Hybrid Column Generation Approaches for Urban Transit Crew Management Problems

This article considers the overall crew management problem arising from the daily operation of an urban transit bus company that serves the metropolitan area of the city of Belo Horizonte, Brazil. Due to its intrinsic complexity, the problem is divided in two distinct subproblems: crew scheduling an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation science Jg. 39; H. 2; S. 273 - 288
Hauptverfasser: Yunes, Tallys H, Moura, Arnaldo V, de Souza, Cid C
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Linthicum, MD INFORMS 01.05.2005
Transportation Science Section of the Operations Research Society of America
Institute for Operations Research and the Management Sciences
Schlagworte:
ISSN:0041-1655, 1526-5447
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article considers the overall crew management problem arising from the daily operation of an urban transit bus company that serves the metropolitan area of the city of Belo Horizonte, Brazil. Due to its intrinsic complexity, the problem is divided in two distinct subproblems: crew scheduling and crew rostering . We have investigated each of these problems using mathematical programming (MP) and constraint logic programming (CLP) approaches. In addition, we developed hybrid column generation algorithms for solving these problems, combining MP and CLP. The hybrid algorithms always performed better, when obtaining optimal solutions, than the two previous isolated approaches. In particular, they proved to be much faster for the scheduling problem. All the proposed algorithms have been implemented and tested over real-world data obtained from the aforementioned company. The coefficient matrix of the linear program associated with some instances of the scheduling problem contains tens of millions of columns; this number is even larger for the rostering problem. The analysis of our experiments indicates that it was possible to find high-quality, and many times optimal, solutions that were suitable for the company’s needs. These solutions were obtained within reasonable computational times on a desktop PC.
AbstractList This article considers the overall crew management problem arising from the daily operation of an urban transit bus company that serves the metropolitan area of the city of Belo Horizonte, Brazil. Due to its intrinsic complexity, the problem is divided in two distinct subproblems: crew scheduling and crew rostering. We have investigated each of these problems using mathematical programming (MP) and constraint logic programming (CLP) approaches. In addition, we developed hybrid column generation algorithms for solving these problems, combining MP and CLP. The hybrid algorithms always performed better, when obtaining optimal solutions, than the two previous isolated approaches. In particular, they proved to be much faster for the scheduling problem. All the proposed algorithms have been implemented and tested over real-world data obtained from the aforementioned company. The coefficient matrix of the linear program associated with some instances of the scheduling problem contains tens of millions of columns; this number is even larger for the rostering problem. The analysis of our experiments indicates that it was possible to find high-quality, and many times optimal, solutions that were suitable for the company's needs. These solutions were obtained within reasonable computational times on a desktop PC. [PUBLICATION ABSTRACT]
This article considers the overall crew management problem arising from the daily operation of an urban transit bus company that serves the metropolitan area of the city of Belo Horizonte, Brazil. Due to its intrinsic complexity, the problem is divided in two distinct subproblems: crew scheduling and crew rostering . We have investigated each of these problems using mathematical programming (MP) and constraint logic programming (CLP) approaches. In addition, we developed hybrid column generation algorithms for solving these problems, combining MP and CLP. The hybrid algorithms always performed better, when obtaining optimal solutions, than the two previous isolated approaches. In particular, they proved to be much faster for the scheduling problem. All the proposed algorithms have been implemented and tested over real-world data obtained from the aforementioned company. The coefficient matrix of the linear program associated with some instances of the scheduling problem contains tens of millions of columns; this number is even larger for the rostering problem. The analysis of our experiments indicates that it was possible to find high-quality, and many times optimal, solutions that were suitable for the company’s needs. These solutions were obtained within reasonable computational times on a desktop PC.
This article considers the overall crew management problem arising from the daily operation of an urban transit bus company that serves the metropolitan area of the city of Belo Horizonte, Brazil. Due to its intrinsic complexity, the problem is divided in two distinct subproblems: crew scheduling and crew rostering . We have investigated each of these problems using mathematical programming (MP) and constraint logic programming (CLP) approaches. In addition, we developed hybrid column generation algorithms for solving these problems, combining MP and CLP. The hybrid algorithms always performed better, when obtaining optimal solutions, than the two previous isolated approaches. In particular, they proved to be much faster for the scheduling problem. All the proposed algorithms have been implemented and tested over real-world data obtained from the aforementioned company. The coefficient matrix of the linear program associated with some instances of the scheduling problem contains tens of millions of columns; this number is even larger for the rostering problem. The analysis of our experiments indicates that it was possible to find high-quality, and many times optimal, solutions that were suitable for the company’s needs. These solutions were obtained within reasonable computational times on a desktop PC.
This article considers the overall crew management problem arising from the daily operation of an urban transit bus company that serves the metropolitan area of the city of Belo Horizonte, Brazil. Due to its intrinsic complexity, the problem is divided in two distinct subproblems: crew scheduling and crew rostering. We have investigated each of these problems using mathematical programming (MP) and constraint logic programming (CLP) approaches. In addition, we developed hybrid column generation algorithms for solving these problems, combining MP and CLP. The hybrid algorithms always performed better, when obtaining optimal solutions, than the two previous isolated approaches. In particular, they proved to be much faster for the scheduling problem. All the proposed algorithms have been implemented and tested over real-world data obtained from the aforementioned company. The coefficient matrix of the linear program associated with some instances of the scheduling problem contains tens of millions of columns; this number is even larger for the rostering problem. The analysis of our experiments indicates that it was possible to find high-quality, and many times optimal, solutions that were suitable for the company's needs. These solutions were obtained within reasonable computational times on a desktop PC.
This article considers the overall crew management problem arising from the daily operation of an urban transit bus company that serves the metropolitan area of the city of Belo Horizonte, Brazil. Due to its intrinsic complexity, the problem is divided in two distinct subproblems: crew scheduling and crew rostering. We have investigated each of these problems using mathematical programming (MP) and constraint logic programming (CLP) approaches. In addition, we developed hybrid column generation algorithms for solving these problems, combining MP and CLP. The hybrid algorithms always performed better, when obtaining optimal solutions, than the two previous isolated approaches. In particular, they proved to be much faster for the scheduling problem. All the proposed algorithms have been implemented and tested over real-world data obtained from the aforementioned company. The coefficient matrix of the linear program associated with some instances of the scheduling problem contains tens of millions of columns; this number is even larger for the rostering problem. The analysis of our experiments indicates that it was possible to find high-quality, and many times optimal, solutions that were suitable for the company's needs. These solutions were obtained within reasonable computational times on a desktop PC. Reprinted by permission of the Institute for Operations Research and Management Science (INFORMS)
Audience Academic
Author Yunes, Tallys H
Moura, Arnaldo V
de Souza, Cid C
Author_xml – sequence: 1
  fullname: Yunes, Tallys H
– sequence: 2
  fullname: Moura, Arnaldo V
– sequence: 3
  fullname: de Souza, Cid C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16770627$$DView record in Pascal Francis
