ResFaultyMan: An intelligent fault detection predictive model in power electronics systems using unsupervised learning isolation forest
Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accura...
Gespeichert in:
| Veröffentlicht in: | Heliyon Jg. 10; H. 15; S. e35243 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
15.08.2024
Elsevier |
| Schlagworte: | |
| ISSN: | 2405-8440, 2405-8440 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications.
•A practical case study and test bench for applying the intelligent detector.•The new detector uses an unsupervised isolation tree fault detector to diagnose faults in an unlabeled dataset.•The model compared several KPIs with other models, showing significant results.•The data was sampled and generated on the electronic board, then transferred quickly using a Pyboard controller with a high data transfer rate. |
|---|---|
| AbstractList | Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications. Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications. •A practical case study and test bench for applying the intelligent detector.•The new detector uses an unsupervised isolation tree fault detector to diagnose faults in an unlabeled dataset.•The model compared several KPIs with other models, showing significant results.•The data was sampled and generated on the electronic board, then transferred quickly using a Pyboard controller with a high data transfer rate. Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications. •A practical case study and test bench for applying the intelligent detector.•The new detector uses an unsupervised isolation tree fault detector to diagnose faults in an unlabeled dataset.•The model compared several KPIs with other models, showing significant results.•The data was sampled and generated on the electronic board, then transferred quickly using a Pyboard controller with a high data transfer rate. Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications.Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications. |
| ArticleNumber | e35243 |
| Author | Safari, Ashkan Oshnoei, Arman Sabahi, Mehran |
| Author_xml | – sequence: 1 givenname: Ashkan orcidid: 0000-0002-1780-7615 surname: Safari fullname: Safari, Ashkan email: ashkansafari@ieee.org organization: Ashkan Safari and Mehran Sabahi with the Faculty of Electrical and Computer Engineering, Tabriz, Iran – sequence: 2 givenname: Mehran surname: Sabahi fullname: Sabahi, Mehran email: sabahi@tabrizu.ac.ir organization: Ashkan Safari and Mehran Sabahi with the Faculty of Electrical and Computer Engineering, Tabriz, Iran – sequence: 3 givenname: Arman surname: Oshnoei fullname: Oshnoei, Arman email: aros@energy.aau.dk organization: Arman Oshnoei with Department of Energy, Aalborg University, Aalborg, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39166090$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkstuFDEQRVsoiDzIJ4C8ZDOD3X50NyxQFJEQKQgJwdpy29UTj9z2YLsHzRfw23geRAmbWVXJdeuoXHXPqxMfPFTVG4LnBBPxfjl_AGc3wc9rXLM5UF4z-qI6qxnms5YxfPIkP60uU1pijAlvRdfQV9Up7YgQuMNn1Z_vkG7U5PLmq_If0JVH1mdwzi7AZzRsK8hABp1t8GgVwdiSrgGNwYArYrQKvyEicEUSg7c6obRJGcaEpmT9Ak0-TSuIa5vAIAcq-u2rTcGpHXMIEVJ-Xb0clEtweYgX1c-bzz-uv8zuv93eXV_dzzQXTZ4pjnWjsWiBMl0T0ouacs2IGRT0QtBu6KFvBTekVngwnW5rxQzFDKimRUIvqrs91wS1lKtoRxU3Migrdw8hLqSK2WoHUrCmZ0wzUI1mgilFGe1bGPqeUFZCYX3as1ZTP4LRZWNRuWfQ5xVvH-QirCUhlBYiKYR3B0IMv6ayBjnapMv6lYcwJUkJZ6TFjIrjUtxx0tAG10X69ulcjwP9u3oR8L1Ax5BShOFRQrDcGkwu5cFgcmswuTdY6fv4X5-2eXfF8j3rjnYf1gXlvmsLUSZtwetiqVjMUw5gjxD-AlvU9OM |
| CitedBy_id | crossref_primary_10_1038_s41598_025_00583_5 crossref_primary_10_1016_j_apenergy_2025_126382 crossref_primary_10_1038_s41598_025_96005_7 crossref_primary_10_3390_s25175469 crossref_primary_10_3390_app142311112 crossref_primary_10_1142_S0129156425402979 crossref_primary_10_1016_j_rcim_2025_103086 crossref_primary_10_1016_j_dajour_2025_100560 |
| Cites_doi | 10.1109/TPEL.2021.3131293 10.1109/MPEL.2020.3047718 10.2478/amns.2023.2.01454 10.1049/iet-pel.2008.0362 10.1080/15325008.2023.2220313 10.1109/TKDE.2019.2947676 10.1109/MPEL.2020.3047506 10.1109/ACCESS.2022.3144425 10.1016/j.compind.2018.01.011 10.1016/j.engappai.2023.107643 10.1016/j.engappai.2023.107281 10.1109/ACCESS.2020.3043796 10.1109/TPEL.2016.2606435 10.1109/TTE.2021.3110318 10.1080/10798587.2013.778038 10.1007/978-3-031-38747-0_12 10.1016/j.epsr.2020.106370 10.1109/TPEL.2024.3354858 10.1109/TSG.2022.3204796 10.1109/TKDE.2023.3270293 10.1016/j.rser.2023.113913 10.1109/TPEL.2024.3352077 10.3390/en16196889 10.1049/cds2.12038 10.1177/01423312231174939 10.1162/neco.1989.1.3.295 10.1007/s40866-023-00188-9 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors 2024 The Authors. 2024 The Authors 2024 |
| Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. – notice: 2024 The Authors 2024 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 7S9 L.6 5PM DOA |
| DOI | 10.1016/j.heliyon.2024.e35243 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2405-8440 |
| ExternalDocumentID | oai_doaj_org_article_647b44c4ea7c464aa343b8efbb134efb PMC11334641 39166090 10_1016_j_heliyon_2024_e35243 S2405844024112741 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E O9- OK1 ROL RPM SSZ AAYXX CITATION EJD IPNFZ RIG AACTN NPM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c567t-a50c7c068e34c211b6235c41dfaeb6639fbeb865d12a0fd9c82a4d304e3c3aeb3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286662300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2405-8440 |
| IngestDate | Fri Oct 03 12:45:11 EDT 2025 Tue Sep 30 17:08:14 EDT 2025 Fri Aug 22 20:22:20 EDT 2025 Fri Jul 11 10:10:28 EDT 2025 Thu Apr 03 06:56:54 EDT 2025 Thu Nov 20 00:29:56 EST 2025 Tue Nov 18 22:25:28 EST 2025 Wed Dec 10 14:19:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Keywords | Unsupervised isolation forest Intelligent fault detection Pyboard microcontroller Python-to-python interface Power electronics systems Artificial intelligence |
| Language | English |
| License | This is an open access article under the CC BY-NC license. 2024 The Authors. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-a50c7c068e34c211b6235c41dfaeb6639fbeb865d12a0fd9c82a4d304e3c3aeb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-1780-7615 |
| OpenAccessLink | https://doaj.org/article/647b44c4ea7c464aa343b8efbb134efb |
| PMID | 39166090 |
| PQID | 3095173702 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_647b44c4ea7c464aa343b8efbb134efb pubmedcentral_primary_oai_pubmedcentral_nih_gov_11334641 proquest_miscellaneous_3154180436 proquest_miscellaneous_3095173702 pubmed_primary_39166090 crossref_primary_10_1016_j_heliyon_2024_e35243 crossref_citationtrail_10_1016_j_heliyon_2024_e35243 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e35243 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-15 |
| PublicationDateYYYYMMDD | 2024-08-15 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Heliyon |
| PublicationTitleAlternate | Heliyon |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Ding, Poon, Čelanović, Dominguez-Garcia (bib26) 2012 Dec 5; 60 Xu, Pang, Wang, Wang (bib36) 2023 Apr 25; 35 Wang, Liu, Jia, Zhao, Li, Wang (bib7) 2024 Jan 1; 127 Li, Cao, Xu, Zhu, Dong (bib10) 2024 Jan 1; 189 Lang, Hu, Gong, Zhang, Xu, Deng (bib3) 2021 Sep 3; 8 Safari, Sabahi (bib6) 2021 Aug; 15 Masrur, Chen, Murphey (bib21) 2010 Mar 1; 3 James G, Witten D, Hastie T, Tibshirani R, Taylor J. Unsupervised Learning. InAn Introduction to Statistical Learning: with Applications in Python 2023 Jul 1 (pp. 503-556). Cham: Springer International Publishing. Vo, Liu, Tran (bib4) 2024 Mar 1; 129 Moradzadeh, Mohammadi-Ivatloo, Pourhossein, Anvari-Moghaddam (bib5) 2021 Nov 30; 37 Sabahi, Safari, Nazari-Heris (bib30) 2024; 2024 Wang, Liu, Jia, Zhao, Li, Wang (bib1) 2024 Jan 1; 127 Abu-Rub, Fard, Umar, Hosseinzadehtaher, Shadmands (bib18) 2021 Feb 22; 8 Zhao, Wang (bib2) 2021 Feb 22; 8 Chen, Bazzi (bib19) 2013 Sep 15 Safari, Kheirandish Gharehbagh, Nazari Heris (bib27) 2023 Sep 29; 16 Afia, Gougam, Rahmoune, Touzout, Ouelmokhtar, Benazzouz (bib9) 2024 Jan; 46 Chabchoub, Togbe, Boly, Chiky (bib35) 2022 Jan 18; 10 Luo, Yin, Zhang, Zhang, Zhang, Liu (bib15) April 2024; 39 Hariri, Kind, Brunner (bib34) 2019 Oct 31; 33 Moradzadeh, Mohammadi-Ivatloo, Pourhossein, Anvari-Moghaddam (bib22) 2021 Nov 30; 37 Wang, Kou, Yuan, Zhou, Liu, Cai (bib17) 2020 Dec 10; 8 Sadeghian, Safari (bib29) 2024 Feb; 2024 Safari, Kharrati, Rahimi (bib28) 2023 Dec 28; 9 He W, He C, Zhang Z, Ren B. Design of online intelligent detection system for power quality and fault identification in distribution networks. Applied Mathematics and Nonlinear Sciences.;9(1). El Idrissi, Bacha, Lmai (bib13) 2024 Jan; 25 Barlow (bib32) 1989 Sep 1; 1 Mahmoud (bib12) April 2024; 39 Di, Jin, Bagheri, Shi, Ardakani, Tang, Lee (bib20) 2018 May 1; 97 Li, Wei, Li, Dong, Shahidehpour (bib31) 2022 Sep 6; 13 Chen, Bazzi (bib16) 2016 Sep 7; 32 Ofoli (bib11) 2024 Jan; vol. 1 Kou, Liu, Cai, Zhang (bib24) 2020 Aug 1; 185 Ke, Pan, Na, Potty, Zhang, Wang, Xu (bib25) 2019 Mar 17 Padmaja, Kumar, Dhanesh, Kamesh, Geetha, Ramya, Raja Sekhar, Saha (bib8) 2024 Jan 20; 52 Ponce, Molina, MacCleery (bib23) 2013 Aug 1; 19 Lang (10.1016/j.heliyon.2024.e35243_bib3) 2021; 8 Sadeghian (10.1016/j.heliyon.2024.e35243_bib29) 2024; 2024 10.1016/j.heliyon.2024.e35243_bib14 Di (10.1016/j.heliyon.2024.e35243_bib20) 2018; 97 Safari (10.1016/j.heliyon.2024.e35243_bib6) 2021; 15 10.1016/j.heliyon.2024.e35243_bib33 Vo (10.1016/j.heliyon.2024.e35243_bib4) 2024; 129 Kou (10.1016/j.heliyon.2024.e35243_bib24) 2020; 185 Afia (10.1016/j.heliyon.2024.e35243_bib9) 2024; 46 Moradzadeh (10.1016/j.heliyon.2024.e35243_bib5) 2021; 37 Mahmoud (10.1016/j.heliyon.2024.e35243_bib12) 2024; 39 Li (10.1016/j.heliyon.2024.e35243_bib31) 2022; 13 Ponce (10.1016/j.heliyon.2024.e35243_bib23) 2013; 19 Xu (10.1016/j.heliyon.2024.e35243_bib36) 2023; 35 El Idrissi (10.1016/j.heliyon.2024.e35243_bib13) 2024; 25 Safari (10.1016/j.heliyon.2024.e35243_bib28) 2023; 9 Ofoli (10.1016/j.heliyon.2024.e35243_bib11) 2024; vol. 1 Li (10.1016/j.heliyon.2024.e35243_bib10) 2024; 189 Moradzadeh (10.1016/j.heliyon.2024.e35243_bib22) 2021; 37 Barlow (10.1016/j.heliyon.2024.e35243_bib32) 1989; 1 Padmaja (10.1016/j.heliyon.2024.e35243_bib8) 2024; 52 Hariri (10.1016/j.heliyon.2024.e35243_bib34) 2019; 33 Wang (10.1016/j.heliyon.2024.e35243_bib7) 2024; 127 Zhao (10.1016/j.heliyon.2024.e35243_bib2) 2021; 8 Safari (10.1016/j.heliyon.2024.e35243_bib27) 2023; 16 Ke (10.1016/j.heliyon.2024.e35243_bib25) 2019 Wang (10.1016/j.heliyon.2024.e35243_bib1) 2024; 127 Abu-Rub (10.1016/j.heliyon.2024.e35243_bib18) 2021; 8 Luo (10.1016/j.heliyon.2024.e35243_bib15) 2024; 39 Sabahi (10.1016/j.heliyon.2024.e35243_bib30) 2024; 2024 Chen (10.1016/j.heliyon.2024.e35243_bib16) 2016; 32 Ding (10.1016/j.heliyon.2024.e35243_bib26) 2012; 60 Chabchoub (10.1016/j.heliyon.2024.e35243_bib35) 2022; 10 Wang (10.1016/j.heliyon.2024.e35243_bib17) 2020; 8 Masrur (10.1016/j.heliyon.2024.e35243_bib21) 2010; 3 Chen (10.1016/j.heliyon.2024.e35243_bib19) 2013 |
| References_xml | – volume: 37 start-page: 6026 year: 2021 Nov 30 end-page: 6050 ident: bib5 article-title: Data mining applications to fault diagnosis in power electronic systems: a systematic review publication-title: IEEE Trans. Power Electron. – volume: 97 start-page: 1 year: 2018 May 1 end-page: 9 ident: bib20 article-title: Fault prediction of power electronics modules and systems under complex working conditions publication-title: Comput. Ind. – volume: 8 start-page: 18 year: 2021 Feb 22 end-page: 27 ident: bib2 article-title: Enabling data-driven condition monitoring of power electronic systems with artificial intelligence: concepts, tools, and developments publication-title: IEEE Power Electronics Magazine – volume: 52 start-page: 308 year: 2024 Jan 20 end-page: 321 ident: bib8 article-title: Stability and reliability analysis for multiple WT using deep reinforcement learning publication-title: Elec. Power Compon. Syst. – volume: 19 start-page: 373 year: 2013 Aug 1 end-page: 389 ident: bib23 article-title: Integrated intelligent control and fault system for wind generators publication-title: Intelligent Automation & Soft Computing – volume: 10 start-page: 10219 year: 2022 Jan 18 end-page: 10237 ident: bib35 article-title: An in-depth study and improvement of Isolation Forest publication-title: IEEE Access – volume: 37 start-page: 6026 year: 2021 Nov 30 end-page: 6050 ident: bib22 article-title: Data mining applications to fault diagnosis in power electronic systems: a systematic review publication-title: IEEE Trans. Power Electron. – volume: 129 year: 2024 Mar 1 ident: bib4 article-title: Harnessing attention mechanisms in a comprehensive deep learning approach for induction motor fault diagnosis using raw electrical signals publication-title: Eng. Appl. Artif. Intell. – volume: 8 start-page: 28 year: 2021 Feb 22 end-page: 38 ident: bib18 article-title: Towards intelligent power electronics-dominated grid via machine learning techniques publication-title: IEEE Power Electronics Magazine – volume: 16 start-page: 6889 year: 2023 Sep 29 ident: bib27 article-title: DeepVELOX: INVELOX wind turbine intelligent power forecasting using hybrid GWO–GBR algorithm publication-title: Energies – volume: 25 year: 2024 Jan ident: bib13 article-title: Fault diagnosis using Bayesian networks for a single-phase inverter based on MOSFET semiconductors publication-title: Mater. Today: Proc. – volume: 8 start-page: 221039 year: 2020 Dec 10 end-page: 221050 ident: bib17 article-title: An intelligent fault diagnosis method for open-circuit faults in power-electronics energy conversion system publication-title: IEEE Access – volume: 8 start-page: 384 year: 2021 Sep 3 end-page: 406 ident: bib3 article-title: Artificial intelligence-based technique for fault detection and diagnosis of EV motors: a review publication-title: IEEE Transactions on Transportation Electrification – volume: 13 start-page: 4862 year: 2022 Sep 6 end-page: 4872 ident: bib31 article-title: Detection of false data injection attacks in smart grid: a secure federated deep learning approach publication-title: IEEE Trans. Smart Grid – start-page: 4559 year: 2013 Sep 15 end-page: 4564 ident: bib19 article-title: A generalized approach for intelligent fault detection and recovery in power electronic systems publication-title: In2013 IEEE Energy Conversion Congress and Exposition – start-page: 3056 year: 2019 Mar 17 end-page: 3063 ident: bib25 article-title: Single-submodule open-circuit fault diagnosis for a modular multi-level converter using artificial intelligent-based techniques publication-title: In2019 IEEE Applied Power Electronics Conference and Exposition (APEC) – volume: 2024 year: 2024 Feb ident: bib29 article-title: Net saving improvement of capacitor banks in power distribution systems by increasing daily size switching number: a comparative result analysis by artificial intelligence publication-title: J. Eng. – volume: 2024 year: 2024 ident: bib30 article-title: Design and implementation of a cost-effective practical single-phase power quality analyzer using pyboard microcontroller and python-to-python interface publication-title: J. Eng. – volume: 39 start-page: 4781 year: April 2024 end-page: 4791 ident: bib12 article-title: Novel modeling framework for PV faults under partial shading publication-title: IEEE Trans. Power Electron. – volume: 1 start-page: 295 year: 1989 Sep 1 end-page: 311 ident: bib32 article-title: Unsupervised learning publication-title: Neural Comput. – volume: 127 year: 2024 Jan 1 ident: bib7 article-title: Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy publication-title: Eng. Appl. Artif. Intell. – volume: 32 start-page: 5573 year: 2016 Sep 7 end-page: 5589 ident: bib16 article-title: Logic-based methods for intelligent fault diagnosis and recovery in power electronics publication-title: IEEE Trans. Power Electron. – volume: 46 start-page: 359 year: 2024 Jan end-page: 378 ident: bib9 article-title: Intelligent fault classification of air compressors using Harris hawks optimization and machine learning algorithms publication-title: Trans. Inst. Meas. Control – volume: 9 start-page: 8 year: 2023 Dec 28 ident: bib28 article-title: Multi-term electrical load forecasting of smart cities using a new hybrid highly accurate neural network-based predictive model publication-title: Smart Grids and Sustainable Energy – volume: 35 start-page: 12591 year: 2023 Apr 25 end-page: 12604 ident: bib36 article-title: Deep isolation forest for anomaly detection publication-title: IEEE Trans. Knowl. Data Eng. – volume: 189 year: 2024 Jan 1 ident: bib10 article-title: Deep learning based on Transformer architecture for power system short-term voltage stability assessment with class imbalance publication-title: Renew. Sustain. Energy Rev. – volume: 3 start-page: 279 year: 2010 Mar 1 end-page: 291 ident: bib21 article-title: Intelligent diagnosis of open and short circuit faults in electric drive inverters for real-time applications publication-title: IET Power Electron. – reference: James G, Witten D, Hastie T, Tibshirani R, Taylor J. Unsupervised Learning. InAn Introduction to Statistical Learning: with Applications in Python 2023 Jul 1 (pp. 503-556). Cham: Springer International Publishing. – volume: 39 start-page: 4149 year: April 2024 end-page: 4159 ident: bib15 article-title: Diversified diagnosis strategy for PMSM Inter-Turn Short-Circuit fault via novel sliding mode observer publication-title: IEEE Trans. Power Electron. – volume: 33 start-page: 1479 year: 2019 Oct 31 end-page: 1489 ident: bib34 article-title: Extended isolation forest publication-title: IEEE Trans. Knowl. Data Eng. – reference: He W, He C, Zhang Z, Ren B. Design of online intelligent detection system for power quality and fault identification in distribution networks. Applied Mathematics and Nonlinear Sciences.;9(1). – volume: vol. 1 start-page: 1233 year: 2024 Jan end-page: 1260 ident: bib11 article-title: Fuzzy-logic applications in electric drives and power electronics publication-title: InPower Electronics Handbook – volume: 15 start-page: 485 year: 2021 Aug end-page: 492 ident: bib6 article-title: Practical data connection between MATLAB and microcontrollers using virtual serial port and MicroPython Pyboard: a survey publication-title: IET Circuits, Devices Syst. – volume: 60 start-page: 1038 year: 2012 Dec 5 end-page: 1051 ident: bib26 article-title: Fault detection and isolation filters for three-phase AC-DC power electronics systems publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers – volume: 185 year: 2020 Aug 1 ident: bib24 article-title: Fault diagnosis for power electronics converters based on deep feedforward network and wavelet compression publication-title: Elec. Power Syst. Res. – volume: 127 year: 2024 Jan 1 ident: bib1 article-title: Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy publication-title: Eng. Appl. Artif. Intell. – volume: 60 start-page: 1038 issue: 4 year: 2012 ident: 10.1016/j.heliyon.2024.e35243_bib26 article-title: Fault detection and isolation filters for three-phase AC-DC power electronics systems publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers – volume: 37 start-page: 6026 issue: 5 year: 2021 ident: 10.1016/j.heliyon.2024.e35243_bib22 article-title: Data mining applications to fault diagnosis in power electronic systems: a systematic review publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2021.3131293 – volume: 8 start-page: 18 issue: 1 year: 2021 ident: 10.1016/j.heliyon.2024.e35243_bib2 article-title: Enabling data-driven condition monitoring of power electronic systems with artificial intelligence: concepts, tools, and developments publication-title: IEEE Power Electronics Magazine doi: 10.1109/MPEL.2020.3047718 – start-page: 3056 year: 2019 ident: 10.1016/j.heliyon.2024.e35243_bib25 article-title: Single-submodule open-circuit fault diagnosis for a modular multi-level converter using artificial intelligent-based techniques – ident: 10.1016/j.heliyon.2024.e35243_bib14 doi: 10.2478/amns.2023.2.01454 – volume: 3 start-page: 279 issue: 2 year: 2010 ident: 10.1016/j.heliyon.2024.e35243_bib21 article-title: Intelligent diagnosis of open and short circuit faults in electric drive inverters for real-time applications publication-title: IET Power Electron. doi: 10.1049/iet-pel.2008.0362 – volume: 52 start-page: 308 issue: 2 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib8 article-title: Stability and reliability analysis for multiple WT using deep reinforcement learning publication-title: Elec. Power Compon. Syst. doi: 10.1080/15325008.2023.2220313 – volume: 33 start-page: 1479 issue: 4 year: 2019 ident: 10.1016/j.heliyon.2024.e35243_bib34 article-title: Extended isolation forest publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2019.2947676 – volume: 8 start-page: 28 issue: 1 year: 2021 ident: 10.1016/j.heliyon.2024.e35243_bib18 article-title: Towards intelligent power electronics-dominated grid via machine learning techniques publication-title: IEEE Power Electronics Magazine doi: 10.1109/MPEL.2020.3047506 – start-page: 4559 year: 2013 ident: 10.1016/j.heliyon.2024.e35243_bib19 article-title: A generalized approach for intelligent fault detection and recovery in power electronic systems – volume: 10 start-page: 10219 year: 2022 ident: 10.1016/j.heliyon.2024.e35243_bib35 article-title: An in-depth study and improvement of Isolation Forest publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3144425 – volume: 97 start-page: 1 year: 2018 ident: 10.1016/j.heliyon.2024.e35243_bib20 article-title: Fault prediction of power electronics modules and systems under complex working conditions publication-title: Comput. Ind. doi: 10.1016/j.compind.2018.01.011 – volume: 129 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib4 article-title: Harnessing attention mechanisms in a comprehensive deep learning approach for induction motor fault diagnosis using raw electrical signals publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107643 – volume: 37 start-page: 6026 issue: 5 year: 2021 ident: 10.1016/j.heliyon.2024.e35243_bib5 article-title: Data mining applications to fault diagnosis in power electronic systems: a systematic review publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2021.3131293 – volume: 127 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib1 article-title: Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107281 – volume: 8 start-page: 221039 year: 2020 ident: 10.1016/j.heliyon.2024.e35243_bib17 article-title: An intelligent fault diagnosis method for open-circuit faults in power-electronics energy conversion system publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3043796 – volume: 32 start-page: 5573 issue: 7 year: 2016 ident: 10.1016/j.heliyon.2024.e35243_bib16 article-title: Logic-based methods for intelligent fault diagnosis and recovery in power electronics publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2016.2606435 – volume: 8 start-page: 384 issue: 1 year: 2021 ident: 10.1016/j.heliyon.2024.e35243_bib3 article-title: Artificial intelligence-based technique for fault detection and diagnosis of EV motors: a review publication-title: IEEE Transactions on Transportation Electrification doi: 10.1109/TTE.2021.3110318 – volume: 19 start-page: 373 issue: 3 year: 2013 ident: 10.1016/j.heliyon.2024.e35243_bib23 article-title: Integrated intelligent control and fault system for wind generators publication-title: Intelligent Automation & Soft Computing doi: 10.1080/10798587.2013.778038 – ident: 10.1016/j.heliyon.2024.e35243_bib33 doi: 10.1007/978-3-031-38747-0_12 – volume: 127 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib7 article-title: Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107281 – volume: 185 year: 2020 ident: 10.1016/j.heliyon.2024.e35243_bib24 article-title: Fault diagnosis for power electronics converters based on deep feedforward network and wavelet compression publication-title: Elec. Power Syst. Res. doi: 10.1016/j.epsr.2020.106370 – volume: 39 start-page: 4781 issue: 4 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib12 article-title: Novel modeling framework for PV faults under partial shading publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2024.3354858 – volume: 25 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib13 article-title: Fault diagnosis using Bayesian networks for a single-phase inverter based on MOSFET semiconductors publication-title: Mater. Today: Proc. – volume: 13 start-page: 4862 issue: 6 year: 2022 ident: 10.1016/j.heliyon.2024.e35243_bib31 article-title: Detection of false data injection attacks in smart grid: a secure federated deep learning approach publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2022.3204796 – volume: 2024 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib30 article-title: Design and implementation of a cost-effective practical single-phase power quality analyzer using pyboard microcontroller and python-to-python interface publication-title: J. Eng. – volume: vol. 1 start-page: 1233 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib11 article-title: Fuzzy-logic applications in electric drives and power electronics – volume: 35 start-page: 12591 issue: 12 year: 2023 ident: 10.1016/j.heliyon.2024.e35243_bib36 article-title: Deep isolation forest for anomaly detection publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2023.3270293 – volume: 2024 issue: 2 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib29 article-title: Net saving improvement of capacitor banks in power distribution systems by increasing daily size switching number: a comparative result analysis by artificial intelligence publication-title: J. Eng. – volume: 189 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib10 article-title: Deep learning based on Transformer architecture for power system short-term voltage stability assessment with class imbalance publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113913 – volume: 39 start-page: 4149 issue: 4 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib15 article-title: Diversified diagnosis strategy for PMSM Inter-Turn Short-Circuit fault via novel sliding mode observer publication-title: IEEE Trans. Power Electron. doi: 10.1109/TPEL.2024.3352077 – volume: 16 start-page: 6889 issue: 19 year: 2023 ident: 10.1016/j.heliyon.2024.e35243_bib27 article-title: DeepVELOX: INVELOX wind turbine intelligent power forecasting using hybrid GWO–GBR algorithm publication-title: Energies doi: 10.3390/en16196889 – volume: 15 start-page: 485 issue: 5 year: 2021 ident: 10.1016/j.heliyon.2024.e35243_bib6 article-title: Practical data connection between MATLAB and microcontrollers using virtual serial port and MicroPython Pyboard: a survey publication-title: IET Circuits, Devices Syst. doi: 10.1049/cds2.12038 – volume: 46 start-page: 359 issue: 2 year: 2024 ident: 10.1016/j.heliyon.2024.e35243_bib9 article-title: Intelligent fault classification of air compressors using Harris hawks optimization and machine learning algorithms publication-title: Trans. Inst. Meas. Control doi: 10.1177/01423312231174939 – volume: 1 start-page: 295 issue: 3 year: 1989 ident: 10.1016/j.heliyon.2024.e35243_bib32 article-title: Unsupervised learning publication-title: Neural Comput. doi: 10.1162/neco.1989.1.3.295 – volume: 9 start-page: 8 issue: 1 year: 2023 ident: 10.1016/j.heliyon.2024.e35243_bib28 article-title: Multi-term electrical load forecasting of smart cities using a new hybrid highly accurate neural network-based predictive model publication-title: Smart Grids and Sustainable Energy doi: 10.1007/s40866-023-00188-9 |
| SSID | ssj0001586973 |
| Score | 2.3179362 |
| Snippet | Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e35243 |
| SubjectTerms | Artificial intelligence electric potential difference electronics forests Intelligent fault detection Power electronics systems Pyboard microcontroller Python-to-python interface resistors Unsupervised isolation forest |
| Title | ResFaultyMan: An intelligent fault detection predictive model in power electronics systems using unsupervised learning isolation forest |
| URI | https://dx.doi.org/10.1016/j.heliyon.2024.e35243 https://www.ncbi.nlm.nih.gov/pubmed/39166090 https://www.proquest.com/docview/3095173702 https://www.proquest.com/docview/3154180436 https://pubmed.ncbi.nlm.nih.gov/PMC11334641 https://doaj.org/article/647b44c4ea7c464aa343b8efbb134efb |
| Volume | 10 |
| WOSCitedRecordID | wos001286662300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgQogL4jcdMBmJazo7dmKb20CruHRCCKTeLP_KlqlKqyZB2oXr_m2ek7RrQKIXLo3U2Gme34vf5-b5-xD64LyykHXThGdBJFxZmRiqTOLzPLUi85CVbCc2IS4u5GKhvu5JfcWasJ4euB-405wLy7njwQjHc24M48zKUFhLGYdDnH2JUHuLqX5_sMyVYHdbdk6vp1dhWd6sIudpyqcBgAdno2TUcfaPctLfmPPP0sm9XDR7gh4PIBKf9Tf_FN0L1TP0cD68Jn-Obr-FembaZXMzN9VHfFbhcse82eAinsE-NF0VVoXXm9gxTnu408WBxngdxdPwnUZOjXvK5xrHQvlL3FZ1u47TTB08HpQnLnEJgdx5GgMUBoNeoB-z8--fvySD4kLislw0icmIE47kMjDuYGloARxljlNfmGABm6jCBivzzNPUkMIrJ1PDPSM8MMegCXuJjqpVFV4j7C2sPQ1NA8sdV-AzThxxzkNXx0jqJohvh167gY48qmIs9bbu7FoPHtPRY7r32ARNd93WPR_HoQ6fol93jSOddvcFBJkegkwfCrIJktuo0AMy6REHXKo89Pvvt1Gk4cmNr2NMFVZtrVlEt4IJkv6jDSBcKqNMwAS96iNvZ0ncMp0TReDmRjE5MnV8piqvOgZxShkDO-nx_xicN-hRtDf-0U6zt-io2bThHXrgfjZlvTlB98VCnnRPJ3zOf53_BiP4R5Q |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ResFaultyMan%3A+An+intelligent+fault+detection+predictive+model+in+power+electronics+systems+using+unsupervised+learning+isolation+forest&rft.jtitle=Heliyon&rft.au=Safari%2C+Ashkan&rft.au=Sabahi%2C+Mehran&rft.au=Oshnoei%2C+Arman&rft.date=2024-08-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=15+p.e35243-&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e35243&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |