Quantum annealing algorithms for Boolean tensor networks

Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; pp. 8539 - 19
Main Authors: Pelofske, Elijah, Hahn, Georg, O’Malley, Daniel, Djidjev, Hristo N., Alexandrov, Boian S.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 20.05.2022
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., { 0 , 1 } ) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor’s with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.
AbstractList Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., [Formula: see text]) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor's with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.
Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., [Formula: see text]) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor's with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., [Formula: see text]) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor's with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.
Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., $$\{0, 1\}$$ 0,1) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor’s with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.
Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., {0,1}) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor’s with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.
Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., $$\{0, 1\}$$ { 0 , 1 } ) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor’s with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.
Abstract Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., $$\{0, 1\}$$ { 0 , 1 } ) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor’s with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.
Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., { 0 , 1 } ) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor’s with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.
ArticleNumber 8539
Author Pelofske, Elijah
Hahn, Georg
Alexandrov, Boian S.
O’Malley, Daniel
Djidjev, Hristo N.
Author_xml – sequence: 1
  givenname: Elijah
  surname: Pelofske
  fullname: Pelofske, Elijah
  email: epelofske@lanl.gov
  organization: Los Alamos National Laboratory
– sequence: 2
  givenname: Georg
  surname: Hahn
  fullname: Hahn, Georg
  organization: Harvard T.H. Chan School of Public Health
– sequence: 3
  givenname: Daniel
  surname: O’Malley
  fullname: O’Malley, Daniel
  organization: Los Alamos National Laboratory
– sequence: 4
  givenname: Hristo N.
  surname: Djidjev
  fullname: Djidjev, Hristo N.
  organization: Los Alamos National Laboratory, Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
– sequence: 5
  givenname: Boian S.
  surname: Alexandrov
  fullname: Alexandrov, Boian S.
  organization: Los Alamos National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35595786$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1869036$$D View this record in Osti.gov
BookMark eNp9Ustu1TAUjFARLaU_wAJFsGET8CuOvUEqFY9KlRASrK0Tx871JbGL7YD69_W9aaHtot74NTOeczzPqwMfvKmqlxi9w4iK94nhVooGEdJgwjFu5JPqiCDWNoQScnBnfVidpLRFZbREMiyfVYe0bWXbCX5Uie8L-LzMNXhvYHJ-rGEaQ3R5M6fahlh_DGEy4OtsfCpbb_LfEH-lF9VTC1MyJzfzcfXz86cfZ1-bi29fzs9OLxrd8i43vQBCNTFCg6RaMMsM48All7bvBeksFdhaxnjXDQL4gAaKMWW0lAgD7Qd6XJ2vukOArbqMboZ4pQI4tT8IcVQQs9OTUR01WlNqCR6AWUBykEhb3hlJoBUdLVofVq3LpZ_NoI3PEaZ7ovdvvNuoMfxREpPiaCfwehUIKTuVtMtGb3QordNZYcEloryA3t68EsPvxaSsZpe0mSbwJixJEV6KFaIjqEDfPIBuwxJ96ecehSQSYif46q7tf35vf7EAxArQMaQUjVXFGWQXdlW4SWGkdplRa2ZUyYzaZ0bJQiUPqLfqj5LoSkoF7EcT_9t-hHUNfXTSUg
CitedBy_id crossref_primary_10_1007_s11128_024_04512_9
crossref_primary_10_1088_2058_9565_ad6eb3
crossref_primary_10_1002_qute_202300104
crossref_primary_10_1038_s41534_024_00825_w
crossref_primary_10_1103_PhysRevResearch_5_023151
crossref_primary_10_1038_s41598_022_08394_8
crossref_primary_10_1088_2058_9565_accbe6
crossref_primary_10_1038_s44335_025_00032_6
crossref_primary_10_1103_PhysRevResearch_5_013224
crossref_primary_10_1371_journal_pone_0304594
crossref_primary_10_1007_s10732_025_09556_3
crossref_primary_10_1016_j_jii_2024_100663
Cites_doi 10.1137/06066518X
10.1109/ICRC2020.2020.00002
10.1038/s41598-022-08394-8
10.5281/zenodo.5773480
10.1038/44565
10.1109/TKDE.2008.53
10.1109/ICDM.2011.28
10.1016/S0166-218X(01)00341-9
10.1103/RevModPhys.80.1061
10.1016/0196-6774(90)90014-6
10.1007/s11265-018-1357-8
10.1007/BF01886518
10.1007/978-3-030-97549-4_40
10.1145/3310273.3321562
10.1109/MC.2019.2908836
10.1371/journal.pone.0244026
10.25080/TCWV9851
10.1063/1.3672009
10.1145/3459606
10.1137/090748330
10.1016/0009-2614(94)00117-0
10.1088/1361-6633/ab85b8
10.1002/sapm192761164
10.1137/07070111X
10.1145/3149526.3149531
10.1137/1035134
10.1007/BF02289464
10.1371/journal.pone.0206653
10.3389/fphy.2014.00005
10.1109/MCSE.2007.55
10.1137/090752286
10.5281/zenodo.4876527
10.1103/RevModPhys.90.015002
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022
2022. The Author(s).
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022
– notice: 2022. The Author(s).