BookMark eNqFkktr3DAUhU1JoZO02-4KptCSjad6WvJyGPIopI_FdC1k-WpGgy1NJQ8h_75yHJoSUoIWAvGdq3vvOafFiQ8eiuI9RktMpPgyxmSWGFG0REjIV8UCc1JXnDFxUiwQYrjCNedvitOU9ghhLjBfFN-v79rounId-uPgyyvwEPXogi9Xh0MM2uwglTbE8ldstS83UfvkxnId4bb8pr3ewgB-LH_G0PYwpLfFa6v7BO8e7rNic3mxWV9XNz-uvq5XN5XhtRwrQrQ1hBtNuJAARjMmraxpx4gVHbQSkU6ApZhD0yIMIBDXuNHcAKs7Qs-Kz3PZ3OLvI6RRDS4Z6HvtIRyTohJzLDF7ESSykQ3BNIMfn4D7cIw-z6AIopwQxnmGqhna6h6U8zaMUZvt_c76bIZ1-XmFaXYjOyAyv3yGz6eDwZlnBZ8eutDJ6N7mbRuX1CG6Qcc7hWshUE3-KWxiSCmCfUSQmsKgpjCoKQxqCkMWsCcC48Z7n3NHrv-_7MMs26cxxL-fZNfqhjDxuJBptjikl9s4n_md2-5uXZyXMgnHKVjGKdooovKE9A8ff-CL
CODEN TRSCBJ
CitedBy_id crossref_primary_10_1007_s10732_017_9348_7
crossref_primary_10_3390_math7020192
crossref_primary_10_1016_j_ejor_2012_11_029
crossref_primary_10_1002_nav_21561
crossref_primary_10_1080_01605682_2022_2125843
crossref_primary_10_1016_j_ejor_2018_11_011
crossref_primary_10_1016_j_asoc_2025_113574
crossref_primary_10_1016_j_ijpe_2012_06_030
crossref_primary_10_1007_s11750_018_0479_2
crossref_primary_10_1007_s10100_012_0274_3
crossref_primary_10_1007_s10951_014_0385_x
crossref_primary_10_1155_2018_7870849
crossref_primary_10_1287_ijoc_1100_0436
crossref_primary_10_1007_s12469_021_00279_9
crossref_primary_10_1007_s10288_009_0101_4
crossref_primary_10_1155_2020_3153201
crossref_primary_10_1007_s10479_014_1619_1
crossref_primary_10_1007_s00291_023_00729_9
crossref_primary_10_1287_opre_1090_0733
crossref_primary_10_36306_konjes_589835
crossref_primary_10_1007_s10479_009_0654_9
crossref_primary_10_1111_mice_12301
crossref_primary_10_1007_s10479_012_1299_7
crossref_primary_10_1016_j_cie_2022_108509
crossref_primary_10_3390_pr7100702
crossref_primary_10_1016_j_ejor_2017_05_035
crossref_primary_10_1007_s10601_017_9280_3
crossref_primary_10_1007_s10288_006_0019_z
crossref_primary_10_1080_0305215X_2022_2102165
crossref_primary_10_1016_j_ejor_2014_03_006
crossref_primary_10_1016_j_asoc_2021_107542
Cites_doi 10.1287/trsc.23.1.1
10.1007/3-540-48777-8_33
10.1007/BF02614314
10.1007/978-1-4615-4495-1
10.1007/978-3-540-48085-3_19
10.1007/978-1-4615-5755-5
10.1287/opre.47.5.730
10.1287/opre.46.3.316
10.1023/A:1009894810205
10.1016/0377-2217(92)90213-S
10.1287/opre.46.6.820
10.1007/BF02592086
10.1002/(SICI)1097-024X(199801)28:1<49::AID-SPE147>3.0.CO;2-R
10.1287/ijoc.10.3.276
10.1613/jair.1
10.1016/0377-2217(84)90071-7
10.1007/3-540-60299-2_29
ContentType Journal Article
Copyright Copyright © 2005 Institute for Operations Research and the Management Sciences
2005 INIST-CNRS
COPYRIGHT 2005 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences May 2005
Copyright_xml – notice: Copyright © 2005 Institute for Operations Research and the Management Sciences
– notice: 2005 INIST-CNRS
– notice: COPYRIGHT 2005 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences May 2005
DBID AAYXX
CITATION
IQODW
3V.
7WY
7WZ
7XB
87Z
88I
8BJ
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FQK
FRNLG
F~G
GNUQQ
HCIFZ
JBE
K60
K6~
L.-
L.0
L6V
M0C
M2P
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYYUZ
Q9U
8FD
FR3
KR7
DOI 10.1287/trsc.1030.0078
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Science Database (Alumni Edition)
International Bibliography of the Social Sciences (IBSS)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology collection
ProQuest One
ProQuest Central
International Bibliography of the Social Sciences
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
International Bibliography of the Social Sciences
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
ABI/INFORM Global
Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ABI/INFORM Collection China
ProQuest Central Basic
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
International Bibliography of the Social Sciences (IBSS)
ABI/INFORM Professional Standard
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
ProQuest One Academic (New)
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList ABI/INFORM Global (Corporate)


Technology Research Database

International Bibliography of the Social Sciences (IBSS)
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Applied Sciences
EISSN 1526-5447
EndPage 288
ExternalDocumentID 860004391
A132870787
16770627
10_1287_trsc_1030_0078
25769247
trsc.1030.0078
transci_39_2_273
Genre Research Article
GeographicLocations South America
Brazil
America
United Kingdom
Belo Horizonte Brazil
GeographicLocations_xml – name: United Kingdom
– name: Belo Horizonte Brazil
– name: Brazil
GroupedDBID 08R
123
1AW
29Q
3V.
4
4.4
4S
7WY
88I
8FE
8FG
8FL
8V8
AAPBV
ABBHK
ABDBF
ABFLS
ABJCF
ABPTK
ABUWG
ACFWO
ACGOD
ACHQT
ACIWK
ACNCT
ADULT
AENEX
AEUPB
AFKRA
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BENPR
BEZIV
BGLVJ
BIPZW
BPHCQ
BXSLM
CS3
DU5
DWQXO
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EPL
EST
ESX
FRNLG
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
HCIFZ
HVGLF
H~9
I-F
IAO
IEA
IOF
ITC
JPL
JSODD
JST
K6
K60
L6V
M0C
M2P
M7S
MV1
N95
NB9
NIEAY
P2P
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PTHSS
REX
RPU
SA0
TAE
TH9
TN5
TUS
WH7
X
XI7
ZY4
AFFNX
Y99
-~X
.-4
.DC
18M
2AX
2XV
AAVDF
ABXSQ
ACDEK
ACGFO
ADAAO
AEGXH
AEMOZ
AEOZU
AHIZY
AHQJS
AIAGR
BAAKF
CCPQU
EBE
EBO
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
K1G
K6~
PHGZM
PHGZT
PQBIZ
PQBZA
AADHG
AAYXX
AFFHD
CITATION
LPU
PQGLB
IQODW
7XB
8BJ
8FK
FQK
JBE
L.-
L.0
PKEHL
Q9U
8FD
FR3
KR7
PUEGO
ID FETCH-LOGICAL-c568t-22afc25ca2578eeca448f863d42f7deb802d7ef315e9b01ee705a19a5ce46d23
IEDL.DBID M2P
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000229045500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0041-1655
IngestDate Fri Sep 05 11:49:03 EDT 2025
Sun Nov 09 11:07:02 EST 2025
Mon Dec 01 05:10:33 EST 2025
Sat Nov 29 12:01:20 EST 2025
Tue Nov 04 18:40:37 EST 2025
Mon Jul 21 09:18:06 EDT 2025
Tue Nov 18 22:32:49 EST 2025
Sat Nov 29 03:08:31 EST 2025
Thu Jun 19 14:54:54 EDT 2025
Tue Jan 05 23:29:27 EST 2021
Fri Jan 15 03:35:43 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bus
Crew
Columns
column generation
Scheduling
Algorithm
Implementation
Public transportation
Passenger transportation
Urban transportation
crew scheduling
Traffic management
Problem solving
Constraint logic programming
hybrid algorithms
constraint programming
Mathematical programming
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c568t-22afc25ca2578eeca448f863d42f7deb802d7ef315e9b01ee705a19a5ce46d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://www.repositorio.unicamp.br/jspui/handle/REPOSIP/68951
PQID 203522455
PQPubID 37963
PageCount 16
ParticipantIDs crossref_primary_10_1287_trsc_1030_0078
informs_primary_10_1287_trsc_1030_0078
proquest_miscellaneous_38151814
proquest_journals_203522455
jstor_primary_25769247
gale_infotracgeneralonefile_A132870787
highwire_informs_transci_39_2_273
proquest_miscellaneous_28989213
gale_infotracacademiconefile_A132870787
pascalfrancis_primary_16770627
crossref_citationtrail_10_1287_trsc_1030_0078
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2005-05-01
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: 2005-05-01
  day: 01
PublicationDecade 2000
PublicationPlace Linthicum, MD
PublicationPlace_xml – name: Linthicum, MD
– name: Baltimore
PublicationTitle Transportation science
PublicationYear 2005
Publisher INFORMS
Transportation Science Section of the Operations Research Society of America
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Transportation Science Section of the Operations Research Society of America
– name: Institute for Operations Research and the Management Sciences
References B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B15
B16
B17
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
Yunes T. H. (B34) 2000; 1753
Leconte M. (B27) 1996
Chabrier A. (B9) 1999
Jachnik J. K. (B23) 1981
Junker U. (B25) 1999
Fahle T. (B16) 2000
Cormen T. H. (B11) 1990
Caseau Y. (B8) 1992
Gervet C. (B17) 1998
Lever J. (B28) 1995; 13
Yunes T. H. (B33) 1999
Reeves C. R. (B30) 1993
Sellmann M. (B31) 2000
References_xml – ident: B12
– ident: B9
– ident: B35
– ident: B14
– ident: B10
– ident: B3
– ident: B20
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B31
– ident: B33
– ident: B8
– ident: B11
– ident: B13
– ident: B2
– ident: B26
– ident: B4
– ident: B28
– ident: B6
– ident: B24
– ident: B22
– ident: B17
– ident: B32
– ident: B15
– ident: B30
– ident: B34
– ident: B19
– volume-title: Internat. Workshop Integration AI & OR Tech. Constraint Programming Combinatorial Optim. Problems (CP-AI-OR’99)
  year: 1999
  ident: B9
– ident: B14
  doi: 10.1287/trsc.23.1.1
– volume-title: Journées Francophones de Programmation en Logique et par Contraintes
  year: 1998
  ident: B17
– volume-title: Modern Heuristic Techniques for Combinatorial Problems
  year: 1993
  ident: B30
– ident: B32
  doi: 10.1007/3-540-48777-8_33
– volume-title: Internat. Workshop Integration AI OR Tech. Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR’99)
  year: 1999
  ident: B25
– ident: B5
  doi: 10.1007/BF02614314
– ident: B15
  doi: 10.1007/978-1-4615-4495-1
– ident: B26
  doi: 10.1007/978-3-540-48085-3_19
– year: 1992
  ident: B8
  publication-title: 2nd Internat. Sympos. Artificial Intelligence Math.
– volume-title: 2nd Internat. Workshop Integration AI & OR Techniques Constraint Programming Combinatorial Optim. Problems (CP-AI-OR’00)
  year: 2000
  ident: B31
– ident: B12
  doi: 10.1007/978-1-4615-5755-5
– start-page: 337
  volume-title: Computer Scheduling of Public Transport
  year: 1981
  ident: B23
– ident: B3
  doi: 10.1287/opre.47.5.730
– volume-title: Introduction to Algorithms
  year: 1990
  ident: B11
– ident: B1
  doi: 10.1287/opre.46.3.316
– volume-title: INFORMS Fall 1999 Meeting
  year: 1999
  ident: B33
– ident: B10
  doi: 10.1023/A:1009894810205
– ident: B2
  doi: 10.1016/0377-2217(92)90213-S
– ident: B4
  doi: 10.1287/opre.46.6.820
– ident: B19
  doi: 10.1007/BF02592086
– ident: B6
  doi: 10.1002/(SICI)1097-024X(199801)28:1<49::AID-SPE147>3.0.CO;2-R
– volume-title: 2nd Internat. Workshop Integration AI & OR Tech. Constraint Programming Combinatorial Optim. Problems (CP-AI-OR’00)
  year: 2000
  ident: B16
– ident: B13
  doi: 10.1287/ijoc.10.3.276
– volume: 1753
  start-page: 293
  volume-title: Lecture Notes Comput. Sci.
  year: 2000
  ident: B34
– ident: B18
  doi: 10.1613/jair.1
– volume-title: Workshop on Constraints and Constraint Programming, Asian Computing Sci. Conf. (Asian’96)
  year: 1996
  ident: B27
– volume: 13
  start-page: 73
  year: 1995
  ident: B28
  publication-title: British Telecom Tech. J.
– ident: B7
  doi: 10.1016/0377-2217(84)90071-7
– ident: B20
  doi: 10.1007/3-540-60299-2_29
SSID ssj0015715
Score 1.9542968
Snippet This article considers the overall crew management problem arising from the daily operation of an urban transit bus company that serves the metropolitan area...
SourceID proquest
gale
pascalfrancis
crossref
jstor
informs
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 273
SubjectTerms Algorithms
Applied sciences
column generation
Companies
Computers
constraint programming
Cost control
crew scheduling
Datasets
Exact sciences and technology
Experiments
Generation conflicts
Ground, air and sea transportation, marine construction
Heuristics
hybrid algorithms
Input data
Integer programming
Integers
Logic programming
Mathematical models
Mathematical programming
Matrices
Objective functions
Optimal solutions
Organizational research
Performance evaluation
Personnel management
Programming
Public services
Public transportation
Road transportation and traffic
Rostering
Scheduling
Studies
Transport
Transport planning
Transportation
Transportation industry
Transportation planning, management and economics
Urban areas
Work groups
Workdays
Workforce planning
Title Hybrid Column Generation Approaches for Urban Transit Crew Management Problems
URI http://transci.journal.informs.org/cgi/content/abstract/39/2/273
https://www.jstor.org/stable/25769247
https://www.proquest.com/docview/203522455
https://www.proquest.com/docview/28989213
https://www.proquest.com/docview/38151814
Volume 39
WOSCitedRecordID wos000229045500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Collection
  customDbUrl:
  eissn: 1526-5447
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015715
  issn: 0041-1655
  databaseCode: 7WY
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1526-5447
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015715
  issn: 0041-1655
  databaseCode: M0C
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1526-5447
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015715
  issn: 0041-1655
  databaseCode: M7S
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-5447
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015715
  issn: 0041-1655
  databaseCode: BENPR
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1526-5447
  dateEnd: 20091130
  omitProxy: false
  ssIdentifier: ssj0015715
  issn: 0041-1655
  databaseCode: M2P
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RFoly4KNQsRQWIyE4RSSOHScntKxa9UBXKyhQTpbjOGgllG2TFMS_ZyZx0lZQOHCJFGVkO5nx2BPPvAfwwojYcmno_xdeBC6QQVZajFrDMsxtLsKio-n89E4tFunJSbb0uTmNT6scfGLnqIu1pX_kGKTTVkFI-eb0LCDSKDpc9QwaG7CFG5uIMrqO-HI8RJDKExgI4kKW0mM2Yozwuq0bS_XmlNdFDGuX1qTBMw9wwV2ZE20gmyFlkfInTYOfsOy5L35z493adHD3P9_qHtzxm1I2663oPtxw1Q7cGmqWmx24fQm28AEsDn9SnRebk2erWI9cTQpmM49Q7hqG78I-1rmpWLccrlo2r90PdpFuw5Y9l03zEI4P9o_nh4HnZQisTNI24NyUqGBraLo7Zw2GeGWaxIXgpSpcnoa8UK6MI-myPIycU6E0UWakdSIpeLwLm9W6co-AmUjkInHOxGEqpJGZ5Aobd0YVSR6XagLBoBhtPWY5UWd80xS7oCI1KVKTIjUpcgKvRvnTHq3jeknSsybVYovW-GoEHBcBYukZRukpISHhGF5ekfzaw4H_SfD5YDPaWwx2il_YrnScaa5xImBjw6N_jW-3s7VRjAJDjJWxl-kV47toJ1GKMKcnsDeYmvb-qNGjnU3g2fgUHQmdDpnKrc9RhIhEeRRfL4GbO5xkkXj81x72YLuDt-2SQp_AZlufu6dw035vV009hQ31-csUtt7uL5bv8e4onE-7WUtX9eEXQPdHlw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VBalw4FGoCIXWSDxOEYlj53FAaLVQbdVltYcF9WY5joNWQtmSpFT9T_xIZpJ42woKpx647CUj2-t8nkc88w3ASy0iw6Wm71_4I9BA-llpMGoNyiA3uQiKrk3nl2kym6XHx9l8A366WhhKq3Q6sVPUxcrQN3IM0slVEFK-P_nuU9Moulx1HTR6VBzZ8zOM2Jp3hx_w9b7i_ODjYjzxh6YCvpFx2vqc6xJXZzRh1VqjMT4p0zgqBC-TwuZpwIvEllEobZYHobVJIHWYaWmsiAuiOUCFf0sQrxglCvL5-s5CJkO_BEGtl6UcKCIxJHnb1o2h8nZKI6OGbpdMoDMEjp24q6oif7VxGZKUrqkbfGNl32rjN6vRmcKD-__XJj6Ae4PLzUb9GXkIG7bahi1Xkd1sw91LpIyPYDY5pyo2Nia9XbGel5vgy0YD_7ptGG4d-1znumKdsV-2bFzbM3aRTMTmfaee5jEsbuK_7cBmtarsE2A6FLmIrdVRkAqpZSZ5goNbnRRxHpWJB77DgTIDIzs1BvmmKDJD3CjCjSLcKMKNB2_W8ic9F8n1kgQrRUjCEY0eai1wXUT3pUZhRBfcqKw9eH1F8mtPdv4nwRcOomoAKE6KO2yWKsoUV3jMcTD36F_r2-mgvRajsDfjAmfZu4L1i3HiJCFGbQ92HbLVoG0btYa1B_vrp6gm6e5LV3Z1iiLUJpWH0fUS6LpKdHfF07_OsA9bk8WnqZoezo524U5H5Nulvz6DzbY-tc_htvnRLpt6r1MODNQNn6NfdnOg1g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4hWvVx6IOCSGnBlfo4RSSOHSeHqlotXYFAqz3QipvlOE61UpWlmwXEP-vP60wSL6CW9sShl71kZHudz_OIZ74BeGtEYrk09P0LfwQayDCvLEatURUVthBR2bbp_HqkxuPs5CSfrMBPXwtDaZVeJ7aKupxZ-kaOQTq5CkLK3arPipjsjT6d_gipgRRdtPpuGh1CDt3lBUZvzceDPXzV7zgffT4e7od9g4HQyjRbhJybCldqDeHWOWswVqmyNCkFr1TpiizipXJVEkuXF1HsnIqkiXMjrRNpSZQHqPzvKYFGk5IGo-Hy_kKqvneCoDbMUvZ0kRie7C7mjaVSd0opo-Zu18yhNwqeqbitsCLftfHZkpS6aRp8e1XXduM3C9KaxdHT_3dDn8GT3hVng-7sPIcVV6_BQ1-p3azB42tkjS9gvH9J1W1sSPq8Zh1fN8GaDXpedtcw3Eb2ZV6YmrVOwHTBhnN3wa6SjNik6-DTrMPxXfy3DVitZ7XbBGZiUYjUOZNEmZBG5pIrHNwZVaZFUqkAQo8JbXumdmoY8l1TxIYY0oQhTRjShKEAPizlTzuOktslCWKaUIUjWtPXYOC6iAZMD-KELr5RiQfw_obkt44E_U-CbzxcdQ9WnBR32E51kmuu8fjjYP7Rv9a30cJ8KUbhcM4FzrJ9A_dX46RKEdN2AFse5brXwo1eQjyAneVTVJ90J2ZqNztDEWqfyuPkdgl0aSW6weLlX2fYgQd4fPTRwfhwCx61_L5tVuwrWF3Mz9xruG_PF9Nmvt3qCQb6jo_RLwREqXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Column+Generation+Approaches+for+Urban+Transit+Crew+Management+Problems&rft.jtitle=Transportation+science&rft.date=2005-05-01&rft.pub=INFORMS&rft.issn=0041-1655&rft.eissn=1526-5447&rft.volume=39&rft.issue=2&rft.spage=273&rft.epage=288&rft_id=info:doi/10.1287%2Ftrsc.1030.0078&rft.externalDocID=trsc.1030.0078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0041-1655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0041-1655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0041-1655&client=summon