Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes

Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in endocrinology and metabolism Jg. 32; H. 2; S. 106 - 117
Hauptverfasser: Saatmann, Nina, Zaharia, Oana-Patricia, Loenneke, Jeremy P., Roden, Michael, Pesta, Dominik H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Elsevier Ltd 01.02.2021
Schlagworte:
ISSN:1043-2760, 1879-3061, 1879-3061
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D. Blood flow restriction resistance training (BFRT), that is exercising under partial vascular occlusion via inflation cuffs – can induce gains in skeletal muscle mass and strength similar to those seen with classical resistance training, albeit with marked lower training load.Mechanistically, BFRT leads to accumulation of metabolites in myocytes and triggers the recruitment of higher-threshold motoneurons, induces cell swelling, and promotes protein biosynthesis, resulting in increased muscle mass and strength. Furthermore, low myocellular oxygen tension can induce angiogenesis, increase reactive oxygen species (ROS) production, mitochondrial biogenesis, and glucose transporter (GLUT) 4 expression.In addition to impaired glucose metabolism and physical fitness, individuals with type 2 diabetes are at increased risk of sarcopenia. For these individuals, low-load BFRT may be an effective exercise modality.
AbstractList Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D.
Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D.Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D.
Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load resistance training, mechanical load is markedly reduced with BFRT, but induces similar gains in muscle mass and strength. BFRT is thus an effective training strategy for people with physical limitations. Recent research indicates that BFRT has beneficial effects on glucose and mitochondrial metabolism. BFRT may therefore qualify as a valuable exercise alternative for individuals with type 2 diabetes (T2D), a disorder characterized by impaired glucose metabolism, musculoskeletal decline, and exacerbated progression of sarcopenia. This review covers the effects of BFRT in healthy populations and in persons with impaired physical fitness, the mechanisms of action of this novel training modality, and possible applications for individuals with T2D. Blood flow restriction resistance training (BFRT), that is exercising under partial vascular occlusion via inflation cuffs – can induce gains in skeletal muscle mass and strength similar to those seen with classical resistance training, albeit with marked lower training load.Mechanistically, BFRT leads to accumulation of metabolites in myocytes and triggers the recruitment of higher-threshold motoneurons, induces cell swelling, and promotes protein biosynthesis, resulting in increased muscle mass and strength. Furthermore, low myocellular oxygen tension can induce angiogenesis, increase reactive oxygen species (ROS) production, mitochondrial biogenesis, and glucose transporter (GLUT) 4 expression.In addition to impaired glucose metabolism and physical fitness, individuals with type 2 diabetes are at increased risk of sarcopenia. For these individuals, low-load BFRT may be an effective exercise modality.
Author Roden, Michael
Saatmann, Nina
Zaharia, Oana-Patricia
Pesta, Dominik H.
Loenneke, Jeremy P.
Author_xml – sequence: 1
  givenname: Nina
  surname: Saatmann
  fullname: Saatmann, Nina
  organization: Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany
– sequence: 2
  givenname: Oana-Patricia
  surname: Zaharia
  fullname: Zaharia, Oana-Patricia
  organization: Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany
– sequence: 3
  givenname: Jeremy P.
  surname: Loenneke
  fullname: Loenneke, Jeremy P.
  organization: Department of Health, Exercise Science, and Recreation Management, Kevser Ermin Applied Physiology Laboratory, The University of Mississippi, Oxford, MS, USA
– sequence: 4
  givenname: Michael
  surname: Roden
  fullname: Roden, Michael
  organization: Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany
– sequence: 5
  givenname: Dominik H.
  orcidid: 0000-0002-5089-3586
  surname: Pesta
  fullname: Pesta, Dominik H.
  email: Dominik.Pesta@ddz.de
  organization: Institute for Clinical Diabetology, Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33358931$$D View this record in MEDLINE/PubMed
BookMark eNqFkk2LFDEQhoOsuB_6A7xIjl56TCXd6R4EYXedVWFB0RWPobtSgYyZzpj0qPPvTTurhwXXUxJ43kryVJ2yozGOxNhTEAsQoF-sFxNtFlLIcoaFAPGAnUDXLislNByVvahVJVstjtlpzmshoO6gecSOlVJNt1Rwwr6snCOcMo-OX4QYLb8K8Qf_SHlKHicfR776SQl9Jt6Pln-IOfshED_fboPHfiYy9yO_2W-JS_7a9wNNlB-zh64PmZ7crmfs89Xq5vJtdf3-zbvL8-sKG91OFWJd90hS2r7RqMXgsBuaQQNqrVzbiRZBWzeQUw0CSiuazlndytZiR8KpM_b8UHeb4rddebXZ-IwUQj9S3GUj61bVoKUUBX12i-6GDVmzTX7Tp735I6MAcAAwlV8mcn8REGYWbtamCDezcANgivCSae9k0E-_rUyp9-He5MtDkoqe756SyehpRLI-lY4YG_296Vd30hj8WBoSvtKe8jru0li8GzBZGmE-zaMwT0LxIKSq61Jg-e8C_7n8F--LwfI
CitedBy_id crossref_primary_10_1016_j_jep_2024_118723
crossref_primary_10_3390_healthcare11142062
crossref_primary_10_3389_fphys_2023_1252052
crossref_primary_10_3357_AMHP_5855_2021
crossref_primary_10_1002_brb3_70683
crossref_primary_10_3390_sports12030068
crossref_primary_10_1080_07435800_2024_2353121
crossref_primary_10_1186_s13102_024_00873_x
crossref_primary_10_1152_japplphysiol_00366_2021
crossref_primary_10_3390_ijerph192215041
crossref_primary_10_1186_s13098_025_01745_1
crossref_primary_10_14814_phy2_16041
crossref_primary_10_3389_fphys_2023_1155314
crossref_primary_10_1111_cpf_12873
crossref_primary_10_3389_fphys_2024_1417544
crossref_primary_10_3389_fspor_2022_1072154
crossref_primary_10_3390_ijms22147692
crossref_primary_10_1007_s00142_023_00615_0
crossref_primary_10_1139_apnm_2021_0409
crossref_primary_10_1186_s13063_025_09071_7
crossref_primary_10_3389_fendo_2024_1409267
crossref_primary_10_3390_metabo15060405
crossref_primary_10_1097_MD_0000000000039031
crossref_primary_10_14814_phy2_70495
crossref_primary_10_1016_j_jshs_2025_101030
crossref_primary_10_15857_ksep_2025_00157
crossref_primary_10_2478_bhk_2025_0018
crossref_primary_10_1186_s13102_023_00750_z
crossref_primary_10_1152_jn_00028_2022
crossref_primary_10_3389_fphys_2022_808622
crossref_primary_10_1016_j_jor_2025_05_012