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – sequence: 0
  name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
OTOTI
5PM
DOA
DOI 10.1038/s41598-022-12611-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Computer Science
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_73ecc33f21da4fa09d90cf67e92a5873
PMC9123033
1869036
35595786
10_1038_s41598_022_12611_9
Genre Journal Article
GrantInformation_xml – fundername: Science and Education for Smart Growth Operational Program (2014-2020)
  grantid: BG05M2OP001-1.001-0003
– fundername: Laboratory Directed Research and Development
  grantid: 20190020DR
  funderid: http://dx.doi.org/10.13039/100007000
– fundername: Laboratory Directed Research and Development
  grantid: 20190020DR
– fundername: ;
  grantid: BG05M2OP001-1.001-0003
– fundername: ;
  grantid: 20190020DR
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
OTOTI
5PM
ID FETCH-LOGICAL-c567t-b8a23c2e8ca93c84f4e46a6969fbb827f381ff44677d8a6d0d311343038ad3bd3
IEDL.DBID DOA
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798349300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Fri Oct 03 12:43:35 EDT 2025
Tue Nov 04 02:01:47 EST 2025
Thu Dec 05 06:30:47 EST 2024
Fri Sep 05 11:45:35 EDT 2025
Tue Oct 07 07:38:35 EDT 2025
Thu Apr 03 07:03:27 EDT 2025
Tue Nov 18 22:11:22 EST 2025
Sat Nov 29 06:26:05 EST 2025
Fri Feb 21 02:39:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-b8a23c2e8ca93c84f4e46a6969fbb827f381ff44677d8a6d0d311343038ad3bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
LA-UR-21-27414
USDOE Laboratory Directed Research and Development (LDRD) Program
89233218CNA000001; 20190020DR; BG05M2OP001-1.001-0003
ORCID 000000032673796X
0000000304323088
0000000192868824
0000000186364603
OpenAccessLink https://doaj.org/article/73ecc33f21da4fa09d90cf67e92a5873
PMID 35595786
PQID 2667090886
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_73ecc33f21da4fa09d90cf67e92a5873
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9123033
osti_scitechconnect_1869036
proquest_miscellaneous_2667788720
proquest_journals_2667090886
pubmed_primary_35595786
crossref_citationtrail_10_1038_s41598_022_12611_9
crossref_primary_10_1038_s41598_022_12611_9
springer_journals_10_1038_s41598_022_12611_9
PublicationCentury 2000
PublicationDate 2022-05-20
PublicationDateYYYYMMDD 2022-05-20
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – sequence: 0
  name: Nature Publishing Group
– name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Biamonte, J. Lectures on Quantum Tensor Networks. arXiv:1912.10049 (2019).
LucasAIsing formulations of many NP problemsFront. Phys.2014212710.3389/fphy.2014.00005
BorosEHammerPPseudo-Boolean optimizationDiscret. Appl. Math.2002123155225192233410.1016/S0166-218X(01)00341-9
De SilvaVLimL-HTensor rank and the ill-posedness of the best low-rank approximation problemSIAM J. Matrix Anal. Appl.20083010841127244744410.1137/06066518X
PenroseRApplications of negative dimensional tensorsCombin. Math. Appl.197112212442816570216.43502
LeeDDSeungHSLearning the parts of objects by non-negative matrix factorizationNature19994017887911999Natur.401..788L1:CAS:528:DyaK1MXntFartrg%3D10.1038/44565
D-Wave Systems. Dimod Github and Uniform Torque Compensation and Create a binary quadratic model from a higher order polynomial Github and Minorminer Github (2020).
Syed, A. M., Qazi, S. & Gillis, N. Improved SVD-based Initialization for Nonnegative Matrix Factorization using Low-Rank Correction. http://arxiv.org/abs/1807.04020 (2018).
PelofskeEHahnGO’MalleyDDjidjevHNAlexandrovBSLirkovIMargenovSBoolean hierarchical tucker networks on quantum annealersLarge-Scale Scientific Computing2022Springer35135810.1007/978-3-030-97549-4_40
The Nimfa developers. Nonnegative Double Singular Value Decomposition (2016).
JüngerMQuantum annealing versus digital computing: An experimental comparisonJ. Exp. Algorithmics (JEA)202126130428615310.1145/3459606
DasAChakrabartiBKColloquium: Quantum annealing and analog quantum computationRev. Mod. Phys.200880106110812008RvMP...80.1061D244372110.1103/RevModPhys.80.10611205.81058
Caswell, T. A. et al. matplotlib/matplotlib: Rel: v3.5.1. https://doi.org/10.5281/zenodo.5773480 (2021).
AlbashTLidarDAAdiabatic quantum computationRev. Mod. Phys.2018902018RvMP...90a5002A378842410.1103/RevModPhys.90.015002
Pelofske, E., Hahn, G. & Djidjev, H. Solving large Minimum Vertex Cover problems on a quantum annealer. In Proceedings of the Computing Frontiers Conference CF’19. arXiv:1904.00051, 1–16 (2019).
MiettinenPMielikäinenTGionisADasGMannilaHThe discrete basis problemIEEE Trans. Knowl. Data Eng.2008201348136210.1109/TKDE.2008.53
HitchcockFLThe expression of a tensor or a polyadic as a sum of productsJ. Math. Phys.1927616418910.1002/sapm192761164
GoldenJO’MalleyDReverse annealing for nonnegative/binary matrix factorizationPLoS ONE2021161:CAS:528:DC%2BB3MXhtlSltL4%3D10.1371/journal.pone.0244026
HåstadJTensor rank is np-completeJ. Algorithms199011644654107945510.1016/0196-6774(90)90014-6
McGeochCCHarrisRReinhardtSPBunykPIPractical annealing-based quantum computingComputer201952384610.1109/MC.2019.2908836
EverettBAn Introduction to Latent Variable Models2013Springer
KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009514555002009SIAMR..51..455K253505610.1137/07070111X
Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkx. In Varoquaux, G., Vaught, T. & Millman, J. (eds.) Proceedings of the 7th Python in Science Confeence, pp. 11 – 15 (Pasadena, 2008).
GrantEKHumbleTSBenchmarking embedded chain breaking in quantum annealingQuant. Sci. Technol.20211112
ChapuisGDjidjevHHahnGRizkGFinding maximum cliques on the D-wave quantum annealerJ. Signal Process. Syst.20199136337710.1007/s11265-018-1357-8
StewartGWOn the early history of the singular value decompositionSIAM Rev.199335551566124791610.1137/1035134
OseledetsIA New Tensor Decomposition. Doklady Mathematics2009Pleiades Publishing Ltd4954961183.15023
OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use svd in many dimensionsSIAM J. Sci. Comput.20093137443759255656010.1137/090748330
Ushijima-Mwesigwa, H., Negre, C. F. & Mniszewski, S. M. Graph partitioning using quantum annealing on the d-wave system. In Proceedings of the Second International Workshop on Post Moores Era Supercomputing, 22–29 (2017).
Pelofske, E. lanl/pyqbtns: Release v1.0.0. https://doi.org/10.5281/zenodo.4876527 (2021).
HaukePKatzgraberHGLechnerWNishimoriHOliverWDPerspectives of quantum annealing: Methods and implementationsRep. Prog. Phys.2020832020RPPh...83e4401H1:CAS:528:DC%2BB3cXitFOltLjN10.1088/1361-6633/ab85b8
TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika1966312793112053951:STN:280:DyaF287mtFSjtw%3D%3D10.1007/BF02289464
FeynmanRPQuantum mechanical computersFound. Phys.1986165075311986FoPh...16..507F89503510.1007/BF01886518
OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.20113322952317283753310.1137/090752286
Miettinen, P. Boolean tensor factorizations. In IEEE 11th Intl Conference on Data Mining, 447–456 (IEEE, 2011).
O’MalleyDVesselinovVAlexandrovBAlexandrovLNonnegative/binary matrix factorization with a d-wave quantum annealerPLoS ONE20181310.1371/journal.pone.0206653
HunterJDMatplotlib: A 2d graphics environmentComput. Sci. Eng.20079909510.1109/MCSE.2007.55
O’Malley, D., Djidjev, H. N. & Alexandrov, B. S. Tucker-1 Boolean Tensor Factorization with Quantum Annealers. In Proceedings of the 2020 International Conference on Rebooting Computing (ICRC), 58–65 (2020).
FinnilaAGomezMSebenikCStensonCDollJQuantum annealing: A new method for minimizing multidimensional functionsChem. Phys. Lett.19942193433481994CPL...219..343F1:CAS:528:DyaK2cXisFelsbg%3D10.1016/0009-2614(94)00117-0
Cai, J., Macready, W. G. & Roy, A. A practical heuristic for finding graph minors (2014).
BiamonteJDClarkSRJakschDCategorical tensor network statesAIP Adv.201112011AIPA....1d2172B10.1063/1.3672009
SpearmanCGeneral intelligence, objectively determined and measuredAm. J. Psychol.196115110
PelofskeEHahnGDjidjevHNParallel quantum annealingSci. Rep.20221244992022NatSR..12.4499P1:CAS:528:DC%2BB38Xnt1ymsLY%3D10.1038/s41598-022-08394-8352967218927114
IV Oseledets (12611_CR14) 2009; 31
RP Feynman (12611_CR13) 1986; 16
E Pelofske (12611_CR32) 2022
JD Hunter (12611_CR37) 2007; 9
A Lucas (12611_CR28) 2014; 2
12611_CR36
12611_CR17
12611_CR39
12611_CR16
E Pelofske (12611_CR31) 2022; 12
12611_CR38
12611_CR33
P Hauke (12611_CR35) 2020; 83
I Oseledets (12611_CR11) 2009
D O’Malley (12611_CR29) 2018; 13
IV Oseledets (12611_CR15) 2011; 33
M Jünger (12611_CR27) 2021; 26
J Golden (12611_CR30) 2021; 16
J Håstad (12611_CR9) 1990; 11
12611_CR40
E Boros (12611_CR20) 2002; 123
T Albash (12611_CR34) 2018; 90
A Finnila (12611_CR23) 1994; 219
12611_CR41
CC McGeoch (12611_CR21) 2019; 52
EK Grant (12611_CR42) 2021; 1
12611_CR26
FL Hitchcock (12611_CR8) 1927; 6
12611_CR43
LR Tucker (12611_CR7) 1966; 31
12611_CR24
JD Biamonte (12611_CR18) 2011; 1
B Everett (12611_CR1) 2013
P Miettinen (12611_CR5) 2008; 20
A Das (12611_CR22) 2008; 80
GW Stewart (12611_CR3) 1993; 35
DD Lee (12611_CR4) 1999; 401
R Penrose (12611_CR12) 1971; 1
12611_CR19
G Chapuis (12611_CR25) 2019; 91
C Spearman (12611_CR2) 1961; 15
TG Kolda (12611_CR6) 2009; 51
V De Silva (12611_CR10) 2008; 30
References_xml – reference: HitchcockFLThe expression of a tensor or a polyadic as a sum of productsJ. Math. Phys.1927616418910.1002/sapm192761164
– reference: HunterJDMatplotlib: A 2d graphics environmentComput. Sci. Eng.20079909510.1109/MCSE.2007.55
– reference: Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkx. In Varoquaux, G., Vaught, T. & Millman, J. (eds.) Proceedings of the 7th Python in Science Confeence, pp. 11 – 15 (Pasadena, 2008).
– reference: OseledetsIVTensor-train decompositionSIAM J. Sci. Comput.20113322952317283753310.1137/090752286
– reference: ChapuisGDjidjevHHahnGRizkGFinding maximum cliques on the D-wave quantum annealerJ. Signal Process. Syst.20199136337710.1007/s11265-018-1357-8
– reference: GoldenJO’MalleyDReverse annealing for nonnegative/binary matrix factorizationPLoS ONE2021161:CAS:528:DC%2BB3MXhtlSltL4%3D10.1371/journal.pone.0244026
– reference: KoldaTGBaderBWTensor decompositions and applicationsSIAM Rev.2009514555002009SIAMR..51..455K253505610.1137/07070111X
– reference: Cai, J., Macready, W. G. & Roy, A. A practical heuristic for finding graph minors (2014).
– reference: PelofskeEHahnGDjidjevHNParallel quantum annealingSci. Rep.20221244992022NatSR..12.4499P1:CAS:528:DC%2BB38Xnt1ymsLY%3D10.1038/s41598-022-08394-8352967218927114
– reference: GrantEKHumbleTSBenchmarking embedded chain breaking in quantum annealingQuant. Sci. Technol.20211112
– reference: Syed, A. M., Qazi, S. & Gillis, N. Improved SVD-based Initialization for Nonnegative Matrix Factorization using Low-Rank Correction. http://arxiv.org/abs/1807.04020 (2018).
– reference: StewartGWOn the early history of the singular value decompositionSIAM Rev.199335551566124791610.1137/1035134
– reference: OseledetsIA New Tensor Decomposition. Doklady Mathematics2009Pleiades Publishing Ltd4954961183.15023
– reference: AlbashTLidarDAAdiabatic quantum computationRev. Mod. Phys.2018902018RvMP...90a5002A378842410.1103/RevModPhys.90.015002
– reference: O’MalleyDVesselinovVAlexandrovBAlexandrovLNonnegative/binary matrix factorization with a d-wave quantum annealerPLoS ONE20181310.1371/journal.pone.0206653
– reference: SpearmanCGeneral intelligence, objectively determined and measuredAm. J. Psychol.196115110
– reference: Caswell, T. A. et al. matplotlib/matplotlib: Rel: v3.5.1. https://doi.org/10.5281/zenodo.5773480 (2021).
– reference: FeynmanRPQuantum mechanical computersFound. Phys.1986165075311986FoPh...16..507F89503510.1007/BF01886518
– reference: DasAChakrabartiBKColloquium: Quantum annealing and analog quantum computationRev. Mod. Phys.200880106110812008RvMP...80.1061D244372110.1103/RevModPhys.80.10611205.81058
– reference: JüngerMQuantum annealing versus digital computing: An experimental comparisonJ. Exp. Algorithmics (JEA)202126130428615310.1145/3459606
– reference: De SilvaVLimL-HTensor rank and the ill-posedness of the best low-rank approximation problemSIAM J. Matrix Anal. Appl.20083010841127244744410.1137/06066518X
– reference: D-Wave Systems. Dimod Github and Uniform Torque Compensation and Create a binary quadratic model from a higher order polynomial Github and Minorminer Github (2020).
– reference: HåstadJTensor rank is np-completeJ. Algorithms199011644654107945510.1016/0196-6774(90)90014-6
– reference: Biamonte, J. Lectures on Quantum Tensor Networks. arXiv:1912.10049 (2019).
– reference: FinnilaAGomezMSebenikCStensonCDollJQuantum annealing: A new method for minimizing multidimensional functionsChem. Phys. Lett.19942193433481994CPL...219..343F1:CAS:528:DyaK2cXisFelsbg%3D10.1016/0009-2614(94)00117-0
– reference: BiamonteJDClarkSRJakschDCategorical tensor network statesAIP Adv.201112011AIPA....1d2172B10.1063/1.3672009
– reference: PenroseRApplications of negative dimensional tensorsCombin. Math. Appl.197112212442816570216.43502
– reference: LeeDDSeungHSLearning the parts of objects by non-negative matrix factorizationNature19994017887911999Natur.401..788L1:CAS:528:DyaK1MXntFartrg%3D10.1038/44565
– reference: EverettBAn Introduction to Latent Variable Models2013Springer
– reference: TuckerLRSome mathematical notes on three-mode factor analysisPsychometrika1966312793112053951:STN:280:DyaF287mtFSjtw%3D%3D10.1007/BF02289464
– reference: BorosEHammerPPseudo-Boolean optimizationDiscret. Appl. Math.2002123155225192233410.1016/S0166-218X(01)00341-9
– reference: The Nimfa developers. Nonnegative Double Singular Value Decomposition (2016).
– reference: O’Malley, D., Djidjev, H. N. & Alexandrov, B. S. Tucker-1 Boolean Tensor Factorization with Quantum Annealers. In Proceedings of the 2020 International Conference on Rebooting Computing (ICRC), 58–65 (2020).
– reference: Ushijima-Mwesigwa, H., Negre, C. F. & Mniszewski, S. M. Graph partitioning using quantum annealing on the d-wave system. In Proceedings of the Second International Workshop on Post Moores Era Supercomputing, 22–29 (2017).
– reference: OseledetsIVTyrtyshnikovEEBreaking the curse of dimensionality, or how to use svd in many dimensionsSIAM J. Sci. Comput.20093137443759255656010.1137/090748330
– reference: McGeochCCHarrisRReinhardtSPBunykPIPractical annealing-based quantum computingComputer201952384610.1109/MC.2019.2908836
– reference: MiettinenPMielikäinenTGionisADasGMannilaHThe discrete basis problemIEEE Trans. Knowl. Data Eng.2008201348136210.1109/TKDE.2008.53
– reference: LucasAIsing formulations of many NP problemsFront. Phys.2014212710.3389/fphy.2014.00005
– reference: Miettinen, P. Boolean tensor factorizations. In IEEE 11th Intl Conference on Data Mining, 447–456 (IEEE, 2011).
– reference: HaukePKatzgraberHGLechnerWNishimoriHOliverWDPerspectives of quantum annealing: Methods and implementationsRep. Prog. Phys.2020832020RPPh...83e4401H1:CAS:528:DC%2BB3cXitFOltLjN10.1088/1361-6633/ab85b8
– reference: Pelofske, E., Hahn, G. & Djidjev, H. Solving large Minimum Vertex Cover problems on a quantum annealer. In Proceedings of the Computing Frontiers Conference CF’19. arXiv:1904.00051, 1–16 (2019).
– reference: Pelofske, E. lanl/pyqbtns: Release v1.0.0. https://doi.org/10.5281/zenodo.4876527 (2021).
– reference: PelofskeEHahnGO’MalleyDDjidjevHNAlexandrovBSLirkovIMargenovSBoolean hierarchical tucker networks on quantum annealersLarge-Scale Scientific Computing2022Springer35135810.1007/978-3-030-97549-4_40
– volume: 30
  start-page: 1084
  year: 2008
  ident: 12611_CR10
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/06066518X
– ident: 12611_CR36
– ident: 12611_CR17
  doi: 10.1109/ICRC2020.2020.00002
– ident: 12611_CR40
– volume: 12
  start-page: 4499
  year: 2022
  ident: 12611_CR31
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-08394-8
– ident: 12611_CR38
  doi: 10.5281/zenodo.5773480
– volume-title: An Introduction to Latent Variable Models
  year: 2013
  ident: 12611_CR1
– volume: 401
  start-page: 788
  year: 1999
  ident: 12611_CR4
  publication-title: Nature
  doi: 10.1038/44565
– volume: 20
  start-page: 1348
  year: 2008
  ident: 12611_CR5
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.53
– ident: 12611_CR16
  doi: 10.1109/ICDM.2011.28
– volume: 123
  start-page: 155
  year: 2002
  ident: 12611_CR20
  publication-title: Discret. Appl. Math.
  doi: 10.1016/S0166-218X(01)00341-9
– start-page: 495
  volume-title: A New Tensor Decomposition. Doklady Mathematics
  year: 2009
  ident: 12611_CR11
– volume: 80
  start-page: 1061
  year: 2008
  ident: 12611_CR22
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.1061
– volume: 11
  start-page: 644
  year: 1990
  ident: 12611_CR9
  publication-title: J. Algorithms
  doi: 10.1016/0196-6774(90)90014-6
– volume: 91
  start-page: 363
  year: 2019
  ident: 12611_CR25
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-018-1357-8
– volume: 16
  start-page: 507
  year: 1986
  ident: 12611_CR13
  publication-title: Found. Phys.
  doi: 10.1007/BF01886518
– ident: 12611_CR19
– start-page: 351
  volume-title: Large-Scale Scientific Computing
  year: 2022
  ident: 12611_CR32
  doi: 10.1007/978-3-030-97549-4_40
– ident: 12611_CR26
  doi: 10.1145/3310273.3321562
– volume: 52
  start-page: 38
  year: 2019
  ident: 12611_CR21
  publication-title: Computer
  doi: 10.1109/MC.2019.2908836
– volume: 16
  year: 2021
  ident: 12611_CR30
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0244026
– ident: 12611_CR39
  doi: 10.25080/TCWV9851
– volume: 1
  year: 2011
  ident: 12611_CR18
  publication-title: AIP Adv.
  doi: 10.1063/1.3672009
– volume: 26
  start-page: 1
  year: 2021
  ident: 12611_CR27
  publication-title: J. Exp. Algorithmics (JEA)
  doi: 10.1145/3459606
– volume: 31
  start-page: 3744
  year: 2009
  ident: 12611_CR14
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090748330
– volume: 1
  start-page: 1
  year: 2021
  ident: 12611_CR42
  publication-title: Quant. Sci. Technol.
– volume: 15
  start-page: 1
  year: 1961
  ident: 12611_CR2
  publication-title: Am. J. Psychol.
– volume: 219
  start-page: 343
  year: 1994
  ident: 12611_CR23
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(94)00117-0
– volume: 83
  year: 2020
  ident: 12611_CR35
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab85b8
– volume: 6
  start-page: 164
  year: 1927
  ident: 12611_CR8
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm192761164
– ident: 12611_CR43
– volume: 51
  start-page: 455
  year: 2009
  ident: 12611_CR6
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– ident: 12611_CR24
  doi: 10.1145/3149526.3149531
– ident: 12611_CR41
– volume: 35
  start-page: 551
  year: 1993
  ident: 12611_CR3
  publication-title: SIAM Rev.
  doi: 10.1137/1035134
– volume: 31
  start-page: 279
  year: 1966
  ident: 12611_CR7
  publication-title: Psychometrika
  doi: 10.1007/BF02289464
– volume: 13
  year: 2018
  ident: 12611_CR29
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0206653
– volume: 1
  start-page: 221
  year: 1971
  ident: 12611_CR12
  publication-title: Combin. Math. Appl.
– volume: 2
  start-page: 1
  year: 2014
  ident: 12611_CR28
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2014.00005
– volume: 9
  start-page: 90
  year: 2007
  ident: 12611_CR37
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 33
  start-page: 2295
  year: 2011
  ident: 12611_CR15
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/090752286
– ident: 12611_CR33
  doi: 10.5281/zenodo.4876527
– volume: 90
  year: 2018
  ident: 12611_CR34
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.90.015002
SSID ssj0000529419
Score 2.4744225
Snippet Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In...
Abstract Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8539
SubjectTerms 639/705/117
639/705/794
639/766/483/2802
639/766/483/481
Algorithms
Boolean
Computer applications
Computer science
D-Wave
Decomposition
Humanities and Social Sciences
MATHEMATICS AND COMPUTING
multidisciplinary
Parallel quantum annealing
Quantum annealing
Quantum information
Qubits
Science
Science (multidisciplinary)
Software
Tensor networks
Tensor train
Tucker
Tucker decomposition
SummonAdditionalLinks – databaseName: Science Database
  dbid: M2P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3JbtUw0IICEhd2aGhBQeIGURM78XJCFFFxgKpIIPVmOV7aSq9JecmrxN8z4_ileiy9cIoS29HYs9ozniHkNQ-8EUy0BW8UbFBE2xbGSFV4rqxjIA65j1VLPovDQ3l8rI7SgduQwirXMjEKatdbPCPfA0UiSgzK4e8ufhRYNQq9q6mExk1yCyybCkO6vtCj-YwFvVh1pdJdmZLJvQH0Fd4po1jRg1dVoTb0UUzbD48e2OtvJuefkZO_uU-jVjq4_7_zeUDuJXs0fz8R0ENyw3ePyJ2pQuXPx0R-XcHSr85zA_LY4NX13CxO4D_j6fmQg8Gb7_f9wpsux0h4eO2msPLhCfl-8PHbh09FKrZQ2IaLsWilocxSL61RzMo61L7mhiuuQttKKgKo9hBg8yiEk4a70rGqYjVoQGkcax17Sra6vvPbJAfx6ZWzjAP-a8WNQV9tgI2ZE96ylmWkWi-5tikTORbEWOjoEWdST2jSgCYd0aRVRt7MYy6mPBzX9t5HTM49MYd2_NAvT3RiSS0YkC9jgVbO1MGUyqnSBi68oqaRAsDcQTrQYIpgPl2LgUd21LGGF-MZ2V3jVSe2H_QVUjPyam4GhkUvjOl8v5r6YAgnLTPybKKmGU4w_hSIUBgtNuhsYyKbLd3ZaUwKrsAEKRkA_XZNkVdg_Xuhnl8_ix1ylyKvlA1I012yNS5X_gW5bS_Hs2H5MjLbL32ALx0
  priority: 102
  providerName: ProQuest
Title Quantum annealing algorithms for Boolean tensor networks
URI https://link.springer.com/article/10.1038/s41598-022-12611-9
https://www.ncbi.nlm.nih.gov/pubmed/35595786
https://www.proquest.com/docview/2667090886
https://www.proquest.com/docview/2667788720
https://www.osti.gov/biblio/1869036
https://pubmed.ncbi.nlm.nih.gov/PMC9123033
https://doaj.org/article/73ecc33f21da4fa09d90cf67e92a5873
Volume 12
WOSCitedRecordID wos000798349300029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLagBYkLYie0jILEDaImduLlyKBWINFRQCANJ8vx0o40TdAkU6n_nmc7M3RYL1wcJbYV-_ltlp-_h9BL6mjFCGsyWgnYoLCmyZTiIrNUaENAHVIbspZ8YLMZn89FfS3Vl48Ji_DAkXBHjMBPCHG4MKp0KhdG5NpRZgVWFWcB5zNn4tpmKqJ6Y1EWYrwlkxN-1IOl8rfJsM_lQYsiEzuWKAD2w6MDwfqds_lrzORPB6fBHp3cQ3dHRzJ9EydwH92w7QN0O6aWvHqI-Mc10Gx9kSpQpMrfOU_V8qxbLYbziz4FTzWddt3Sqjb1Iezw2sZ48P4R-nJy_Pntu2zMkpDpirIha7jCRGPLtRJE89KVtqSKCipc03DMHNhk52DXx5jhiprckKIgJZgurgxpDHmM9tqutU9RCnrPCqMJhYUrBVXKH7I62FEZZjVpSIKKDcWkHiHEfSaLpQxH2YTLSGUJVJaBylIk6NW2z7cIoPHX1lO_ENuWHvw6fACWkCNLyH-xRIIO_DJK8CE8EK72EUN6kCH5FqEJOtysrhzltZfgprDch3xB9YttNUiaPz5Rre3WsY2PvcR5gp5EZtiOE7w2AboPerMdNtmZyG5NuzgPaN4CfIecwKBfbxjqx7D-TKhn_4NQB-gO9gKRV6AsD9HesFrb5-iWvhwW_WqCbrI5CyWfoP3p8az-NAlSBuUprn3JoNyv35_WX78D2RUoeA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL78fSAkGCE0RN7KwfB4QoULXqUhWpSL25ju20lbZJ2eyC-qf4jczksdXy6K0HTqts7GiSfPNwZjwfwEtRiKHkMo_FUOMCReZ5bK3ScRDaeY7mUISGtWQkd3bU_r7eXYKf_V4YKqvsbWJjqH3l6Bv5GjoSmVBRjnh3-i0m1ijKrvYUGi0stsPZD1yy1W-3PuL7fcXYxqe9D5txxyoQu6GQ0zhXlnHHgnJWc6eyIguZsEILXeS5YrJAH1YUuEqS0isrfOJ5mvIMTb2ynuee43WvwNWMOotRqSDbnX_ToaxZlupubw5OWKvRP9IeNkYMIiJNY73g_xqaAPypUJ3_FuL-Wan5W7q28YIbt_-353cHbnXxdvS-VZC7sBTKe3C9ZeA8uw_qywyhNTuJLPobS1vzIzs-RLmnRyd1hAF9tF5V42DLiCr98bBsy-brB_D1UsR-CMtlVYbHEKF7CNo7LhDfmRbWUi66wIWnl8HxnA8g7V-xcV2ndSL8GJsm48-VaWFhEBamgYXRA3g9n3Pa9hm5cPQ6IWc-knqEN39Uk0PTmRwjOaon5wVLvc0Km2ivE1cIGTSzQyVRzBXCncFQi_oFOyqsclPTcJRxMYDVHkemM2u1OQfRAF7MT6NBoiyTLUM1a8dQiSpLBvCoRe9cTgxuNboInC0XcL1wI4tnyuOjpum5xhAr4Sj0m14DzsX694N6cvFdPIcbm3ufR2a0tbO9AjcZ6WkyRM-xCsvTySw8hWvu-_S4njxrFD2Cg8vWjF8ZqYvt
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9NAFH4qKSAu7EtoASPBCazYM84sB4QopSJqiYIEUjkN41naSqld4gTUv8av442XVGHprQdOlu0Z69n-3jLzNoBnzLMhpzyP2VDiAoXneay1kLFj0liK4pC5umvJHh-Pxf6-nKzBzy4XJoRVdjKxFtS2NGGPfICKhCchKIcNfBsWMdneeX3yLQ4dpIKntWun0UBk153-wOVb9Wq0jf_6OSE77z69fR-3HQZiM2R8HudCE2qIE0ZLakTmM5cxzSSTPs8F4R71mfe4YuLcCs1sYmma0gzFvtCW5pbicy_BOprkGenB-mT0YfJlucMTfGhZKttMHZwyqFBbhow2EvqJsDSN5Yo2rJsG4KFE5v6bwftn3OZvzttaJ-7c-J-_5k243lri0ZuGdW7Bmituw5WmN-fpHRAfFwi6xXGkURPpkLQf6ekB0j0_PK4iNPWjrbKcOl1EIQcAT4smoL66C58vhOx70CvKwj2ACBWHk9ZQhsjPJNM6eKk9Lkktd4bmtA9p97uVaWuwh1YgU1XHAlChGogohIiqIaJkH14s55w0FUjOHb0VULQcGaqH1xfK2YFqhZHiFBmXUk9SqzOvE2llYjzjThI9FBzJ3AgYVGiEhUrCJoRcmbmqu5dR1ofNDlOqFXiVOgNUH54ub6OoCv4nXbhy0YwJwask6cP9BslLOtHslag8cDZfwfjKi6zeKY4O63LoEo2vhCLRLztuOCPr3x_q4flv8QSuIkOovdF4dwOukcCyyRBVyib05rOFewSXzff5UTV73HJ9BF8vmjV-AX2mljY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+annealing+algorithms+for+Boolean+tensor+networks&rft.jtitle=Scientific+reports&rft.au=Pelofske%2C+Elijah&rft.au=Hahn%2C+Georg&rft.au=O%E2%80%99Malley%2C+Daniel&rft.au=Djidjev%2C+Hristo+N.&rft.date=2022-05-20&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-12611-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_022_12611_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon