Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model

The COVID-19 pandemic originated from the city of Wuhan of China has highly affected the health, socio-economic and financial matters of the different countries of the world. India is one of the countries which is affected by the disease and thousands of people on daily basis are getting infected. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes & metabolic syndrome clinical research & reviews Jg. 14; H. 5; S. 1467 - 1474
Hauptverfasser: Rath, Smita, Tripathy, Alakananda, Tripathy, Alok Ranjan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Netherlands Elsevier Ltd 01.09.2020
Diabetes India. Published by Elsevier Ltd
Schlagworte:
ISSN:1871-4021, 1878-0334, 1878-0334
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The COVID-19 pandemic originated from the city of Wuhan of China has highly affected the health, socio-economic and financial matters of the different countries of the world. India is one of the countries which is affected by the disease and thousands of people on daily basis are getting infected. In this paper, an analysis of daily statistics of people affected by the disease are taken into account to predict the next days trend in the active cases in Odisha as well as India. A valid global data set is collected from the WHO daily statistics and correlation among the total confirmed, active, deceased, positive cases are stated in this paper. Regression model such as Linear and Multiple Linear Regression techniques are applied to the data set to visualize the trend of the affected cases. Here a comparison of Linear Regression and Multiple Linear Regression model is performed where the score of the model R2tends to be 0.99 and 1.0 which indicates a strong prediction model to forecast the next coming days active cases. Using the Multiple Linear Regression model as on July month, the forecast value of 52,290 active cases are predicted towards the next month of 15th August in India and 9,358 active cases in Odisha if situation continues like this way. These models acquired remarkable accuracy in COVID-19 recognition. A strong correlation factor determines the relationship among the dependent (active) with the independent variables (positive, deceased, recovered). •Multiple linear regression model is proposed for prediction of Active cases in COVID-19 daily data.•The model predicts a value of 52,290 active cases in India and 9358 active cases in Odisha towards the 15th of August.•The ANOVA results shows a significant P value that accepts the proposed model.•Statistical results show MLR model has fair predictive potential over the LR model.
AbstractList The COVID-19 pandemic originated from the city of Wuhan of China has highly affected the health, socio-economic and financial matters of the different countries of the world. India is one of the countries which is affected by the disease and thousands of people on daily basis are getting infected. In this paper, an analysis of daily statistics of people affected by the disease are taken into account to predict the next days trend in the active cases in Odisha as well as India.INTRODUCTION AND AIMSThe COVID-19 pandemic originated from the city of Wuhan of China has highly affected the health, socio-economic and financial matters of the different countries of the world. India is one of the countries which is affected by the disease and thousands of people on daily basis are getting infected. In this paper, an analysis of daily statistics of people affected by the disease are taken into account to predict the next days trend in the active cases in Odisha as well as India.A valid global data set is collected from the WHO daily statistics and correlation among the total confirmed, active, deceased, positive cases are stated in this paper. Regression model such as Linear and Multiple Linear Regression techniques are applied to the data set to visualize the trend of the affected cases.MATERIAL AND METHODSA valid global data set is collected from the WHO daily statistics and correlation among the total confirmed, active, deceased, positive cases are stated in this paper. Regression model such as Linear and Multiple Linear Regression techniques are applied to the data set to visualize the trend of the affected cases.Here a comparison of Linear Regression and Multiple Linear Regression model is performed where the score of the model R2tends to be 0.99 and 1.0 which indicates a strong prediction model to forecast the next coming days active cases. Using the Multiple Linear Regression model as on July month, the forecast value of 52,290 active cases are predicted towards the next month of 15th August in India and 9,358 active cases in Odisha if situation continues like this way. CONCLUSION: These models acquired remarkable accuracy in COVID-19 recognition. A strong correlation factor determines the relationship among the dependent (active) with the independent variables (positive, deceased, recovered).RESULTSHere a comparison of Linear Regression and Multiple Linear Regression model is performed where the score of the model R2tends to be 0.99 and 1.0 which indicates a strong prediction model to forecast the next coming days active cases. Using the Multiple Linear Regression model as on July month, the forecast value of 52,290 active cases are predicted towards the next month of 15th August in India and 9,358 active cases in Odisha if situation continues like this way. CONCLUSION: These models acquired remarkable accuracy in COVID-19 recognition. A strong correlation factor determines the relationship among the dependent (active) with the independent variables (positive, deceased, recovered).