crossref_primary_10_1016_j_ptsp_2025_02_011
crossref_primary_10_1080_07853890_2023_2240329
crossref_primary_10_14814_phy2_16154
crossref_primary_10_1186_s40798_024_00804_7
crossref_primary_10_61186_aassjournal_1477
crossref_primary_10_1177_03000605251355996
crossref_primary_10_15857_ksep_2022_00318
crossref_primary_10_1515_teb_2024_2007
crossref_primary_10_3389_fendo_2024_1482985
crossref_primary_10_1002_pmic_202300078
crossref_primary_10_3389_fphys_2025_1549609
Cites_doi 10.1080/17461391.2017.1422281
10.1186/s12986-017-0173-7
10.1152/japplphysiol.01147.2009
10.1016/j.mehy.2011.10.014
10.1152/japplphysiol.00768.2019
10.1177/0269215518801440
10.1249/MSS.0b013e3181bdb454
10.1519/JSC.0000000000000734
10.1161/JAHA.115.002014
10.1007/s00421-011-2167-x
10.1038/bjp.2008.153
10.1111/sms.12210
10.1007/s40279-018-0994-1
10.1152/physrev.00031.2010
10.1007/BF00370757
10.1007/s40279-014-0288-1
10.1249/MSS.0b013e31815ddac6
10.1016/S0140-6736(10)60484-9
10.1016/j.metabol.2019.06.003
10.3389/fphys.2018.01448
10.1152/jappl.2000.88.1.61
10.1056/NEJM199610313351804
10.1016/0140-6736(93)90828-5
10.1210/jc.2011-0435
10.3389/fphys.2019.00656
10.3389/fphys.2019.00533
10.1113/JP279554
10.1152/japplphysiol.01266.2009
10.1055/s-0043-109555
10.2337/dc16-1728
10.18632/oncotarget.9564
10.2337/dc09-0264
10.2165/00007256-200434100-00004
10.1111/j.1475-097X.2011.01053.x
10.1111/j.1475-097X.2012.01158.x
10.1007/s00125-015-3629-1
10.1113/JP278056
10.1002/dvdy.21012
10.1249/MSS.0000000000001448
10.1007/s00421-006-0238-1
10.1007/s00421-018-4022-9
10.1161/CIRCHEARTFAILURE.119.006427
10.1007/s40279-017-0795-y
10.3390/ijms20112717
10.1111/sms.12297
10.3389/fphys.2020.00556
10.1007/s11892-017-0867-2
10.1152/japplphysiol.00109.2020
10.1111/apha.13045
10.1088/1361-6579/ab0d2a
10.1111/cpf.12312
10.1113/jphysiol.2012.237008
10.1016/j.jsams.2010.08.007
10.1113/JP273907
10.1097/00005768-200012000-00011
10.1111/j.1600-0838.2010.01100.x
10.1111/j.1600-0838.2010.01290.x
10.3389/fphys.2018.01796
10.1113/jphysiol.2009.179325
10.1113/JP277765
10.1038/s41586-019-1797-8
10.2337/diabetes.53.2.294
10.1139/y04-020
10.1038/s41598-020-64379-5
10.2337/db14-0590
10.1080/10715762.2018.1440293
10.1139/apnm-2018-0325
10.1111/sms.12396
10.1007/s40279-019-01137-2
10.1088/1361-6579/abb1fa
10.1001/jamanetworkopen.2018.3605
10.1038/ncb2329
10.1016/j.cardiores.2003.10.022
10.1016/j.exger.2017.10.004
10.1249/MSS.0000000000001573
10.1038/jcbfm.2010.229
10.1016/j.physbeh.2017.01.015
10.1152/ajpregu.00285.2011
10.1007/s00125-014-3303-z
10.1136/bjsports-2016-096329
10.1007/s00421-016-3328-8
10.3806/ijktr.7.7
10.1016/j.jshs.2019.07.001
10.1007/s00125-012-2513-5
10.1080/02640414.2019.1599315
10.1093/gerona/glu084
10.1249/JSR.0000000000000473
10.1152/japplphysiol.01267.2005
ContentType Journal Article
Copyright 2020 The Authors
The Authors
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2020 The Authors
– notice: The Authors
– notice: Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.tem.2020.11.010
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-3061
EndPage 117
ExternalDocumentID 33358931
10_1016_j_tem_2020_11_010
S1043276020302344
1_s2_0_S1043276020302344
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29Q
3O-
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAMRU
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LZ1
M29
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OB0
ON-
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
XFW
Z5R
~G-
~HD
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RCE
RIG
6I.
AAFTH
AAIAV
ABLVK
ABYKQ
AJBFU
DOVZS
LCYCR
9DU
AAYXX
CITATION
AGCQF
AGRNS
NPM
7X8
ID FETCH-LOGICAL-c567t-cc44ace22da56c60bfc8b5b61c663f7807c16dfbef35c1c2d058fd6727dc8e0f3
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000607803800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1043-2760
1879-3061
IngestDate Sun Nov 09 09:47:59 EST 2025
Mon Jul 21 06:05:45 EDT 2025
Tue Nov 18 21:54:38 EST 2025
Sat Nov 29 07:08:10 EST 2025
Fri Feb 23 02:45:26 EST 2024
Tue Feb 25 19:56:48 EST 2025
Tue Oct 14 19:30:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords muscle mass
muscle strength
type 2 diabetes mellitus
resistance training
blood flow restriction training
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-cc44ace22da56c60bfc8b5b61c663f7807c16dfbef35c1c2d058fd6727dc8e0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5089-3586
OpenAccessLink https://www.clinicalkey.es/playcontent/1-s2.0-S1043276020302344
PMID 33358931
PQID 2473416220
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2473416220
pubmed_primary_33358931
crossref_primary_10_1016_j_tem_2020_11_010
crossref_citationtrail_10_1016_j_tem_2020_11_010
elsevier_sciencedirect_doi_10_1016_j_tem_2020_11_010
elsevier_clinicalkeyesjournals_1_s2_0_S1043276020302344
elsevier_clinicalkey_doi_10_1016_j_tem_2020_11_010
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Trends in endocrinology and metabolism
PublicationTitleAlternate Trends Endocrinol Metab
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Centner (bb0145) 2019; 49
West (bb0330) 2010; 108
Jessee (bb0100) 2018; 9
Joshi (bb0215) 2020; 128
Dankel (bb0105) 2019; 119
Giles (bb0080) 2017; 51
Sarwar (bb0180) 2010; 375
Scott (bb0445) 2015; 45
Loenneke (bb0095) 2012; 112
Mouser (bb0385) 2019; 44
Madarame (bb0405) 2013; 33
Srikanthan, Karlamangla (bb0190) 2011; 96
Christiansen (bb0130) 2018; 223
Hughes (bb0150) 2019; 49
Cerqueira (bb0035) 2020; 9
Yasuda (bb0155) 2016; 7
Mihaylova, Shaw (bb0135) 2011; 13
Christiansen (bb0125) 2020; 598
Roden (bb0355) 2012; 55
Brandner (bb0380) 2015; 25
Wozniak, Anderson (bb0275) 2007; 236
Perseghin (bb0440) 1996; 335
Uematsu (bb0270) 1995; 269
Mattocks (bb0415) 2018; 17
Morris (bb0245) 2011; 31
Roden, Shulman (bb0075) 2019; 576
Groennebaek (bb0235) 2019; 12
Li (bb0015) 2018; 50
Ferguson (bb0210) 2018; 18
Morton (bb0250) 2019; 597
Satoh (bb0345) 2011; 7
Pesta (bb0435) 2011; 301
Mattocks (bb0365) 2017; 171
Groennebaek (bb0220) 2018; 9
Holten (bb0265) 2004; 53
Christiansen (bb0340) 2019; 98
Kubota (bb0045) 2011; 14
Neto (bb0375) 2015; 29
Schwingshackl (bb0025) 2014; 57
Nielsen (bb0335) 2017; 595
Hughes, Patterson (bb0455) 2020; 128
Lin (bb0005) 2015; 4
Pesta (bb0020) 2017; 14
Fahs (bb0205) 2012; 32
Mouser (bb0200) 2019; 40
Spitz (bb0110) 2020; 41
Loenneke (bb0360) 2011; 21
Anderson, Wozniak (bb0280) 2004; 82
Mandsager (bb0010) 2018; 1
Barbalho (bb0055) 2019; 33
Mendonca (bb0395) 2020; 10
Abe (bb0115) 2006; 100
Centner (bb0225) 2018; 52
Takarada (bb0050) 2000; 32
Christiansen (bb0090) 2020; 598
Loenneke (bb0410) 2014; 24
Renzi (bb0370) 2010; 42
Toigo, Boutellier (bb0320) 2006; 97
Kambic (bb0175) 2019; 10
Takarada (bb0305) 2000; 88
Albers (bb0430) 2015; 64
Cook (bb0165) 2017; 99
Ozaki (bb0325) 2017; 37
Elsangedy (bb0195) 2018; 50
Velloso (bb0315) 2008; 154
Lixandrao (bb0450) 2018; 48
Patterson (bb0060) 2019; 10
Doessing (bb0310) 2010; 588
Nielsen (bb0255) 2012; 590
Berneis (bb0300) 1999; 276
Nielsen (bb0065) 2020; 11
Häussinger (bb0290) 1993; 341
Petrick (bb0070) 2019; 597
Abe (bb0120) 2010; 9
Roden (bb0350) 2015; 58
Nishino (bb0140) 2004; 61
Schiaffino, Reggiani (bb0420) 2011; 91
Klitgaard (bb0425) 1990; 416
Vargas-Ortiz (bb0240) 2019; 20
Jessee (bb0390) 2017; 38
Yasuda (bb0160) 2015; 70
Shimizu (bb0170) 2016; 116
Park (bb0185) 2009; 32
Clark (bb0400) 2011; 21
Kubota (bb0040) 2008; 40
Farup (bb0085) 2015; 25
Fry (bb0295) 2010; 108
Pesta, Roden (bb0230) 2017; 17
Fry (bb0260) 2004; 34
Colberg (bb0030) 2016; 39
Mattocks (bb0460) 2019; 37
Loenneke (bb0285) 2012; 78
Jessee (10.1016/j.tem.2020.11.010_bb0100) 2018; 9
Lin (10.1016/j.tem.2020.11.010_bb0005) 2015; 4
Park (10.1016/j.tem.2020.11.010_bb0185) 2009; 32
Christiansen (10.1016/j.tem.2020.11.010_bb0125) 2020; 598
Fry (10.1016/j.tem.2020.11.010_bb0260) 2004; 34
Albers (10.1016/j.tem.2020.11.010_bb0430) 2015; 64
Renzi (10.1016/j.tem.2020.11.010_bb0370) 2010; 42
Christiansen (10.1016/j.tem.2020.11.010_bb0340) 2019; 98
Loenneke (10.1016/j.tem.2020.11.010_bb0410) 2014; 24
Fahs (10.1016/j.tem.2020.11.010_bb0205) 2012; 32
Elsangedy (10.1016/j.tem.2020.11.010_bb0195) 2018; 50
Perseghin (10.1016/j.tem.2020.11.010_bb0440) 1996; 335
Kubota (10.1016/j.tem.2020.11.010_bb0040) 2008; 40
Holten (10.1016/j.tem.2020.11.010_bb0265) 2004; 53
Shimizu (10.1016/j.tem.2020.11.010_bb0170) 2016; 116
Schiaffino (10.1016/j.tem.2020.11.010_bb0420) 2011; 91
Farup (10.1016/j.tem.2020.11.010_bb0085) 2015; 25
Berneis (10.1016/j.tem.2020.11.010_bb0300) 1999; 276
Jessee (10.1016/j.tem.2020.11.010_bb0390) 2017; 38
Lixandrao (10.1016/j.tem.2020.11.010_bb0450) 2018; 48
Neto (10.1016/j.tem.2020.11.010_bb0375) 2015; 29
Joshi (10.1016/j.tem.2020.11.010_bb0215) 2020; 128
Loenneke (10.1016/j.tem.2020.11.010_bb0360) 2011; 21
Pesta (10.1016/j.tem.2020.11.010_bb0435) 2011; 301
Velloso (10.1016/j.tem.2020.11.010_bb0315) 2008; 154
Christiansen (10.1016/j.tem.2020.11.010_bb0130) 2018; 223
Schwingshackl (10.1016/j.tem.2020.11.010_bb0025) 2014; 57
Abe (10.1016/j.tem.2020.11.010_bb0120) 2010; 9
Mendonca (10.1016/j.tem.2020.11.010_bb0395) 2020; 10
Groennebaek (10.1016/j.tem.2020.11.010_bb0220) 2018; 9
Häussinger (10.1016/j.tem.2020.11.010_bb0290) 1993; 341
Mandsager (10.1016/j.tem.2020.11.010_bb0010) 2018; 1
Giles (10.1016/j.tem.2020.11.010_bb0080) 2017; 51
Uematsu (10.1016/j.tem.2020.11.010_bb0270) 1995; 269
Ferguson (10.1016/j.tem.2020.11.010_bb0210) 2018; 18
Wozniak (10.1016/j.tem.2020.11.010_bb0275) 2007; 236
Pesta (10.1016/j.tem.2020.11.010_bb0230) 2017; 17
Srikanthan (10.1016/j.tem.2020.11.010_bb0190) 2011; 96
Hughes (10.1016/j.tem.2020.11.010_bb0150) 2019; 49
Ozaki (10.1016/j.tem.2020.11.010_bb0325) 2017; 37
Klitgaard (10.1016/j.tem.2020.11.010_bb0425) 1990; 416
Nielsen (10.1016/j.tem.2020.11.010_bb0335) 2017; 595
Yasuda (10.1016/j.tem.2020.11.010_bb0155) 2016; 7
Satoh (10.1016/j.tem.2020.11.010_bb0345) 2011; 7
Scott (10.1016/j.tem.2020.11.010_bb0445) 2015; 45
Pesta (10.1016/j.tem.2020.11.010_bb0020) 2017; 14
Mouser (10.1016/j.tem.2020.11.010_bb0200) 2019; 40
Brandner (10.1016/j.tem.2020.11.010_bb0380) 2015; 25
Sarwar (10.1016/j.tem.2020.11.010_bb0180) 2010; 375
Abe (10.1016/j.tem.2020.11.010_bb0115) 2006; 100
Loenneke (10.1016/j.tem.2020.11.010_bb0095) 2012; 112
Roden (10.1016/j.tem.2020.11.010_bb0075) 2019; 576
Spitz (10.1016/j.tem.2020.11.010_bb0110) 2020; 41
Kambic (10.1016/j.tem.2020.11.010_bb0175) 2019; 10
Loenneke (10.1016/j.tem.2020.11.010_bb0285) 2012; 78
Barbalho (10.1016/j.tem.2020.11.010_bb0055) 2019; 33
Cook (10.1016/j.tem.2020.11.010_bb0165) 2017; 99
Vargas-Ortiz (10.1016/j.tem.2020.11.010_bb0240) 2019; 20
Takarada (10.1016/j.tem.2020.11.010_bb0305) 2000; 88
Kubota (10.1016/j.tem.2020.11.010_bb0045) 2011; 14
Nielsen (10.1016/j.tem.2020.11.010_bb0255) 2012; 590
Mattocks (10.1016/j.tem.2020.11.010_bb0460) 2019; 37
Christiansen (10.1016/j.tem.2020.11.010_bb0090) 2020; 598
Morris (10.1016/j.tem.2020.11.010_bb0245) 2011; 31
Takarada (10.1016/j.tem.2020.11.010_bb0050) 2000; 32
Petrick (10.1016/j.tem.2020.11.010_bb0070) 2019; 597
Li (10.1016/j.tem.2020.11.010_bb0015) 2018; 50
Centner (10.1016/j.tem.2020.11.010_bb0145) 2019; 49
Nishino (10.1016/j.tem.2020.11.010_bb0140) 2004; 61
Fry (10.1016/j.tem.2020.11.010_bb0295) 2010; 108
West (10.1016/j.tem.2020.11.010_bb0330) 2010; 108
Yasuda (10.1016/j.tem.2020.11.010_bb0160) 2015; 70
Doessing (10.1016/j.tem.2020.11.010_bb0310) 2010; 588
Anderson (10.1016/j.tem.2020.11.010_bb0280) 2004; 82
Madarame (10.1016/j.tem.2020.11.010_bb0405) 2013; 33
Mouser (10.1016/j.tem.2020.11.010_bb0385) 2019; 44
Roden (10.1016/j.tem.2020.11.010_bb0355) 2012; 55
Morton (10.1016/j.tem.2020.11.010_bb0250) 2019; 597
Mattocks (10.1016/j.tem.2020.11.010_bb0365) 2017; 171
Groennebaek (10.1016/j.tem.2020.11.010_bb0235) 2019; 12
Hughes (10.1016/j.tem.2020.11.010_bb0455) 2020; 128
Colberg (10.1016/j.tem.2020.11.010_bb0030) 2016; 39
Centner (10.1016/j.tem.2020.11.010_bb0225) 2018; 52
Clark (10.1016/j.tem.2020.11.010_bb0400) 2011; 21
Patterson (10.1016/j.tem.2020.11.010_bb0060) 2019; 10
Toigo (10.1016/j.tem.2020.11.010_bb0320) 2006; 97
Mihaylova (10.1016/j.tem.2020.11.010_bb0135) 2011; 13
Roden (10.1016/j.tem.2020.11.010_bb0350) 2015; 58
Dankel (10.1016/j.tem.2020.11.010_bb0105) 2019; 119
Cerqueira (10.1016/j.tem.2020.11.010_bb0035) 2020; 9
Nielsen (10.1016/j.tem.2020.11.010_bb0065) 2020; 11
Mattocks (10.1016/j.tem.2020.11.010_bb0415) 2018; 17
References_xml – volume: 119
  start-page: 265
  year: 2019
  end-page: 278
  ident: bb0105
  article-title: Resistance training induced changes in strength and specific force at the fiber and whole muscle level: a meta-analysis
  publication-title: Eur. J. Appl. Physiol.
– volume: 12
  year: 2019
  ident: bb0235
  article-title: Effect of blood flow restricted resistance exercise and remote ischemic conditioning on functional capacity and myocellular adaptations in patients with heart failure
  publication-title: Circ. Heart Fail.
– volume: 24
  year: 2014
  ident: bb0410
  article-title: Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence
  publication-title: Scand. J. Med. Sci. Sports
– volume: 49
  start-page: 1787
  year: 2019
  end-page: 1805
  ident: bb0150
  article-title: Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service randomised controlled trial
  publication-title: Sports Med.
– volume: 1
  year: 2018
  ident: bb0010
  article-title: Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing
  publication-title: JAMA Netw. Open
– volume: 39
  start-page: 2065
  year: 2016
  end-page: 2079
  ident: bb0030
  article-title: Physical activity/exercise and diabetes: a position statement of the American Diabetes Association
  publication-title: Diabetes Care
– volume: 9
  start-page: 452
  year: 2010
  end-page: 458
  ident: bb0120
  article-title: Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO
  publication-title: J. Sports Sci. Med.
– volume: 375
  start-page: 2215
  year: 2010
  end-page: 2222
  ident: bb0180
  article-title: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies
  publication-title: Lancet
– volume: 9
  start-page: 1796
  year: 2018
  ident: bb0220
  article-title: Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training
  publication-title: Front. Physiol.
– volume: 34
  start-page: 663
  year: 2004
  end-page: 679
  ident: bb0260
  article-title: The role of resistance exercise intensity on muscle fibre adaptations
  publication-title: Sports Med.
– volume: 99
  start-page: 138
  year: 2017
  end-page: 145
  ident: bb0165
  article-title: Blood flow restricted resistance training in older adults at risk of mobility limitations
  publication-title: Exp. Gerontol.
– volume: 14
  start-page: 95
  year: 2011
  end-page: 99
  ident: bb0045
  article-title: Blood flow restriction by low compressive force prevents disuse muscular weakness
  publication-title: J. Sci. Med. Sport
– volume: 598
  start-page: 2337
  year: 2020
  end-page: 2353
  ident: bb0090
  article-title: Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men
  publication-title: J. Physiol.
– volume: 11
  start-page: 556
  year: 2020
  ident: bb0065
  article-title: Skeletal muscle microvascular changes in response to short-term blood flow restricted training-exercise-induced adaptations and signs of perivascular stress
  publication-title: Front. Physiol.
– volume: 9
  start-page: 152
  year: 2020
  end-page: 159
  ident: bb0035
  article-title: Effects of blood flow restriction without additional exercise on strength reductions and muscular atrophy following immobilization: a systematic review
  publication-title: J. Sport Health Sci.
– volume: 48
  start-page: 361
  year: 2018
  end-page: 378
  ident: bb0450
  article-title: Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis
  publication-title: Sports Med.
– volume: 37
  start-page: 379
  year: 2017
  end-page: 383
  ident: bb0325
  article-title: Blood flow-restricted walking in older women: does the acute hormonal response associate with muscle hypertrophy?
  publication-title: Clin. Physiol. Funct. Imaging
– volume: 52
  start-page: 446
  year: 2018
  end-page: 454
  ident: bb0225
  article-title: Acute effects of blood flow restriction on exercise-induced free radical production in young and healthy subjects
  publication-title: Free Radic. Res.
– volume: 57
  start-page: 1789
  year: 2014
  end-page: 1797
  ident: bb0025
  article-title: Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis
  publication-title: Diabetologia
– volume: 64
  start-page: 485
  year: 2015
  end-page: 497
  ident: bb0430
  article-title: Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes
  publication-title: Diabetes
– volume: 53
  start-page: 294
  year: 2004
  end-page: 305
  ident: bb0265
  article-title: Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes
  publication-title: Diabetes
– volume: 55
  start-page: 1235
  year: 2012
  end-page: 1239
  ident: bb0355
  article-title: Exercise in type 2 diabetes: to resist or to endure?
  publication-title: Diabetologia
– volume: 10
  start-page: 533
  year: 2019
  ident: bb0060
  article-title: Blood flow restriction exercise: considerations of methodology, application, and safety
  publication-title: Front. Physiol.
– volume: 32
  start-page: 2035
  year: 2000
  end-page: 2039
  ident: bb0050
  article-title: Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles
  publication-title: Med. Sci. Sports Exerc.
– volume: 13
  start-page: 1016
  year: 2011
  end-page: 1023
  ident: bb0135
  article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
  publication-title: Nat. Cell Biol.
– volume: 31
  start-page: 1003
  year: 2011
  end-page: 1019
  ident: bb0245
  article-title: Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning
  publication-title: J. Cereb. Blood Flow Metab.
– volume: 50
  start-page: 458
  year: 2018
  end-page: 467
  ident: bb0015
  article-title: Associations of muscle mass and strength with all-cause mortality among US older adults
  publication-title: Med. Sci. Sports Exerc.
– volume: 276
  start-page: E188
  year: 1999
  end-page: E195
  ident: bb0300
  article-title: Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans
  publication-title: Am. J. Phys.
– volume: 21
  start-page: 653
  year: 2011
  end-page: 662
  ident: bb0400
  article-title: Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults
  publication-title: Scand. J. Med. Sci. Sports
– volume: 25
  start-page: 770
  year: 2015
  end-page: 777
  ident: bb0380
  article-title: Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction
  publication-title: Scand. J. Med. Sci. Sports
– volume: 154
  start-page: 557
  year: 2008
  end-page: 568
  ident: bb0315
  article-title: Regulation of muscle mass by growth hormone and IGF-I
  publication-title: Br. J. Pharmacol.
– volume: 108
  start-page: 60
  year: 2010
  end-page: 67
  ident: bb0330
  article-title: Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors
  publication-title: J. Appl. Physiol.
– volume: 42
  start-page: 726
  year: 2010
  end-page: 732
  ident: bb0370
  article-title: Effects of leg blood flow restriction during walking on cardiovascular function
  publication-title: Med. Sci. Sports Exerc.
– volume: 10
  start-page: 656
  year: 2019
  ident: bb0175
  article-title: Blood flow restriction resistance exercise improves muscle strength and hemodynamics, but not vascular function in coronary artery disease patients: a pilot randomized controlled trial
  publication-title: Front. Physiol.
– volume: 588
  start-page: 341
  year: 2010
  end-page: 351
  ident: bb0310
  article-title: Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis
  publication-title: J. Physiol.
– volume: 32
  start-page: 1993
  year: 2009
  end-page: 1997
  ident: bb0185
  article-title: Excessive loss of skeletal muscle mass in older adults with type 2 diabetes
  publication-title: Diabetes Care
– volume: 82
  start-page: 300
  year: 2004
  end-page: 310
  ident: bb0280
  article-title: Satellite cell activation on fibers: modeling events in vivo – an invited review
  publication-title: Can. J. Physiol. Pharmacol.
– volume: 33
  start-page: 11
  year: 2013
  end-page: 17
  ident: bb0405
  article-title: Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study
  publication-title: Clin. Physiol. Funct. Imaging
– volume: 223
  year: 2018
  ident: bb0130
  article-title: Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle
  publication-title: Acta Physiol.
– volume: 96
  start-page: 2898
  year: 2011
  end-page: 2903
  ident: bb0190
  article-title: Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 108
  start-page: 1199
  year: 2010
  end-page: 1209
  ident: bb0295
  article-title: Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men
  publication-title: J. Appl. Physiol.
– volume: 51
  start-page: 1688
  year: 2017
  end-page: 1694
  ident: bb0080
  article-title: Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial
  publication-title: Br. J. Sports Med.
– volume: 100
  start-page: 1460
  year: 2006
  end-page: 1466
  ident: bb0115
  article-title: Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training
  publication-title: J. Appl. Physiol.
– volume: 91
  start-page: 1447
  year: 2011
  end-page: 1531
  ident: bb0420
  article-title: Fiber types in mammalian skeletal muscles
  publication-title: Physiol. Rev.
– volume: 41
  year: 2020
  ident: bb0110
  article-title: Strength testing or strength training: considerations for future research
  publication-title: Physiol. Meas.
– volume: 49
  start-page: 95
  year: 2019
  end-page: 108
  ident: bb0145
  article-title: Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis
  publication-title: Sports Med.
– volume: 7
  start-page: 7
  year: 2011
  end-page: 12
  ident: bb0345
  article-title: Kaatsu training – application to metabolic syndrome
  publication-title: Int. J. KAATSU Training Res.
– volume: 10
  start-page: 7380
  year: 2020
  ident: bb0395
  article-title: Nerve conduction during acute blood-flow restriction with and without low-intensity exercise Nerve conduction and blood-flow restriction
  publication-title: Sci. Rep.
– volume: 61
  start-page: 610
  year: 2004
  end-page: 619
  ident: bb0140
  article-title: Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection
  publication-title: Cardiovasc. Res.
– volume: 128
  start-page: 1423
  year: 2020
  end-page: 1431
  ident: bb0215
  article-title: Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults
  publication-title: J. Appl. Physiol.
– volume: 4
  year: 2015
  ident: bb0005
  article-title: Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials
  publication-title: J. Am. Heart Assoc.
– volume: 597
  start-page: 3985
  year: 2019
  end-page: 3997
  ident: bb0070
  article-title: Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H
  publication-title: J. Physiol.
– volume: 21
  start-page: 510
  year: 2011
  end-page: 518
  ident: bb0360
  article-title: Potential safety issues with blood flow restriction training
  publication-title: Scand. J. Med. Sci. Sports
– volume: 32
  start-page: 45
  year: 2012
  end-page: 51
  ident: bb0205
  article-title: Effect of different types of lower body resistance training on arterial compliance and calf blood flow
  publication-title: Clin. Physiol. Funct. Imaging
– volume: 97
  start-page: 643
  year: 2006
  end-page: 663
  ident: bb0320
  article-title: New fundamental resistance exercise determinants of molecular and cellular muscle adaptations
  publication-title: Eur. J. Appl. Physiol.
– volume: 116
  start-page: 749
  year: 2016
  end-page: 757
  ident: bb0170
  article-title: Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people
  publication-title: Eur. J. Appl. Physiol.
– volume: 40
  start-page: 529
  year: 2008
  end-page: 534
  ident: bb0040
  article-title: Prevention of disuse muscular weakness by restriction of blood flow
  publication-title: Med. Sci. Sports Exerc.
– volume: 576
  start-page: 51
  year: 2019
  end-page: 60
  ident: bb0075
  article-title: The integrative biology of type 2 diabetes
  publication-title: Nature
– volume: 341
  start-page: 1330
  year: 1993
  end-page: 1332
  ident: bb0290
  article-title: Cellular hydration state: an important determinant of protein catabolism in health and disease
  publication-title: Lancet
– volume: 44
  start-page: 288
  year: 2019
  end-page: 292
  ident: bb0385
  article-title: Very-low-load resistance exercise in the upper body with and without blood flow restriction: cardiovascular outcomes
  publication-title: Appl. Physiol. Nutr. Metab.
– volume: 70
  start-page: 950
  year: 2015
  end-page: 958
  ident: bb0160
  article-title: Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
– volume: 301
  start-page: R1078
  year: 2011
  end-page: R1087
  ident: bb0435
  article-title: Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
– volume: 78
  start-page: 151
  year: 2012
  end-page: 154
  ident: bb0285
  article-title: The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling
  publication-title: Med. Hypotheses
– volume: 37
  start-page: 1857
  year: 2019
  end-page: 1864
  ident: bb0460
  article-title: Perceptual changes to progressive resistance training with and without blood flow restriction
  publication-title: J. Sports Sci.
– volume: 20
  start-page: 2717
  year: 2019
  ident: bb0240
  article-title: Exercise and sirtuins: a way to mitochondrial health in skeletal muscle
  publication-title: Int. J. Mol. Sci.
– volume: 45
  start-page: 313
  year: 2015
  end-page: 325
  ident: bb0445
  article-title: Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development
  publication-title: Sports Med.
– volume: 128
  start-page: 914
  year: 2020
  end-page: 924
  ident: bb0455
  article-title: The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation
  publication-title: J. Appl. Physiol.
– volume: 595
  start-page: 4857
  year: 2017
  end-page: 4873
  ident: bb0335
  article-title: Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage
  publication-title: J. Physiol.
– volume: 17
  start-page: 129
  year: 2018
  end-page: 134
  ident: bb0415
  article-title: The application of blood flow restriction: lessons from the laboratory
  publication-title: Curr. Sports Med. Rep.
– volume: 269
  start-page: C1371
  year: 1995
  end-page: C1378
  ident: bb0270
  article-title: Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress
  publication-title: Am. J. Phys.
– volume: 112
  start-page: 1849
  year: 2012
  end-page: 1859
  ident: bb0095
  article-title: Low intensity blood flow restriction training: a meta-analysis
  publication-title: Eur. J. Appl. Physiol.
– volume: 171
  start-page: 181
  year: 2017
  end-page: 186
  ident: bb0365
  article-title: The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses
  publication-title: Physiol. Behav.
– volume: 416
  start-page: 470
  year: 1990
  end-page: 472
  ident: bb0425
  article-title: Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training
  publication-title: Pflugers Arch.
– volume: 25
  start-page: 754
  year: 2015
  end-page: 763
  ident: bb0085
  article-title: Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy
  publication-title: Scand. J. Med. Sci. Sports
– volume: 38
  start-page: 597
  year: 2017
  end-page: 603
  ident: bb0390
  article-title: The cardiovascular and perceptual response to very low load blood flow restricted exercise
  publication-title: Int. J. Sports Med.
– volume: 58
  start-page: 1693
  year: 2015
  end-page: 1698
  ident: bb0350
  article-title: Future of muscle research in diabetes: a look into the crystal ball
  publication-title: Diabetologia
– volume: 14
  start-page: 24
  year: 2017
  ident: bb0020
  article-title: Resistance training to improve type 2 diabetes: working toward a prescription for the future
  publication-title: Nutr. Metab.
– volume: 9
  start-page: 1448
  year: 2018
  ident: bb0100
  article-title: Muscle adaptations to high-load training and very low-load training with and without blood flow restriction
  publication-title: Front. Physiol.
– volume: 18
  start-page: 397
  year: 2018
  end-page: 406
  ident: bb0210
  article-title: The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction
  publication-title: Eur. J. Sport Sci.
– volume: 98
  start-page: 1
  year: 2019
  end-page: 15
  ident: bb0340
  article-title: Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans
  publication-title: Metabolism
– volume: 598
  start-page: 2337
  year: 2020
  end-page: 2353
  ident: bb0125
  article-title: Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men
  publication-title: J. Physiol.
– volume: 88
  start-page: 61
  year: 2000
  end-page: 65
  ident: bb0305
  article-title: Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion
  publication-title: J. Appl. Physiol.
– volume: 50
  start-page: 1472
  year: 2018
  end-page: 1479
  ident: bb0195
  article-title: Let the pleasure guide your resistance training intensity
  publication-title: Med. Sci. Sports Exerc.
– volume: 29
  start-page: 1064
  year: 2015
  end-page: 1070
  ident: bb0375
  article-title: Hypotensive effects of resistance exercises with blood flow restriction
  publication-title: J. Strength Cond. Res.
– volume: 33
  start-page: 233
  year: 2019
  end-page: 240
  ident: bb0055
  article-title: Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial
  publication-title: Clin. Rehabil.
– volume: 7
  start-page: 33595
  year: 2016
  end-page: 33607
  ident: bb0155
  article-title: Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women
  publication-title: Oncotarget
– volume: 597
  start-page: 4601
  year: 2019
  end-page: 4613
  ident: bb0250
  article-title: Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure
  publication-title: J. Physiol.
– volume: 236
  start-page: 240
  year: 2007
  end-page: 250
  ident: bb0275
  article-title: Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers
  publication-title: Dev. Dyn.
– volume: 17
  start-page: 41
  year: 2017
  ident: bb0230
  article-title: The Janus head of oxidative stress in metabolic diseases and during physical exercise
  publication-title: Curr. Diab. Rep.
– volume: 335
  start-page: 1357
  year: 1996
  end-page: 1362
  ident: bb0440
  article-title: Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects
  publication-title: N. Engl. J. Med.
