A hybrid approach for power quality event identification in power systems: Elasticnet Regression decomposition and optimized probabilistic neural networks

The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon Vol. 10; no. 18; p. e37975
Main Authors: Samanta, Indu Sekhar, Rout, Pravat Kumar, Swain, Kunjabihari, Cherukuri, Murthy, Panda, Subhasis, Bajaj, Mohit, Blazek, Vojtech, Prokop, Lukas, Misak, Stanislav
Format: Journal Article
Language:English
Published: England Elsevier Ltd 30.09.2024
Elsevier
Subjects:
ISSN:2405-8440, 2405-8440
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable analysis are essential to the fast-growing issues related to modern smart power distribution systems. In this regard, a hybrid algorithm is proposed for PQ events detection and classification using Elasticnet Regression-based Variational Mode Decomposition (ER-VMD) and Salp Swarm Algorithm optimized Probabilistic Neural Network (SSA-PNN). The Elasticnet Regression (ER) process is suggested to modify the conventional VMD approach instead of the Tikhonov Regularization (TR) method to enhance performance and obtain better band-limited intrinsic mode functions. This idea results in robust and effective reconstruction features and helps to obtain accurate classification using the classifier. In the classification stage, a Salp Swarm Algorithm (SSA) based PNN is used for the PQ event, considering the relevant features obtained from ER-VMD. The system parameters often influence PNN performance, and SSA is used to determine the ideal values to improve the PNN's capacity for more accurate classification. The numerical values of the accuracy percentage, percentage of sensitivity, and percentage of specificity in the case of real-time data are found as 98.58, 100, and 98.46, respectively. The acquired comparison findings demonstrate the effectiveness and robustness of the proposed technique in terms of rapid learning speed, smaller computational complexity, robust performance for anti-noise conditions, and accurate identification and categorization.
AbstractList The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable analysis are essential to the fast-growing issues related to modern smart power distribution systems. In this regard, a hybrid algorithm is proposed for PQ events detection and classification using Elasticnet Regression-based Variational Mode Decomposition (ER-VMD) and Salp Swarm Algorithm optimized Probabilistic Neural Network (SSA-PNN). The Elasticnet Regression (ER) process is suggested to modify the conventional VMD approach instead of the Tikhonov Regularization (TR) method to enhance performance and obtain better band-limited intrinsic mode functions. This idea results in robust and effective reconstruction features and helps to obtain accurate classification using the classifier. In the classification stage, a Salp Swarm Algorithm (SSA) based PNN is used for the PQ event, considering the relevant features obtained from ER-VMD. The system parameters often influence PNN performance, and SSA is used to determine the ideal values to improve the PNN's capacity for more accurate classification. The numerical values of the accuracy percentage, percentage of sensitivity, and percentage of specificity in the case of real-time data are found as 98.58, 100, and 98.46, respectively. The acquired comparison findings demonstrate the effectiveness and robustness of the proposed technique in terms of rapid learning speed, smaller computational complexity, robust performance for anti-noise conditions, and accurate identification and categorization.
The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable analysis are essential to the fast-growing issues related to modern smart power distribution systems. In this regard, a hybrid algorithm is proposed for PQ events detection and classification using Elasticnet Regression-based Variational Mode Decomposition (ER-VMD) and Salp Swarm Algorithm optimized Probabilistic Neural Network (SSA-PNN). The Elasticnet Regression (ER) process is suggested to modify the conventional VMD approach instead of the Tikhonov Regularization (TR) method to enhance performance and obtain better band-limited intrinsic mode functions. This idea results in robust and effective reconstruction features and helps to obtain accurate classification using the classifier. In the classification stage, a Salp Swarm Algorithm (SSA) based PNN is used for the PQ event, considering the relevant features obtained from ER-VMD. The system parameters often influence PNN performance, and SSA is used to determine the ideal values to improve the PNN's capacity for more accurate classification. The numerical values of the accuracy percentage, percentage of sensitivity, and percentage of specificity in the case of real-time data are found as 98.58, 100, and 98.46, respectively. The acquired comparison findings demonstrate the effectiveness and robustness of the proposed technique in terms of rapid learning speed, smaller computational complexity, robust performance for anti-noise conditions, and accurate identification and categorization.The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one of the prominent ones that needs further research. Developing and applying power quality (PQ) recognition methods with efficient and reliable analysis are essential to the fast-growing issues related to modern smart power distribution systems. In this regard, a hybrid algorithm is proposed for PQ events detection and classification using Elasticnet Regression-based Variational Mode Decomposition (ER-VMD) and Salp Swarm Algorithm optimized Probabilistic Neural Network (SSA-PNN). The Elasticnet Regression (ER) process is suggested to modify the conventional VMD approach instead of the Tikhonov Regularization (TR) method to enhance performance and obtain better band-limited intrinsic mode functions. This idea results in robust and effective reconstruction features and helps to obtain accurate classification using the classifier. In the classification stage, a Salp Swarm Algorithm (SSA) based PNN is used for the PQ event, considering the relevant features obtained from ER-VMD. The system parameters often influence PNN performance, and SSA is used to determine the ideal values to improve the PNN's capacity for more accurate classification. The numerical values of the accuracy percentage, percentage of sensitivity, and percentage of specificity in the case of real-time data are found as 98.58, 100, and 98.46, respectively. The acquired comparison findings demonstrate the effectiveness and robustness of the proposed technique in terms of rapid learning speed, smaller computational complexity, robust performance for anti-noise conditions, and accurate identification and categorization.