The COVID-19 pandemic originated from the city of Wuhan of China has highly affected the health, socio-economic and financial matters of the different countries of the world. India is one of the countries which is affected by the disease and thousands of people on daily basis are getting infected. In this paper, an analysis of daily statistics of people affected by the disease are taken into account to predict the next days trend in the active cases in Odisha as well as India. A valid global data set is collected from the WHO daily statistics and correlation among the total confirmed, active, deceased, positive cases are stated in this paper. Regression model such as Linear and Multiple Linear Regression techniques are applied to the data set to visualize the trend of the affected cases. Here a comparison of Linear Regression and Multiple Linear Regression model is performed where the score of the model R CONCLUSION: These models acquired remarkable accuracy in COVID-19 recognition. A strong correlation factor determines the relationship among the dependent (active) with the independent variables (positive, deceased, recovered).
• Multiple linear regression model is proposed for prediction of Active cases in COVID-19 daily data. •The model predicts a value of 52,290 active cases in India and 9358 active cases in Odisha towards the 15th of August. •The ANOVA results shows a significant P value that accepts the proposed model. •Statistical results show MLR model has fair predictive potential over the LR model.
The COVID-19 pandemic originated from the city of Wuhan of China has highly affected the health, socio-economic and financial matters of the different countries of the world. India is one of the countries which is affected by the disease and thousands of people on daily basis are getting infected. In this paper, an analysis of daily statistics of people affected by the disease are taken into account to predict the next days trend in the active cases in Odisha as well as India. A valid global data set is collected from the WHO daily statistics and correlation among the total confirmed, active, deceased, positive cases are stated in this paper. Regression model such as Linear and Multiple Linear Regression techniques are applied to the data set to visualize the trend of the affected cases. Here a comparison of Linear Regression and Multiple Linear Regression model is performed where the score of the model R2tends to be 0.99 and 1.0 which indicates a strong prediction model to forecast the next coming days active cases. Using the Multiple Linear Regression model as on July month, the forecast value of 52,290 active cases are predicted towards the next month of 15th August in India and 9,358 active cases in Odisha if situation continues like this way. These models acquired remarkable accuracy in COVID-19 recognition. A strong correlation factor determines the relationship among the dependent (active) with the independent variables (positive, deceased, recovered). •Multiple linear regression model is proposed for prediction of Active cases in COVID-19 daily data.•The model predicts a value of 52,290 active cases in India and 9358 active cases in Odisha towards the 15th of August.•The ANOVA results shows a significant P value that accepts the proposed model.•Statistical results show MLR model has fair predictive potential over the LR model.
Author Tripathy, Alok Ranjan
Tripathy, Alakananda
Rath, Smita
Author_xml – sequence: 1
  givenname: Smita
  orcidid: 0000-0003-0547-6609
  surname: Rath
  fullname: Rath, Smita
  email: smitarath@soa.ac.in
  organization: Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan Deemed to be University, Odisha, India
– sequence: 2
  givenname: Alakananda
  surname: Tripathy
  fullname: Tripathy, Alakananda
  email: alakanandatripathy@soa.ac.in
  organization: Department of Computer Science and Engineering, Siksha ‘O’ Anusandhan Deemed to be University, Odisha, India
– sequence: 3
  givenname: Alok Ranjan
  surname: Tripathy
  fullname: Tripathy, Alok Ranjan
  email: tripathyalok@gmail.com
  organization: Department of Computer Science,Ravenshaw University, Cuttack, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32771920$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URB_wA9ggL8siwY94HAsJqRoKVKpUFsDWMvbN4CGxg50M9N_XYUoFXRTJku3r851r3XOMDkIMgNBzSmpK6OrVtnb5V80IIzWRNWnEI3REW9lWhPPm4PeZVg1h9BAd57wlRAjF1BN0yJmUVDFyhMaPCZy3k48Bxw4H-IlNue0AW5MhLzUbUwxm59OcsfMZSh2frq--XLytqHqJRxMcDN7iOfuwwcPcT37sAfc-gEk4wSZBzov_EB30T9HjzvQZnt3uJ-jzu_NP6w_V5dX7i_XZZWXFSk6V5F0LToEShBJmaLPiAhphWsWkAemIpS1pGLSOcdOwhnEqu05SwR1htlX8BL3Z-47z1wGchTAl0-sx-cGkax2N1_--BP9Nb-JOS64EY6IYnN4apPhjhjzpwWcLfW8CxDlr1vCyqKKySF_83euuyZ8xFwHdC2yKOSfo7iSU6CVKvdUlSr1EqYnUJcrCyHuM9ZNZgirf9f2D5Os9CWW-Ow9JZ-sh2BJ0AjtpF_2DtLpH2xKlt6b_Dtf_YW8AHRrMTA
CitedBy_id crossref_primary_10_1007_s11042_023_14837_9
crossref_primary_10_1016_j_scs_2021_102752
crossref_primary_10_1016_j_jhazmat_2022_129506
crossref_primary_10_1007_s11227_023_05100_x
crossref_primary_10_1016_j_imed_2022_10_003
crossref_primary_10_1016_j_sste_2021_100416
crossref_primary_10_1109_TNSE_2021_3110101
crossref_primary_10_1080_23311916_2021_1958666
crossref_primary_10_1016_j_birob_2023_100114
crossref_primary_10_21015_vtse_v12i1_1740
crossref_primary_10_1177_14604582241295912
crossref_primary_10_3390_diagnostics13071264
crossref_primary_10_23736_S0022_4707_24_15759_3
crossref_primary_10_1016_j_psep_2023_11_067
crossref_primary_10_1007_s42461_024_01159_z
crossref_primary_10_1007_s13042_024_02490_z
crossref_primary_10_1186_s12911_022_01861_2
crossref_primary_10_1002_adts_202100246
crossref_primary_10_1016_j_eswa_2023_120103
crossref_primary_10_1016_j_engappai_2023_106692
crossref_primary_10_1080_02772248_2025_2532741
crossref_primary_10_3390_su17114985
crossref_primary_10_1007_s12046_022_01932_0
crossref_primary_10_1049_wss2_12100
crossref_primary_10_1155_2022_2529912
crossref_primary_10_1016_j_energy_2021_120915
crossref_primary_10_1016_j_psep_2023_12_054
crossref_primary_10_1097_MD_0000000000029317
crossref_primary_10_1088_2515_7647_ad8614
crossref_primary_10_1007_s42979_024_03317_y
crossref_primary_10_1371_journal_pone_0283086
crossref_primary_10_1109_ACCESS_2023_3291999
crossref_primary_10_1007_s00267_021_01574_8
crossref_primary_10_3390_ijerph181910071
crossref_primary_10_3389_fpubh_2022_911336
crossref_primary_10_1007_s00170_023_12013_9
crossref_primary_10_1007_s40808_021_01266_6
crossref_primary_10_1016_j_aei_2022_101678
crossref_primary_10_4103_ijmy_ijmy_182_21
crossref_primary_10_1109_TII_2024_3413296
crossref_primary_10_1016_j_asoc_2024_111359
crossref_primary_10_1016_j_mex_2025_103462
crossref_primary_10_1007_s12648_024_03381_3
crossref_primary_10_3390_su151410980
crossref_primary_10_1186_s12877_024_05144_5
crossref_primary_10_3390_buildings12111856
crossref_primary_10_1016_j_psep_2023_08_047
crossref_primary_10_1021_acs_analchem_5c01699
crossref_primary_10_1038_s41598_022_23154_4
crossref_primary_10_1016_j_neucom_2025_131138
crossref_primary_10_3390_w16152162
crossref_primary_10_3390_math10162925
crossref_primary_10_1016_j_heliyon_2023_e13672
crossref_primary_10_23736_S0022_4707_24_15786_6
crossref_primary_10_1016_j_asoc_2021_107289
crossref_primary_10_1371_journal_pone_0301420
crossref_primary_10_1016_j_measurement_2021_110080
crossref_primary_10_1007_s10479_024_05898_6
crossref_primary_10_1088_1755_1315_1098_1_012020
crossref_primary_10_3390_ijerph17217958
crossref_primary_10_2196_36022
crossref_primary_10_3390_ijerph182010778
crossref_primary_10_1007_s11517_022_02525_z
crossref_primary_10_20965_jdr_2023_p0040
crossref_primary_10_1038_s41598_022_05859_8
crossref_primary_10_5937_ekoPolj2204165P
crossref_primary_10_1016_j_sste_2024_100635
crossref_primary_10_3390_bioengineering10080883
crossref_primary_10_1007_s10479_021_04490_6
crossref_primary_10_1186_s12995_022_00350_6
crossref_primary_10_3390_su15119061
crossref_primary_10_1016_j_eswa_2023_120769
crossref_primary_10_1016_j_uclim_2024_101818
crossref_primary_10_1016_j_petrol_2021_109617
crossref_primary_10_1109_TCSS_2021_3058633
crossref_primary_10_3389_fpsyg_2022_810626
crossref_primary_10_1007_s41870_023_01544_9
crossref_primary_10_3390_fractalfract7060448
crossref_primary_10_1109_TITS_2022_3172206
crossref_primary_10_1016_j_knosys_2022_109996
crossref_primary_10_1016_j_psep_2021_10_047
crossref_primary_10_1016_j_dsx_2021_102331
crossref_primary_10_1016_j_heliyon_2023_e21795
crossref_primary_10_1177_14727978251321945
crossref_primary_10_3389_fpubh_2022_916407
crossref_primary_10_3390_app13179602
crossref_primary_10_1007_s40314_024_02970_6
crossref_primary_10_1016_j_engappai_2023_107012
crossref_primary_10_1371_journal_pone_0262734
crossref_primary_10_3389_fpsyg_2022_751914
crossref_primary_10_1155_2021_1679835
Cites_doi 10.1016/j.envpol.2018.11.034
10.1002/jmv.25689
10.1155/2017/4827171
10.1016/j.ajp.2020.102089
10.1016/j.scienta.2019.108886
10.1016/j.sbspro.2013.12.027
10.1016/j.biortech.2020.122926
10.3390/su12010395
10.1016/j.ijsbe.2016.09.003
10.5267/j.msl.2019.6.005
10.1007/s40808-019-00581-3
10.1016/j.ijepes.2016.11.013
ContentType Journal Article
Copyright 2020 Diabetes India
Copyright © 2020 Diabetes India. Published by Elsevier Ltd. All rights reserved.
2020 Diabetes India. Published by Elsevier Ltd. All rights reserved. 2020 Diabetes India
Copyright_xml – notice: 2020 Diabetes India
– notice: Copyright © 2020 Diabetes India. Published by Elsevier Ltd. All rights reserved.
– notice: 2020 Diabetes India. Published by Elsevier Ltd. All rights reserved. 2020 Diabetes India
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.dsx.2020.07.045
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1878-0334
EndPage 1474
ExternalDocumentID PMC7395225
32771920
10_1016_j_dsx_2020_07_045
S1871402120302939
Genre Journal Article
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OB0
ON-
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SSH
SSZ
T5K
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
9DU
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c567t-73f8ed9e950102a14635e45a8927ae7d0c18042e8d23a4242317ff7153d02c893
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000582194300134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1871-4021
1878-0334
IngestDate Tue Sep 30 16:42:36 EDT 2025
Wed Oct 01 13:35:45 EDT 2025
Wed Feb 19 02:29:53 EST 2025
Sat Nov 29 06:59:58 EST 2025
Tue Nov 18 21:48:57 EST 2025
Fri Feb 23 02:49:15 EST 2024
Tue Oct 14 19:30:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Correlation coefficient
Odisha
Coronavirus
Multiple linear regression
Linear regression
India
Language English
License Copyright © 2020 Diabetes India. Published by Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-73f8ed9e950102a14635e45a8927ae7d0c18042e8d23a4242317ff7153d02c893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0547-6609
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7395225
PMID 32771920
PQID 2432431917
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7395225
proquest_miscellaneous_2432431917
pubmed_primary_32771920
crossref_primary_10_1016_j_dsx_2020_07_045
crossref_citationtrail_10_1016_j_dsx_2020_07_045
elsevier_sciencedirect_doi_10_1016_j_dsx_2020_07_045
elsevier_clinicalkey_doi_10_1016_j_dsx_2020_07_045
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Diabetes & metabolic syndrome clinical research & reviews
PublicationTitleAlternate Diabetes Metab Syndr
PublicationYear 2020
Publisher Elsevier Ltd
Diabetes India. Published by Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
– name: Diabetes India. Published by Elsevier Ltd
References Uyanık, Güler (bib9) 2013; 106
Syazali, Putra, Rinaldi, Utami, Widayanti, Umam, Jermsittiparsert (bib7) 2019; 9
Xu, Yan (bib15) 2017; 88
Wang, Tang, Wei (bib1) 2020; 92
(bib4) 2020
Kadam, Wagh, Muley, Umrikar, Sankhua (bib14) 2019; 5
Khademi, Jamal, Deshpande, Londhe (bib10) 2016; 5
Yuchi, Gombojav, Boldbaatar, Galsuren, Enkhmaa, Beejin, Barn (bib17) 2019; 245
Hosseinzadeh, Baziar, Alidadi, Zhou, Altaee, Najafpoor, Jafarpour (bib11) 2020; 303
Barkur, Vibha (bib6) 2020
Jomnonkwao, Uttra, Ratanavaraha (bib16) 2020; 12
Salleh, Zainudin, Arif (bib8) 2017
Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations: scientific brief. World Health Organization. [Online] Available at : 27 March 2020 (No. WHO/2019-nCoV/Sci_Brief/Transmission_modes/2020.1).
(bib2) 2020
bib5
Luu, von Meding, Mojtahedi (bib12) 2019; 40
Du, Hu, Buttar (bib13) 2020; 260
Syazali (10.1016/j.dsx.2020.07.045_bib7) 2019; 9
Luu (10.1016/j.dsx.2020.07.045_bib12) 2019; 40
Wang (10.1016/j.dsx.2020.07.045_bib1) 2020; 92
Jomnonkwao (10.1016/j.dsx.2020.07.045_bib16) 2020; 12
10.1016/j.dsx.2020.07.045_bib3
Uyanık (10.1016/j.dsx.2020.07.045_bib9) 2013; 106
Xu (10.1016/j.dsx.2020.07.045_bib15) 2017; 88
Barkur (10.1016/j.dsx.2020.07.045_bib6) 2020
(10.1016/j.dsx.2020.07.045_bib2) 2020
Salleh (10.1016/j.dsx.2020.07.045_bib8) 2017
Kadam (10.1016/j.dsx.2020.07.045_bib14) 2019; 5
Khademi (10.1016/j.dsx.2020.07.045_bib10) 2016; 5
Hosseinzadeh (10.1016/j.dsx.2020.07.045_bib11) 2020; 303
Du (10.1016/j.dsx.2020.07.045_bib13) 2020; 260
Yuchi (10.1016/j.dsx.2020.07.045_bib17) 2019; 245
References_xml – volume: 40
  year: 2019
  ident: bib12
  article-title: Analyzing Vietnam’s national disaster loss database for flood risk assessment using multiple linear regression-TOPSIS
  publication-title: Int J Disast Risk Re
– volume: 12
  start-page: 395
  year: 2020
  ident: bib16
  article-title: Forecasting road traffic deaths in Thailand: applications of time-series, curve estimation, multiple linear regression, and path analysis models
  publication-title: Sustainability
– volume: 303
  start-page: 122926
  year: 2020
  ident: bib11
  article-title: Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions
  publication-title: Bioresour Technol
– volume: 5
  start-page: 951
  year: 2019
  end-page: 962
  ident: bib14
  article-title: Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India
  publication-title: Model Earth Syst Environ
– year: 2020
  ident: bib4
  article-title: Symptoms of coronavirus
– volume: 106
  start-page: 234
  year: 2013
  end-page: 240
  ident: bib9
  article-title: A study on multiple linear regression analysis
  publication-title: Procedia Soc Behav Sci
– ident: bib5
  article-title: India COVID-19 TRACKER. 2020 [online]
– start-page: 1
  year: 2017
  end-page: 15
  ident: bib8
  article-title: Multiple linear regression for reconstruction of gene regulatory networks in solving cascade error problems
  publication-title: Adv Bioinformat
– volume: 260
  year: 2020
  ident: bib13
  article-title: Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression
  publication-title: Sci Hortic
– volume: 9
  start-page: 1875
  year: 2019
  end-page: 1886
  ident: bib7
  article-title: Partial correlation analysis using multiple linear regression: impact on business environment of digital marketing interest in the era of industrial revolution 4.0
  publication-title: Manag Sci Lett
– volume: 5
  start-page: 355
  year: 2016
  end-page: 369
  ident: bib10
  article-title: Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression
  publication-title: Int J Sustain Built Environ
– volume: 92
  start-page: 441
  year: 2020
  end-page: 447
  ident: bib1
  article-title: Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China
  publication-title: J Med Virol
– year: 2020
  ident: bib6
  article-title: Sentiment analysis of nationwide lockdown due to COVID 19 outbreak: evidence from India
  publication-title: Asian J Psychiatr
– reference: Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations: scientific brief. World Health Organization. [Online] Available at : 27 March 2020 (No. WHO/2019-nCoV/Sci_Brief/Transmission_modes/2020.1).
– volume: 88
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib15
  article-title: Probabilistic load flow calculation with quasi-Monte Carlo and multiple linear regression
  publication-title: Int J Electr Power Energy Syst
– volume: 245
  start-page: 746
  year: 2019
  end-page: 753
  ident: bib17
  article-title: Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city
  publication-title: Environ Pollut
– start-page: 70
  year: 2020
  ident: bib2
  publication-title: Coronavirus disease 2019 (COVID-19): situation report
– volume: 245
  start-page: 746
  year: 2019
  ident: 10.1016/j.dsx.2020.07.045_bib17
  article-title: Evaluation of random forest regression and multiple linear regression for predicting indoor fine particulate matter concentrations in a highly polluted city
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2018.11.034
– volume: 92
  start-page: 441
  issue: 4
  year: 2020
  ident: 10.1016/j.dsx.2020.07.045_bib1
  article-title: Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China
  publication-title: J Med Virol
  doi: 10.1002/jmv.25689
– start-page: 1
  year: 2017
  ident: 10.1016/j.dsx.2020.07.045_bib8
  article-title: Multiple linear regression for reconstruction of gene regulatory networks in solving cascade error problems
  publication-title: Adv Bioinformat
  doi: 10.1155/2017/4827171
– volume: 40
  year: 2019
  ident: 10.1016/j.dsx.2020.07.045_bib12
  article-title: Analyzing Vietnam’s national disaster loss database for flood risk assessment using multiple linear regression-TOPSIS
  publication-title: Int J Disast Risk Re
– ident: 10.1016/j.dsx.2020.07.045_bib3
– year: 2020
  ident: 10.1016/j.dsx.2020.07.045_bib6
  article-title: Sentiment analysis of nationwide lockdown due to COVID 19 outbreak: evidence from India
  publication-title: Asian J Psychiatr
  doi: 10.1016/j.ajp.2020.102089
– volume: 260
  year: 2020
  ident: 10.1016/j.dsx.2020.07.045_bib13
  article-title: Analysis of mechanical properties for tea stem using grey relational analysis coupled with multiple linear regression
  publication-title: Sci Hortic
  doi: 10.1016/j.scienta.2019.108886
– start-page: 70
  year: 2020
  ident: 10.1016/j.dsx.2020.07.045_bib2
– volume: 106
  start-page: 234
  year: 2013
  ident: 10.1016/j.dsx.2020.07.045_bib9
  article-title: A study on multiple linear regression analysis
  publication-title: Procedia Soc Behav Sci
  doi: 10.1016/j.sbspro.2013.12.027
– volume: 303
  start-page: 122926
  year: 2020
  ident: 10.1016/j.dsx.2020.07.045_bib11
  article-title: Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2020.122926
– volume: 12
  start-page: 395
  year: 2020
  ident: 10.1016/j.dsx.2020.07.045_bib16
  article-title: Forecasting road traffic deaths in Thailand: applications of time-series, curve estimation, multiple linear regression, and path analysis models
  publication-title: Sustainability
  doi: 10.3390/su12010395
– volume: 5
  start-page: 355
  year: 2016
  ident: 10.1016/j.dsx.2020.07.045_bib10
  article-title: Predicting strength of recycled aggregate concrete using artificial neural network, adaptive neuro-fuzzy inference system and multiple linear regression
  publication-title: Int J Sustain Built Environ
  doi: 10.1016/j.ijsbe.2016.09.003
– volume: 9
  start-page: 1875
  issue: 11
  year: 2019
  ident: 10.1016/j.dsx.2020.07.045_bib7
  article-title: Partial correlation analysis using multiple linear regression: impact on business environment of digital marketing interest in the era of industrial revolution 4.0
  publication-title: Manag Sci Lett
  doi: 10.5267/j.msl.2019.6.005
– volume: 5
  start-page: 951
  year: 2019
  ident: 10.1016/j.dsx.2020.07.045_bib14
  article-title: Prediction of water quality index using artificial neural network and multiple linear regression modelling approach in Shivganga River basin, India
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-019-00581-3
– volume: 88
  start-page: 1
  year: 2017
  ident: 10.1016/j.dsx.2020.07.045_bib15
  article-title: Probabilistic load flow calculation with quasi-Monte Carlo and multiple linear regression
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.11.013
SSID ssj0055929
Score 2.5703218
Snippet The COVID-19 pandemic originated from the city of Wuhan of China has highly affected the health, socio-economic and financial matters of the different...
• Multiple linear regression model is proposed for prediction of Active cases in COVID-19 daily data. •The model predicts a value of 52,290 active cases in...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1467
SubjectTerms Betacoronavirus
Coronavirus
Coronavirus Infections - epidemiology
Correlation coefficient
COVID-19
Forecasting
Humans
India
India - epidemiology
Linear Models
Linear regression
Multiple linear regression
Odisha
Pandemics
Pneumonia, Viral - epidemiology
SARS-CoV-2
Title Prediction of new active cases of coronavirus disease (COVID-19) pandemic using multiple linear regression model
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1871402120302939
https://dx.doi.org/10.1016/j.dsx.2020.07.045
https://www.ncbi.nlm.nih.gov/pubmed/32771920
https://www.proquest.com/docview/2432431917
https://pubmed.ncbi.nlm.nih.gov/PMC7395225
Volume 14
WOSCitedRecordID wos000582194300134&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-0334
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0055929
  issn: 1871-4021
  databaseCode: AIEXJ
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpO8Zexu7LLkWDPeyCS3yV9BjWjnWwrrBu5M0IWV6TBSc4F_If96d2ji62m9LuAnsxQZZiJeezzlWfCHmZpSUsfkoHKRdpkMgwDQQveVCoUMAYKbVQ5rAJdnLCRyNx2uv99Hth1lNWVXyzEfP_KmpoA2Hj1tm_EHfzpdAAn0HocAWxw_WPBH9aY-7FG4JgNRu-jDXWdy0sw6xC1gK5HterhU_QmGTu52_Hh0EoMFAwx9gyls2vTCyhKTtEo1TWb2v93dbPVvYona6Je9hGczM8oBpQhkTanhqh3YvpeIbOTUfHitqmnWy8BwM_jeI4q7H-28JiOJU_JEbAr7iLRLmymjjsu7AG-LC-bsvF2vx-m7a4CZdncO_Q47X9tG_DTYIuJOrX9KSD3bSzQKNi6Cj7MLFnBF1SJDamMTkoFpsDnJ5heLXEl1v83F9wUjinCNZLMJ7EDtmLWCpgid0bHh-NPnrDAHw3c2he8yN8kt2UG2496Coz6bIbtF3N2zGPzu6Q286voUOLx7ukp6t75OYnV7lxn8xbWNJZSQGW1MKSGlhiWweW1MGSvvKgfE09JKmBJPWQpBaStIUkNZB8QL6-Pzp79yFwp30EKs3YMmBxyXUhtEiR5lCCoOJUJ6nkImJSs2KgQg4aRvMiimWCbkDIypKBxi4GkQKz-yHZrWaVfkwoGGYZL9CSLVQSq5KXQnOF4skSFYVZnwz8n5srR4WPJ7JMc1_zOMlBHjnKIx-wHOTRJ2-aIXPLA3Nd58hLLPcvFajkHMB13aCkGeSsX2vV_m7YCw-JHDQDpvtkpWerRR4h2WaM8Zg-eWQh0kw9jhgD327QJ-wCeJoOyDp_8U41Pjfs85jZByPgyb9N9ym51b7tz8jusl7p5-SGWi_Hi3qf7LAR33fvzS_RQv30
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+new+active+cases+of+coronavirus+disease+%28COVID-19%29+pandemic+using+multiple+linear+regression+model&rft.jtitle=Diabetes+%26+metabolic+syndrome+clinical+research+%26+reviews&rft.au=Rath%2C+Smita&rft.au=Tripathy%2C+Alakananda&rft.au=Tripathy%2C+Alok+Ranjan&rft.date=2020-09-01&rft.pub=Elsevier+Ltd&rft.issn=1871-4021&rft.eissn=1878-0334&rft.volume=14&rft.issue=5&rft.spage=1467&rft.epage=1474&rft_id=info:doi/10.1016%2Fj.dsx.2020.07.045&rft.externalDocID=S1871402120302939
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4021&client=summon