– volume: 40
  year: 2019
  ident: bb0200
  article-title: High-pressure blood flow restriction with very low load resistance training results in peripheral vascular adaptations similar to heavy resistance training
  publication-title: Physiol. Meas.
– volume: 590
  start-page: 4351
  year: 2012
  end-page: 4361
  ident: bb0255
  article-title: Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction
  publication-title: J. Physiol.
– volume: 18
  start-page: 397
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0210
  article-title: The acute angiogenic signalling response to low-load resistance exercise with blood flow restriction
  publication-title: Eur. J. Sport Sci.
  doi: 10.1080/17461391.2017.1422281
– volume: 14
  start-page: 24
  year: 2017
  ident: 10.1016/j.tem.2020.11.010_bb0020
  article-title: Resistance training to improve type 2 diabetes: working toward a prescription for the future
  publication-title: Nutr. Metab.
  doi: 10.1186/s12986-017-0173-7
– volume: 108
  start-page: 60
  year: 2010
  ident: 10.1016/j.tem.2020.11.010_bb0330
  article-title: Elevations in ostensibly anabolic hormones with resistance exercise enhance neither training-induced muscle hypertrophy nor strength of the elbow flexors
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01147.2009
– volume: 78
  start-page: 151
  year: 2012
  ident: 10.1016/j.tem.2020.11.010_bb0285
  article-title: The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2011.10.014
– volume: 128
  start-page: 914
  year: 2020
  ident: 10.1016/j.tem.2020.11.010_bb0455
  article-title: The effect of blood flow restriction exercise on exercise-induced hypoalgesia and endogenous opioid and endocannabinoid mechanisms of pain modulation
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00768.2019
– volume: 33
  start-page: 233
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0055
  article-title: Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial
  publication-title: Clin. Rehabil.
  doi: 10.1177/0269215518801440
– volume: 42
  start-page: 726
  year: 2010
  ident: 10.1016/j.tem.2020.11.010_bb0370
  article-title: Effects of leg blood flow restriction during walking on cardiovascular function
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e3181bdb454
– volume: 29
  start-page: 1064
  year: 2015
  ident: 10.1016/j.tem.2020.11.010_bb0375
  article-title: Hypotensive effects of resistance exercises with blood flow restriction
  publication-title: J. Strength Cond. Res.
  doi: 10.1519/JSC.0000000000000734
– volume: 4
  year: 2015
  ident: 10.1016/j.tem.2020.11.010_bb0005
  article-title: Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.115.002014
– volume: 112
  start-page: 1849
  year: 2012
  ident: 10.1016/j.tem.2020.11.010_bb0095
  article-title: Low intensity blood flow restriction training: a meta-analysis
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-011-2167-x
– volume: 154
  start-page: 557
  year: 2008
  ident: 10.1016/j.tem.2020.11.010_bb0315
  article-title: Regulation of muscle mass by growth hormone and IGF-I
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/bjp.2008.153
– volume: 24
  year: 2014
  ident: 10.1016/j.tem.2020.11.010_bb0410
  article-title: Does blood flow restriction result in skeletal muscle damage? A critical review of available evidence
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.12210
– volume: 49
  start-page: 95
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0145
  article-title: Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis
  publication-title: Sports Med.
  doi: 10.1007/s40279-018-0994-1
– volume: 91
  start-page: 1447
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0420
  article-title: Fiber types in mammalian skeletal muscles
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00031.2010
– volume: 416
  start-page: 470
  year: 1990
  ident: 10.1016/j.tem.2020.11.010_bb0425
  article-title: Co-existence of myosin heavy chain I and IIa isoforms in human skeletal muscle fibres with endurance training
  publication-title: Pflugers Arch.
  doi: 10.1007/BF00370757
– volume: 45
  start-page: 313
  year: 2015
  ident: 10.1016/j.tem.2020.11.010_bb0445
  article-title: Exercise with blood flow restriction: an updated evidence-based approach for enhanced muscular development
  publication-title: Sports Med.
  doi: 10.1007/s40279-014-0288-1
– volume: 40
  start-page: 529
  year: 2008
  ident: 10.1016/j.tem.2020.11.010_bb0040
  article-title: Prevention of disuse muscular weakness by restriction of blood flow
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0b013e31815ddac6
– volume: 375
  start-page: 2215
  year: 2010
  ident: 10.1016/j.tem.2020.11.010_bb0180
  article-title: Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies
  publication-title: Lancet
  doi: 10.1016/S0140-6736(10)60484-9
– volume: 98
  start-page: 1
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0340
  article-title: Blood flow-restricted training enhances thigh glucose uptake during exercise and muscle antioxidant function in humans
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2019.06.003
– volume: 9
  start-page: 1448
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0100
  article-title: Muscle adaptations to high-load training and very low-load training with and without blood flow restriction
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01448
– volume: 88
  start-page: 61
  year: 2000
  ident: 10.1016/j.tem.2020.11.010_bb0305
  article-title: Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.2000.88.1.61
– volume: 335
  start-page: 1357
  year: 1996
  ident: 10.1016/j.tem.2020.11.010_bb0440
  article-title: Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199610313351804
– volume: 341
  start-page: 1330
  year: 1993
  ident: 10.1016/j.tem.2020.11.010_bb0290
  article-title: Cellular hydration state: an important determinant of protein catabolism in health and disease
  publication-title: Lancet
  doi: 10.1016/0140-6736(93)90828-5
– volume: 96
  start-page: 2898
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0190
  article-title: Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2011-0435
– volume: 10
  start-page: 656
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0175
  article-title: Blood flow restriction resistance exercise improves muscle strength and hemodynamics, but not vascular function in coronary artery disease patients: a pilot randomized controlled trial
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00656
– volume: 10
  start-page: 533
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0060
  article-title: Blood flow restriction exercise: considerations of methodology, application, and safety
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2019.00533
– volume: 598
  start-page: 2337
  year: 2020
  ident: 10.1016/j.tem.2020.11.010_bb0090
  article-title: Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men
  publication-title: J. Physiol.
  doi: 10.1113/JP279554
– volume: 108
  start-page: 1199
  year: 2010
  ident: 10.1016/j.tem.2020.11.010_bb0295
  article-title: Blood flow restriction exercise stimulates mTORC1 signaling and muscle protein synthesis in older men
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01266.2009
– volume: 38
  start-page: 597
  year: 2017
  ident: 10.1016/j.tem.2020.11.010_bb0390
  article-title: The cardiovascular and perceptual response to very low load blood flow restricted exercise
  publication-title: Int. J. Sports Med.
  doi: 10.1055/s-0043-109555
– volume: 39
  start-page: 2065
  year: 2016
  ident: 10.1016/j.tem.2020.11.010_bb0030
  article-title: Physical activity/exercise and diabetes: a position statement of the American Diabetes Association
  publication-title: Diabetes Care
  doi: 10.2337/dc16-1728
– volume: 7
  start-page: 33595
  year: 2016
  ident: 10.1016/j.tem.2020.11.010_bb0155
  article-title: Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.9564
– volume: 32
  start-page: 1993
  year: 2009
  ident: 10.1016/j.tem.2020.11.010_bb0185
  article-title: Excessive loss of skeletal muscle mass in older adults with type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc09-0264
– volume: 34
  start-page: 663
  year: 2004
  ident: 10.1016/j.tem.2020.11.010_bb0260
  article-title: The role of resistance exercise intensity on muscle fibre adaptations
  publication-title: Sports Med.
  doi: 10.2165/00007256-200434100-00004
– volume: 32
  start-page: 45
  year: 2012
  ident: 10.1016/j.tem.2020.11.010_bb0205
  article-title: Effect of different types of lower body resistance training on arterial compliance and calf blood flow
  publication-title: Clin. Physiol. Funct. Imaging
  doi: 10.1111/j.1475-097X.2011.01053.x
– volume: 33
  start-page: 11
  year: 2013
  ident: 10.1016/j.tem.2020.11.010_bb0405
  article-title: Haemostatic and inflammatory responses to blood flow-restricted exercise in patients with ischaemic heart disease: a pilot study
  publication-title: Clin. Physiol. Funct. Imaging
  doi: 10.1111/j.1475-097X.2012.01158.x
– volume: 58
  start-page: 1693
  year: 2015
  ident: 10.1016/j.tem.2020.11.010_bb0350
  article-title: Future of muscle research in diabetes: a look into the crystal ball
  publication-title: Diabetologia
  doi: 10.1007/s00125-015-3629-1
– volume: 597
  start-page: 4601
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0250
  article-title: Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure
  publication-title: J. Physiol.
  doi: 10.1113/JP278056
– volume: 236
  start-page: 240
  year: 2007
  ident: 10.1016/j.tem.2020.11.010_bb0275
  article-title: Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers
  publication-title: Dev. Dyn.
  doi: 10.1002/dvdy.21012
– volume: 50
  start-page: 458
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0015
  article-title: Associations of muscle mass and strength with all-cause mortality among US older adults
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000001448
– volume: 97
  start-page: 643
  year: 2006
  ident: 10.1016/j.tem.2020.11.010_bb0320
  article-title: New fundamental resistance exercise determinants of molecular and cellular muscle adaptations
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-006-0238-1
– volume: 119
  start-page: 265
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0105
  article-title: Resistance training induced changes in strength and specific force at the fiber and whole muscle level: a meta-analysis
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-018-4022-9
– volume: 12
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0235
  article-title: Effect of blood flow restricted resistance exercise and remote ischemic conditioning on functional capacity and myocellular adaptations in patients with heart failure
  publication-title: Circ. Heart Fail.
  doi: 10.1161/CIRCHEARTFAILURE.119.006427
– volume: 276
  start-page: E188
  year: 1999
  ident: 10.1016/j.tem.2020.11.010_bb0300
  article-title: Effects of hyper- and hypoosmolality on whole body protein and glucose kinetics in humans
  publication-title: Am. J. Phys.
– volume: 48
  start-page: 361
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0450
  article-title: Magnitude of muscle strength and mass adaptations between high-load resistance training versus low-load resistance training associated with blood-flow restriction: a systematic review and meta-analysis
  publication-title: Sports Med.
  doi: 10.1007/s40279-017-0795-y
– volume: 20
  start-page: 2717
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0240
  article-title: Exercise and sirtuins: a way to mitochondrial health in skeletal muscle
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20112717
– volume: 25
  start-page: 770
  year: 2015
  ident: 10.1016/j.tem.2020.11.010_bb0380
  article-title: Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.12297
– volume: 11
  start-page: 556
  year: 2020
  ident: 10.1016/j.tem.2020.11.010_bb0065
  article-title: Skeletal muscle microvascular changes in response to short-term blood flow restricted training-exercise-induced adaptations and signs of perivascular stress
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00556
– volume: 269
  start-page: C1371
  year: 1995
  ident: 10.1016/j.tem.2020.11.010_bb0270
  article-title: Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress
  publication-title: Am. J. Phys.
– volume: 17
  start-page: 41
  year: 2017
  ident: 10.1016/j.tem.2020.11.010_bb0230
  article-title: The Janus head of oxidative stress in metabolic diseases and during physical exercise
  publication-title: Curr. Diab. Rep.
  doi: 10.1007/s11892-017-0867-2
– volume: 128
  start-page: 1423
  year: 2020
  ident: 10.1016/j.tem.2020.11.010_bb0215
  article-title: Blood flow restriction exercise stimulates mobilization of hematopoietic stem/progenitor cells and increases the circulating ACE2 levels in healthy adults
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00109.2020
– volume: 223
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0130
  article-title: Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle
  publication-title: Acta Physiol.
  doi: 10.1111/apha.13045
– volume: 40
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0200
  article-title: High-pressure blood flow restriction with very low load resistance training results in peripheral vascular adaptations similar to heavy resistance training
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab0d2a
– volume: 37
  start-page: 379
  year: 2017
  ident: 10.1016/j.tem.2020.11.010_bb0325
  article-title: Blood flow-restricted walking in older women: does the acute hormonal response associate with muscle hypertrophy?
  publication-title: Clin. Physiol. Funct. Imaging
  doi: 10.1111/cpf.12312
– volume: 590
  start-page: 4351
  year: 2012
  ident: 10.1016/j.tem.2020.11.010_bb0255
  article-title: Proliferation of myogenic stem cells in human skeletal muscle in response to low-load resistance training with blood flow restriction
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.237008
– volume: 14
  start-page: 95
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0045
  article-title: Blood flow restriction by low compressive force prevents disuse muscular weakness
  publication-title: J. Sci. Med. Sport
  doi: 10.1016/j.jsams.2010.08.007
– volume: 595
  start-page: 4857
  year: 2017
  ident: 10.1016/j.tem.2020.11.010_bb0335
  article-title: Blood flow restricted training leads to myocellular macrophage infiltration and upregulation of heat shock proteins, but no apparent muscle damage
  publication-title: J. Physiol.
  doi: 10.1113/JP273907
– volume: 32
  start-page: 2035
  year: 2000
  ident: 10.1016/j.tem.2020.11.010_bb0050
  article-title: Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1097/00005768-200012000-00011
– volume: 21
  start-page: 653
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0400
  article-title: Relative safety of 4 weeks of blood flow-restricted resistance exercise in young, healthy adults
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/j.1600-0838.2010.01100.x
– volume: 21
  start-page: 510
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0360
  article-title: Potential safety issues with blood flow restriction training
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/j.1600-0838.2010.01290.x
– volume: 9
  start-page: 1796
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0220
  article-title: Skeletal muscle mitochondrial protein synthesis and respiration increase with low-load blood flow restricted as well as high-load resistance training
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2018.01796
– volume: 588
  start-page: 341
  year: 2010
  ident: 10.1016/j.tem.2020.11.010_bb0310
  article-title: Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2009.179325
– volume: 597
  start-page: 3985
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0070
  article-title: Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H2O2 emission rates in human skeletal muscle
  publication-title: J. Physiol.
  doi: 10.1113/JP277765
– volume: 576
  start-page: 51
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0075
  article-title: The integrative biology of type 2 diabetes
  publication-title: Nature
  doi: 10.1038/s41586-019-1797-8
– volume: 598
  start-page: 2337
  year: 2020
  ident: 10.1016/j.tem.2020.11.010_bb0125
  article-title: Training with blood flow restriction increases femoral artery diameter and thigh oxygen delivery during knee-extensor exercise in recreationally trained men
  publication-title: J. Physiol.
  doi: 10.1113/JP279554
– volume: 53
  start-page: 294
  year: 2004
  ident: 10.1016/j.tem.2020.11.010_bb0265
  article-title: Strength training increases insulin-mediated glucose uptake, GLUT4 content, and insulin signaling in skeletal muscle in patients with type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.53.2.294
– volume: 82
  start-page: 300
  year: 2004
  ident: 10.1016/j.tem.2020.11.010_bb0280
  article-title: Satellite cell activation on fibers: modeling events in vivo – an invited review
  publication-title: Can. J. Physiol. Pharmacol.
  doi: 10.1139/y04-020
– volume: 10
  start-page: 7380
  year: 2020
  ident: 10.1016/j.tem.2020.11.010_bb0395
  article-title: Nerve conduction during acute blood-flow restriction with and without low-intensity exercise Nerve conduction and blood-flow restriction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64379-5
– volume: 64
  start-page: 485
  year: 2015
  ident: 10.1016/j.tem.2020.11.010_bb0430
  article-title: Human muscle fiber type-specific insulin signaling: impact of obesity and type 2 diabetes
  publication-title: Diabetes
  doi: 10.2337/db14-0590
– volume: 52
  start-page: 446
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0225
  article-title: Acute effects of blood flow restriction on exercise-induced free radical production in young and healthy subjects
  publication-title: Free Radic. Res.
  doi: 10.1080/10715762.2018.1440293
– volume: 44
  start-page: 288
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0385
  article-title: Very-low-load resistance exercise in the upper body with and without blood flow restriction: cardiovascular outcomes
  publication-title: Appl. Physiol. Nutr. Metab.
  doi: 10.1139/apnm-2018-0325
– volume: 25
  start-page: 754
  year: 2015
  ident: 10.1016/j.tem.2020.11.010_bb0085
  article-title: Blood flow restricted and traditional resistance training performed to fatigue produce equal muscle hypertrophy
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.12396
– volume: 49
  start-page: 1787
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0150
  article-title: Comparing the effectiveness of blood flow restriction and traditional heavy load resistance training in the post-surgery rehabilitation of anterior cruciate ligament reconstruction patients: a UK National Health Service randomised controlled trial
  publication-title: Sports Med.
  doi: 10.1007/s40279-019-01137-2
– volume: 41
  year: 2020
  ident: 10.1016/j.tem.2020.11.010_bb0110
  article-title: Strength testing or strength training: considerations for future research
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/abb1fa
– volume: 1
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0010
  article-title: Association of cardiorespiratory fitness with long-term mortality among adults undergoing exercise treadmill testing
  publication-title: JAMA Netw. Open
  doi: 10.1001/jamanetworkopen.2018.3605
– volume: 13
  start-page: 1016
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0135
  article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2329
– volume: 61
  start-page: 610
  year: 2004
  ident: 10.1016/j.tem.2020.11.010_bb0140
  article-title: Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2003.10.022
– volume: 99
  start-page: 138
  year: 2017
  ident: 10.1016/j.tem.2020.11.010_bb0165
  article-title: Blood flow restricted resistance training in older adults at risk of mobility limitations
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2017.10.004
– volume: 50
  start-page: 1472
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0195
  article-title: Let the pleasure guide your resistance training intensity
  publication-title: Med. Sci. Sports Exerc.
  doi: 10.1249/MSS.0000000000001573
– volume: 31
  start-page: 1003
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0245
  article-title: Pathways for ischemic cytoprotection: role of sirtuins in caloric restriction, resveratrol, and ischemic preconditioning
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2010.229
– volume: 171
  start-page: 181
  year: 2017
  ident: 10.1016/j.tem.2020.11.010_bb0365
  article-title: The effects of upper body exercise across different levels of blood flow restriction on arterial occlusion pressure and perceptual responses
  publication-title: Physiol. Behav.
  doi: 10.1016/j.physbeh.2017.01.015
– volume: 301
  start-page: R1078
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0435
  article-title: Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans
  publication-title: Am. J. Physiol. Regul. Integr. Comp. Physiol.
  doi: 10.1152/ajpregu.00285.2011
– volume: 57
  start-page: 1789
  year: 2014
  ident: 10.1016/j.tem.2020.11.010_bb0025
  article-title: Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis
  publication-title: Diabetologia
  doi: 10.1007/s00125-014-3303-z
– volume: 51
  start-page: 1688
  year: 2017
  ident: 10.1016/j.tem.2020.11.010_bb0080
  article-title: Quadriceps strengthening with and without blood flow restriction in the treatment of patellofemoral pain: a double-blind randomised trial
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2016-096329
– volume: 9
  start-page: 452
  year: 2010
  ident: 10.1016/j.tem.2020.11.010_bb0120
  article-title: Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2MAX in young men
  publication-title: J. Sports Sci. Med.
– volume: 116
  start-page: 749
  year: 2016
  ident: 10.1016/j.tem.2020.11.010_bb0170
  article-title: Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people
  publication-title: Eur. J. Appl. Physiol.
  doi: 10.1007/s00421-016-3328-8
– volume: 7
  start-page: 7
  year: 2011
  ident: 10.1016/j.tem.2020.11.010_bb0345
  article-title: Kaatsu training – application to metabolic syndrome
  publication-title: Int. J. KAATSU Training Res.
  doi: 10.3806/ijktr.7.7
– volume: 9
  start-page: 152
  year: 2020
  ident: 10.1016/j.tem.2020.11.010_bb0035
  article-title: Effects of blood flow restriction without additional exercise on strength reductions and muscular atrophy following immobilization: a systematic review
  publication-title: J. Sport Health Sci.
  doi: 10.1016/j.jshs.2019.07.001
– volume: 55
  start-page: 1235
  year: 2012
  ident: 10.1016/j.tem.2020.11.010_bb0355
  article-title: Exercise in type 2 diabetes: to resist or to endure?
  publication-title: Diabetologia
  doi: 10.1007/s00125-012-2513-5
– volume: 37
  start-page: 1857
  year: 2019
  ident: 10.1016/j.tem.2020.11.010_bb0460
  article-title: Perceptual changes to progressive resistance training with and without blood flow restriction
  publication-title: J. Sports Sci.
  doi: 10.1080/02640414.2019.1599315
– volume: 70
  start-page: 950
  year: 2015
  ident: 10.1016/j.tem.2020.11.010_bb0160
  article-title: Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/glu084
– volume: 17
  start-page: 129
  year: 2018
  ident: 10.1016/j.tem.2020.11.010_bb0415
  article-title: The application of blood flow restriction: lessons from the laboratory
  publication-title: Curr. Sports Med. Rep.
  doi: 10.1249/JSR.0000000000000473
– volume: 100
  start-page: 1460
  year: 2006
  ident: 10.1016/j.tem.2020.11.010_bb0115
  article-title: Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01267.2005
SSID ssj0014815
Score 2.5388105
SecondaryResourceType review_article
Snippet Blood flow restriction resistance training (BFRT) employs partial vascular occlusion of exercising muscles via inflation cuffs. Compared with high-load...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106
SubjectTerms blood flow restriction training
Endocrinology and Metabolism
muscle mass
muscle strength
resistance training
type 2 diabetes mellitus
Title Effects of Blood Flow Restriction Exercise and Possible Applications in Type 2 Diabetes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1043276020302344
https://www.clinicalkey.es/playcontent/1-s2.0-S1043276020302344
https://dx.doi.org/10.1016/j.tem.2020.11.010
https://www.ncbi.nlm.nih.gov/pubmed/33358931
https://www.proquest.com/docview/2473416220
Volume 32
WOSCitedRecordID wos000607803800005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3061
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014815
  issn: 1043-2760
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6DU17QXxTPiYj8QTKlDhxnDwO1AkQFARD9M1yHVvr1CZVk037K_ibOcd2EgEd8IAqpVUcJ6rvl_P5_Ls7hJ4LEUdiTouA5GERJHmUBSJJRaCpJkITKpRO2mITbDrNZrP802j03cfCXC5ZWWZXV_n6v4oazoGwTejsP4i7uymcgN8gdDiC2OH4V4Kf9AyNV4aV_vJkWZk9AFOgw9YFn7gySzZSoDJvxVJZe3TALT-1zllHmamHVmxPpIXvCvRO2WdyWqkGcLX0mQmN80aIZuVqMU9dte7WVy3OYKHeGq8fRSkCWy1g0bW_r8wk4BKCqo2Je-mC0T5XTl8Oaf_OeUEiz3c2c49VuBkz3AubkN1r5N7j2S2MrXqN2uwEv6p964E4P2qUSS5AzERwFFq67EDi61Ur8jiOKVhpUT8DdrxE37SD9gijOWjJveO3k9m7bl_KpLbxe-MtS_CnJx6gfX-PbYbOtoVMa9Cc3kI33UoEH1sE3UYjVd5B-x8c1-Iu-uaAhCuNWyBhAyQ8ABL2QMIgeOyBhIdAwosSGyBhgj2Q7qGvJ5PT128CV4YjkDRlTSBlkgipCCkETWUazrXM5nSeRhKsVc2ykMkoLfRc6ZjKSJIipJkuzA5_ITMV6vg-2i2rUj1EWBuLKaFFFEuVCE1zs4CWYcx0HAv4jFHox4xLl6PelEpZck9GPOcw4tyMOKxdOYz4GL3ouqxtgpbrLiZeENxHHsNcyQFH13Viv-ukavfS1zziNeEh_xKZ_JYsNZv7YAonyRglXU9n0FpD9U8PfOYxwkHZmx08UarqouYkYWB1poTANQ8seLo_7XH3aGvLY3TQv4NP0G6zuVBP0Q152SzqzSHaYbPs0AH-B56Dz7g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Blood+Flow+Restriction+Exercise+and+Possible+Applications+in+Type+2+Diabetes&rft.jtitle=Trends+in+endocrinology+and+metabolism&rft.au=Saatmann%2C+Nina&rft.au=Zaharia%2C+Oana-Patricia&rft.au=Loenneke%2C+Jeremy+P&rft.au=Roden%2C+Michael&rft.date=2021-02-01&rft.eissn=1879-3061&rft.volume=32&rft.issue=2&rft.spage=106&rft_id=info:doi/10.1016%2Fj.tem.2020.11.010&rft_id=info%3Apmid%2F33358931&rft.externalDocID=33358931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1043-2760&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1043-2760&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1043-2760&client=summon