Practitioner's Guide to Latent Class Analysis: Methodological Considerations and Common Pitfalls

Latent class analysis is a probabilistic modeling algorithm that allows clustering of data and statistical inference. There has been a recent upsurge in the application of latent class analysis in the fields of critical care, respiratory medicine, and beyond. In this review, we present a brief overv...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Critical care medicine Ročník 49; číslo 1; s. e63
Hlavní autoři: Sinha, Pratik, Calfee, Carolyn S, Delucchi, Kevin L
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.01.2021
Témata:
ISSN:1530-0293, 1530-0293
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Latent class analysis is a probabilistic modeling algorithm that allows clustering of data and statistical inference. There has been a recent upsurge in the application of latent class analysis in the fields of critical care, respiratory medicine, and beyond. In this review, we present a brief overview of the principles behind latent class analysis. Furthermore, in a stepwise manner, we outline the key processes necessary to perform latent class analysis including some of the challenges and pitfalls faced at each of these steps. The review provides a one-stop shop for investigators seeking to apply latent class analysis to their data.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1530-0293
1530-0293
DOI:10.1097/CCM.0000000000004710