Enhanced Polar Lights Optimization with Cryptobiosis and Differential Evolution for Global Optimization and Feature Selection

Optimization algorithms play a crucial role in solving complex problems across various fields, including global optimization and feature selection (FS). This paper presents the enhanced polar lights optimization with cryptobiosis and differential evolution (CPLODE), a novel improvement upon the orig...

Full description

Saved in:
Bibliographic Details
Published in:Biomimetics (Basel, Switzerland) Vol. 10; no. 1; p. 53
Main Authors: Gao, Yang, Cheng, Liang
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01.01.2025
MDPI
Subjects:
ISSN:2313-7673, 2313-7673
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Optimization algorithms play a crucial role in solving complex problems across various fields, including global optimization and feature selection (FS). This paper presents the enhanced polar lights optimization with cryptobiosis and differential evolution (CPLODE), a novel improvement upon the original polar lights optimization (PLO) algorithm. CPLODE integrates a cryptobiosis mechanism and differential evolution (DE) operators to enhance PLO’s search capabilities. The original PLO’s particle collision strategy is replaced with DE’s mutation and crossover operators, enabling a more effective global exploration and using a dynamic crossover rate to improve convergence. Furthermore, a cryptobiosis mechanism records and reuses historically successful solutions, thereby improving the greedy selection process. The experimental results on 29 CEC 2017 benchmark functions demonstrate CPLODE’s superior performance compared to eight classical optimization algorithms, with higher average ranks and faster convergence. Moreover, CPLODE achieved competitive results in feature selection on ten real-world datasets, outperforming several well-known binary metaheuristic algorithms in classification accuracy and feature reduction. These results highlight CPLODE’s effectiveness for both global optimization and feature selection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics10010053