ResFaultyMan: An intelligent fault detection predictive model in power electronics systems using unsupervised learning isolation forest

Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon Jg. 10; H. 15; S. e35243
Hauptverfasser: Safari, Ashkan, Sabahi, Mehran, Oshnoei, Arman
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 15.08.2024
Elsevier
Schlagworte:
ISSN:2405-8440, 2405-8440
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications. •A practical case study and test bench for applying the intelligent detector.•The new detector uses an unsupervised isolation tree fault detector to diagnose faults in an unlabeled dataset.•The model compared several KPIs with other models, showing significant results.•The data was sampled and generated on the electronic board, then transferred quickly using a Pyboard controller with a high data transfer rate.
AbstractList Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications.
Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications. •A practical case study and test bench for applying the intelligent detector.•The new detector uses an unsupervised isolation tree fault detector to diagnose faults in an unlabeled dataset.•The model compared several KPIs with other models, showing significant results.•The data was sampled and generated on the electronic board, then transferred quickly using a Pyboard controller with a high data transfer rate.
Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications. •A practical case study and test bench for applying the intelligent detector.•The new detector uses an unsupervised isolation tree fault detector to diagnose faults in an unlabeled dataset.•The model compared several KPIs with other models, showing significant results.•The data was sampled and generated on the electronic board, then transferred quickly using a Pyboard controller with a high data transfer rate.
Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications.Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising complexities and critical application demands. However, most of the developed methods in real-world scenarios can have better detection, and accurate diagnosis. In this regard, ResFaultyMan, a novel unsupervised isolation forest-based model, is presented in this paper, for real-world fault/anomaly detection in PELS. Capitalizing on the dynamics of faults, ResFaultyMan utilizes a tree-based structure for effective anomaly isolation, demonstrating adaptability to diverse fault scenarios. The test bench, comprising a load, Triac switch, resistor, voltage source, and Pyboard microcontroller, provides a dynamic setting for performance evaluation. The integration of a Pyboard microcontroller and a Python-to-Python interface facilitates fast data transfer and sampling, enhancing the efficiency of ResFaultyMan in real-time fault detection scenarios. Comparative analysis with OneClassSVM and LocalOutlierFactor, utilizing Key Performance Indicators (KPIs) of Accuracy, Precision, and Recall, as well as F1 Score, manifest ResFaultyMan's fault detection capabilities for fault detection in PELSs, and its performance in the related applications.
ArticleNumber e35243
Author Safari, Ashkan
Oshnoei, Arman
Sabahi, Mehran
Author_xml – sequence: 1
  givenname: Ashkan
  orcidid: 0000-0002-1780-7615
  surname: Safari
  fullname: Safari, Ashkan
  email: ashkansafari@ieee.org
  organization: Ashkan Safari and Mehran Sabahi with the Faculty of Electrical and Computer Engineering, Tabriz, Iran
– sequence: 2
  givenname: Mehran
  surname: Sabahi
  fullname: Sabahi, Mehran
  email: sabahi@tabrizu.ac.ir
  organization: Ashkan Safari and Mehran Sabahi with the Faculty of Electrical and Computer Engineering, Tabriz, Iran
– sequence: 3
  givenname: Arman
  surname: Oshnoei
  fullname: Oshnoei, Arman
  email: aros@energy.aau.dk
  organization: Arman Oshnoei with Department of Energy, Aalborg University, Aalborg, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39166090$$D View this record in MEDLINE/PubMed
BookMark eNqFkstuFDEQRVsoiDzIJ4C8ZDOD3X50NyxQFJEQKQgJwdpy29UTj9z2YLsHzRfw23geRAmbWVXJdeuoXHXPqxMfPFTVG4LnBBPxfjl_AGc3wc9rXLM5UF4z-qI6qxnms5YxfPIkP60uU1pijAlvRdfQV9Up7YgQuMNn1Z_vkG7U5PLmq_If0JVH1mdwzi7AZzRsK8hABp1t8GgVwdiSrgGNwYArYrQKvyEicEUSg7c6obRJGcaEpmT9Ak0-TSuIa5vAIAcq-u2rTcGpHXMIEVJ-Xb0clEtweYgX1c-bzz-uv8zuv93eXV_dzzQXTZ4pjnWjsWiBMl0T0ouacs2IGRT0QtBu6KFvBTekVngwnW5rxQzFDKimRUIvqrs91wS1lKtoRxU3Migrdw8hLqSK2WoHUrCmZ0wzUI1mgilFGe1bGPqeUFZCYX3as1ZTP4LRZWNRuWfQ5xVvH-QirCUhlBYiKYR3B0IMv6ayBjnapMv6lYcwJUkJZ6TFjIrjUtxx0tAG10X69ulcjwP9u3oR8L1Ax5BShOFRQrDcGkwu5cFgcmswuTdY6fv4X5-2eXfF8j3rjnYf1gXlvmsLUSZtwetiqVjMUw5gjxD-AlvU9OM
CitedBy_id crossref_primary_10_1038_s41598_025_00583_5
crossref_primary_10_1016_j_apenergy_2025_126382
crossref_primary_10_1038_s41598_025_96005_7
crossref_primary_10_3390_s25175469
crossref_primary_10_3390_app142311112
crossref_primary_10_1142_S0129156425402979
crossref_primary_10_1016_j_rcim_2025_103086
crossref_primary_10_1016_j_dajour_2025_100560
Cites_doi 10.1109/TPEL.2021.3131293
10.1109/MPEL.2020.3047718
10.2478/amns.2023.2.01454
10.1049/iet-pel.2008.0362
10.1080/15325008.2023.2220313
10.1109/TKDE.2019.2947676
10.1109/MPEL.2020.3047506
10.1109/ACCESS.2022.3144425
10.1016/j.compind.2018.01.011
10.1016/j.engappai.2023.107643
10.1016/j.engappai.2023.107281
10.1109/ACCESS.2020.3043796
10.1109/TPEL.2016.2606435
10.1109/TTE.2021.3110318
10.1080/10798587.2013.778038
10.1007/978-3-031-38747-0_12
10.1016/j.epsr.2020.106370
10.1109/TPEL.2024.3354858
10.1109/TSG.2022.3204796
10.1109/TKDE.2023.3270293
10.1016/j.rser.2023.113913
10.1109/TPEL.2024.3352077
10.3390/en16196889
10.1049/cds2.12038
10.1177/01423312231174939
10.1162/neco.1989.1.3.295
10.1007/s40866-023-00188-9
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2024.e35243
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_647b44c4ea7c464aa343b8efbb134efb
PMC11334641
39166090
10_1016_j_heliyon_2024_e35243
S2405844024112741
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
AACTN
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c567t-a50c7c068e34c211b6235c41dfaeb6639fbeb865d12a0fd9c82a4d304e3c3aeb3
IEDL.DBID DOA
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286662300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-8440
IngestDate Fri Oct 03 12:45:11 EDT 2025
Tue Sep 30 17:08:14 EDT 2025
Fri Aug 22 20:22:20 EDT 2025
Fri Jul 11 10:10:28 EDT 2025
Thu Apr 03 06:56:54 EDT 2025
Thu Nov 20 00:29:56 EST 2025
Tue Nov 18 22:25:28 EST 2025
Wed Dec 10 14:19:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Unsupervised isolation forest
Intelligent fault detection
Pyboard microcontroller
Python-to-python interface
Power electronics systems
Artificial intelligence
Language English
License This is an open access article under the CC BY-NC license.
2024 The Authors.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-a50c7c068e34c211b6235c41dfaeb6639fbeb865d12a0fd9c82a4d304e3c3aeb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1780-7615
OpenAccessLink https://doaj.org/article/647b44c4ea7c464aa343b8efbb134efb
PMID 39166090
PQID 3095173702
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_647b44c4ea7c464aa343b8efbb134efb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11334641
proquest_miscellaneous_3154180436
proquest_miscellaneous_3095173702
pubmed_primary_39166090
crossref_primary_10_1016_j_heliyon_2024_e35243
crossref_citationtrail_10_1016_j_heliyon_2024_e35243
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e35243
PublicationCentury 2000
PublicationDate 2024-08-15
PublicationDateYYYYMMDD 2024-08-15
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ding, Poon, Čelanović, Dominguez-Garcia (bib26) 2012 Dec 5; 60
Xu, Pang, Wang, Wang (bib36) 2023 Apr 25; 35
Wang, Liu, Jia, Zhao, Li, Wang (bib7) 2024 Jan 1; 127
Li, Cao, Xu, Zhu, Dong (bib10) 2024 Jan 1; 189
Lang, Hu, Gong, Zhang, Xu, Deng (bib3) 2021 Sep 3; 8
Safari, Sabahi (bib6) 2021 Aug; 15
Masrur, Chen, Murphey (bib21) 2010 Mar 1; 3
James G, Witten D, Hastie T, Tibshirani R, Taylor J. Unsupervised Learning. InAn Introduction to Statistical Learning: with Applications in Python 2023 Jul 1 (pp. 503-556). Cham: Springer International Publishing.
Vo, Liu, Tran (bib4) 2024 Mar 1; 129
Moradzadeh, Mohammadi-Ivatloo, Pourhossein, Anvari-Moghaddam (bib5) 2021 Nov 30; 37
Sabahi, Safari, Nazari-Heris (bib30) 2024; 2024
Wang, Liu, Jia, Zhao, Li, Wang (bib1) 2024 Jan 1; 127
Abu-Rub, Fard, Umar, Hosseinzadehtaher, Shadmands (bib18) 2021 Feb 22; 8
Zhao, Wang (bib2) 2021 Feb 22; 8
Chen, Bazzi (bib19) 2013 Sep 15
Safari, Kheirandish Gharehbagh, Nazari Heris (bib27) 2023 Sep 29; 16
Afia, Gougam, Rahmoune, Touzout, Ouelmokhtar, Benazzouz (bib9) 2024 Jan; 46
Chabchoub, Togbe, Boly, Chiky (bib35) 2022 Jan 18; 10
Luo, Yin, Zhang, Zhang, Zhang, Liu (bib15) April 2024; 39
Hariri, Kind, Brunner (bib34) 2019 Oct 31; 33
Moradzadeh, Mohammadi-Ivatloo, Pourhossein, Anvari-Moghaddam (bib22) 2021 Nov 30; 37
Wang, Kou, Yuan, Zhou, Liu, Cai (bib17) 2020 Dec 10; 8
Sadeghian, Safari (bib29) 2024 Feb; 2024
Safari, Kharrati, Rahimi (bib28) 2023 Dec 28; 9
He W, He C, Zhang Z, Ren B. Design of online intelligent detection system for power quality and fault identification in distribution networks. Applied Mathematics and Nonlinear Sciences.;9(1).
El Idrissi, Bacha, Lmai (bib13) 2024 Jan; 25
Barlow (bib32) 1989 Sep 1; 1
Mahmoud (bib12) April 2024; 39
Di, Jin, Bagheri, Shi, Ardakani, Tang, Lee (bib20) 2018 May 1; 97
Li, Wei, Li, Dong, Shahidehpour (bib31) 2022 Sep 6; 13
Chen, Bazzi (bib16) 2016 Sep 7; 32
Ofoli (bib11) 2024 Jan; vol. 1
Kou, Liu, Cai, Zhang (bib24) 2020 Aug 1; 185
Ke, Pan, Na, Potty, Zhang, Wang, Xu (bib25) 2019 Mar 17
Padmaja, Kumar, Dhanesh, Kamesh, Geetha, Ramya, Raja Sekhar, Saha (bib8) 2024 Jan 20; 52
Ponce, Molina, MacCleery (bib23) 2013 Aug 1; 19
Lang (10.1016/j.heliyon.2024.e35243_bib3) 2021; 8
Sadeghian (10.1016/j.heliyon.2024.e35243_bib29) 2024; 2024
10.1016/j.heliyon.2024.e35243_bib14
Di (10.1016/j.heliyon.2024.e35243_bib20) 2018; 97
Safari (10.1016/j.heliyon.2024.e35243_bib6) 2021; 15
10.1016/j.heliyon.2024.e35243_bib33
Vo (10.1016/j.heliyon.2024.e35243_bib4) 2024; 129
Kou (10.1016/j.heliyon.2024.e35243_bib24) 2020; 185
Afia (10.1016/j.heliyon.2024.e35243_bib9) 2024; 46
Moradzadeh (10.1016/j.heliyon.2024.e35243_bib5) 2021; 37
Mahmoud (10.1016/j.heliyon.2024.e35243_bib12) 2024; 39
Li (10.1016/j.heliyon.2024.e35243_bib31) 2022; 13
Ponce (10.1016/j.heliyon.2024.e35243_bib23) 2013; 19
Xu (10.1016/j.heliyon.2024.e35243_bib36) 2023; 35
El Idrissi (10.1016/j.heliyon.2024.e35243_bib13) 2024; 25
Safari (10.1016/j.heliyon.2024.e35243_bib28) 2023; 9
Ofoli (10.1016/j.heliyon.2024.e35243_bib11) 2024; vol. 1
Li (10.1016/j.heliyon.2024.e35243_bib10) 2024; 189
Moradzadeh (10.1016/j.heliyon.2024.e35243_bib22) 2021; 37
Barlow (10.1016/j.heliyon.2024.e35243_bib32) 1989; 1
Padmaja (10.1016/j.heliyon.2024.e35243_bib8) 2024; 52
Hariri (10.1016/j.heliyon.2024.e35243_bib34) 2019; 33
Wang (10.1016/j.heliyon.2024.e35243_bib7) 2024; 127
Zhao (10.1016/j.heliyon.2024.e35243_bib2) 2021; 8
Safari (10.1016/j.heliyon.2024.e35243_bib27) 2023; 16
Ke (10.1016/j.heliyon.2024.e35243_bib25) 2019
Wang (10.1016/j.heliyon.2024.e35243_bib1) 2024; 127
Abu-Rub (10.1016/j.heliyon.2024.e35243_bib18) 2021; 8
Luo (10.1016/j.heliyon.2024.e35243_bib15) 2024; 39
Sabahi (10.1016/j.heliyon.2024.e35243_bib30) 2024; 2024
Chen (10.1016/j.heliyon.2024.e35243_bib16) 2016; 32
Ding (10.1016/j.heliyon.2024.e35243_bib26) 2012; 60
Chabchoub (10.1016/j.heliyon.2024.e35243_bib35) 2022; 10
Wang (10.1016/j.heliyon.2024.e35243_bib17) 2020; 8
Masrur (10.1016/j.heliyon.2024.e35243_bib21) 2010; 3
Chen (10.1016/j.heliyon.2024.e35243_bib19) 2013
References_xml – volume: 37
  start-page: 6026
  year: 2021 Nov 30
  end-page: 6050
  ident: bib5
  article-title: Data mining applications to fault diagnosis in power electronic systems: a systematic review
  publication-title: IEEE Trans. Power Electron.
– volume: 97
  start-page: 1
  year: 2018 May 1
  end-page: 9
  ident: bib20
  article-title: Fault prediction of power electronics modules and systems under complex working conditions
  publication-title: Comput. Ind.
– volume: 8
  start-page: 18
  year: 2021 Feb 22
  end-page: 27
  ident: bib2
  article-title: Enabling data-driven condition monitoring of power electronic systems with artificial intelligence: concepts, tools, and developments
  publication-title: IEEE Power Electronics Magazine
– volume: 52
  start-page: 308
  year: 2024 Jan 20
  end-page: 321
  ident: bib8
  article-title: Stability and reliability analysis for multiple WT using deep reinforcement learning
  publication-title: Elec. Power Compon. Syst.
– volume: 19
  start-page: 373
  year: 2013 Aug 1
  end-page: 389
  ident: bib23
  article-title: Integrated intelligent control and fault system for wind generators
  publication-title: Intelligent Automation & Soft Computing
– volume: 10
  start-page: 10219
  year: 2022 Jan 18
  end-page: 10237
  ident: bib35
  article-title: An in-depth study and improvement of Isolation Forest
  publication-title: IEEE Access
– volume: 37
  start-page: 6026
  year: 2021 Nov 30
  end-page: 6050
  ident: bib22
  article-title: Data mining applications to fault diagnosis in power electronic systems: a systematic review
  publication-title: IEEE Trans. Power Electron.
– volume: 129
  year: 2024 Mar 1
  ident: bib4
  article-title: Harnessing attention mechanisms in a comprehensive deep learning approach for induction motor fault diagnosis using raw electrical signals
  publication-title: Eng. Appl. Artif. Intell.
– volume: 8
  start-page: 28
  year: 2021 Feb 22
  end-page: 38
  ident: bib18
  article-title: Towards intelligent power electronics-dominated grid via machine learning techniques
  publication-title: IEEE Power Electronics Magazine
– volume: 16
  start-page: 6889
  year: 2023 Sep 29
  ident: bib27
  article-title: DeepVELOX: INVELOX wind turbine intelligent power forecasting using hybrid GWO–GBR algorithm
  publication-title: Energies
– volume: 25
  year: 2024 Jan
  ident: bib13
  article-title: Fault diagnosis using Bayesian networks for a single-phase inverter based on MOSFET semiconductors
  publication-title: Mater. Today: Proc.
– volume: 8
  start-page: 221039
  year: 2020 Dec 10
  end-page: 221050
  ident: bib17
  article-title: An intelligent fault diagnosis method for open-circuit faults in power-electronics energy conversion system
  publication-title: IEEE Access
– volume: 8
  start-page: 384
  year: 2021 Sep 3
  end-page: 406
  ident: bib3
  article-title: Artificial intelligence-based technique for fault detection and diagnosis of EV motors: a review
  publication-title: IEEE Transactions on Transportation Electrification
– volume: 13
  start-page: 4862
  year: 2022 Sep 6
  end-page: 4872
  ident: bib31
  article-title: Detection of false data injection attacks in smart grid: a secure federated deep learning approach
  publication-title: IEEE Trans. Smart Grid
– start-page: 4559
  year: 2013 Sep 15
  end-page: 4564
  ident: bib19
  article-title: A generalized approach for intelligent fault detection and recovery in power electronic systems
  publication-title: In2013 IEEE Energy Conversion Congress and Exposition
– start-page: 3056
  year: 2019 Mar 17
  end-page: 3063
  ident: bib25
  article-title: Single-submodule open-circuit fault diagnosis for a modular multi-level converter using artificial intelligent-based techniques
  publication-title: In2019 IEEE Applied Power Electronics Conference and Exposition (APEC)
– volume: 2024
  year: 2024 Feb
  ident: bib29
  article-title: Net saving improvement of capacitor banks in power distribution systems by increasing daily size switching number: a comparative result analysis by artificial intelligence
  publication-title: J. Eng.
– volume: 2024
  year: 2024
  ident: bib30
  article-title: Design and implementation of a cost-effective practical single-phase power quality analyzer using pyboard microcontroller and python-to-python interface
  publication-title: J. Eng.
– volume: 39
  start-page: 4781
  year: April 2024
  end-page: 4791
  ident: bib12
  article-title: Novel modeling framework for PV faults under partial shading
  publication-title: IEEE Trans. Power Electron.
– volume: 1
  start-page: 295
  year: 1989 Sep 1
  end-page: 311
  ident: bib32
  article-title: Unsupervised learning
  publication-title: Neural Comput.
– volume: 127
  year: 2024 Jan 1
  ident: bib7
  article-title: Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy
  publication-title: Eng. Appl. Artif. Intell.
– volume: 32
  start-page: 5573
  year: 2016 Sep 7
  end-page: 5589
  ident: bib16
  article-title: Logic-based methods for intelligent fault diagnosis and recovery in power electronics
  publication-title: IEEE Trans. Power Electron.
– volume: 46
  start-page: 359
  year: 2024 Jan
  end-page: 378
  ident: bib9
  article-title: Intelligent fault classification of air compressors using Harris hawks optimization and machine learning algorithms
  publication-title: Trans. Inst. Meas. Control
– volume: 9
  start-page: 8
  year: 2023 Dec 28
  ident: bib28
  article-title: Multi-term electrical load forecasting of smart cities using a new hybrid highly accurate neural network-based predictive model
  publication-title: Smart Grids and Sustainable Energy
– volume: 35
  start-page: 12591
  year: 2023 Apr 25
  end-page: 12604
  ident: bib36
  article-title: Deep isolation forest for anomaly detection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 189
  year: 2024 Jan 1
  ident: bib10
  article-title: Deep learning based on Transformer architecture for power system short-term voltage stability assessment with class imbalance
  publication-title: Renew. Sustain. Energy Rev.
– volume: 3
  start-page: 279
  year: 2010 Mar 1
  end-page: 291
  ident: bib21
  article-title: Intelligent diagnosis of open and short circuit faults in electric drive inverters for real-time applications
  publication-title: IET Power Electron.
– reference: James G, Witten D, Hastie T, Tibshirani R, Taylor J. Unsupervised Learning. InAn Introduction to Statistical Learning: with Applications in Python 2023 Jul 1 (pp. 503-556). Cham: Springer International Publishing.
– volume: 39
  start-page: 4149
  year: April 2024
  end-page: 4159
  ident: bib15
  article-title: Diversified diagnosis strategy for PMSM Inter-Turn Short-Circuit fault via novel sliding mode observer
  publication-title: IEEE Trans. Power Electron.
– volume: 33
  start-page: 1479
  year: 2019 Oct 31
  end-page: 1489
  ident: bib34
  article-title: Extended isolation forest
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: He W, He C, Zhang Z, Ren B. Design of online intelligent detection system for power quality and fault identification in distribution networks. Applied Mathematics and Nonlinear Sciences.;9(1).
– volume: vol. 1
  start-page: 1233
  year: 2024 Jan
  end-page: 1260
  ident: bib11
  article-title: Fuzzy-logic applications in electric drives and power electronics
  publication-title: InPower Electronics Handbook
– volume: 15
  start-page: 485
  year: 2021 Aug
  end-page: 492
  ident: bib6
  article-title: Practical data connection between MATLAB and microcontrollers using virtual serial port and MicroPython Pyboard: a survey
  publication-title: IET Circuits, Devices Syst.
– volume: 60
  start-page: 1038
  year: 2012 Dec 5
  end-page: 1051
  ident: bib26
  article-title: Fault detection and isolation filters for three-phase AC-DC power electronics systems
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– volume: 185
  year: 2020 Aug 1
  ident: bib24
  article-title: Fault diagnosis for power electronics converters based on deep feedforward network and wavelet compression
  publication-title: Elec. Power Syst. Res.
– volume: 127
  year: 2024 Jan 1
  ident: bib1
  article-title: Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy
  publication-title: Eng. Appl. Artif. Intell.
– volume: 60
  start-page: 1038
  issue: 4
  year: 2012
  ident: 10.1016/j.heliyon.2024.e35243_bib26
  article-title: Fault detection and isolation filters for three-phase AC-DC power electronics systems
  publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers
– volume: 37
  start-page: 6026
  issue: 5
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35243_bib22
  article-title: Data mining applications to fault diagnosis in power electronic systems: a systematic review
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2021.3131293
– volume: 8
  start-page: 18
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35243_bib2
  article-title: Enabling data-driven condition monitoring of power electronic systems with artificial intelligence: concepts, tools, and developments
  publication-title: IEEE Power Electronics Magazine
  doi: 10.1109/MPEL.2020.3047718
– start-page: 3056
  year: 2019
  ident: 10.1016/j.heliyon.2024.e35243_bib25
  article-title: Single-submodule open-circuit fault diagnosis for a modular multi-level converter using artificial intelligent-based techniques
– ident: 10.1016/j.heliyon.2024.e35243_bib14
  doi: 10.2478/amns.2023.2.01454
– volume: 3
  start-page: 279
  issue: 2
  year: 2010
  ident: 10.1016/j.heliyon.2024.e35243_bib21
  article-title: Intelligent diagnosis of open and short circuit faults in electric drive inverters for real-time applications
  publication-title: IET Power Electron.
  doi: 10.1049/iet-pel.2008.0362
– volume: 52
  start-page: 308
  issue: 2
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib8
  article-title: Stability and reliability analysis for multiple WT using deep reinforcement learning
  publication-title: Elec. Power Compon. Syst.
  doi: 10.1080/15325008.2023.2220313
– volume: 33
  start-page: 1479
  issue: 4
  year: 2019
  ident: 10.1016/j.heliyon.2024.e35243_bib34
  article-title: Extended isolation forest
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2947676
– volume: 8
  start-page: 28
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35243_bib18
  article-title: Towards intelligent power electronics-dominated grid via machine learning techniques
  publication-title: IEEE Power Electronics Magazine
  doi: 10.1109/MPEL.2020.3047506
– start-page: 4559
  year: 2013
  ident: 10.1016/j.heliyon.2024.e35243_bib19
  article-title: A generalized approach for intelligent fault detection and recovery in power electronic systems
– volume: 10
  start-page: 10219
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35243_bib35
  article-title: An in-depth study and improvement of Isolation Forest
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3144425
– volume: 97
  start-page: 1
  year: 2018
  ident: 10.1016/j.heliyon.2024.e35243_bib20
  article-title: Fault prediction of power electronics modules and systems under complex working conditions
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2018.01.011
– volume: 129
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib4
  article-title: Harnessing attention mechanisms in a comprehensive deep learning approach for induction motor fault diagnosis using raw electrical signals
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107643
– volume: 37
  start-page: 6026
  issue: 5
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35243_bib5
  article-title: Data mining applications to fault diagnosis in power electronic systems: a systematic review
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2021.3131293
– volume: 127
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib1
  article-title: Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107281
– volume: 8
  start-page: 221039
  year: 2020
  ident: 10.1016/j.heliyon.2024.e35243_bib17
  article-title: An intelligent fault diagnosis method for open-circuit faults in power-electronics energy conversion system
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3043796
– volume: 32
  start-page: 5573
  issue: 7
  year: 2016
  ident: 10.1016/j.heliyon.2024.e35243_bib16
  article-title: Logic-based methods for intelligent fault diagnosis and recovery in power electronics
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2016.2606435
– volume: 8
  start-page: 384
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35243_bib3
  article-title: Artificial intelligence-based technique for fault detection and diagnosis of EV motors: a review
  publication-title: IEEE Transactions on Transportation Electrification
  doi: 10.1109/TTE.2021.3110318
– volume: 19
  start-page: 373
  issue: 3
  year: 2013
  ident: 10.1016/j.heliyon.2024.e35243_bib23
  article-title: Integrated intelligent control and fault system for wind generators
  publication-title: Intelligent Automation & Soft Computing
  doi: 10.1080/10798587.2013.778038
– ident: 10.1016/j.heliyon.2024.e35243_bib33
  doi: 10.1007/978-3-031-38747-0_12
– volume: 127
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib7
  article-title: Intermittent fault diagnosis of analog circuit based on enhanced one-dimensional vision transformer and transfer learning strategy
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107281
– volume: 185
  year: 2020
  ident: 10.1016/j.heliyon.2024.e35243_bib24
  article-title: Fault diagnosis for power electronics converters based on deep feedforward network and wavelet compression
  publication-title: Elec. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106370
– volume: 39
  start-page: 4781
  issue: 4
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib12
  article-title: Novel modeling framework for PV faults under partial shading
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2024.3354858
– volume: 25
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib13
  article-title: Fault diagnosis using Bayesian networks for a single-phase inverter based on MOSFET semiconductors
  publication-title: Mater. Today: Proc.
– volume: 13
  start-page: 4862
  issue: 6
  year: 2022
  ident: 10.1016/j.heliyon.2024.e35243_bib31
  article-title: Detection of false data injection attacks in smart grid: a secure federated deep learning approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2022.3204796
– volume: 2024
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib30
  article-title: Design and implementation of a cost-effective practical single-phase power quality analyzer using pyboard microcontroller and python-to-python interface
  publication-title: J. Eng.
– volume: vol. 1
  start-page: 1233
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib11
  article-title: Fuzzy-logic applications in electric drives and power electronics
– volume: 35
  start-page: 12591
  issue: 12
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35243_bib36
  article-title: Deep isolation forest for anomaly detection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2023.3270293
– volume: 2024
  issue: 2
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib29
  article-title: Net saving improvement of capacitor banks in power distribution systems by increasing daily size switching number: a comparative result analysis by artificial intelligence
  publication-title: J. Eng.
– volume: 189
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib10
  article-title: Deep learning based on Transformer architecture for power system short-term voltage stability assessment with class imbalance
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113913
– volume: 39
  start-page: 4149
  issue: 4
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib15
  article-title: Diversified diagnosis strategy for PMSM Inter-Turn Short-Circuit fault via novel sliding mode observer
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2024.3352077
– volume: 16
  start-page: 6889
  issue: 19
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35243_bib27
  article-title: DeepVELOX: INVELOX wind turbine intelligent power forecasting using hybrid GWO–GBR algorithm
  publication-title: Energies
  doi: 10.3390/en16196889
– volume: 15
  start-page: 485
  issue: 5
  year: 2021
  ident: 10.1016/j.heliyon.2024.e35243_bib6
  article-title: Practical data connection between MATLAB and microcontrollers using virtual serial port and MicroPython Pyboard: a survey
  publication-title: IET Circuits, Devices Syst.
  doi: 10.1049/cds2.12038
– volume: 46
  start-page: 359
  issue: 2
  year: 2024
  ident: 10.1016/j.heliyon.2024.e35243_bib9
  article-title: Intelligent fault classification of air compressors using Harris hawks optimization and machine learning algorithms
  publication-title: Trans. Inst. Meas. Control
  doi: 10.1177/01423312231174939
– volume: 1
  start-page: 295
  issue: 3
  year: 1989
  ident: 10.1016/j.heliyon.2024.e35243_bib32
  article-title: Unsupervised learning
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.3.295
– volume: 9
  start-page: 8
  issue: 1
  year: 2023
  ident: 10.1016/j.heliyon.2024.e35243_bib28
  article-title: Multi-term electrical load forecasting of smart cities using a new hybrid highly accurate neural network-based predictive model
  publication-title: Smart Grids and Sustainable Energy
  doi: 10.1007/s40866-023-00188-9
SSID ssj0001586973
Score 2.3179362
Snippet Intelligent fault detection considered as a paramount importance in Power Electronics Systems (PELS) to ensure operational reliability along with rising...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e35243
SubjectTerms Artificial intelligence
electric potential difference
electronics
forests
Intelligent fault detection
Power electronics systems
Pyboard microcontroller
Python-to-python interface
resistors
Unsupervised isolation forest
Title ResFaultyMan: An intelligent fault detection predictive model in power electronics systems using unsupervised learning isolation forest
URI https://dx.doi.org/10.1016/j.heliyon.2024.e35243
https://www.ncbi.nlm.nih.gov/pubmed/39166090
https://www.proquest.com/docview/3095173702
https://www.proquest.com/docview/3154180436
https://pubmed.ncbi.nlm.nih.gov/PMC11334641
https://doaj.org/article/647b44c4ea7c464aa343b8efbb134efb
Volume 10
WOSCitedRecordID wos001286662300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pb9MwFLZgQogL4jcdMBmJazo7dmKb20CruHRCCKTeLP_KlqlKqyZB2oXr_m2ek7RrQKIXLo3U2Gme34vf5-b5-xD64LyykHXThGdBJFxZmRiqTOLzPLUi85CVbCc2IS4u5GKhvu5JfcWasJ4euB-405wLy7njwQjHc24M48zKUFhLGYdDnH2JUHuLqX5_sMyVYHdbdk6vp1dhWd6sIudpyqcBgAdno2TUcfaPctLfmPPP0sm9XDR7gh4PIBKf9Tf_FN0L1TP0cD68Jn-Obr-FembaZXMzN9VHfFbhcse82eAinsE-NF0VVoXXm9gxTnu408WBxngdxdPwnUZOjXvK5xrHQvlL3FZ1u47TTB08HpQnLnEJgdx5GgMUBoNeoB-z8--fvySD4kLislw0icmIE47kMjDuYGloARxljlNfmGABm6jCBivzzNPUkMIrJ1PDPSM8MMegCXuJjqpVFV4j7C2sPQ1NA8sdV-AzThxxzkNXx0jqJohvh167gY48qmIs9bbu7FoPHtPRY7r32ARNd93WPR_HoQ6fol93jSOddvcFBJkegkwfCrIJktuo0AMy6REHXKo89Pvvt1Gk4cmNr2NMFVZtrVlEt4IJkv6jDSBcKqNMwAS96iNvZ0ncMp0TReDmRjE5MnV8piqvOgZxShkDO-nx_xicN-hRtDf-0U6zt-io2bThHXrgfjZlvTlB98VCnnRPJ3zOf53_BiP4R5Q
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ResFaultyMan%3A+An+intelligent+fault+detection+predictive+model+in+power+electronics+systems+using+unsupervised+learning+isolation+forest&rft.jtitle=Heliyon&rft.au=Safari%2C+Ashkan&rft.au=Sabahi%2C+Mehran&rft.au=Oshnoei%2C+Arman&rft.date=2024-08-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=15+p.e35243-&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e35243&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon