An Effective Regression Test Case Selection Using Hybrid Whale Optimization Algorithm

Test suite optimization is an ever-demanded approach for regression test cost reduction. Regression testing is conducted to identify any adverse effects of maintenance activity on previously working versions of the software. It consumes almost seventy percent of the overall software development life...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of distributed systems and technologies Ročník 11; číslo 1; s. 53 - 67
Hlavní autori: Agrawal, Arun Prakash, Choudhary, Ankur, Kaur, Arvinder
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hershey IGI Global 01.01.2020
Predmet:
ISSN:1947-3532, 1947-3540
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Test suite optimization is an ever-demanded approach for regression test cost reduction. Regression testing is conducted to identify any adverse effects of maintenance activity on previously working versions of the software. It consumes almost seventy percent of the overall software development lifecycle budget. Regression test cost reduction is therefore of vital importance. Test suite optimization is the most explored approach to reduce the test suite size to re-execute. This article focuses on test suite optimization as a regression test case selection, which is a proven N-P hard combinatorial optimization problem. The authors have proposed an almost safe regression test case selection approach using a Hybrid Whale Optimization Algorithm and empirically evaluated the same on subject programs retrieved from the Software Artifact Infrastructure Repository with Bat Search and ACO-based regression test case selection approaches. The analyses of the obtained results indicate an improvement in the fault detection ability of the proposed approach over the compared ones with significant reduction in test suite size.
AbstractList Test suite optimization is an ever-demanded approach for regression test cost reduction. Regression testing is conducted to identify any adverse effects of maintenance activity on previously working versions of the software. It consumes almost seventy percent of the overall software development lifecycle budget. Regression test cost reduction is therefore of vital importance. Test suite optimization is the most explored approach to reduce the test suite size to re-execute. This article focuses on test suite optimization as a regression test case selection, which is a proven N-P hard combinatorial optimization problem. The authors have proposed an almost safe regression test case selection approach using a Hybrid Whale Optimization Algorithm and empirically evaluated the same on subject programs retrieved from the Software Artifact Infrastructure Repository with Bat Search and ACO-based regression test case selection approaches. The analyses of the obtained results indicate an improvement in the fault detection ability of the proposed approach over the compared ones with significant reduction in test suite size.
Audience Academic
Author Kaur, Arvinder
Choudhary, Ankur
Agrawal, Arun Prakash
AuthorAffiliation Guru Gobind Singh Indraprastha University, New Delhi, India
Amity University Uttar Pradesh, Noida, India
AuthorAffiliation_xml – name: Amity University Uttar Pradesh, Noida, India
– name: Guru Gobind Singh Indraprastha University, New Delhi, India
Author_xml – sequence: 1
  givenname: Arun
  surname: Agrawal
  middlename: Prakash
  fullname: Agrawal, Arun Prakash
  organization: Guru Gobind Singh Indraprastha University, New Delhi, India
– sequence: 2
  givenname: Ankur
  surname: Choudhary
  fullname: Choudhary, Ankur
  organization: Amity University Uttar Pradesh, Noida, India
– sequence: 3
  givenname: Arvinder
  surname: Kaur
  fullname: Kaur, Arvinder
  organization: Guru Gobind Singh Indraprastha University, New Delhi, India
BookMark eNp9UU1PGzEQtSoqlQL3HlfqpYcmzK6_do9RSvkQElIJ6tEyjmczaD9Se4NEf32dpBBAtJ6DrfF7b0bvfWR7Xd95xj7lMBaQl8fnF9-uZ-MCCoA8lXzH9vNK6BGXAvae3rz4wI5ivIN0pNBaVfvsZtJlJ4jeDXTvsx--Dj5G6rts5uOQTW302bVv1t-pdxOpq7Ozh9tA8-znwjY-u1oO1NJvu_mfNHUfaFi0h-w92ib6o7_3AZt9P5lNz0aXV6fn08nlyEmlh5HlQhUoLEBROakrLCutgTuNGnDunPUWnbDouapEIb11JUe0KH0JEjU_YJ-3ssvQ_1qlhc1dvwpdmmgKqbWolBJyh6rTwoY67IdgXUvRmYlWALwErRJq_AYq1dy35JLdSKn_gvD1GeF2lbxZW9dFqhdDrO0qxpdwtYW70McYPBpHw8a2NIcak4NZR2k2UZpdlIkIr4jLQK0ND_-jnG4pVNPOkseUzS5ls075nzp5npS-vKH0GmiWc-R_ANdlxVE
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3435678
crossref_primary_10_1007_s10515_024_00458_5
crossref_primary_10_3390_electronics11182885
crossref_primary_10_1007_s00500_020_05517_z
crossref_primary_10_1051_bioconf_20249700115
crossref_primary_10_1007_s41870_022_01031_7
crossref_primary_10_1155_2023_4577581
crossref_primary_10_32604_cmc_2022_025027
crossref_primary_10_1007_s00521_022_07627_1
crossref_primary_10_1007_s42241_024_0042_6
crossref_primary_10_32628_IJSRSET2411462
Cites_doi 10.1109/32.910860
10.1145/248233.248262
10.4018/ijdst.2014070101
10.1145/1273463.1273483
10.1109/IWAST.2012.6228983
10.1109/TEVC.2013.2281528
10.1016/j.jcde.2017.12.006
10.1145/1982185.1982488
10.1109/ACCESS.2017.2695498
10.1145/1529282.1529382
10.1007/978-0-387-35097-4_1
10.1016/j.advengsoft.2016.01.008
10.4018/IJDST.2018070104
10.1109/AICCSA.2016.7945658
10.4018/IJDST.2018040101
10.1016/j.jss.2016.06.058
10.5753/wtf.2014.22943
10.1109/32.87284
10.1109/TSE.2011.56
10.1109/ABLAZE.2015.7155012
10.1109/NABIC.2009.5393690
10.1007/s10664-005-3861-2
10.1109/32.536955
10.1109/FOSE.2007.29
10.1109/CEC.2014.6900522
10.9790/0661-16343847
ContentType Journal Article
Copyright COPYRIGHT 2020 IGI Global
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: COPYRIGHT 2020 IGI Global
– notice: Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
N95
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4018/IJDST.2020010105
DatabaseName CrossRef
Gale Business: Insights
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Computer Science Database

CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1947-3540
EndPage 67
ExternalDocumentID A760038076
10_4018_IJDST_2020010105
ffective_Regression_Test_10_4018_IJDST_202001010511
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID 0R
ABEPT
ADEKF
ALMA_UNASSIGNED_HOLDINGS
COVLG
EBS
HZ
JRD
MV1
NEEBM
O9-
RIF
0R~
4.4
AAYVP
AAYXX
ABJCF
ABPHS
ACOJC
ADMLS
AFFHD
AFKRA
ARAPS
BAAKF
BENPR
BGLVJ
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CKMBR
CNQXE
CTSEY
EJD
H13
HCIFZ
HZ~
IAO
ICD
ITC
K7-
M7S
N95
PHGZM
PHGZT
PQGLB
PTHSS
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c567t-a3462f4a0029c579f897703c7f70fdccaeafc4afe369425eac83ffaf5e805f73
IEDL.DBID K7-
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000511363600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1947-3532
IngestDate Fri Jul 25 10:18:23 EDT 2025
Tue Nov 11 10:49:24 EST 2025
Tue Nov 04 18:12:31 EST 2025
Sat Nov 29 09:20:31 EST 2025
Tue Nov 18 21:49:25 EST 2025
Sat Nov 29 06:12:59 EST 2025
Fri Jan 15 00:54:01 EST 2021
Tue Jan 05 23:27:00 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-a3462f4a0029c579f897703c7f70fdccaeafc4afe369425eac83ffaf5e805f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1621-2687
OpenAccessLink https://doi.org/10.4018/ijdst.2020010105
PQID 2577496645
PQPubID 2045853
PageCount 15
ParticipantIDs igi_journals_ffective_Regression_Test_10_4018_IJDST_202001010511
gale_infotracmisc_A760038076
gale_businessinsightsgauss_A760038076
crossref_citationtrail_10_4018_IJDST_2020010105
crossref_primary_10_4018_IJDST_2020010105
gale_infotracacademiconefile_A760038076
proquest_journals_2577496645
PublicationCentury 2000
PublicationDate 2020-01-01T00:00:00
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01T00:00:00
  day: 01
PublicationDecade 2020
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of distributed systems and technologies
PublicationYear 2020
Publisher IGI Global
Publisher_xml – name: IGI Global
References M. J.Harrold (IJDST.2020010105-11) 2001; 27
IJDST.2020010105-28
IJDST.2020010105-29
IJDST.2020010105-26
IJDST.2020010105-27
IJDST.2020010105-24
IJDST.2020010105-22
IJDST.2020010105-23
IJDST.2020010105-3
S.Nachiyappan (IJDST.2020010105-21) 2010
IJDST.2020010105-2
IJDST.2020010105-10
IJDST.2020010105-0
IJDST.2020010105-30
IJDST.2020010105-7
IJDST.2020010105-6
IJDST.2020010105-5
IJDST.2020010105-4
IJDST.2020010105-9
E. G.Cartaxo (IJDST.2020010105-1) 2007; 7
IJDST.2020010105-8
C. L. B.Maia (IJDST.2020010105-15) 2009
IJDST.2020010105-19
IJDST.2020010105-17
IJDST.2020010105-18
IJDST.2020010105-16
IJDST.2020010105-14
IJDST.2020010105-12
T.Saber (IJDST.2020010105-25) 2018
IJDST.2020010105-20
H.Leung (IJDST.2020010105-13) 2000; 129
References_xml – volume: 27
  start-page: 248
  issue: 3
  year: 2001
  ident: IJDST.2020010105-11
  article-title: Empirical studies of a prediction model for regression test selection.
  publication-title: IEEE Transactions on Software Engineering
  doi: 10.1109/32.910860
– ident: IJDST.2020010105-24
  doi: 10.1145/248233.248262
– start-page: 503
  year: 2010
  ident: IJDST.2020010105-21
  article-title: An evolutionary algorithm for regression test suite reduction.
  publication-title: Proceedings of the 2010 International Conference on Communication and Computational Intelligence (INCOCCI)
– ident: IJDST.2020010105-16
  doi: 10.4018/ijdst.2014070101
– start-page: 1
  year: 2018
  ident: IJDST.2020010105-25
  article-title: A hybrid algorithm for multi-objective test case selection.
  publication-title: Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC)
– volume: 129
  start-page: 81
  issue: 1
  year: 2000
  ident: IJDST.2020010105-13
  article-title: Test case selection with and without replacement.
  publication-title: Journal of Systems and Software
– ident: IJDST.2020010105-30
  doi: 10.1145/1273463.1273483
– ident: IJDST.2020010105-3
  doi: 10.1109/IWAST.2012.6228983
– ident: IJDST.2020010105-26
  doi: 10.1109/TEVC.2013.2281528
– ident: IJDST.2020010105-12
  doi: 10.1016/j.jcde.2017.12.006
– ident: IJDST.2020010105-2
  doi: 10.1145/1982185.1982488
– ident: IJDST.2020010105-14
  doi: 10.1109/ACCESS.2017.2695498
– ident: IJDST.2020010105-27
  doi: 10.1145/1529282.1529382
– ident: IJDST.2020010105-28
  doi: 10.1007/978-0-387-35097-4_1
– ident: IJDST.2020010105-19
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: IJDST.2020010105-0
  doi: 10.4018/IJDST.2018070104
– ident: IJDST.2020010105-9
  doi: 10.1109/AICCSA.2016.7945658
– volume: 7
  start-page: 399
  issue: 2
  year: 2007
  ident: IJDST.2020010105-1
  article-title: Automated Test Case Selection Based on a Similarity Function.
  publication-title: GI Jahrestagung
– ident: IJDST.2020010105-8
  doi: 10.4018/IJDST.2018040101
– ident: IJDST.2020010105-17
  doi: 10.1016/j.jss.2016.06.058
– ident: IJDST.2020010105-4
  doi: 10.5753/wtf.2014.22943
– ident: IJDST.2020010105-7
  doi: 10.1109/32.87284
– ident: IJDST.2020010105-18
  doi: 10.1109/TSE.2011.56
– ident: IJDST.2020010105-22
  doi: 10.1109/ABLAZE.2015.7155012
– ident: IJDST.2020010105-29
  doi: 10.1109/NABIC.2009.5393690
– ident: IJDST.2020010105-6
  doi: 10.1007/s10664-005-3861-2
– ident: IJDST.2020010105-23
  doi: 10.1109/32.536955
– start-page: 1824
  year: 2009
  ident: IJDST.2020010105-15
  article-title: A Multi-Objective Approach For The Regression Test Case Selection Problem
  publication-title: XLI Brazilian Symposium of Operational Research
– ident: IJDST.2020010105-10
  doi: 10.1109/FOSE.2007.29
– ident: IJDST.2020010105-5
  doi: 10.1109/CEC.2014.6900522
– ident: IJDST.2020010105-20
  doi: 10.9790/0661-16343847
SSID ssj0000547769
Score 2.1835861
Snippet Test suite optimization is an ever-demanded approach for regression test cost reduction. Regression testing is conducted to identify any adverse effects of...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 53
SubjectTerms Algorithms
Analysis
Ant colony optimization
Cetacea
Combinatorial analysis
Cost reduction
Fault detection
Mathematical optimization
Optimization algorithms
Regression
Software development
Software testing
Title An Effective Regression Test Case Selection Using Hybrid Whale Optimization Algorithm
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJDST.2020010105
https://www.proquest.com/docview/2577496645
Volume 11
WOSCitedRecordID wos000511363600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1947-3540
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0000547769
  issn: 1947-3532
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1947-3540
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0000547769
  issn: 1947-3532
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1947-3540
  dateEnd: 20221231
  omitProxy: false
  ssIdentifier: ssj0000547769
  issn: 1947-3532
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4V6IFLgbaoKRC5UquKg5V9e3Mq4SXaSikiQeVmOV47RIIlZQNS_z0zXi8hQuXSiw-7s7v2zsMzY3s-gM-ZjUapMJqHVsc8wQCAd00guC5ibYORCoqgcGATot_PLy66pz7hVvltlY1NdIa6uNGUI--gaIkEffMk_Tb9wwk1ilZXPYTGEqyEURSSnP8U_DHHgu6IEA7VDkN11KU0juqVSgwq8s73H4eDIUaIkauzRvh1T2Ymb5-XJuPJMyvtpp7jtf_t9Dq88U4n69VSsgGvTPkW1hpAB-b1-x2c90pWlzNGG8jOzLjeJFuyIX6SHeCExwYON4euuc0G7OQvHflivy9xIOwX2p9rf7CT9a7G2JXZ5fV7GB4fDQ9OuMdd4DrNxIyrOMkimyhasdOp6NocncQg1sKKwBbIcqOsTpQ1cdZFlUfTncfWKpuaPEitiDdhubwpzQdgqPCBEoXV2KCnIFAMMBwPR3lqCVA8aUGn-eVS-5rkBI1xJTE2ISZJxyQ5Z1ILdh-fmNb1OF6g_UJclB7OE5uKEh7VWN1VlezRkiSV289a8NXRkUrj17XyJxNwDFQca4Fye4ESVVEv3P6E8iK9FaiedUhOC9uCvQWahqlyzlRJTP3nqMIQe9FI2_w9c1H7-PLtLVill9VppG1Ynt3emR14re9nk-q2DSv7R_3Ts7ZTpDbthB08AC44IYc
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB61BQkuLU-RUmCRqBAHK36svfYBQdRSJbQERIzobbVZ76aRWjfUKag_iv_IzNpuiCp664GLD_F44_F--83s8wN4ldhwHAujvcDqyOPYAfAy4wtPF5G2_lj5hV84sQkxHKaHh9mXFfjd7oWhZZUtJzqiLk41jZF3EVqCY27O43ezHx6pRtHsaiuhUcNi31z8wi5b9Xawi_W7HYZ7H_KdvteoCng6TsTcUxFPQssVzUfpWGQ2xRTIj7SwwrcFOmSU1VxZEyUZAhqJKY2sVTY2qR9bEWGxq3CLE_m7lYKjyyEdzH6EcCJ6Qcax6cZRWE-MYh8m7Q4-7o5y7JCG7lg3ksv7KxA24WB1OpleCQou0u1t_Gff6B6sNyk169Vt4D6smPIBbLRyFaxhr4fwrVey-rBmZHj21UzqJcAly9FDtoPhnI2cKhD95pZSsP4FbWhj34_wu7HPyK4nzbZV1jueoOfzo5NHkN-Eb49hrTwtzRNgSGe-EoXVeME8SCDIeZIF4zS2JJfOO9Bta1jq5sR1Ev44ltjzIkxIhwm5wEQH3lw-MatPG7nGdptAIxuxUrxUNJxTTdR5VckeTbiSmEDSgdfOjggL_12rZt8F-kBHfy1Zbi1ZItHopdsvEZ6y4bjqygvJWWE78H7Jpq1UuahUSZX6T6-CAN-iBfeinAWyN6-__QLu9PNPB_JgMNx_Cnep4HrAbAvW5mfn5hnc1j_n0-rsuWu7DOQNt4M_BtN90A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Regression+Test+Case+Selection+Using+Hybrid+Whale+Optimization+Algorithm&rft.jtitle=International+journal+of+distributed+systems+and+technologies&rft.au=Agrawal%2C+Arun&rft.au=Choudhary%2C+Ankur&rft.au=Kaur%2C+Arvinder&rft.date=2020-01-01&rft.pub=IGI+Global&rft.issn=1947-3532&rft.eissn=1947-3540&rft.volume=11&rft.issue=1&rft.spage=53&rft.epage=67&rft_id=info:doi/10.4018%2FIJDST.2020010105
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-3532&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-3532&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-3532&client=summon