Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes
Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective...
Gespeichert in:
| Veröffentlicht in: | Trends in endocrinology and metabolism Jg. 32; H. 2; S. 106 - 117 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Ltd
01.02.2021
|
| Schlagworte: | |
| ISSN: | 1043-2760, 1879-3061, 1879-3061 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D.
Blood flow restriction resistance training (BFRT), that is exercising under partial vascular occlusion via inflation cuffs – can induce gains in skeletal muscle mass and strength similar to those seen with classical resistance training, albeit with marked lower training load.Mechanistically, BFRT leads to accumulation of metabolites in myocytes and triggers the recruitment of higher-threshold motoneurons, induces cell swelling, and promotes protein biosynthesis, resulting in increased muscle mass and strength. Furthermore, low myocellular oxygen tension can induce angiogenesis, increase reactive oxygen species (ROS) production, mitochondrial biogenesis, and glucose transporter (GLUT) 4 expression.In addition to impaired glucose metabolism and physical fitness, individuals with type 2 diabetes are at increased risk of sarcopenia. For these individuals, low-load BFRT may be an effective exercise modality. |
|---|---|
| AbstractList | Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D. Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D.Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D. Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D. Blood flow restriction resistance training (BFRT), that is exercising under partial vascular occlusion via inflation cuffs – can induce gains in skeletal muscle mass and strength similar to those seen with classical resistance training, albeit with marked lower training load.Mechanistically, BFRT leads to accumulation of metabolites in myocytes and triggers the recruitment of higher-threshold motoneurons, induces cell swelling, and promotes protein biosynthesis, resulting in increased muscle mass and strength. Furthermore, low myocellular oxygen tension can induce angiogenesis, increase reactive oxygen species (ROS) production, mitochondrial biogenesis, and glucose transporter (GLUT) 4 expression.In addition to impaired glucose metabolism and physical fitness, individuals with type 2 diabetes are at increased risk of sarcopenia. For these individuals, low-load BFRT may be an effective exercise modality. |
| Author | Roden, Michael Saatmann, Nina Zaharia, Oana-Patricia Pesta, Dominik H. Loenneke, Jeremy P. |
| Author_xml | – sequence: 1 givenname: Nina surname: Saatmann fullname: Saatmann, Nina organization: Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany – sequence: 2 givenname: Oana-Patricia surname: Zaharia fullname: Zaharia, Oana-Patricia organization: Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany – sequence: 3 givenname: Jeremy P. surname: Loenneke fullname: Loenneke, Jeremy P. organization: Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, Oxford, MS, USA – sequence: 4 givenname: Michael surname: Roden fullname: Roden, Michael organization: Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany – sequence: 5 givenname: Dominik H. orcidid: 0000-0002-5089-3586 surname: Pesta fullname: Pesta, Dominik H. email: Dominik.Pesta@ddz.de organization: Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33358931$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk2LFDEQhoOsuB_6A7xIjl56TCXd6R4EYXedVWFB0RWPobtSgYyZzpj0qPPvTTurhwXXUxJ43kryVJ2yozGOxNhTEAsQoF-sFxNtFlLIcoaFAPGAnUDXLislNByVvahVJVstjtlpzmshoO6gecSOlVJNt1Rwwr6snCOcMo-OX4QYLb8K8Qf_SHlKHicfR776SQl9Jt6Pln-IOfshED_fboPHfiYy9yO_2W-JS_7a9wNNlB-zh64PmZ7crmfs89Xq5vJtdf3-zbvL8-sKG91OFWJd90hS2r7RqMXgsBuaQQNqrVzbiRZBWzeQUw0CSiuazlndytZiR8KpM_b8UHeb4rddebXZ-IwUQj9S3GUj61bVoKUUBX12i-6GDVmzTX7Tp735I6MAcAAwlV8mcn8REGYWbtamCDezcANgivCSae9k0E-_rUyp9-He5MtDkoqe756SyehpRLI-lY4YG_296Vd30hj8WBoSvtKe8jru0li8GzBZGmE-zaMwT0LxIKSq61Jg-e8C_7n8F--LwfI |
| CitedBy_id | crossref_primary_10_1016_j_jep_2024_118723 crossref_primary_10_3390_healthcare11142062 crossref_primary_10_3389_fphys_2023_1252052 crossref_primary_10_3357_AMHP_5855_2021 crossref_primary_10_1002_brb3_70683 crossref_primary_10_3390_sports12030068 crossref_primary_10_1080_07435800_2024_2353121 crossref_primary_10_1186_s13102_024_00873_x crossref_primary_10_1152_japplphysiol_00366_2021 crossref_primary_10_3390_ijerph192215041 crossref_primary_10_1186_s13098_025_01745_1 crossref_primary_10_14814_phy2_16041 crossref_primary_10_3389_fphys_2023_1155314 crossref_primary_10_1111_cpf_12873 crossref_primary_10_3389_fphys_2024_1417544 crossref_primary_10_3389_fspor_2022_1072154 crossref_primary_10_3390_ijms22147692 crossref_primary_10_1007_s00142_023_00615_0 crossref_primary_10_1139_apnm_2021_0409 crossref_primary_10_1186_s13063_025_09071_7 crossref_primary_10_3389_fendo_2024_1409267 crossref_primary_10_3390_metabo15060405 crossref_primary_10_1097_MD_0000000000039031 crossref_primary_10_14814_phy2_70495 crossref_primary_10_1016_j_jshs_2025_101030 crossref_primary_10_15857_ksep_2025_00157 crossref_primary_10_2478_bhk_2025_0018 crossref_primary_10_1186_s13102_023_00750_z crossref_primary_10_1152_jn_00028_2022 crossref_primary_10_3389_fphys_2022_808622 crossref_primary_10_1016_j_jor_2025_05_012 crossref_primary_10_1016_j_ptsp_2025_02_011 crossref_primary_10_1080_07853890_2023_2240329 crossref_primary_10_14814_phy2_16154 crossref_primary_10_1186_s40798_024_00804_7 crossref_primary_10_61186_aassjournal_1477 crossref_primary_10_1177_03000605251355996 crossref_primary_10_15857_ksep_2022_00318 crossref_primary_10_1515_teb_2024_2007 crossref_primary_10_3389_fendo_2024_1482985 crossref_primary_10_1002_pmic_202300078 crossref_primary_10_3389_fphys_2025_1549609 |
| Cites_doi | 10.1080/17461391.2017.1422281 10.1186/s12986-017-0173-7 10.1152/japplphysiol.01147.2009 10.1016/j.mehy.2011.10.014 10.1152/japplphysiol.00768.2019 10.1177/0269215518801440 10.1249/MSS.0b013e3181bdb454 10.1519/JSC.0000000000000734 10.1161/JAHA.115.002014 10.1007/s00421-011-2167-x 10.1038/bjp.2008.153 10.1111/sms.12210 10.1007/s40279-018-0994-1 10.1152/physrev.00031.2010 10.1007/BF00370757 10.1007/s40279-014-0288-1 10.1249/MSS.0b013e31815ddac6 10.1016/S0140-6736(10)60484-9 10.1016/j.metabol.2019.06.003 10.3389/fphys.2018.01448 10.1152/jappl.2000.88.1.61 10.1056/NEJM199610313351804 10.1016/0140-6736(93)90828-5 10.1210/jc.2011-0435 10.3389/fphys.2019.00656 10.3389/fphys.2019.00533 10.1113/JP279554 10.1152/japplphysiol.01266.2009 10.1055/s-0043-109555 10.2337/dc16-1728 10.18632/oncotarget.9564 10.2337/dc09-0264 10.2165/00007256-200434100-00004 10.1111/j.1475-097X.2011.01053.x 10.1111/j.1475-097X.2012.01158.x 10.1007/s00125-015-3629-1 10.1113/JP278056 10.1002/dvdy.21012 10.1249/MSS.0000000000001448 10.1007/s00421-006-0238-1 10.1007/s00421-018-4022-9 10.1161/CIRCHEARTFAILURE.119.006427 10.1007/s40279-017-0795-y 10.3390/ijms20112717 10.1111/sms.12297 10.3389/fphys.2020.00556 10.1007/s11892-017-0867-2 10.1152/japplphysiol.00109.2020 10.1111/apha.13045 10.1088/1361-6579/ab0d2a 10.1111/cpf.12312 10.1113/jphysiol.2012.237008 10.1016/j.jsams.2010.08.007 10.1113/JP273907 10.1097/00005768-200012000-00011 10.1111/j.1600-0838.2010.01100.x 10.1111/j.1600-0838.2010.01290.x 10.3389/fphys.2018.01796 10.1113/jphysiol.2009.179325 10.1113/JP277765 10.1038/s41586-019-1797-8 10.2337/diabetes.53.2.294 10.1139/y04-020 10.1038/s41598-020-64379-5 10.2337/db14-0590 10.1080/10715762.2018.1440293 10.1139/apnm-2018-0325 10.1111/sms.12396 10.1007/s40279-019-01137-2 10.1088/1361-6579/abb1fa 10.1001/jamanetworkopen.2018.3605 10.1038/ncb2329 10.1016/j.cardiores.2003.10.022 10.1016/j.exger.2017.10.004 10.1249/MSS.0000000000001573 10.1038/jcbfm.2010.229 10.1016/j.physbeh.2017.01.015 10.1152/ajpregu.00285.2011 10.1007/s00125-014-3303-z 10.1136/bjsports-2016-096329 10.1007/s00421-016-3328-8 10.3806/ijktr.7.7 10.1016/j.jshs.2019.07.001 10.1007/s00125-012-2513-5 10.1080/02640414.2019.1599315 10.1093/gerona/glu084 10.1249/JSR.0000000000000473 10.1152/japplphysiol.01267.2005 |
| ContentType | Journal Article |
| Copyright | 2020 The Authors The Authors Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| Copyright_xml | – notice: 2020 The Authors – notice: The Authors – notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.tem.2020.11.010 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-3061 |
| EndPage | 117 |
| ExternalDocumentID | 33358931 10_1016_j_tem_2020_11_010 S1043276020302344 1_s2_0_S1043276020302344 |
| Genre | Journal Article Review |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29Q 3O- 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDZ HMK HMO HVGLF HZ~ IHE J1W K-O KOM L7B LZ1 M29 M41 MO0 MVM N9A O-L O9- OAUVE OB0 ON- OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K WUQ XFW Z5R ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RCE RIG 6I. AAFTH AAIAV ABLVK ABYKQ AJBFU DOVZS LCYCR 9DU AAYXX CITATION AGCQF AGRNS NPM 7X8 |
| ID | FETCH-LOGICAL-c567t-cc44ace22da56c60bfc8b5b61c663f7807c16dfbef35c1c2d058fd6727dc8e0f3 |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607803800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1043-2760 1879-3061 |
| IngestDate | Sun Nov 09 09:47:59 EST 2025 Mon Jul 21 06:05:45 EDT 2025 Tue Nov 18 21:54:38 EST 2025 Sat Nov 29 07:08:10 EST 2025 Fri Feb 23 02:45:26 EST 2024 Tue Feb 25 19:56:48 EST 2025 Tue Oct 14 19:30:27 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | muscle mass muscle strength type 2 diabetes mellitus resistance training blood flow restriction training |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c567t-cc44ace22da56c60bfc8b5b61c663f7807c16dfbef35c1c2d058fd6727dc8e0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-5089-3586 |
| OpenAccessLink | https://www.clinicalkey.es/playcontent/1-s2.0-S1043276020302344 |
| PMID | 33358931 |
| PQID | 2473416220 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_2473416220 pubmed_primary_33358931 crossref_primary_10_1016_j_tem_2020_11_010 crossref_citationtrail_10_1016_j_tem_2020_11_010 elsevier_sciencedirect_doi_10_1016_j_tem_2020_11_010 elsevier_clinicalkeyesjournals_1_s2_0_S1043276020302344 elsevier_clinicalkey_doi_10_1016_j_tem_2020_11_010 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-01 |
| PublicationDateYYYYMMDD | 2021-02-01 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Trends in endocrinology and metabolism |
| PublicationTitleAlternate | Trends Endocrinol Metab |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Centner (bb0145) 2019; 49 West (bb0330) 2010; 108 Jessee (bb0100) 2018; 9 Joshi (bb0215) 2020; 128 Dankel (bb0105) 2019; 119 Giles (bb0080) 2017; 51 Sarwar (bb0180) 2010; 375 Scott (bb0445) 2015; 45 Loenneke (bb0095) 2012; 112 Mouser (bb0385) 2019; 44 Madarame (bb0405) 2013; 33 Srikanthan, Karlamangla (bb0190) 2011; 96 Christiansen (bb0130) 2018; 223 Hughes (bb0150) 2019; 49 Cerqueira (bb0035) 2020; 9 Yasuda (bb0155) 2016; 7 Mihaylova, Shaw (bb0135) 2011; 13 Christiansen (bb0125) 2020; 598 Roden (bb0355) 2012; 55 Brandner (bb0380) 2015; 25 Wozniak, Anderson (bb0275) 2007; 236 Perseghin (bb0440) 1996; 335 Uematsu (bb0270) 1995; 269 Mattocks (bb0415) 2018; 17 Morris (bb0245) 2011; 31 Roden, Shulman (bb0075) 2019; 576 Groennebaek (bb0235) 2019; 12 Li (bb0015) 2018; 50 Ferguson (bb0210) 2018; 18 Morton (bb0250) 2019; 597 Satoh (bb0345) 2011; 7 Pesta (bb0435) 2011; 301 Mattocks (bb0365) 2017; 171 Groennebaek (bb0220) 2018; 9 Holten (bb0265) 2004; 53 Christiansen (bb0340) 2019; 98 Kubota (bb0045) 2011; 14 Neto (bb0375) 2015; 29 Schwingshackl (bb0025) 2014; 57 Nielsen (bb0335) 2017; 595 Hughes, Patterson (bb0455) 2020; 128 Lin (bb0005) 2015; 4 Pesta (bb0020) 2017; 14 Fahs (bb0205) 2012; 32 Mouser (bb0200) 2019; 40 Spitz (bb0110) 2020; 41 Loenneke (bb0360) 2011; 21 Anderson, Wozniak (bb0280) 2004; 82 Mandsager (bb0010) 2018; 1 Barbalho (bb0055) 2019; 33 Mendonca (bb0395) 2020; 10 Abe (bb0115) 2006; 100 Centner (bb0225) 2018; 52 Takarada (bb0050) 2000; 32 Christiansen (bb0090) 2020; 598 Loenneke (bb0410) 2014; 24 Renzi (bb0370) 2010; 42 Toigo, Boutellier (bb0320) 2006; 97 Kambic (bb0175) 2019; 10 Takarada (bb0305) 2000; 88 Albers (bb0430) 2015; 64 Cook (bb0165) 2017; 99 Ozaki (bb0325) 2017; 37 Elsangedy (bb0195) 2018; 50 Velloso (bb0315) 2008; 154 Lixandrao (bb0450) 2018; 48 Patterson (bb0060) 2019; 10 Doessing (bb0310) 2010; 588 Nielsen (bb0255) 2012; 590 Berneis (bb0300) 1999; 276 Nielsen (bb0065) 2020; 11 Häussinger (bb0290) 1993; 341 Petrick (bb0070) 2019; 597 Abe (bb0120) 2010; 9 Roden (bb0350) 2015; 58 Nishino (bb0140) 2004; 61 Schiaffino, Reggiani (bb0420) 2011; 91 Klitgaard (bb0425) 1990; 416 Vargas-Ortiz (bb0240) 2019; 20 Jessee (bb0390) 2017; 38 Yasuda (bb0160) 2015; 70 Shimizu (bb0170) 2016; 116 Park (bb0185) 2009; 32 Clark (bb0400) 2011; 21 Kubota (bb0040) 2008; 40 Farup (bb0085) 2015; 25 Fry (bb0295) 2010; 108 Pesta, Roden (bb0230) 2017; 17 Fry (bb0260) 2004; 34 Colberg (bb0030) 2016; 39 Mattocks (bb0460) 2019; 37 Loenneke (bb0285) 2012; 78 Jessee (10.1016/j.tem.2020.11.010_bb0100) 2018; 9 Lin (10.1016/j.tem.2020.11.010_bb0005) 2015; 4 Park (10.1016/j.tem.2020.11.010_bb0185) 2009; 32 Christiansen (10.1016/j.tem.2020.11.010_bb0125) 2020; 598 Fry (10.1016/j.tem.2020.11.010_bb0260) 2004; 34 Albers (10.1016/j.tem.2020.11.010_bb0430) 2015; 64 Renzi (10.1016/j.tem.2020.11.010_bb0370) 2010; 42 Christiansen (10.1016/j.tem.2020.11.010_bb0340) 2019; 98 Loenneke (10.1016/j.tem.2020.11.010_bb0410) 2014; 24 Fahs (10.1016/j.tem.2020.11.010_bb0205) 2012; 32 Elsangedy (10.1016/j.tem.2020.11.010_bb0195) 2018; 50 Perseghin (10.1016/j.tem.2020.11.010_bb0440) 1996; 335 Kubota (10.1016/j.tem.2020.11.010_bb0040) 2008; 40 Holten (10.1016/j.tem.2020.11.010_bb0265) 2004; 53 Shimizu (10.1016/j.tem.2020.11.010_bb0170) 2016; 116 Schiaffino (10.1016/j.tem.2020.11.010_bb0420) 2011; 91 Farup (10.1016/j.tem.2020.11.010_bb0085) 2015; 25 Berneis (10.1016/j.tem.2020.11.010_bb0300) 1999; 276 Jessee (10.1016/j.tem.2020.11.010_bb0390) 2017; 38 Lixandrao (10.1016/j.tem.2020.11.010_bb0450) 2018; 48 Neto (10.1016/j.tem.2020.11.010_bb0375) 2015; 29 Joshi (10.1016/j.tem.2020.11.010_bb0215) 2020; 128 Loenneke (10.1016/j.tem.2020.11.010_bb0360) 2011; 21 Pesta (10.1016/j.tem.2020.11.010_bb0435) 2011; 301 Velloso (10.1016/j.tem.2020.11.010_bb0315) 2008; 154 Christiansen (10.1016/j.tem.2020.11.010_bb0130) 2018; 223 Schwingshackl (10.1016/j.tem.2020.11.010_bb0025) 2014; 57 Abe (10.1016/j.tem.2020.11.010_bb0120) 2010; 9 Mendonca (10.1016/j.tem.2020.11.010_bb0395) 2020; 10 Groennebaek (10.1016/j.tem.2020.11.010_bb0220) 2018; 9 Häussinger (10.1016/j.tem.2020.11.010_bb0290) 1993; 341 Mandsager (10.1016/j.tem.2020.11.010_bb0010) 2018; 1 Giles (10.1016/j.tem.2020.11.010_bb0080) 2017; 51 Uematsu (10.1016/j.tem.2020.11.010_bb0270) 1995; 269 Ferguson (10.1016/j.tem.2020.11.010_bb0210) 2018; 18 Wozniak (10.1016/j.tem.2020.11.010_bb0275) 2007; 236 Pesta (10.1016/j.tem.2020.11.010_bb0230) 2017; 17 Srikanthan (10.1016/j.tem.2020.11.010_bb0190) 2011; 96 Hughes (10.1016/j.tem.2020.11.010_bb0150) 2019; 49 Ozaki (10.1016/j.tem.2020.11.010_bb0325) 2017; 37 Klitgaard (10.1016/j.tem.2020.11.010_bb0425) 1990; 416 Nielsen (10.1016/j.tem.2020.11.010_bb0335) 2017; 595 Yasuda (10.1016/j.tem.2020.11.010_bb0155) 2016; 7 Satoh (10.1016/j.tem.2020.11.010_bb0345) 2011; 7 Scott (10.1016/j.tem.2020.11.010_bb0445) 2015; 45 Pesta (10.1016/j.tem.2020.11.010_bb0020) 2017; 14 Mouser (10.1016/j.tem.2020.11.010_bb0200) 2019; 40 Brandner (10.1016/j.tem.2020.11.010_bb0380) 2015; 25 Sarwar (10.1016/j.tem.2020.11.010_bb0180) 2010; 375 Abe (10.1016/j.tem.2020.11.010_bb0115) 2006; 100 Loenneke (10.1016/j.tem.2020.11.010_bb0095) 2012; 112 Roden (10.1016/j.tem.2020.11.010_bb0075) 2019; 576 Spitz (10.1016/j.tem.2020.11.010_bb0110) 2020; 41 Kambic (10.1016/j.tem.2020.11.010_bb0175) 2019; 10 Loenneke (10.1016/j.tem.2020.11.010_bb0285) 2012; 78 Barbalho (10.1016/j.tem.2020.11.010_bb0055) 2019; 33 Cook (10.1016/j.tem.2020.11.010_bb0165) 2017; 99 Vargas-Ortiz (10.1016/j.tem.2020.11.010_bb0240) 2019; 20 Takarada (10.1016/j.tem.2020.11.010_bb0305) 2000; 88 Kubota (10.1016/j.tem.2020.11.010_bb0045) 2011; 14 Nielsen (10.1016/j.tem.2020.11.010_bb0255) 2012; 590 Mattocks (10.1016/j.tem.2020.11.010_bb0460) 2019; 37 Christiansen (10.1016/j.tem.2020.11.010_bb0090) 2020; 598 Morris (10.1016/j.tem.2020.11.010_bb0245) 2011; 31 Takarada (10.1016/j.tem.2020.11.010_bb0050) 2000; 32 Petrick (10.1016/j.tem.2020.11.010_bb0070) 2019; 597 Li (10.1016/j.tem.2020.11.010_bb0015) 2018; 50 Centner (10.1016/j.tem.2020.11.010_bb0145) 2019; 49 Nishino (10.1016/j.tem.2020.11.010_bb0140) 2004; 61 Fry (10.1016/j.tem.2020.11.010_bb0295) 2010; 108 West (10.1016/j.tem.2020.11.010_bb0330) 2010; 108 Yasuda (10.1016/j.tem.2020.11.010_bb0160) 2015; 70 Doessing (10.1016/j.tem.2020.11.010_bb0310) 2010; 588 Anderson (10.1016/j.tem.2020.11.010_bb0280) 2004; 82 Madarame (10.1016/j.tem.2020.11.010_bb0405) 2013; 33 Mouser (10.1016/j.tem.2020.11.010_bb0385) 2019; 44 Roden (10.1016/j.tem.2020.11.010_bb0355) 2012; 55 Morton (10.1016/j.tem.2020.11.010_bb0250) 2019; 597 Mattocks (10.1016/j.tem.2020.11.010_bb0365) 2017; 171 Groennebaek (10.1016/j.tem.2020.11.010_bb0235) 2019; 12 Hughes (10.1016/j.tem.2020.11.010_bb0455) 2020; 128 Colberg (10.1016/j.tem.2020.11.010_bb0030) 2016; 39 Centner (10.1016/j.tem.2020.11.010_bb0225) 2018; 52 Clark (10.1016/j.tem.2020.11.010_bb0400) 2011; 21 Patterson (10.1016/j.tem.2020.11.010_bb0060) 2019; 10 Toigo (10.1016/j.tem.2020.11.010_bb0320) 2006; 97 Mihaylova (10.1016/j.tem.2020.11.010_bb0135) 2011; 13 Roden (10.1016/j.tem.2020.11.010_bb0350) 2015; 58 Dankel (10.1016/j.tem.2020.11.010_bb0105) 2019; 119 Cerqueira (10.1016/j.tem.2020.11.010_bb0035) 2020; 9 Nielsen (10.1016/j.tem.2020.11.010_bb0065) 2020; 11 Mattocks (10.1016/j.tem.2020.11.010_bb0415) 2018; 17 |
| References_xml | – volume: 119 start-page: 265 year: 2019 end-page: 278 ident: bb0105 article-title: Resistance training induced changes in strength and specific force at the fiber and whole muscle level: a meta-analysis publication-title: Eur. J. Appl. Physiol. – volume: 12 year: 2019 ident: bb0235 article-title: Effect of blood flow restricted resistance exercise and remote ischemic conditioning on functional capacity and myocellular adaptations in patients with heart failure publication-title: Circ. Heart Fail. – volume: 24 year: 2014 ident: bb0410 article-title: Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence publication-title: Scand. J. Med. Sci. Sports – volume: 49 start-page: 1787 year: 2019 end-page: 1805 ident: bb0150 article-title: Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service randomised controlled trial publication-title: Sports Med. – volume: 1 year: 2018 ident: bb0010 article-title: Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing publication-title: JAMA Netw. Open – volume: 39 start-page: 2065 year: 2016 end-page: 2079 ident: bb0030 article-title: Physical activity/exercise and diabetes: a position statement of the American Diabetes Association publication-title: Diabetes Care – volume: 9 start-page: 452 year: 2010 end-page: 458 ident: bb0120 article-title: Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO publication-title: J. Sports Sci. Med. – volume: 375 start-page: 2215 year: 2010 end-page: 2222 ident: bb0180 article-title: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies publication-title: Lancet – volume: 9 start-page: 1796 year: 2018 ident: bb0220 article-title: Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training publication-title: Front. Physiol. – volume: 34 start-page: 663 year: 2004 end-page: 679 ident: bb0260 article-title: The role of resistance exercise intensity on muscle fibre adaptations publication-title: Sports Med. – volume: 99 start-page: 138 year: 2017 end-page: 145 ident: bb0165 article-title: Blood flow restricted resistance training in older adults at risk of mobility limitations publication-title: Exp. Gerontol. – volume: 14 start-page: 95 year: 2011 end-page: 99 ident: bb0045 article-title: Blood flow restriction by low compressive force prevents disuse muscular weakness publication-title: J. Sci. Med. Sport – volume: 598 start-page: 2337 year: 2020 end-page: 2353 ident: bb0090 article-title: Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men publication-title: J. Physiol. – volume: 11 start-page: 556 year: 2020 ident: bb0065 article-title: Skeletal muscle microvascular changes in response to short-term blood flow restricted training-exercise-induced adaptations and signs of perivascular stress publication-title: Front. Physiol. – volume: 9 start-page: 152 year: 2020 end-page: 159 ident: bb0035 article-title: Effects of blood flow restriction without additional exercise on strength reductions and muscular atrophy following immobilization: a systematic review publication-title: J. Sport Health Sci. – volume: 48 start-page: 361 year: 2018 end-page: 378 ident: bb0450 article-title: Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis publication-title: Sports Med. – volume: 37 start-page: 379 year: 2017 end-page: 383 ident: bb0325 article-title: Blood flow-restricted walking in older women: does the acute hormonal response associate with muscle hypertrophy? publication-title: Clin. Physiol. Funct. Imaging – volume: 52 start-page: 446 year: 2018 end-page: 454 ident: bb0225 article-title: Acute effects of blood flow restriction on exercise-induced free radical production in young and healthy subjects publication-title: Free Radic. Res. – volume: 57 start-page: 1789 year: 2014 end-page: 1797 ident: bb0025 article-title: Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis publication-title: Diabetologia – volume: 64 start-page: 485 year: 2015 end-page: 497 ident: bb0430 article-title: Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes publication-title: Diabetes – volume: 53 start-page: 294 year: 2004 end-page: 305 ident: bb0265 article-title: Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes publication-title: Diabetes – volume: 55 start-page: 1235 year: 2012 end-page: 1239 ident: bb0355 article-title: Exercise in type 2 diabetes: to resist or to endure? publication-title: Diabetologia – volume: 10 start-page: 533 year: 2019 ident: bb0060 article-title: Blood flow restriction exercise: considerations of methodology, application, and safety publication-title: Front. Physiol. – volume: 32 start-page: 2035 year: 2000 end-page: 2039 ident: bb0050 article-title: Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles publication-title: Med. Sci. Sports Exerc. – volume: 13 start-page: 1016 year: 2011 end-page: 1023 ident: bb0135 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nat. Cell Biol. – volume: 31 start-page: 1003 year: 2011 end-page: 1019 ident: bb0245 article-title: Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning publication-title: J. Cereb. Blood Flow Metab. – volume: 50 start-page: 458 year: 2018 end-page: 467 ident: bb0015 article-title: Associations of muscle mass and strength with all-cause mortality among US older adults publication-title: Med. Sci. Sports Exerc. – volume: 276 start-page: E188 year: 1999 end-page: E195 ident: bb0300 article-title: Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans publication-title: Am. J. Phys. – volume: 21 start-page: 653 year: 2011 end-page: 662 ident: bb0400 article-title: Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults publication-title: Scand. J. Med. Sci. Sports – volume: 25 start-page: 770 year: 2015 end-page: 777 ident: bb0380 article-title: Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction publication-title: Scand. J. Med. Sci. Sports – volume: 154 start-page: 557 year: 2008 end-page: 568 ident: bb0315 article-title: Regulation of muscle mass by growth hormone and IGF-I publication-title: Br. J. Pharmacol. – volume: 108 start-page: 60 year: 2010 end-page: 67 ident: bb0330 article-title: Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors publication-title: J. Appl. Physiol. – volume: 42 start-page: 726 year: 2010 end-page: 732 ident: bb0370 article-title: Effects of leg blood flow restriction during walking on cardiovascular function publication-title: Med. Sci. Sports Exerc. – volume: 10 start-page: 656 year: 2019 ident: bb0175 article-title: Blood flow restriction resistance exercise improves muscle strength and hemodynamics, but not vascular function in coronary artery disease patients: a pilot randomized controlled trial publication-title: Front. Physiol. – volume: 588 start-page: 341 year: 2010 end-page: 351 ident: bb0310 article-title: Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis publication-title: J. Physiol. – volume: 32 start-page: 1993 year: 2009 end-page: 1997 ident: bb0185 article-title: Excessive loss of skeletal muscle mass in older adults with type 2 diabetes publication-title: Diabetes Care – volume: 82 start-page: 300 year: 2004 end-page: 310 ident: bb0280 article-title: Satellite cell activation on fibers: modeling events in vivo – an invited review publication-title: Can. J. Physiol. Pharmacol. – volume: 33 start-page: 11 year: 2013 end-page: 17 ident: bb0405 article-title: Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study publication-title: Clin. Physiol. Funct. Imaging – volume: 223 year: 2018 ident: bb0130 article-title: Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle publication-title: Acta Physiol. – volume: 96 start-page: 2898 year: 2011 end-page: 2903 ident: bb0190 article-title: Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey publication-title: J. Clin. Endocrinol. Metab. – volume: 108 start-page: 1199 year: 2010 end-page: 1209 ident: bb0295 article-title: Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men publication-title: J. Appl. Physiol. – volume: 51 start-page: 1688 year: 2017 end-page: 1694 ident: bb0080 article-title: Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial publication-title: Br. J. Sports Med. – volume: 100 start-page: 1460 year: 2006 end-page: 1466 ident: bb0115 article-title: Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training publication-title: J. Appl. Physiol. – volume: 91 start-page: 1447 year: 2011 end-page: 1531 ident: bb0420 article-title: Fiber types in mammalian skeletal muscles publication-title: Physiol. Rev. – volume: 41 year: 2020 ident: bb0110 article-title: Strength testing or strength training: considerations for future research publication-title: Physiol. Meas. – volume: 49 start-page: 95 year: 2019 end-page: 108 ident: bb0145 article-title: Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis publication-title: Sports Med. – volume: 7 start-page: 7 year: 2011 end-page: 12 ident: bb0345 article-title: Kaatsu training – application to metabolic syndrome publication-title: Int. J. KAATSU Training Res. – volume: 10 start-page: 7380 year: 2020 ident: bb0395 article-title: Nerve conduction during acute blood-flow restriction with and without low-intensity exercise Nerve conduction and blood-flow restriction publication-title: Sci. Rep. – volume: 61 start-page: 610 year: 2004 end-page: 619 ident: bb0140 article-title: Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection publication-title: Cardiovasc. Res. – volume: 128 start-page: 1423 year: 2020 end-page: 1431 ident: bb0215 article-title: Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults publication-title: J. Appl. Physiol. – volume: 4 year: 2015 ident: bb0005 article-title: Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials publication-title: J. Am. Heart Assoc. – volume: 597 start-page: 3985 year: 2019 end-page: 3997 ident: bb0070 article-title: Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H publication-title: J. Physiol. – volume: 21 start-page: 510 year: 2011 end-page: 518 ident: bb0360 article-title: Potential safety issues with blood flow restriction training publication-title: Scand. J. Med. Sci. Sports – volume: 32 start-page: 45 year: 2012 end-page: 51 ident: bb0205 article-title: Effect of different types of lower body resistance training on arterial compliance and calf blood flow publication-title: Clin. Physiol. Funct. Imaging – volume: 97 start-page: 643 year: 2006 end-page: 663 ident: bb0320 article-title: New fundamental resistance exercise determinants of molecular and cellular muscle adaptations publication-title: Eur. J. Appl. Physiol. – volume: 116 start-page: 749 year: 2016 end-page: 757 ident: bb0170 article-title: Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people publication-title: Eur. J. Appl. Physiol. – volume: 40 start-page: 529 year: 2008 end-page: 534 ident: bb0040 article-title: Prevention of disuse muscular weakness by restriction of blood flow publication-title: Med. Sci. Sports Exerc. – volume: 576 start-page: 51 year: 2019 end-page: 60 ident: bb0075 article-title: The integrative biology of type 2 diabetes publication-title: Nature – volume: 341 start-page: 1330 year: 1993 end-page: 1332 ident: bb0290 article-title: Cellular hydration state: an important determinant of protein catabolism in health and disease publication-title: Lancet – volume: 44 start-page: 288 year: 2019 end-page: 292 ident: bb0385 article-title: Very-low-load resistance exercise in the upper body with and without blood flow restriction: cardiovascular outcomes publication-title: Appl. Physiol. Nutr. Metab. – volume: 70 start-page: 950 year: 2015 end-page: 958 ident: bb0160 article-title: Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults publication-title: J. Gerontol. A Biol. Sci. Med. Sci. – volume: 301 start-page: R1078 year: 2011 end-page: R1087 ident: bb0435 article-title: Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. – volume: 78 start-page: 151 year: 2012 end-page: 154 ident: bb0285 article-title: The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling publication-title: Med. Hypotheses – volume: 37 start-page: 1857 year: 2019 end-page: 1864 ident: bb0460 article-title: Perceptual changes to progressive resistance training with and without blood flow restriction publication-title: J. Sports Sci. – volume: 20 start-page: 2717 year: 2019 ident: bb0240 article-title: Exercise and sirtuins: a way to mitochondrial health in skeletal muscle publication-title: Int. J. Mol. Sci. – volume: 45 start-page: 313 year: 2015 end-page: 325 ident: bb0445 article-title: Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development publication-title: Sports Med. – volume: 128 start-page: 914 year: 2020 end-page: 924 ident: bb0455 article-title: The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation publication-title: J. Appl. Physiol. – volume: 595 start-page: 4857 year: 2017 end-page: 4873 ident: bb0335 article-title: Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage publication-title: J. Physiol. – volume: 17 start-page: 129 year: 2018 end-page: 134 ident: bb0415 article-title: The application of blood flow restriction: lessons from the laboratory publication-title: Curr. Sports Med. Rep. – volume: 269 start-page: C1371 year: 1995 end-page: C1378 ident: bb0270 article-title: Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress publication-title: Am. J. Phys. – volume: 112 start-page: 1849 year: 2012 end-page: 1859 ident: bb0095 article-title: Low intensity blood flow restriction training: a meta-analysis publication-title: Eur. J. Appl. Physiol. – volume: 171 start-page: 181 year: 2017 end-page: 186 ident: bb0365 article-title: The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses publication-title: Physiol. Behav. – volume: 416 start-page: 470 year: 1990 end-page: 472 ident: bb0425 article-title: Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training publication-title: Pflugers Arch. – volume: 25 start-page: 754 year: 2015 end-page: 763 ident: bb0085 article-title: Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy publication-title: Scand. J. Med. Sci. Sports – volume: 38 start-page: 597 year: 2017 end-page: 603 ident: bb0390 article-title: The cardiovascular and perceptual response to very low load blood flow restricted exercise publication-title: Int. J. Sports Med. – volume: 58 start-page: 1693 year: 2015 end-page: 1698 ident: bb0350 article-title: Future of muscle research in diabetes: a look into the crystal ball publication-title: Diabetologia – volume: 14 start-page: 24 year: 2017 ident: bb0020 article-title: Resistance training to improve type 2 diabetes: working toward a prescription for the future publication-title: Nutr. Metab. – volume: 9 start-page: 1448 year: 2018 ident: bb0100 article-title: Muscle adaptations to high-load training and very low-load training with and without blood flow restriction publication-title: Front. Physiol. – volume: 18 start-page: 397 year: 2018 end-page: 406 ident: bb0210 article-title: The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction publication-title: Eur. J. Sport Sci. – volume: 98 start-page: 1 year: 2019 end-page: 15 ident: bb0340 article-title: Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans publication-title: Metabolism – volume: 598 start-page: 2337 year: 2020 end-page: 2353 ident: bb0125 article-title: Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men publication-title: J. Physiol. – volume: 88 start-page: 61 year: 2000 end-page: 65 ident: bb0305 article-title: Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion publication-title: J. Appl. Physiol. – volume: 50 start-page: 1472 year: 2018 end-page: 1479 ident: bb0195 article-title: Let the pleasure guide your resistance training intensity publication-title: Med. Sci. Sports Exerc. – volume: 29 start-page: 1064 year: 2015 end-page: 1070 ident: bb0375 article-title: Hypotensive effects of resistance exercises with blood flow restriction publication-title: J. Strength Cond. Res. – volume: 33 start-page: 233 year: 2019 end-page: 240 ident: bb0055 article-title: Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial publication-title: Clin. Rehabil. – volume: 7 start-page: 33595 year: 2016 end-page: 33607 ident: bb0155 article-title: Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women publication-title: Oncotarget – volume: 597 start-page: 4601 year: 2019 end-page: 4613 ident: bb0250 article-title: Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure publication-title: J. Physiol. – volume: 236 start-page: 240 year: 2007 end-page: 250 ident: bb0275 article-title: Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers publication-title: Dev. Dyn. – volume: 17 start-page: 41 year: 2017 ident: bb0230 article-title: The Janus head of oxidative stress in metabolic diseases and during physical exercise publication-title: Curr. Diab. Rep. – volume: 335 start-page: 1357 year: 1996 end-page: 1362 ident: bb0440 article-title: Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects publication-title: N. Engl. J. Med. – volume: 40 year: 2019 ident: bb0200 article-title: High-pressure blood flow restriction with very low load resistance training results in peripheral vascular adaptations similar to heavy resistance training publication-title: Physiol. Meas. – volume: 590 start-page: 4351 year: 2012 end-page: 4361 ident: bb0255 article-title: Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction publication-title: J. Physiol. – volume: 18 start-page: 397 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0210 article-title: The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction publication-title: Eur. J. Sport Sci. doi: 10.1080/17461391.2017.1422281 – volume: 14 start-page: 24 year: 2017 ident: 10.1016/j.tem.2020.11.010_bb0020 article-title: Resistance training to improve type 2 diabetes: working toward a prescription for the future publication-title: Nutr. Metab. doi: 10.1186/s12986-017-0173-7 – volume: 108 start-page: 60 year: 2010 ident: 10.1016/j.tem.2020.11.010_bb0330 article-title: Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01147.2009 – volume: 78 start-page: 151 year: 2012 ident: 10.1016/j.tem.2020.11.010_bb0285 article-title: The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2011.10.014 – volume: 128 start-page: 914 year: 2020 ident: 10.1016/j.tem.2020.11.010_bb0455 article-title: The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00768.2019 – volume: 33 start-page: 233 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0055 article-title: Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial publication-title: Clin. Rehabil. doi: 10.1177/0269215518801440 – volume: 42 start-page: 726 year: 2010 ident: 10.1016/j.tem.2020.11.010_bb0370 article-title: Effects of leg blood flow restriction during walking on cardiovascular function publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0b013e3181bdb454 – volume: 29 start-page: 1064 year: 2015 ident: 10.1016/j.tem.2020.11.010_bb0375 article-title: Hypotensive effects of resistance exercises with blood flow restriction publication-title: J. Strength Cond. Res. doi: 10.1519/JSC.0000000000000734 – volume: 4 year: 2015 ident: 10.1016/j.tem.2020.11.010_bb0005 article-title: Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.115.002014 – volume: 112 start-page: 1849 year: 2012 ident: 10.1016/j.tem.2020.11.010_bb0095 article-title: Low intensity blood flow restriction training: a meta-analysis publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-011-2167-x – volume: 154 start-page: 557 year: 2008 ident: 10.1016/j.tem.2020.11.010_bb0315 article-title: Regulation of muscle mass by growth hormone and IGF-I publication-title: Br. J. Pharmacol. doi: 10.1038/bjp.2008.153 – volume: 24 year: 2014 ident: 10.1016/j.tem.2020.11.010_bb0410 article-title: Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12210 – volume: 49 start-page: 95 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0145 article-title: Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis publication-title: Sports Med. doi: 10.1007/s40279-018-0994-1 – volume: 91 start-page: 1447 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0420 article-title: Fiber types in mammalian skeletal muscles publication-title: Physiol. Rev. doi: 10.1152/physrev.00031.2010 – volume: 416 start-page: 470 year: 1990 ident: 10.1016/j.tem.2020.11.010_bb0425 article-title: Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training publication-title: Pflugers Arch. doi: 10.1007/BF00370757 – volume: 45 start-page: 313 year: 2015 ident: 10.1016/j.tem.2020.11.010_bb0445 article-title: Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development publication-title: Sports Med. doi: 10.1007/s40279-014-0288-1 – volume: 40 start-page: 529 year: 2008 ident: 10.1016/j.tem.2020.11.010_bb0040 article-title: Prevention of disuse muscular weakness by restriction of blood flow publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0b013e31815ddac6 – volume: 375 start-page: 2215 year: 2010 ident: 10.1016/j.tem.2020.11.010_bb0180 article-title: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies publication-title: Lancet doi: 10.1016/S0140-6736(10)60484-9 – volume: 98 start-page: 1 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0340 article-title: Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans publication-title: Metabolism doi: 10.1016/j.metabol.2019.06.003 – volume: 9 start-page: 1448 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0100 article-title: Muscle adaptations to high-load training and very low-load training with and without blood flow restriction publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01448 – volume: 88 start-page: 61 year: 2000 ident: 10.1016/j.tem.2020.11.010_bb0305 article-title: Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion publication-title: J. Appl. Physiol. doi: 10.1152/jappl.2000.88.1.61 – volume: 335 start-page: 1357 year: 1996 ident: 10.1016/j.tem.2020.11.010_bb0440 article-title: Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199610313351804 – volume: 341 start-page: 1330 year: 1993 ident: 10.1016/j.tem.2020.11.010_bb0290 article-title: Cellular hydration state: an important determinant of protein catabolism in health and disease publication-title: Lancet doi: 10.1016/0140-6736(93)90828-5 – volume: 96 start-page: 2898 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0190 article-title: Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey publication-title: J. Clin. Endocrinol. Metab. doi: 10.1210/jc.2011-0435 – volume: 10 start-page: 656 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0175 article-title: Blood flow restriction resistance exercise improves muscle strength and hemodynamics, but not vascular function in coronary artery disease patients: a pilot randomized controlled trial publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00656 – volume: 10 start-page: 533 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0060 article-title: Blood flow restriction exercise: considerations of methodology, application, and safety publication-title: Front. Physiol. doi: 10.3389/fphys.2019.00533 – volume: 598 start-page: 2337 year: 2020 ident: 10.1016/j.tem.2020.11.010_bb0090 article-title: Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men publication-title: J. Physiol. doi: 10.1113/JP279554 – volume: 108 start-page: 1199 year: 2010 ident: 10.1016/j.tem.2020.11.010_bb0295 article-title: Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01266.2009 – volume: 38 start-page: 597 year: 2017 ident: 10.1016/j.tem.2020.11.010_bb0390 article-title: The cardiovascular and perceptual response to very low load blood flow restricted exercise publication-title: Int. J. Sports Med. doi: 10.1055/s-0043-109555 – volume: 39 start-page: 2065 year: 2016 ident: 10.1016/j.tem.2020.11.010_bb0030 article-title: Physical activity/exercise and diabetes: a position statement of the American Diabetes Association publication-title: Diabetes Care doi: 10.2337/dc16-1728 – volume: 7 start-page: 33595 year: 2016 ident: 10.1016/j.tem.2020.11.010_bb0155 article-title: Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women publication-title: Oncotarget doi: 10.18632/oncotarget.9564 – volume: 32 start-page: 1993 year: 2009 ident: 10.1016/j.tem.2020.11.010_bb0185 article-title: Excessive loss of skeletal muscle mass in older adults with type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc09-0264 – volume: 34 start-page: 663 year: 2004 ident: 10.1016/j.tem.2020.11.010_bb0260 article-title: The role of resistance exercise intensity on muscle fibre adaptations publication-title: Sports Med. doi: 10.2165/00007256-200434100-00004 – volume: 32 start-page: 45 year: 2012 ident: 10.1016/j.tem.2020.11.010_bb0205 article-title: Effect of different types of lower body resistance training on arterial compliance and calf blood flow publication-title: Clin. Physiol. Funct. Imaging doi: 10.1111/j.1475-097X.2011.01053.x – volume: 33 start-page: 11 year: 2013 ident: 10.1016/j.tem.2020.11.010_bb0405 article-title: Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study publication-title: Clin. Physiol. Funct. Imaging doi: 10.1111/j.1475-097X.2012.01158.x – volume: 58 start-page: 1693 year: 2015 ident: 10.1016/j.tem.2020.11.010_bb0350 article-title: Future of muscle research in diabetes: a look into the crystal ball publication-title: Diabetologia doi: 10.1007/s00125-015-3629-1 – volume: 597 start-page: 4601 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0250 article-title: Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure publication-title: J. Physiol. doi: 10.1113/JP278056 – volume: 236 start-page: 240 year: 2007 ident: 10.1016/j.tem.2020.11.010_bb0275 article-title: Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers publication-title: Dev. Dyn. doi: 10.1002/dvdy.21012 – volume: 50 start-page: 458 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0015 article-title: Associations of muscle mass and strength with all-cause mortality among US older adults publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000001448 – volume: 97 start-page: 643 year: 2006 ident: 10.1016/j.tem.2020.11.010_bb0320 article-title: New fundamental resistance exercise determinants of molecular and cellular muscle adaptations publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-006-0238-1 – volume: 119 start-page: 265 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0105 article-title: Resistance training induced changes in strength and specific force at the fiber and whole muscle level: a meta-analysis publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-018-4022-9 – volume: 12 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0235 article-title: Effect of blood flow restricted resistance exercise and remote ischemic conditioning on functional capacity and myocellular adaptations in patients with heart failure publication-title: Circ. Heart Fail. doi: 10.1161/CIRCHEARTFAILURE.119.006427 – volume: 276 start-page: E188 year: 1999 ident: 10.1016/j.tem.2020.11.010_bb0300 article-title: Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans publication-title: Am. J. Phys. – volume: 48 start-page: 361 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0450 article-title: Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis publication-title: Sports Med. doi: 10.1007/s40279-017-0795-y – volume: 20 start-page: 2717 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0240 article-title: Exercise and sirtuins: a way to mitochondrial health in skeletal muscle publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20112717 – volume: 25 start-page: 770 year: 2015 ident: 10.1016/j.tem.2020.11.010_bb0380 article-title: Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12297 – volume: 11 start-page: 556 year: 2020 ident: 10.1016/j.tem.2020.11.010_bb0065 article-title: Skeletal muscle microvascular changes in response to short-term blood flow restricted training-exercise-induced adaptations and signs of perivascular stress publication-title: Front. Physiol. doi: 10.3389/fphys.2020.00556 – volume: 269 start-page: C1371 year: 1995 ident: 10.1016/j.tem.2020.11.010_bb0270 article-title: Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress publication-title: Am. J. Phys. – volume: 17 start-page: 41 year: 2017 ident: 10.1016/j.tem.2020.11.010_bb0230 article-title: The Janus head of oxidative stress in metabolic diseases and during physical exercise publication-title: Curr. Diab. Rep. doi: 10.1007/s11892-017-0867-2 – volume: 128 start-page: 1423 year: 2020 ident: 10.1016/j.tem.2020.11.010_bb0215 article-title: Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00109.2020 – volume: 223 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0130 article-title: Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle publication-title: Acta Physiol. doi: 10.1111/apha.13045 – volume: 40 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0200 article-title: High-pressure blood flow restriction with very low load resistance training results in peripheral vascular adaptations similar to heavy resistance training publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab0d2a – volume: 37 start-page: 379 year: 2017 ident: 10.1016/j.tem.2020.11.010_bb0325 article-title: Blood flow-restricted walking in older women: does the acute hormonal response associate with muscle hypertrophy? publication-title: Clin. Physiol. Funct. Imaging doi: 10.1111/cpf.12312 – volume: 590 start-page: 4351 year: 2012 ident: 10.1016/j.tem.2020.11.010_bb0255 article-title: Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.237008 – volume: 14 start-page: 95 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0045 article-title: Blood flow restriction by low compressive force prevents disuse muscular weakness publication-title: J. Sci. Med. Sport doi: 10.1016/j.jsams.2010.08.007 – volume: 595 start-page: 4857 year: 2017 ident: 10.1016/j.tem.2020.11.010_bb0335 article-title: Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage publication-title: J. Physiol. doi: 10.1113/JP273907 – volume: 32 start-page: 2035 year: 2000 ident: 10.1016/j.tem.2020.11.010_bb0050 article-title: Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles publication-title: Med. Sci. Sports Exerc. doi: 10.1097/00005768-200012000-00011 – volume: 21 start-page: 653 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0400 article-title: Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/j.1600-0838.2010.01100.x – volume: 21 start-page: 510 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0360 article-title: Potential safety issues with blood flow restriction training publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/j.1600-0838.2010.01290.x – volume: 9 start-page: 1796 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0220 article-title: Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training publication-title: Front. Physiol. doi: 10.3389/fphys.2018.01796 – volume: 588 start-page: 341 year: 2010 ident: 10.1016/j.tem.2020.11.010_bb0310 article-title: Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis publication-title: J. Physiol. doi: 10.1113/jphysiol.2009.179325 – volume: 597 start-page: 3985 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0070 article-title: Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H2O2 emission rates in human skeletal muscle publication-title: J. Physiol. doi: 10.1113/JP277765 – volume: 576 start-page: 51 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0075 article-title: The integrative biology of type 2 diabetes publication-title: Nature doi: 10.1038/s41586-019-1797-8 – volume: 598 start-page: 2337 year: 2020 ident: 10.1016/j.tem.2020.11.010_bb0125 article-title: Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men publication-title: J. Physiol. doi: 10.1113/JP279554 – volume: 53 start-page: 294 year: 2004 ident: 10.1016/j.tem.2020.11.010_bb0265 article-title: Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes publication-title: Diabetes doi: 10.2337/diabetes.53.2.294 – volume: 82 start-page: 300 year: 2004 ident: 10.1016/j.tem.2020.11.010_bb0280 article-title: Satellite cell activation on fibers: modeling events in vivo – an invited review publication-title: Can. J. Physiol. Pharmacol. doi: 10.1139/y04-020 – volume: 10 start-page: 7380 year: 2020 ident: 10.1016/j.tem.2020.11.010_bb0395 article-title: Nerve conduction during acute blood-flow restriction with and without low-intensity exercise Nerve conduction and blood-flow restriction publication-title: Sci. Rep. doi: 10.1038/s41598-020-64379-5 – volume: 64 start-page: 485 year: 2015 ident: 10.1016/j.tem.2020.11.010_bb0430 article-title: Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes publication-title: Diabetes doi: 10.2337/db14-0590 – volume: 52 start-page: 446 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0225 article-title: Acute effects of blood flow restriction on exercise-induced free radical production in young and healthy subjects publication-title: Free Radic. Res. doi: 10.1080/10715762.2018.1440293 – volume: 44 start-page: 288 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0385 article-title: Very-low-load resistance exercise in the upper body with and without blood flow restriction: cardiovascular outcomes publication-title: Appl. Physiol. Nutr. Metab. doi: 10.1139/apnm-2018-0325 – volume: 25 start-page: 754 year: 2015 ident: 10.1016/j.tem.2020.11.010_bb0085 article-title: Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy publication-title: Scand. J. Med. Sci. Sports doi: 10.1111/sms.12396 – volume: 49 start-page: 1787 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0150 article-title: Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service randomised controlled trial publication-title: Sports Med. doi: 10.1007/s40279-019-01137-2 – volume: 41 year: 2020 ident: 10.1016/j.tem.2020.11.010_bb0110 article-title: Strength testing or strength training: considerations for future research publication-title: Physiol. Meas. doi: 10.1088/1361-6579/abb1fa – volume: 1 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0010 article-title: Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing publication-title: JAMA Netw. Open doi: 10.1001/jamanetworkopen.2018.3605 – volume: 13 start-page: 1016 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0135 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nat. Cell Biol. doi: 10.1038/ncb2329 – volume: 61 start-page: 610 year: 2004 ident: 10.1016/j.tem.2020.11.010_bb0140 article-title: Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2003.10.022 – volume: 99 start-page: 138 year: 2017 ident: 10.1016/j.tem.2020.11.010_bb0165 article-title: Blood flow restricted resistance training in older adults at risk of mobility limitations publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2017.10.004 – volume: 50 start-page: 1472 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0195 article-title: Let the pleasure guide your resistance training intensity publication-title: Med. Sci. Sports Exerc. doi: 10.1249/MSS.0000000000001573 – volume: 31 start-page: 1003 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0245 article-title: Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2010.229 – volume: 171 start-page: 181 year: 2017 ident: 10.1016/j.tem.2020.11.010_bb0365 article-title: The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses publication-title: Physiol. Behav. doi: 10.1016/j.physbeh.2017.01.015 – volume: 301 start-page: R1078 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0435 article-title: Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol. doi: 10.1152/ajpregu.00285.2011 – volume: 57 start-page: 1789 year: 2014 ident: 10.1016/j.tem.2020.11.010_bb0025 article-title: Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis publication-title: Diabetologia doi: 10.1007/s00125-014-3303-z – volume: 51 start-page: 1688 year: 2017 ident: 10.1016/j.tem.2020.11.010_bb0080 article-title: Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial publication-title: Br. J. Sports Med. doi: 10.1136/bjsports-2016-096329 – volume: 9 start-page: 452 year: 2010 ident: 10.1016/j.tem.2020.11.010_bb0120 article-title: Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2MAX in young men publication-title: J. Sports Sci. Med. – volume: 116 start-page: 749 year: 2016 ident: 10.1016/j.tem.2020.11.010_bb0170 article-title: Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people publication-title: Eur. J. Appl. Physiol. doi: 10.1007/s00421-016-3328-8 – volume: 7 start-page: 7 year: 2011 ident: 10.1016/j.tem.2020.11.010_bb0345 article-title: Kaatsu training – application to metabolic syndrome publication-title: Int. J. KAATSU Training Res. doi: 10.3806/ijktr.7.7 – volume: 9 start-page: 152 year: 2020 ident: 10.1016/j.tem.2020.11.010_bb0035 article-title: Effects of blood flow restriction without additional exercise on strength reductions and muscular atrophy following immobilization: a systematic review publication-title: J. Sport Health Sci. doi: 10.1016/j.jshs.2019.07.001 – volume: 55 start-page: 1235 year: 2012 ident: 10.1016/j.tem.2020.11.010_bb0355 article-title: Exercise in type 2 diabetes: to resist or to endure? publication-title: Diabetologia doi: 10.1007/s00125-012-2513-5 – volume: 37 start-page: 1857 year: 2019 ident: 10.1016/j.tem.2020.11.010_bb0460 article-title: Perceptual changes to progressive resistance training with and without blood flow restriction publication-title: J. Sports Sci. doi: 10.1080/02640414.2019.1599315 – volume: 70 start-page: 950 year: 2015 ident: 10.1016/j.tem.2020.11.010_bb0160 article-title: Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults publication-title: J. Gerontol. A Biol. Sci. Med. Sci. doi: 10.1093/gerona/glu084 – volume: 17 start-page: 129 year: 2018 ident: 10.1016/j.tem.2020.11.010_bb0415 article-title: The application of blood flow restriction: lessons from the laboratory publication-title: Curr. Sports Med. Rep. doi: 10.1249/JSR.0000000000000473 – volume: 100 start-page: 1460 year: 2006 ident: 10.1016/j.tem.2020.11.010_bb0115 article-title: Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.01267.2005 |
| SSID | ssj0014815 |
| Score | 2.5388105 |
| SecondaryResourceType | review_article |
| Snippet | Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 106 |
| SubjectTerms | blood flow restriction training Endocrinology and Metabolism muscle mass muscle strength resistance training type 2 diabetes mellitus |
| Title | Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1043276020302344 https://www.clinicalkey.es/playcontent/1-s2.0-S1043276020302344 https://dx.doi.org/10.1016/j.tem.2020.11.010 https://www.ncbi.nlm.nih.gov/pubmed/33358931 https://www.proquest.com/docview/2473416220 |
| Volume | 32 |
| WOSCitedRecordID | wos000607803800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3061 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014815 issn: 1043-2760 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DU17QXxTPiYj8QTKlDhxnDwO1AkQFARD9M1yHVvr1CZVk037K_ibOcd2EgEd8IAqpVUcJ6rvl_P5_Ls7hJ4LEUdiTouA5GERJHmUBSJJRaCpJkITKpRO2mITbDrNZrP802j03cfCXC5ZWWZXV_n6v4oazoGwTejsP4i7uymcgN8gdDiC2OH4V4Kf9AyNV4aV_vJkWZk9AFOgw9YFn7gySzZSoDJvxVJZe3TALT-1zllHmamHVmxPpIXvCvRO2WdyWqkGcLX0mQmN80aIZuVqMU9dte7WVy3OYKHeGq8fRSkCWy1g0bW_r8wk4BKCqo2Je-mC0T5XTl8Oaf_OeUEiz3c2c49VuBkz3AubkN1r5N7j2S2MrXqN2uwEv6p964E4P2qUSS5AzERwFFq67EDi61Ur8jiOKVhpUT8DdrxE37SD9gijOWjJveO3k9m7bl_KpLbxe-MtS_CnJx6gfX-PbYbOtoVMa9Cc3kI33UoEH1sE3UYjVd5B-x8c1-Iu-uaAhCuNWyBhAyQ8ABL2QMIgeOyBhIdAwosSGyBhgj2Q7qGvJ5PT128CV4YjkDRlTSBlkgipCCkETWUazrXM5nSeRhKsVc2ykMkoLfRc6ZjKSJIipJkuzA5_ITMV6vg-2i2rUj1EWBuLKaFFFEuVCE1zs4CWYcx0HAv4jFHox4xLl6PelEpZck9GPOcw4tyMOKxdOYz4GL3ouqxtgpbrLiZeENxHHsNcyQFH13Viv-ukavfS1zziNeEh_xKZ_JYsNZv7YAonyRglXU9n0FpD9U8PfOYxwkHZmx08UarqouYkYWB1poTANQ8seLo_7XH3aGvLY3TQv4NP0G6zuVBP0Q152SzqzSHaYbPs0AH-B56Dz7g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Blood+Flow+Restriction+Exercise+and+Possible+Applications+in+Type+2+Diabetes&rft.jtitle=Trends+in+endocrinology+and+metabolism&rft.au=Saatmann%2C+Nina&rft.au=Zaharia%2C+Oana-Patricia&rft.au=Loenneke%2C+Jeremy+P&rft.au=Roden%2C+Michael&rft.date=2021-02-01&rft.eissn=1879-3061&rft.volume=32&rft.issue=2&rft.spage=106&rft_id=info:doi/10.1016%2Fj.tem.2020.11.010&rft_id=info%3Apmid%2F33358931&rft.externalDocID=33358931 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-2760&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-2760&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-2760&client=summon |