An Effective Regression Test Case Selection Using Hybrid Whale Optimization Algorithm
Test suite optimization is an ever-demanded approach for regression test cost reduction. Regression testing is conducted to identify any adverse effects of maintenance activity on previously working versions of the software. It consumes almost seventy percent of the overall software development life...
Uloženo v:
| Vydáno v: | International journal of distributed systems and technologies Ročník 11; číslo 1; s. 53 - 67 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hershey
IGI Global
01.01.2020
|
| Témata: | |
| ISSN: | 1947-3532, 1947-3540 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Test suite optimization is an ever-demanded approach for regression test cost reduction. Regression testing is conducted to identify any adverse effects of maintenance activity on previously working versions of the software. It consumes almost seventy percent of the overall software development lifecycle budget. Regression test cost reduction is therefore of vital importance. Test suite optimization is the most explored approach to reduce the test suite size to re-execute. This article focuses on test suite optimization as a regression test case selection, which is a proven N-P hard combinatorial optimization problem. The authors have proposed an almost safe regression test case selection approach using a Hybrid Whale Optimization Algorithm and empirically evaluated the same on subject programs retrieved from the Software Artifact Infrastructure Repository with Bat Search and ACO-based regression test case selection approaches. The analyses of the obtained results indicate an improvement in the fault detection ability of the proposed approach over the compared ones with significant reduction in test suite size. |
|---|---|
| AbstractList | Test suite optimization is an ever-demanded approach for regression test cost reduction. Regression testing is conducted to identify any adverse effects of maintenance activity on previously working versions of the software. It consumes almost seventy percent of the overall software development lifecycle budget. Regression test cost reduction is therefore of vital importance. Test suite optimization is the most explored approach to reduce the test suite size to re-execute. This article focuses on test suite optimization as a regression test case selection, which is a proven N-P hard combinatorial optimization problem. The authors have proposed an almost safe regression test case selection approach using a Hybrid Whale Optimization Algorithm and empirically evaluated the same on subject programs retrieved from the Software Artifact Infrastructure Repository with Bat Search and ACO-based regression test case selection approaches. The analyses of the obtained results indicate an improvement in the fault detection ability of the proposed approach over the compared ones with significant reduction in test suite size. |
| Audience | Academic |
| Author | Kaur, Arvinder Choudhary, Ankur Agrawal, Arun Prakash |
| AuthorAffiliation | Guru Gobind Singh Indraprastha University, New Delhi, India Amity University Uttar Pradesh, Noida, India |
| AuthorAffiliation_xml | – name: Amity University Uttar Pradesh, Noida, India – name: Guru Gobind Singh Indraprastha University, New Delhi, India |
| Author_xml | – sequence: 1 givenname: Arun surname: Agrawal middlename: Prakash fullname: Agrawal, Arun Prakash organization: Guru Gobind Singh Indraprastha University, New Delhi, India – sequence: 2 givenname: Ankur surname: Choudhary fullname: Choudhary, Ankur organization: Amity University Uttar Pradesh, Noida, India – sequence: 3 givenname: Arvinder surname: Kaur fullname: Kaur, Arvinder organization: Guru Gobind Singh Indraprastha University, New Delhi, India |
| BookMark | eNp9UU1PGzEQtSoqlQL3HlfqpYcmzK6_do9RSvkQElIJ6tEyjmczaD9Se4NEf32dpBBAtJ6DrfF7b0bvfWR7Xd95xj7lMBaQl8fnF9-uZ-MCCoA8lXzH9vNK6BGXAvae3rz4wI5ivIN0pNBaVfvsZtJlJ4jeDXTvsx--Dj5G6rts5uOQTW302bVv1t-pdxOpq7Ozh9tA8-znwjY-u1oO1NJvu_mfNHUfaFi0h-w92ib6o7_3AZt9P5lNz0aXV6fn08nlyEmlh5HlQhUoLEBROakrLCutgTuNGnDunPUWnbDouapEIb11JUe0KH0JEjU_YJ-3ssvQ_1qlhc1dvwpdmmgKqbWolBJyh6rTwoY67IdgXUvRmYlWALwErRJq_AYq1dy35JLdSKn_gvD1GeF2lbxZW9dFqhdDrO0qxpdwtYW70McYPBpHw8a2NIcak4NZR2k2UZpdlIkIr4jLQK0ND_-jnG4pVNPOkseUzS5ls075nzp5npS-vKH0GmiWc-R_ANdlxVE |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3435678 crossref_primary_10_1007_s10515_024_00458_5 crossref_primary_10_3390_electronics11182885 crossref_primary_10_1007_s00500_020_05517_z crossref_primary_10_1051_bioconf_20249700115 crossref_primary_10_1007_s41870_022_01031_7 crossref_primary_10_1155_2023_4577581 crossref_primary_10_32604_cmc_2022_025027 crossref_primary_10_1007_s00521_022_07627_1 crossref_primary_10_1007_s42241_024_0042_6 crossref_primary_10_32628_IJSRSET2411462 |
| Cites_doi | 10.1109/32.910860 10.1145/248233.248262 10.4018/ijdst.2014070101 10.1145/1273463.1273483 10.1109/IWAST.2012.6228983 10.1109/TEVC.2013.2281528 10.1016/j.jcde.2017.12.006 10.1145/1982185.1982488 10.1109/ACCESS.2017.2695498 10.1145/1529282.1529382 10.1007/978-0-387-35097-4_1 10.1016/j.advengsoft.2016.01.008 10.4018/IJDST.2018070104 10.1109/AICCSA.2016.7945658 10.4018/IJDST.2018040101 10.1016/j.jss.2016.06.058 10.5753/wtf.2014.22943 10.1109/32.87284 10.1109/TSE.2011.56 10.1109/ABLAZE.2015.7155012 10.1109/NABIC.2009.5393690 10.1007/s10664-005-3861-2 10.1109/32.536955 10.1109/FOSE.2007.29 10.1109/CEC.2014.6900522 10.9790/0661-16343847 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2020 IGI Global Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
| Copyright_xml | – notice: COPYRIGHT 2020 IGI Global – notice: Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
| DBID | AAYXX CITATION N95 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.4018/IJDST.2020010105 |
| DatabaseName | CrossRef Gale Business: Insights Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Computer Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1947-3540 |
| EndPage | 67 |
| ExternalDocumentID | A760038076 10_4018_IJDST_2020010105 ffective_Regression_Test_10_4018_IJDST_202001010511 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | 0R ABEPT ADEKF ALMA_UNASSIGNED_HOLDINGS COVLG EBS HZ JRD MV1 NEEBM O9- RIF 0R~ 4.4 AAYVP AAYXX ABJCF ABPHS ACOJC ADMLS AFFHD AFKRA ARAPS BAAKF BENPR BGLVJ BYHXH CBWLS CCPQU CDTDJ CIGCI CITATION CKMBR CNQXE CTSEY EJD H13 HCIFZ HZ~ IAO ICD ITC K7- M7S N95 PHGZM PHGZT PQGLB PTHSS 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c567t-a3462f4a0029c579f897703c7f70fdccaeafc4afe369425eac83ffaf5e805f73 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511363600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1947-3532 |
| IngestDate | Fri Jul 25 10:18:23 EDT 2025 Tue Nov 11 10:49:24 EST 2025 Tue Nov 04 18:12:31 EST 2025 Sat Nov 29 09:20:31 EST 2025 Tue Nov 18 21:49:25 EST 2025 Sat Nov 29 06:12:59 EST 2025 Fri Jan 15 00:54:01 EST 2021 Tue Jan 05 23:27:00 EST 2021 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-a3462f4a0029c579f897703c7f70fdccaeafc4afe369425eac83ffaf5e805f73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1621-2687 |
| OpenAccessLink | https://doi.org/10.4018/ijdst.2020010105 |
| PQID | 2577496645 |
| PQPubID | 2045853 |
| PageCount | 15 |
| ParticipantIDs | igi_journals_ffective_Regression_Test_10_4018_IJDST_202001010511 gale_infotracmisc_A760038076 gale_businessinsightsgauss_A760038076 crossref_citationtrail_10_4018_IJDST_2020010105 crossref_primary_10_4018_IJDST_2020010105 gale_infotracacademiconefile_A760038076 proquest_journals_2577496645 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01T00:00:00 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01T00:00:00 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Hershey |
| PublicationPlace_xml | – name: Hershey |
| PublicationTitle | International journal of distributed systems and technologies |
| PublicationYear | 2020 |
| Publisher | IGI Global |
| Publisher_xml | – name: IGI Global |
| References | M. J.Harrold (IJDST.2020010105-11) 2001; 27 IJDST.2020010105-28 IJDST.2020010105-29 IJDST.2020010105-26 IJDST.2020010105-27 IJDST.2020010105-24 IJDST.2020010105-22 IJDST.2020010105-23 IJDST.2020010105-3 S.Nachiyappan (IJDST.2020010105-21) 2010 IJDST.2020010105-2 IJDST.2020010105-10 IJDST.2020010105-0 IJDST.2020010105-30 IJDST.2020010105-7 IJDST.2020010105-6 IJDST.2020010105-5 IJDST.2020010105-4 IJDST.2020010105-9 E. G.Cartaxo (IJDST.2020010105-1) 2007; 7 IJDST.2020010105-8 C. L. B.Maia (IJDST.2020010105-15) 2009 IJDST.2020010105-19 IJDST.2020010105-17 IJDST.2020010105-18 IJDST.2020010105-16 IJDST.2020010105-14 IJDST.2020010105-12 T.Saber (IJDST.2020010105-25) 2018 IJDST.2020010105-20 H.Leung (IJDST.2020010105-13) 2000; 129 |
| References_xml | – volume: 27 start-page: 248 issue: 3 year: 2001 ident: IJDST.2020010105-11 article-title: Empirical studies of a prediction model for regression test selection. publication-title: IEEE Transactions on Software Engineering doi: 10.1109/32.910860 – ident: IJDST.2020010105-24 doi: 10.1145/248233.248262 – start-page: 503 year: 2010 ident: IJDST.2020010105-21 article-title: An evolutionary algorithm for regression test suite reduction. publication-title: Proceedings of the 2010 International Conference on Communication and Computational Intelligence (INCOCCI) – ident: IJDST.2020010105-16 doi: 10.4018/ijdst.2014070101 – start-page: 1 year: 2018 ident: IJDST.2020010105-25 article-title: A hybrid algorithm for multi-objective test case selection. publication-title: Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC) – volume: 129 start-page: 81 issue: 1 year: 2000 ident: IJDST.2020010105-13 article-title: Test case selection with and without replacement. publication-title: Journal of Systems and Software – ident: IJDST.2020010105-30 doi: 10.1145/1273463.1273483 – ident: IJDST.2020010105-3 doi: 10.1109/IWAST.2012.6228983 – ident: IJDST.2020010105-26 doi: 10.1109/TEVC.2013.2281528 – ident: IJDST.2020010105-12 doi: 10.1016/j.jcde.2017.12.006 – ident: IJDST.2020010105-2 doi: 10.1145/1982185.1982488 – ident: IJDST.2020010105-14 doi: 10.1109/ACCESS.2017.2695498 – ident: IJDST.2020010105-27 doi: 10.1145/1529282.1529382 – ident: IJDST.2020010105-28 doi: 10.1007/978-0-387-35097-4_1 – ident: IJDST.2020010105-19 doi: 10.1016/j.advengsoft.2016.01.008 – ident: IJDST.2020010105-0 doi: 10.4018/IJDST.2018070104 – ident: IJDST.2020010105-9 doi: 10.1109/AICCSA.2016.7945658 – volume: 7 start-page: 399 issue: 2 year: 2007 ident: IJDST.2020010105-1 article-title: Automated Test Case Selection Based on a Similarity Function. publication-title: GI Jahrestagung – ident: IJDST.2020010105-8 doi: 10.4018/IJDST.2018040101 – ident: IJDST.2020010105-17 doi: 10.1016/j.jss.2016.06.058 – ident: IJDST.2020010105-4 doi: 10.5753/wtf.2014.22943 – ident: IJDST.2020010105-7 doi: 10.1109/32.87284 – ident: IJDST.2020010105-18 doi: 10.1109/TSE.2011.56 – ident: IJDST.2020010105-22 doi: 10.1109/ABLAZE.2015.7155012 – ident: IJDST.2020010105-29 doi: 10.1109/NABIC.2009.5393690 – ident: IJDST.2020010105-6 doi: 10.1007/s10664-005-3861-2 – ident: IJDST.2020010105-23 doi: 10.1109/32.536955 – start-page: 1824 year: 2009 ident: IJDST.2020010105-15 article-title: A Multi-Objective Approach For The Regression Test Case Selection Problem publication-title: XLI Brazilian Symposium of Operational Research – ident: IJDST.2020010105-10 doi: 10.1109/FOSE.2007.29 – ident: IJDST.2020010105-5 doi: 10.1109/CEC.2014.6900522 – ident: IJDST.2020010105-20 doi: 10.9790/0661-16343847 |
| SSID | ssj0000547769 |
| Score | 2.1835861 |
| Snippet | Test suite optimization is an ever-demanded approach for regression test cost reduction. Regression testing is conducted to identify any adverse effects of... |
| SourceID | proquest gale crossref igi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 53 |
| SubjectTerms | Algorithms Analysis Ant colony optimization Cetacea Combinatorial analysis Cost reduction Fault detection Mathematical optimization Optimization algorithms Regression Software development Software testing |
| Title | An Effective Regression Test Case Selection Using Hybrid Whale Optimization Algorithm |
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDST.2020010105 https://www.proquest.com/docview/2577496645 |
| Volume | 11 |
| WOSCitedRecordID | wos000511363600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1947-3540 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0000547769 issn: 1947-3532 databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1947-3540 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0000547769 issn: 1947-3532 databaseCode: M7S dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1947-3540 dateEnd: 20221231 omitProxy: false ssIdentifier: ssj0000547769 issn: 1947-3532 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tgwdeNhigFUZlpCHEQ9Q2tuPkCbqxaYBUprWIvVmea3eVtqwsHRL_PXeOs66athdeIiW5JHbuw77z-X4Auzm3FhlrE-eoqHZa2MTkIk1s2uUGTymVKIBNqMEgPz0tjmPArYpplY1NDIZ6fGUpRt5B0VIC5-ZCfpr9Tgg1ilZXI4TGKqz30rRHcv5dJbcxFpyOKBVQ7dBVR12SPK1XKtGpyDtfv30ZjtBDTEOdNcKvuzMyRfu8Op1M71npMPQcbv5vo5_BRpx0sn4tJc9hxZVbsNkAOrCo3y_gZ79kdTljtIHsxE3qJNmSjfCTbB8HPDYMuDl0LSQbsKO_tOWL_TrHjrAfaH8u48ZO1r-YYFPm55cvYXR4MNo_SiLuQmJlpuaJ4SJLvTC0YmelKnyOk8Qut8qrrh8jy53xVhjveFagyqPpzrn3xkuXd6VX_BWslVel2waWOcnPMqFM5ryQxdgU0vvMG1NYgY6OakGn-eXaxprkBI1xodE3ISbpwCS9YFILPt4-MavrcTxC-564qCOcJx4qCnhUE3NTVbpPS5JUbj9rwYdARyqNX7cm7kzAPlBxrCXKnSVKVEW7dPsdyouOVqC61yA9G_sWfF6iaZiqF0zVxNQHe9XrYSsaaVu8ZyFqrx-__Qae0svqMNIOrM2vb9xbeGL_zKfVdRvW9w4GxyftoEhtyoQd_gPCNyFZ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED5tAwleGD9FYYCRmBAPUdvYiZMHBNXG1LJREA3a3izj2l2lLStLB9ofxf_IneOsVBN72wMvldpcnVzu_Nlnn-8DeJVxY9CwJrKWimrHuYl0JuLIxB2u8SulEnmyCTkcZgcH-ZcV-N2chaG0ygYTPVCPTwytkbfRtaTAublI3s1-RMQaRburDYVG7Ra79vwXhmzV28E22nczjnc-FFv9KLAKRCZJ5TzSXKSxE5r2o0wic5fhFKjDjXSy48aokNXOCO0sT3N0aASmjDunXWKzTuIkx2ZX4YYg8PeZgqOLJR2c_UjpSfS6ucCum_C43hjFGCZrDz5ujwoMSGNf1o3o8v4aCMNwsDqdTC8NCn6k21n_z97RXbgTptSsV_eBe7Biy_uw3tBVsIBeD-Bbr2R1sWZEePbVTuoU4JIVqCHbwuGcjTwrEP3mUylY_5wOtLH9Q3xv7DOi63E4tsp6RxPUfH54_BCK69DtEayVJ6V9DCy1Cf-eCqlT60SSj3WeOJc6rXMjMIyTLWg3FlYmVFwn4o8jhZEX-YTyPqEWPtGCNxf_mNXVRq6Q3SSnUYGsFD8qWs6pJvqsqlSPNlyJTCBtwWsvR4CFdzc6nLtAHaj015LkxpIkAo1ZuvwS3VMFjKsuPZCajV0L3i_JNEZVC6MqMuo_tep28Ska5160s_DsJ1dffgG3-sWnPbU3GO4-hdvUcL1gtgFr89Mz-wxump_zaXX63PddBuqa-8Efn199og |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Regression+Test+Case+Selection+Using+Hybrid+Whale+Optimization+Algorithm&rft.jtitle=International+journal+of+distributed+systems+and+technologies&rft.au=Agrawal%2C+Arun+Prakash&rft.au=Choudhary%2C+Ankur&rft.au=Kaur%2C+Arvinder&rft.date=2020-01-01&rft.pub=IGI+Global&rft.issn=1947-3532&rft.volume=11&rft.issue=1&rft_id=info:doi/10.4018%2FIJDST.2020010105&rft.externalDocID=A760038076 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-3532&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-3532&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-3532&client=summon |