ArticleNumber e37975
Author Cherukuri, Murthy
Rout, Pravat Kumar
Samanta, Indu Sekhar
Swain, Kunjabihari
Prokop, Lukas
Misak, Stanislav
Blazek, Vojtech
Panda, Subhasis
Bajaj, Mohit
Author_xml – sequence: 1
  givenname: Indu Sekhar
  surname: Samanta
  fullname: Samanta, Indu Sekhar
  organization: Department of Computer Science and Engineering, Siksha’ O’ Anusandhan University, India
– sequence: 2
  givenname: Pravat Kumar
  surname: Rout
  fullname: Rout, Pravat Kumar
  organization: Department of Electrical and Electronics Engineering, Siksha’ O’ Anusandhan University, India
– sequence: 3
  givenname: Kunjabihari
  surname: Swain
  fullname: Swain, Kunjabihari
  organization: Department of Electrical and Electronics Engineering, NIST University, India
– sequence: 4
  givenname: Murthy
  surname: Cherukuri
  fullname: Cherukuri, Murthy
  organization: Department of Electrical and Electronics Engineering, NIST University, India
– sequence: 5
  givenname: Subhasis
  surname: Panda
  fullname: Panda, Subhasis
  organization: Department of Electrical Engineering, Srinix College of Engineering, Ranipatna, Balasore, Odisha, India
– sequence: 6
  givenname: Mohit
  orcidid: 0000-0002-1086-457X
  surname: Bajaj
  fullname: Bajaj, Mohit
  email: thebestbajaj@gmail.com
  organization: Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun, 248002, India
– sequence: 7
  givenname: Vojtech
  surname: Blazek
  fullname: Blazek, Vojtech
  organization: ENET Centre, VSB—Technical University of Ostrava, 708 00, Ostrava, Czech Republic
– sequence: 8
  givenname: Lukas
  surname: Prokop
  fullname: Prokop, Lukas
  organization: ENET Centre, VSB—Technical University of Ostrava, 708 00, Ostrava, Czech Republic
– sequence: 9
  givenname: Stanislav
  surname: Misak
  fullname: Misak, Stanislav
  organization: ENET Centre, VSB—Technical University of Ostrava, 708 00, Ostrava, Czech Republic
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39328549$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1vFCEUnZgaW2t_goZHX3aFAeZDH0zTVG3SxMToM2Hg0r3rzDAFdpv1p_hrZT9qWl_qCxA459zDvedlcTT6EYriNaNzRln1bjlfQI8bP85LWoo58Lqt5bPipBRUzhoh6NGD83FxFuOSUspkU7U1f1Ec85aXjRTtSfH7nCw2XUBL9DQFr82COB_I5O8gkNuV7jFtCKxhTARtXtGh0Qn9SHA8oOImJhjie3LZ65jQjJDIN7gJEOMWZ8H4YfIRdyw9WuKnhAP-AktyxU532OOWR0ZYBd3nLd358DO-Kp473Uc4O-ynxY9Pl98vvsyuv36-uji_nhlZ1WlWdRK4Fo4617BGMmMdOOGAaWFzryjXrNHMOgMNq2RdUWhpbqKoJLfSdS0_La72utbrpZoCDjpslNeodhc-3Cgdsr8e1FaTWd2JVueKTuuy5iUYC65tjah41vq415pW3QDW5I7lLz0Sffwy4kLd-LViTJSS8SYrvD0oBH-7gpjUgNFA3-sR_CoqzqRgNatL8R9QRgUtKZcZ-uahr7-G7oOQAR_2ABN8jAGcMph2g842sVeMqm3y1FIdkqe2yVP75GW2_Id9X-Ap3qFdkOe7RggqGoTRgMUAJuUB4BMKfwCmg_xB
CitedBy_id crossref_primary_10_1007_s00202_025_03149_w
crossref_primary_10_1016_j_rineng_2024_103873
crossref_primary_10_1038_s41598_025_86126_4
Cites_doi 10.1016/j.neucom.2018.03.056
10.3390/en10010107
10.1109/61.847259
10.1016/j.egyr.2022.05.003
10.1016/j.patcog.2016.06.032
10.1109/61.997947
10.1109/TSG.2016.2626469
10.1049/iet-gtd.2010.0466
10.1016/j.rser.2015.07.068
10.3389/fenrg.2022.1083662
10.1016/j.renene.2016.12.098
10.1109/ACCESS.2020.3014288
10.1109/ACCESS.2021.3123153
10.1016/j.cmpb.2019.105092
10.1016/j.neucom.2005.12.126
10.1016/j.mechmachtheory.2022.105185
10.1109/TII.2018.2803042
10.1016/j.egyr.2022.04.010
10.1007/s00202-021-01243-3
10.1016/j.dsp.2013.02.012
10.1155/2023/9974409
10.3390/en16052194
10.1038/s41598-024-53792-9
10.1109/ACCESS.2020.3014732
10.1049/iet-smt.2016.0194
10.1016/j.swevo.2018.06.010
10.1016/j.eswa.2015.04.002
10.1002/er.4847
10.1016/j.apenergy.2018.09.160
10.1016/0893-6080(90)90049-Q
10.1111/j.1467-9868.2005.00503.x
10.1007/s00202-020-00938-3
10.3390/en16114406
10.1016/j.measurement.2020.107597
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors.
2024 The Authors 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors.
– notice: 2024 The Authors 2024
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2024.e37975
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

AGRICOLA
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_1a4d1dab49aa4ffaa2732ecdef99c463
PMC11425138
39328549
10_1016_j_heliyon_2024_e37975
S2405844024140066
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
O9-
OK1
ROL
RPM
SSZ
AAYXX
CITATION
EJD
IPNFZ
RIG
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c567t-6b5e3a4f0ff81851cdfef4fe1a4d01603a18a1dfce8165760e901014653d5fb93
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319897100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-8440
IngestDate Fri Oct 03 12:50:04 EDT 2025
Thu Aug 21 18:31:18 EDT 2025
Fri Aug 22 20:35:28 EDT 2025
Fri Jul 11 16:36:13 EDT 2025
Mon Jul 21 05:58:34 EDT 2025
Sat Nov 29 07:29:44 EST 2025
Tue Nov 18 21:44:56 EST 2025
Sat Oct 11 16:52:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Salp swarm algorithm
Power quality events
Variational mode decomposition
Probabilistic neural network
Power quality indices
Language English
License This is an open access article under the CC BY-NC license.
2024 The Authors.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-6b5e3a4f0ff81851cdfef4fe1a4d01603a18a1dfce8165760e901014653d5fb93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1086-457X
OpenAccessLink https://doaj.org/article/1a4d1dab49aa4ffaa2732ecdef99c463
PMID 39328549
PQID 3110402035
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_1a4d1dab49aa4ffaa2732ecdef99c463
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11425138
proquest_miscellaneous_3154171724
proquest_miscellaneous_3110402035
pubmed_primary_39328549
crossref_citationtrail_10_1016_j_heliyon_2024_e37975
crossref_primary_10_1016_j_heliyon_2024_e37975
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e37975
PublicationCentury 2000
PublicationDate 2024-09-30
PublicationDateYYYYMMDD 2024-09-30
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-30
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Nadimuthu, Victor, Basha, Mariprasath, Dhanamjayulu, Padmanaban, Khan (bib3) 2021; 9
Priyadarshini, Krishna, Reddy, Bhatt, Bajaj, Mahmoud (bib4) 2023
Mohan, Soman, Vinayakumar (bib42) 2017
Arshad, Salim, Khokhar, Zulfiqar, Younas, Rehman, Bajaj, Choudhury (bib29) 2022; vol. 286
Kumawat, Verma, Zaveri (bib11) 2018; 14
Granados-Lieberman, Romero-Troncoso, Osornio-Rios, Garcia-Perez, Cabal-Yepez (bib23) 2011; 5
Min, Pan, Dai, Kawsar, Li, Wang (bib38) 2023; 181
Sahani, Dash, Samal (bib39) 2020; 157
Jiansheng, Negnevitsky, Thong Nguyen (bib25) 2002; 2
Samanta, Panda, Rout, Bajaj, Piecha, Blazek, Prokop (bib26) 2023; 16
Sekhar Samanta, Kumar Rout, Mishra (bib30) 2021; 103
Mohsen, Bajaj, Kotb, Pushkarna, Alphonse, Ghoneim (bib32) 2023; 2023
Bajaj, Singh (bib16) August 2021; 31
Specht (bib31) 1990; 3
Balouji, Salor (bib41) 2017
Bajaj, Singh (bib10) 2020; 102
Chawda, Shaik, Shaik, Padmanaban, Holm-Nielsen, Mahela, Kaliannan (bib44) 2020; 8
Sekhar Samanta, Kumar Rout, Swain, Cherukuri, Mishra (bib17) 2022; 100
Panda, Majhi (bib36) 2019
Priyadarshini, Krishna, Kumar, Amaresh, Goud, Bajaj, Altameem, El-Shafai, Fouda (bib5) 2023; 16
Sahani, Dash (bib18) 2018; 310
Biswal, Dash (bib14) 2013; 23
Dora, Biswal (bib21) 2020; 183
Bajaj, Singh (bib8) 2020; 44
Singh, Singh (bib7) 2017; 11
Bajaj, Singh (bib22) 2020
Priyadarshini, Bajaj, Prokop (bib1) 2024; 14
Khokhar, Zin, Mokhtar, Pesaran (bib2) 2015; 51
Feroz Mirza, Haider, Ahmed, Rehman, Shafiq, Bajaj, Zawbaa, Szczepankowski, Kamel (bib35) 2022; 8
Mahela, Shaik (bib12) 2017; 106
Huang, Zhu, Siew (bib28) 2006; 70
Wang, Wang, Liu (bib37) 2017; 10
Bajaj, Singh, Alowaidi, Sharma, Sharma, Mishra (bib13) 2020; 8
Opara, Arabas (bib24) 2019; 44
Sivapriya, Kalaiarasi, Vishnuram, Abou Houran, Bajaj, Pushkarna, Kamel (bib34) 2023
Zou, Hastie (bib43) 2005; 67
Sahani, Dash (bib15) 2018; 14
Thamizh Thentral, Palanisamy, Usha, Bajaj, Zawbaa, Kamel (bib27) 2022; 8
De Yong, Bhowmik, Magnago (bib9) 2015; 42
Porwik, Doroz, Orczyk (bib33) 2016; 60
Santoso, Grady, Powers, Lamoree, Bhatt (bib6) 2000; 15
Achlerkar, Samantaray, Manikandan (bib19) 2016; 9
Wang, Chen (bib40) 2019; 235
Xu, Gao, Li, Lu (bib20) 2019; 6
Sekhar Samanta (10.1016/j.heliyon.2024.e37975_bib17) 2022; 100
Wang (10.1016/j.heliyon.2024.e37975_bib40) 2019; 235
Sahani (10.1016/j.heliyon.2024.e37975_bib15) 2018; 14
Granados-Lieberman (10.1016/j.heliyon.2024.e37975_bib23) 2011; 5
Arshad (10.1016/j.heliyon.2024.e37975_bib29) 2022; vol. 286
Zou (10.1016/j.heliyon.2024.e37975_bib43) 2005; 67
Bajaj (10.1016/j.heliyon.2024.e37975_bib10) 2020; 102
Bajaj (10.1016/j.heliyon.2024.e37975_bib13) 2020; 8
Huang (10.1016/j.heliyon.2024.e37975_bib28) 2006; 70
Xu (10.1016/j.heliyon.2024.e37975_bib20) 2019; 6
Priyadarshini (10.1016/j.heliyon.2024.e37975_bib4) 2023
Jiansheng (10.1016/j.heliyon.2024.e37975_bib25) 2002; 2
Sekhar Samanta (10.1016/j.heliyon.2024.e37975_bib30) 2021; 103
Santoso (10.1016/j.heliyon.2024.e37975_bib6) 2000; 15
Wang (10.1016/j.heliyon.2024.e37975_bib37) 2017; 10
Bajaj (10.1016/j.heliyon.2024.e37975_bib16) 2021; 31
De Yong (10.1016/j.heliyon.2024.e37975_bib9) 2015; 42
Opara (10.1016/j.heliyon.2024.e37975_bib24) 2019; 44
Achlerkar (10.1016/j.heliyon.2024.e37975_bib19) 2016; 9
Porwik (10.1016/j.heliyon.2024.e37975_bib33) 2016; 60
Biswal (10.1016/j.heliyon.2024.e37975_bib14) 2013; 23
Sahani (10.1016/j.heliyon.2024.e37975_bib18) 2018; 310
Dora (10.1016/j.heliyon.2024.e37975_bib21) 2020; 183
Bajaj (10.1016/j.heliyon.2024.e37975_bib22) 2020
Sahani (10.1016/j.heliyon.2024.e37975_bib39) 2020; 157
Kumawat (10.1016/j.heliyon.2024.e37975_bib11) 2018; 14
Samanta (10.1016/j.heliyon.2024.e37975_bib26) 2023; 16
Singh (10.1016/j.heliyon.2024.e37975_bib7) 2017; 11
Thamizh Thentral (10.1016/j.heliyon.2024.e37975_bib27) 2022; 8
Mahela (10.1016/j.heliyon.2024.e37975_bib12) 2017; 106
Mohsen (10.1016/j.heliyon.2024.e37975_bib32) 2023; 2023
Priyadarshini (10.1016/j.heliyon.2024.e37975_bib5) 2023; 16
Panda (10.1016/j.heliyon.2024.e37975_bib36) 2019
Feroz Mirza (10.1016/j.heliyon.2024.e37975_bib35) 2022; 8
Sivapriya (10.1016/j.heliyon.2024.e37975_bib34) 2023
Min (10.1016/j.heliyon.2024.e37975_bib38) 2023; 181
Nadimuthu (10.1016/j.heliyon.2024.e37975_bib3) 2021; 9
Mohan (10.1016/j.heliyon.2024.e37975_bib42) 2017
Chawda (10.1016/j.heliyon.2024.e37975_bib44) 2020; 8
Bajaj (10.1016/j.heliyon.2024.e37975_bib8) 2020; 44
Balouji (10.1016/j.heliyon.2024.e37975_bib41) 2017
Khokhar (10.1016/j.heliyon.2024.e37975_bib2) 2015; 51
Priyadarshini (10.1016/j.heliyon.2024.e37975_bib1) 2024; 14
Specht (10.1016/j.heliyon.2024.e37975_bib31) 1990; 3
References_xml – volume: 44
  start-page: 546
  year: 2019
  end-page: 558
  ident: bib24
  article-title: Differential Evolution: a survey of theoretical analyses
  publication-title: Swarm Evol. Comput.
– volume: 5
  start-page: 519
  year: 2011
  end-page: 529
  ident: bib23
  article-title: Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review
  publication-title: IET Gener., Transm. Distrib.
– volume: 106
  start-page: 37
  year: 2017
  end-page: 51
  ident: bib12
  article-title: Power quality recognition in distribution system with solar energy penetration using S-transform and Fuzzy C-means clustering
  publication-title: Renew. Energy
– volume: 3
  start-page: 109
  year: 1990
  end-page: 118
  ident: bib31
  article-title: Probabiblistic neural network
  publication-title: Neural Network.
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib22
  article-title: An MCDM-based approach for ranking the voltage quality in the distribution power networks
  publication-title: 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India
– volume: 10
  start-page: 107
  year: 2017
  ident: bib37
  article-title: Power quality disturbance classification using the S-transform and probabilistic neural network
  publication-title: Energies
– start-page: 1
  year: 2019
  end-page: 19
  ident: bib36
  article-title: Improved Salp swarm algorithm with space transformation search for training neural network
  publication-title: Arabian J. Sci. Eng.
– volume: 16
  start-page: 2194
  year: 2023
  ident: bib5
  article-title: Significance of harmonic filters by computation of short-time fourier transform-based time–frequency representation of supply voltage
  publication-title: Energies
– volume: 6
  start-page: 122
  year: 2019
  end-page: 130
  ident: bib20
  article-title: Detection and classification of power quality disturbances in distribution networks based on VMD and DFA
  publication-title: CSEE Journal of Power and Energy Systems
– volume: 16
  start-page: 4406
  year: 2023
  ident: bib26
  article-title: A comprehensive review of deep-learning applications to power quality analysis
  publication-title: Energies
– volume: 23
  start-page: 1071
  year: 2013
  end-page: 1083
  ident: bib14
  article-title: Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier
  publication-title: Digit. Signal Process.
– volume: 181
  year: 2023
  ident: bib38
  article-title: Trajectory optimization of an electric vehicle with minimum energy consumption using inverse dynamics model and servo constraints
  publication-title: Mech. Mach. Theor.
– volume: vol. 286
  year: 2022
  ident: bib29
  article-title: Classification of human facial portrait using EEG signal processing and deep learning algorithms
  publication-title: The 2nd International Conference on Intelligent and Cloud Computing (ICICC-2021), Bhubaneswar, Odisha, October, 2021, Intelligent and Cloud Computing. Smart Innovation, Systems and Technologies
– volume: 14
  start-page: 3443
  year: 2024
  ident: bib1
  article-title: Perception of power quality disturbances using Fourier, Short-Time Fourier, continuous and discrete wavelet transforms
  publication-title: Sci. Rep.
– start-page: 1
  year: 2023
  end-page: 6
  ident: bib4
  article-title: Continuous wavelet transform based Visualization of transient and short duration voltage variations
  publication-title: 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), Bangalore, India
– volume: 14
  start-page: 3849
  year: 2018
  end-page: 3858
  ident: bib15
  article-title: Automatic power quality events recognition based on Hilbert Huang transform and weighted bidirectional extreme learning machine
  publication-title: IEEE Trans. Ind. Inf.
– volume: 8
  start-page: 146807
  year: 2020
  end-page: 146830
  ident: bib44
  article-title: Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration
  publication-title: IEEE Access
– volume: 2023
  year: 2023
  ident: bib32
  article-title: Efficient artificial neural network for smart grid stability prediction
  publication-title: International Transactions on Electrical Energy Systems
– volume: 51
  start-page: 1650
  year: 2015
  end-page: 1663
  ident: bib2
  article-title: A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances
  publication-title: Renew. Sustain. Energy Rev.
– volume: 9
  start-page: 3122
  year: 2016
  end-page: 3132
  ident: bib19
  article-title: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid-connected distributed generation system
  publication-title: IEEE Trans. Smart Grid
– volume: 60
  start-page: 998
  year: 2016
  end-page: 1014
  ident: bib33
  article-title: Signatures verification based on PNN classifier optimised by PSO algorithm
  publication-title: Pattern Recogn.
– volume: 8
  start-page: 5370
  year: 2022
  end-page: 5386
  ident: bib27
  article-title: Analysis of Power Quality issues of different types of household applications
  publication-title: Energy Rep.
– volume: 100
  year: 2022
  ident: bib17
  article-title: Power quality events recognition using enhanced empirical mode decomposition and optimized extreme learning machine
  publication-title: Comput. Electr. Eng.
– volume: 15
  start-page: 247
  year: 2000
  end-page: 254
  ident: bib6
  article-title: Characterization of distribution power quality events with Fourier and wavelet transforms
  publication-title: IEEE Trans. Power Deliv.
– year: 2023
  ident: bib34
  article-title: Real-time hardware-in-loop based open circuit fault diagnosis and fault tolerant control approach for cascaded multilevel inverter using artificial neural network
  publication-title: Front. Energy Res.
– volume: 14
  start-page: 37
  year: 2018
  end-page: 45
  ident: bib11
  article-title: Comparison between wavelet Packet transform and M-band wavelet Packet transform for identification of power quality disturbances
  publication-title: Power Research
– volume: 183
  year: 2020
  ident: bib21
  article-title: Correlation-based ECG artifact correction from single channel EEG using modified variational mode decomposition
  publication-title: Comput. Methods Progr. Biomed.
– volume: 102
  start-page: 1153
  year: 2020
  end-page: 1173
  ident: bib10
  article-title: An analytic hierarchy process based novel approach for benchmarking the power quality performance of grid integrated renewable energy systems
  publication-title: Electr. Eng.
– volume: 235
  start-page: 1126
  year: 2019
  end-page: 1140
  ident: bib40
  article-title: A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network
  publication-title: Appl. Energy
– volume: 11
  start-page: 67
  year: 2017
  end-page: 76
  ident: bib7
  article-title: Application of fractional Fourier transform for classification of power quality disturbances
  publication-title: IET Sci. Meas. Technol.
– volume: 310
  start-page: 10
  year: 2018
  end-page: 27
  ident: bib18
  article-title: Variational mode decomposition and weighted online sequential extreme learning machine for power quality event patterns recognition
  publication-title: Neurocomputing
– volume: 31
  year: August 2021
  ident: bib16
  article-title: A single-index for voltage quality ranking in the distribution power networks using multiple-criteria decision-making
  publication-title: International Transactions on Electrical Energy Systems
– volume: 8
  start-page: 6332
  year: 2022
  end-page: 6346
  ident: bib35
  article-title: Generalized regression neural network and fitness dependent optimization: application to energy harvesting of centralized TEG systems
  publication-title: Energy Rep.
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib42
  article-title: Deep power: deep learning architectures for power quality disturbances classification
  publication-title: 2017 International Conference on Technological Advancements in Power and Energy (TAP Energy)
– volume: 8
  start-page: 145713
  year: 2020
  end-page: 145737
  ident: bib13
  article-title: Power quality assessment of distorted distribution networks incorporating renewable distributed generation systems based on the analytic hierarchy process
  publication-title: IEEE Access
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: bib28
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– start-page: 216
  year: 2017
  end-page: 221
  ident: bib41
  article-title: Classification of power quality events using deep learning on event images
  publication-title: 2017 3rd International Conference on Pattern Recognition and Image Analysis (IPRIA)
– volume: 9
  start-page: 146959
  year: 2021
  end-page: 146969
  ident: bib3
  article-title: Energy conservation approach for continuous power quality improvement: a case study
  publication-title: IEEE Access
– volume: 42
  start-page: 6075
  year: 2015
  end-page: 6081
  ident: bib9
  article-title: An effective power quality classifier using wavelet transform and support vector machines
  publication-title: Expert Syst. Appl.
– volume: 103
  start-page: 2431
  year: 2021
  end-page: 2446
  ident: bib30
  article-title: Feature extraction and power quality event classification using Curvelet transform and optimized extreme learning machine
  publication-title: Electr. Eng.
– volume: 157
  year: 2020
  ident: bib39
  article-title: A real-time power quality events recognition using variational mode decomposition and online-sequential extreme learning machine
  publication-title: Measurement
– volume: 44
  start-page: 26
  year: 2020
  end-page: 69
  ident: bib8
  article-title: Grid integrated renewable DG systems: a review of power quality challenges and state‐of‐the‐art mitigation techniques
  publication-title: Int. J. Energy Res.
– volume: 2
  start-page: 609
  year: 2002
  end-page: 616
  ident: bib25
  article-title: A neural-fuzzy classifier for recognition of power quality disturbances
  publication-title: IEEE Trans. Power Deliv.
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib43
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. Roy. Stat. Soc. B Stat. Methodol.
– volume: 310
  start-page: 10
  year: 2018
  ident: 10.1016/j.heliyon.2024.e37975_bib18
  article-title: Variational mode decomposition and weighted online sequential extreme learning machine for power quality event patterns recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.056
– volume: 10
  start-page: 107
  issue: 1
  year: 2017
  ident: 10.1016/j.heliyon.2024.e37975_bib37
  article-title: Power quality disturbance classification using the S-transform and probabilistic neural network
  publication-title: Energies
  doi: 10.3390/en10010107
– volume: 15
  start-page: 247
  issue: 1
  year: 2000
  ident: 10.1016/j.heliyon.2024.e37975_bib6
  article-title: Characterization of distribution power quality events with Fourier and wavelet transforms
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.847259
– volume: 8
  start-page: 6332
  year: 2022
  ident: 10.1016/j.heliyon.2024.e37975_bib35
  article-title: Generalized regression neural network and fitness dependent optimization: application to energy harvesting of centralized TEG systems
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.05.003
– volume: 60
  start-page: 998
  year: 2016
  ident: 10.1016/j.heliyon.2024.e37975_bib33
  article-title: Signatures verification based on PNN classifier optimised by PSO algorithm
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.06.032
– start-page: 216
  year: 2017
  ident: 10.1016/j.heliyon.2024.e37975_bib41
  article-title: Classification of power quality events using deep learning on event images
– volume: 2
  start-page: 609
  issue: 17
  year: 2002
  ident: 10.1016/j.heliyon.2024.e37975_bib25
  article-title: A neural-fuzzy classifier for recognition of power quality disturbances
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/61.997947
– volume: 9
  start-page: 3122
  issue: 4
  year: 2016
  ident: 10.1016/j.heliyon.2024.e37975_bib19
  article-title: Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid-connected distributed generation system
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2016.2626469
– start-page: 1
  year: 2023
  ident: 10.1016/j.heliyon.2024.e37975_bib4
  article-title: Continuous wavelet transform based Visualization of transient and short duration voltage variations
  publication-title: 2023 4th IEEE Global Conference for Advancement in Technology (GCAT), Bangalore, India
– start-page: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e37975_bib36
  article-title: Improved Salp swarm algorithm with space transformation search for training neural network
  publication-title: Arabian J. Sci. Eng.
– volume: 100
  year: 2022
  ident: 10.1016/j.heliyon.2024.e37975_bib17
  article-title: Power quality events recognition using enhanced empirical mode decomposition and optimized extreme learning machine
  publication-title: Comput. Electr. Eng.
– volume: 5
  start-page: 519
  issue: 4
  year: 2011
  ident: 10.1016/j.heliyon.2024.e37975_bib23
  article-title: Techniques and methodologies for power quality analysis and disturbances classification in power systems: a review
  publication-title: IET Gener., Transm. Distrib.
  doi: 10.1049/iet-gtd.2010.0466
– volume: 51
  start-page: 1650
  year: 2015
  ident: 10.1016/j.heliyon.2024.e37975_bib2
  article-title: A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.07.068
– year: 2023
  ident: 10.1016/j.heliyon.2024.e37975_bib34
  article-title: Real-time hardware-in-loop based open circuit fault diagnosis and fault tolerant control approach for cascaded multilevel inverter using artificial neural network
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2022.1083662
– volume: 106
  start-page: 37
  year: 2017
  ident: 10.1016/j.heliyon.2024.e37975_bib12
  article-title: Power quality recognition in distribution system with solar energy penetration using S-transform and Fuzzy C-means clustering
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.098
– volume: 8
  start-page: 145713
  year: 2020
  ident: 10.1016/j.heliyon.2024.e37975_bib13
  article-title: Power quality assessment of distorted distribution networks incorporating renewable distributed generation systems based on the analytic hierarchy process
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014288
– volume: 9
  start-page: 146959
  year: 2021
  ident: 10.1016/j.heliyon.2024.e37975_bib3
  article-title: Energy conservation approach for continuous power quality improvement: a case study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3123153
– volume: 183
  year: 2020
  ident: 10.1016/j.heliyon.2024.e37975_bib21
  article-title: Correlation-based ECG artifact correction from single channel EEG using modified variational mode decomposition
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2019.105092
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.heliyon.2024.e37975_bib28
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 181
  year: 2023
  ident: 10.1016/j.heliyon.2024.e37975_bib38
  article-title: Trajectory optimization of an electric vehicle with minimum energy consumption using inverse dynamics model and servo constraints
  publication-title: Mech. Mach. Theor.
  doi: 10.1016/j.mechmachtheory.2022.105185
– volume: 14
  start-page: 3849
  issue: 9
  year: 2018
  ident: 10.1016/j.heliyon.2024.e37975_bib15
  article-title: Automatic power quality events recognition based on Hilbert Huang transform and weighted bidirectional extreme learning machine
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2803042
– volume: 8
  start-page: 5370
  year: 2022
  ident: 10.1016/j.heliyon.2024.e37975_bib27
  article-title: Analysis of Power Quality issues of different types of household applications
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.04.010
– volume: 103
  start-page: 2431
  year: 2021
  ident: 10.1016/j.heliyon.2024.e37975_bib30
  article-title: Feature extraction and power quality event classification using Curvelet transform and optimized extreme learning machine
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-021-01243-3
– start-page: 1
  year: 2017
  ident: 10.1016/j.heliyon.2024.e37975_bib42
  article-title: Deep power: deep learning architectures for power quality disturbances classification
– volume: 23
  start-page: 1071
  issue: 4
  year: 2013
  ident: 10.1016/j.heliyon.2024.e37975_bib14
  article-title: Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2013.02.012
– volume: 2023
  year: 2023
  ident: 10.1016/j.heliyon.2024.e37975_bib32
  article-title: Efficient artificial neural network for smart grid stability prediction
  publication-title: International Transactions on Electrical Energy Systems
  doi: 10.1155/2023/9974409
– volume: 16
  start-page: 2194
  year: 2023
  ident: 10.1016/j.heliyon.2024.e37975_bib5
  article-title: Significance of harmonic filters by computation of short-time fourier transform-based time–frequency representation of supply voltage
  publication-title: Energies
  doi: 10.3390/en16052194
– volume: 31
  issue: Issue-8
  year: 2021
  ident: 10.1016/j.heliyon.2024.e37975_bib16
  article-title: A single-index for voltage quality ranking in the distribution power networks using multiple-criteria decision-making
  publication-title: International Transactions on Electrical Energy Systems
– volume: vol. 286
  year: 2022
  ident: 10.1016/j.heliyon.2024.e37975_bib29
  article-title: Classification of human facial portrait using EEG signal processing and deep learning algorithms
– volume: 14
  start-page: 3443
  year: 2024
  ident: 10.1016/j.heliyon.2024.e37975_bib1
  article-title: Perception of power quality disturbances using Fourier, Short-Time Fourier, continuous and discrete wavelet transforms
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53792-9
– volume: 6
  start-page: 122
  issue: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e37975_bib20
  article-title: Detection and classification of power quality disturbances in distribution networks based on VMD and DFA
  publication-title: CSEE Journal of Power and Energy Systems
– start-page: 1
  year: 2020
  ident: 10.1016/j.heliyon.2024.e37975_bib22
  article-title: An MCDM-based approach for ranking the voltage quality in the distribution power networks
  publication-title: 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Prayagraj, India
– volume: 8
  start-page: 146807
  year: 2020
  ident: 10.1016/j.heliyon.2024.e37975_bib44
  article-title: Comprehensive review on detection and classification of power quality disturbances in utility grid with renewable energy penetration
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3014732
– volume: 11
  start-page: 67
  issue: 1
  year: 2017
  ident: 10.1016/j.heliyon.2024.e37975_bib7
  article-title: Application of fractional Fourier transform for classification of power quality disturbances
  publication-title: IET Sci. Meas. Technol.
  doi: 10.1049/iet-smt.2016.0194
– volume: 44
  start-page: 546
  year: 2019
  ident: 10.1016/j.heliyon.2024.e37975_bib24
  article-title: Differential Evolution: a survey of theoretical analyses
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.06.010
– volume: 14
  start-page: 37
  issue: 1
  year: 2018
  ident: 10.1016/j.heliyon.2024.e37975_bib11
  article-title: Comparison between wavelet Packet transform and M-band wavelet Packet transform for identification of power quality disturbances
  publication-title: Power Research
– volume: 42
  start-page: 6075
  issue: 15–16
  year: 2015
  ident: 10.1016/j.heliyon.2024.e37975_bib9
  article-title: An effective power quality classifier using wavelet transform and support vector machines
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.002
– volume: 44
  start-page: 26
  year: 2020
  ident: 10.1016/j.heliyon.2024.e37975_bib8
  article-title: Grid integrated renewable DG systems: a review of power quality challenges and state‐of‐the‐art mitigation techniques
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.4847
– volume: 235
  start-page: 1126
  year: 2019
  ident: 10.1016/j.heliyon.2024.e37975_bib40
  article-title: A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.160
– volume: 3
  start-page: 109
  issue: 1
  year: 1990
  ident: 10.1016/j.heliyon.2024.e37975_bib31
  article-title: Probabiblistic neural network
  publication-title: Neural Network.
  doi: 10.1016/0893-6080(90)90049-Q
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.heliyon.2024.e37975_bib43
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. Roy. Stat. Soc. B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 102
  start-page: 1153
  year: 2020
  ident: 10.1016/j.heliyon.2024.e37975_bib10
  article-title: An analytic hierarchy process based novel approach for benchmarking the power quality performance of grid integrated renewable energy systems
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-020-00938-3
– volume: 16
  start-page: 4406
  year: 2023
  ident: 10.1016/j.heliyon.2024.e37975_bib26
  article-title: A comprehensive review of deep-learning applications to power quality analysis
  publication-title: Energies
  doi: 10.3390/en16114406
– volume: 157
  year: 2020
  ident: 10.1016/j.heliyon.2024.e37975_bib39
  article-title: A real-time power quality events recognition using variational mode decomposition and online-sequential extreme learning machine
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107597
SSID ssj0001586973
Score 2.2971888
Snippet The transformation of traditional grid networks towards smart-grid and microgrid concepts raises many critical issues, and quality in the power supply is one...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e37975
SubjectTerms algorithms
learning
neural networks
Power quality events
Power quality indices
Probabilistic neural network
rapid methods
Salp swarm algorithm
swarming
swarms
Variational mode decomposition
Title A hybrid approach for power quality event identification in power systems: Elasticnet Regression decomposition and optimized probabilistic neural networks
URI https://dx.doi.org/10.1016/j.heliyon.2024.e37975
https://www.ncbi.nlm.nih.gov/pubmed/39328549
https://www.proquest.com/docview/3110402035
https://www.proquest.com/docview/3154171724
https://pubmed.ncbi.nlm.nih.gov/PMC11425138
https://doaj.org/article/1a4d1dab49aa4ffaa2732ecdef99c463
Volume 10
WOSCitedRecordID wos001319897100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZghRAXxJvyWBmJa7pJ7SQ2twV1xWVXCIHUm-X4QbNa3NW2i1QO_BB-LTO2U1qQ6IVLD6nd2J5J5xvlm28Iee0hiJVtKwsvLSYoXhedqyFx1RD8je5k60xsNtGenYnZTH7YavWFnLAkD5wO7qjS3FZWd1xqzb3XGuLtxBnrvJSGN1Hns2zlVjKV6oNFI1v2u2Tn6Hw8dxf9eoGapxM-dqyVyC3cCkZRs38nJv2NOf-kTm7FopN75G4GkfQ4Lf4-ueHCA3L7NL8mf0h-HtP5Gkux6CAZTgGb0kvsiEZTGeWaRukm2ttMF4oWon3Io5LC8_INnQK8htsEt6If3ZfEmg3UOuSiZ8IX1cHSBfz3fO2_O0uxR03U7cV5FAUzYa0h0c2Xj8jnk-mnd--L3IShMHXTroqmqx2Dky-9x9heGeud596hXWKPal0JXVlvnKgaSF5KJ2P_36ZmtvadZI_JQVgE95RQQGplLbyQvjPcSqEBKoKttNEMPMLaEeGDNZTJCuXYKONCDVS0c5WNqNCIKhlxRMabaZdJomPfhLdo6s1gVNiOF8DvVPY7tc_vRkQMjqIyWEkgBH6q33f_V4NjKXiY8Q2NDm5xvVQMwBgm9OyfY2peQRI-4SPyJDnjZicM0LiAjB8Wt-OmO1vd_Sb08ygqjjXVdcXEs_9xOM_JHdxv4tW8IAerq2v3ktwy31b98uqQ3Gxn4jA-sPB5-mP6C-J1UBQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+approach+for+power+quality+event+identification+in+power+systems%3A+Elasticnet+Regression+decomposition+and+optimized+probabilistic+neural+networks&rft.jtitle=Heliyon&rft.au=Indu+Sekhar+Samanta&rft.au=Pravat+Kumar+Rout&rft.au=Kunjabihari+Swain&rft.au=Murthy+Cherukuri&rft.date=2024-09-30&rft.pub=Elsevier&rft.eissn=2405-8440&rft.volume=10&rft.issue=18&rft.spage=e37975&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e37975&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1a4d1dab49aa4ffaa2732ecdef99c463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon