2012
  ident: 53373_CR110
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.408
– ident: 53373_CR53
  doi: 10.1007/978-3-319-43222-9_1
– ident: 53373_CR76
– volume: 1
  start-page: 291
  year: 1953
  ident: 53373_CR70
  publication-title: Aust. J. Zool.
  doi: 10.1071/ZO9530291
– volume: 33
  start-page: 14
  year: 2016
  ident: 53373_CR4
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2015.2482121
– volume: 36
  start-page: 49
  year: 2010
  ident: 53373_CR7
  publication-title: Annu. Rev. Sociol.
  doi: 10.1146/annurev.soc.012809.102632
– volume: 49
  start-page: 1639
  year: 1994
  ident: 53373_CR30
  publication-title: J. Financ.
– volume: 14
  start-page: 386
  year: 2018
  ident: 53373_CR95
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0018-3
– volume: 97
  start-page: 042207
  year: 2018
  ident: 53373_CR82
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.042207
– volume: 18
  start-page: 519
  year: 1998
  ident: 53373_CR32
  publication-title: J. Futur. Mark.
  doi: 10.1002/(SICI)1096-9934(199808)18:5<519::AID-FUT2>3.0.CO;2-U
– volume: 27
  start-page: 379
  year: 1948
  ident: 53373_CR44
  publication-title: Bell Labs Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: 53373_CR62
– ident: 53373_CR12
  doi: 10.7551/mitpress/1754.001.0001
SSID ssj0000391844
Score 2.552545
Snippet Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical systems. Despite...
Abstract Causality lies at the heart of scientific inquiry, serving as the fundamental basis for understanding interactions among variables in physical...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9296
SubjectTerms 631/553/2393
631/553/2701
639/705/1041
639/766/189
639/766/259
applied mathematics
Causality
Complex systems
Decomposition
dynamical systems
fluid dynamics
Humanities and Social Sciences
Inference
information theory and computation
multidisciplinary
Nonlinear systems
Redundant components
Science
Science (multidisciplinary)
time series
SummonAdditionalLinks – databaseName: Biological Science Database
  dbid: M7P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BAYkL70doQUbixkZNYie2T4hXxaGqegCpN8uvwEooKZssUv89M052q-XRC6eVNo7W3nn483jmG4BXVVsFxAU-byl8L7zVuapKnotSFipIXnOXSFyP5cmJOjvTp3PAbZjTKjc-MTnq0HuKkR9ydLGl5EKIN-c_cuoaRbercwuN63CDWBKqlLp3uo2xEPu5EmKulSm4OhxE8gy4MeWIcyTOaWc_SrT9-NGjef0Ncv6ZOfnb9WnalY7u_u967sGdGY-yt5MC3YdrsXsAt6YOlRcP4fhDpKTzniIKzNv1kGA7W3Zjz5bjwIYLqh1MZM8Ltk5ksAtmu8BWkcrTUGwsvd9RvsYj-HL08fP7T_ncgCH3daPGvLLBF1KWNpZKO2fLILWzPDaV9oXnhcMd1rUNb7nyquIh1HUtvZNo5Yq7VvPHsNfhLzwF5rhFMFehu7BRtAhqLMeDedMWFiGJdjyDciMG42d2cmqS8d2kW3KuzCQ6g6IzSXRGZPB6-875xM1x5eh3JN3tSOLVTl_0q69mNlNTB69ja6WWUQiN4FF4Vzctyrt0oWh8BvukGwbhCXHsekpG8qPhEzTL4GAjazO7gsFcCjqDl9vHaMR0M2O72K-nMXhQl4XM4MmkYdt54hzwUFs2Gagd3dtZyO6TbvktEYUj2udUPJzBYqOml_P69z_17Opl7MPtigwoFWQewN64WsfncNP_HJfD6kWywF8DiTbn
  priority: 102
  providerName: ProQuest
Title Decomposing causality into its synergistic, unique, and redundant components
URI https://link.springer.com/article/10.1038/s41467-024-53373-4
https://www.ncbi.nlm.nih.gov/pubmed/39487116
https://www.proquest.com/docview/3123173444
https://www.proquest.com/docview/3123549707
https://www.osti.gov/servlets/purl/3000741
https://pubmed.ncbi.nlm.nih.gov/PMC11530654
https://doaj.org/article/5dc9efa797e4498394cb56fdce1bd06c
Volume 15
WOSCitedRecordID wos001346598500029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: M7P
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest_Health & Medical Collection
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: 7X7
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2041-1723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000391844
  issn: 2041-1723
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BAIkXxDdhozISbzRaEjux_cjYJpBGFSGQCi-WvyIqTenUpEj77zk7aVlhwAsviVQ76uV85_tdfP4Z4FXRFA5xgU2b8PmeWS1TUeQ0ZTnPhOO0pCaSuJ7x2UzM57K-ctRXqAkb6IEHxR2WzkrfaC65Z0xiOGfWlFXjrM-NyyobZt-MyyvJVJyDqcTUhY27ZDIqDjsW5wQMSSkiHI7S7ESiSNiPtyU61nVg8_eayV8WTmM8Or0P90YgSd4ML_AAbvj2IdwZjpa8fARnxz5Uiy_DpwBi9bqLeJss2n5JFn1Husuw6S-yNE_JOrK4ToluHVn5sK8M9U3i820otHgMn09PPr19l44nJ6S2rESfFtrZjPNc-1xIY3TuuDSa-qqQNrM0MxgaTVPRhgorCupcWZbcGo7uKahpJH0Cey3-wzMghmpEYQX6ufasQTSiKWbUVZNpxBLS0ATyjRaVHWnFw-kW5youb1OhBs0r1LyKmlcsgdfbZy4GUo2_9j4Kg7PtGQix4w9oJmo0E_UvM0lgPwytQlwRyHFtqCKyvaIDpkrgYDPiavThTlEM6jmnjKEEL7fN6H1hSUW3frke-mCGzTOewNPBQLZyogyYjeZVAmLHdHZeZLelXXyLDN8I02nY9ZvAdGNlP-X6s6ae_w9N7cPdInhJ3G95AHv9au1fwG37vV90qwnc5HMer2ICt45OZvXHSXS9SaiarfFal1-xpX7_of7yA_0mMWk
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VWxBceD9CCwQJTmzUJHbi5IAQUKquul3toUjlZGwngZVQUjZZ0P4pfiMzzqNaHr31wGmlxNHGzjfjz_bMNwDPwyLMkBcYr6Dte25U6iVhwDweCD_JBIuYtiKuUzGbJaen6XwLfva5MBRW2ftE66izytAe-R5DFxsIxjl_ffbNo6pRdLral9BoYXGUr3_gkq1-NdnH7_siDA_en7w79LqqAp6J4qTxQpUZX4hA5UGSaq2CTKRasTwOU-Mb5mucNnQRs4IlJglZlkVRJIwWVMee6YLEl9Dlb3MC-wi255Pj-cdhV4f01hPOu-wcnyV7Nbe-CKdCD5mVwFHYmAFtoQD8qdCg_0Zy_4zV_O3A1s6DBzf_txG8BTc6xu2-aU3kNmzl5R242tbgXN-F6X5OYfUV7Zm4Rq1quzBxF2VTuYumdus1ZUdaOeuxu7Jyt2NXlZm7zCkBD4Hp2udLiki5Bx8upSv3YVTiPzwEVzOFdDVEh6hyXiBtU4zHaVz4CklXqpkDQf_Zpen016kMyFdp4wBYIluoSISKtFCR3IGXwzNnrfrIha3fEpqGlqQcbi9Uy8-yc0QyykyaF0qkIuc8RXrMjY7iAvEV6MyPjQM7hEWJBIxUhA2FW5lGspZ8OrDbY0t2zq6W58By4NlwG90UnT2pMq9WbZuIp8IXDjxoET28J74DLtuD2IFkA-sbHdm8Uy6-WCl0XM8wSo92YNybxfl7_XukHl3cjadw7fDkeCqnk9nRDlwPyXht-ukujJrlKn8MV8z3ZlEvn3T278KnyzaYX2pQl0g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB6tloe48F4Iu0CQ4MRGTWInTg4IAaVitVXVA0grLsZ2HKiEkqVJQf1r_DpmnKSr8tjbHjhVahzVdr_5PLZnvgF4GpdxgX6BCUo6vudG5UEWRyzgkQizQrCEaSfiOhWzWXZyks934OeQC0NhlQMnOqIuakNn5COGFBsJxjkflX1YxHw8eXn6LaAKUnTTOpTT6CBybNc_cPvWvDga43_9LI4nb9-_eRf0FQYCk6RZG8SqMKEQkbJRlmutokLkWjGbxrkJDQs1LiG6TFnJMpPFrCiSJBFGC6ppz3RJQkxI_5cE7jEpnHCefNyc75DyesZ5n6cTsmzUcMdKuCgG6GMJnI-ttdCVDMCPGk37b-7un1Gbv13duhVxcuN_nsubcL33w_1XneHcgh1b3YYrXWXO9R2Yji0F29d0kuIbtWrcdsVfVG3tL9rGb9aUM-lErg_9lRPBPfRVVfhLS2l5CFffvV9RnMpd-HAhQ9mD3Qp_4T74mil0YmOkSWV5ic6cYgiWtAwVumK5Zh5EAwSk6VXZqTjIV-miA1gmO9hIhI10sJHcg-ebd047TZJzW78mZG1akp64-6JefpY9PcmkMLktlciF5TxHp5kbnaQlYi3SRZgaD_YJlxLdMtIWNhSEZVrJOpfUg4MBZ7KnwEaegcyDJ5vHSF50I6UqW6-6NgnPRSg8uNehe9NP7ANu5qPUg2wL91sD2X5SLb44gXTc5TBKmvbgcDCRs379e6YenD-Mx3AVrUROj2bH-3AtJjt2OakHsNsuV_YhXDbf20WzfOSIwIdPF20tvwCRUp6r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decomposing+causality+into+its+synergistic%2C+unique%2C+and+redundant+components&rft.jtitle=Nature+communications&rft.au=Mart%C3%ADnez-S%C3%A1nchez%2C+%C3%81lvaro&rft.au=Arranz%2C+Gonzalo&rft.au=Lozano-Dur%C3%A1n%2C+Adri%C3%A1n&rft.date=2024-11-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=15&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-024-53373-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_024_53373_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon