SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19

Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). We investigated...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Heliyon Ročník 9; číslo 11; s. e21893
Hlavní autoři: Sahanic, Sabina, Hilbe, Richard, Dünser, Christina, Tymoszuk, Piotr, Löffler-Ragg, Judith, Rieder, Dietmar, Trajanoski, Zlatko, Krogsdam, Anne, Demetz, Egon, Yurchenko, Maria, Fischer, Christine, Schirmer, Michael, Theurl, Markus, Lener, Daniela, Hirsch, Jakob, Holfeld, Johannes, Gollmann-Tepeköylü, Can, Zinner, Carl P., Tzankov, Alexandar, Zhang, Shen-Ying, Casanova, Jean-Laurent, Posch, Wilfried, Wilflingseder, Doris, Weiss, Guenter, Tancevski, Ivan
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.11.2023
Elsevier
Témata:
ISSN:2405-8440, 2405-8440
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19. •TLR4 is the most abundantly upregulated TLR in human lung irrespective of the underlying pathology.•BALF MΦ from patients with severe COVID-19 show strong upregulation of the NF-κB pathway.•The ectodomain of the SARS-COV-2 spike protein leads to TLR4 dependent upregulation of IL-6.•Viable SARS-CoV-2 leads to TLR4 dependent IL-6 upregulation irrespective of the variant of concern.•TLR4 inhibition in SARS-CoV-2 infected MΦ leads to downregulation of genes involved in leukocyte migration.
AbstractList Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.
Background: Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). Objective: We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. Methods: We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. Results: We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Conclusion: Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Take-home message: Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.
Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19).BackgroundToll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19).We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19.ObjectiveWe investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19.We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved.MethodsWe combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved.We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron).ResultsWe found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron).Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19.ConclusionOur study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19.Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.Take-home messageOur study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.
• TLR4 is the most abundantly upregulated TLR in human lung irrespective of the underlying pathology. • BALF MΦ from patients with severe COVID-19 show strong upregulation of the NF-κB pathway. • The ectodomain of the SARS-COV-2 spike protein leads to TLR4 dependent upregulation of IL-6. • Viable SARS-CoV-2 leads to TLR4 dependent IL-6 upregulation irrespective of the variant of concern. • TLR4 inhibition in SARS-CoV-2 infected MΦ leads to downregulation of genes involved in leukocyte migration.
Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19.
Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Exaggerated inflammatory response of innate immune cells, however, may drive morbidity and death in Coronavirus disease 19 (COVID-19). We investigated the engagement of SARS-CoV-2 with TLR4 in order to better understand how to tackle hyperinflammation in COVID-19. We combined RNA-sequencing data of human lung tissue and of bronchoalveolar lavage fluid cells derived from COVID-19 patients with functional studies in human macrophages using SARS-CoV-2 spike proteins and viable SARS-CoV-2. Pharmacological inhibitors as well as gene editing with CRISPR/Cas9 were used to delineate the signalling pathways involved. We found TLR4 to be the most abundantly upregulated TLR in human lung tissue irrespective of the underlying pathology. Accordingly, bronchoalveolar lavage fluid cells from patients with severe COVID-19 showed an NF-κB-pathway dominated immune response, whereas they were mostly defined by type I interferon signalling in moderate COVID-19. Mechanistically, we found the Spike ectodomain, but not receptor binding domain monomer to induce TLR4-dependent inflammation in human macrophages. By using pharmacological inhibitors as well as CRISPR/Cas9 deleted macrophages, we identify SARS-CoV-2 to engage canonical TLR4-MyD88 signalling. Importantly, we demonstrate that TLR4 blockage prevents exaggerated inflammatory responses in human macrophages infected with different SARS-CoV-2 variants, including immune escape variants B.1.1.7.-E484K and B.1.1.529 (omicron). Our study critically extends the current knowledge on TLR-mediated hyperinflammatory responses to SARS-CoV-2 in human macrophages, paving the way for novel approaches to tackle severe COVID-19. Our study combining human lung transcriptomics with functional studies in human macrophages clearly supports the design and development of TLR4 - directed therapeutics to mitigate hyperinflammation in severe COVID-19. •TLR4 is the most abundantly upregulated TLR in human lung irrespective of the underlying pathology.•BALF MΦ from patients with severe COVID-19 show strong upregulation of the NF-κB pathway.•The ectodomain of the SARS-COV-2 spike protein leads to TLR4 dependent upregulation of IL-6.•Viable SARS-CoV-2 leads to TLR4 dependent IL-6 upregulation irrespective of the variant of concern.•TLR4 inhibition in SARS-CoV-2 infected MΦ leads to downregulation of genes involved in leukocyte migration.
ArticleNumber e21893
Author Zinner, Carl P.
Hirsch, Jakob
Dünser, Christina
Yurchenko, Maria
Tancevski, Ivan
Weiss, Guenter
Lener, Daniela
Tzankov, Alexandar
Rieder, Dietmar
Holfeld, Johannes
Löffler-Ragg, Judith
Fischer, Christine
Gollmann-Tepeköylü, Can
Schirmer, Michael
Theurl, Markus
Wilflingseder, Doris
Zhang, Shen-Ying
Sahanic, Sabina
Krogsdam, Anne
Tymoszuk, Piotr
Casanova, Jean-Laurent
Hilbe, Richard
Posch, Wilfried
Trajanoski, Zlatko
Demetz, Egon
Author_xml – sequence: 1
  givenname: Sabina
  surname: Sahanic
  fullname: Sahanic, Sabina
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 2
  givenname: Richard
  surname: Hilbe
  fullname: Hilbe, Richard
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 3
  givenname: Christina
  surname: Dünser
  fullname: Dünser, Christina
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 4
  givenname: Piotr
  orcidid: 0000-0002-0398-6034
  surname: Tymoszuk
  fullname: Tymoszuk, Piotr
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 5
  givenname: Judith
  surname: Löffler-Ragg
  fullname: Löffler-Ragg, Judith
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 6
  givenname: Dietmar
  surname: Rieder
  fullname: Rieder, Dietmar
  organization: Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 7
  givenname: Zlatko
  surname: Trajanoski
  fullname: Trajanoski, Zlatko
  organization: Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 8
  givenname: Anne
  orcidid: 0000-0002-5478-0511
  surname: Krogsdam
  fullname: Krogsdam, Anne
  organization: Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 9
  givenname: Egon
  surname: Demetz
  fullname: Demetz, Egon
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 10
  givenname: Maria
  orcidid: 0000-0002-0516-4747
  surname: Yurchenko
  fullname: Yurchenko, Maria
  organization: Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
– sequence: 11
  givenname: Christine
  orcidid: 0000-0002-5656-5030
  surname: Fischer
  fullname: Fischer, Christine
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 12
  givenname: Michael
  orcidid: 0000-0001-9208-7809
  surname: Schirmer
  fullname: Schirmer, Michael
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 13
  givenname: Markus
  orcidid: 0000-0002-3609-9730
  surname: Theurl
  fullname: Theurl, Markus
  organization: Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 14
  givenname: Daniela
  orcidid: 0000-0002-3464-0343
  surname: Lener
  fullname: Lener, Daniela
  organization: Department of Internal Medicine III, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 15
  givenname: Jakob
  surname: Hirsch
  fullname: Hirsch, Jakob
  organization: Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 16
  givenname: Johannes
  surname: Holfeld
  fullname: Holfeld, Johannes
  organization: Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 17
  givenname: Can
  surname: Gollmann-Tepeköylü
  fullname: Gollmann-Tepeköylü, Can
  organization: Department of Cardiac Surgery, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 18
  givenname: Carl P.
  surname: Zinner
  fullname: Zinner, Carl P.
  organization: Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
– sequence: 19
  givenname: Alexandar
  orcidid: 0000-0002-1100-3819
  surname: Tzankov
  fullname: Tzankov, Alexandar
  organization: Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
– sequence: 20
  givenname: Shen-Ying
  surname: Zhang
  fullname: Zhang, Shen-Ying
  organization: Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
– sequence: 21
  givenname: Jean-Laurent
  surname: Casanova
  fullname: Casanova, Jean-Laurent
  organization: Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
– sequence: 22
  givenname: Wilfried
  surname: Posch
  fullname: Posch, Wilfried
  email: wilfried.posch@i-med.ac.at
  organization: Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
– sequence: 23
  givenname: Doris
  orcidid: 0000-0002-5888-5118
  surname: Wilflingseder
  fullname: Wilflingseder, Doris
  email: doris.wilflingseder@i-med.ac.at
  organization: Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Austria
– sequence: 24
  givenname: Guenter
  surname: Weiss
  fullname: Weiss, Guenter
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
– sequence: 25
  givenname: Ivan
  surname: Tancevski
  fullname: Tancevski, Ivan
  email: ivan.tancevski@i-med.ac.at
  organization: Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38034686$$D View this record in MEDLINE/PubMed
BookMark eNqFks1u3CAUha0qVZNO8witWHbjCWCMcbuookl_IqWKlKTZIoyvx4xscIGZaF6jT1ySmUZJN5GQQHDux4Vz3mYH1lnIsvcEzwkm_GQ172EwW2fnFNNiDpSIuniVHVGGy1wwhg-erA-z4xBWGGNSCl5XxZvssBC4YFzwo-zP9enVdb5wtzlFSkezURECij2gm4srdvJzeyYEmlTs79QWGYv69agsGpX2burVEsIndIomF4JpBkDaeQ-DisZZdGdij0L0zi7R5F1ubDeocVTR-S3yECZnQ7oqMQNswANaXN6en-Wkfpe97tQQ4Hg_z7Jf377eLH7kF5ffzxenF7kueRVzXhZdKaAiAjqsO1VDW-OqbIqmUF3ZUVUXlNOO8YYSVXakqjtKWaMFJU1VpDHLznfc1qmVnLwZld9Kp4x82HB-KZWPRg8gG1bVutWqgzb9qO4EbUtOGWsBM415k1hfdqxp3YzQarDRq-EZ9PmJNb1cuo0kONkgknuz7OOe4N3vNYQoRxM0DIOy4NZBFqQsKk4YZy9Kqai5wIImk2fZh6d9PTb0LwBJUO4EydAQPHSPEoLlfdbkSu6zJu-zJndZS3Wf_6vTJj4Yn55nhher998Fyd-NAS-DNmA1tMaDjskA8wLhL4-W9JU
CitedBy_id crossref_primary_10_3389_fnmol_2025_1163636
crossref_primary_10_1088_1752_7163_add617
crossref_primary_10_1371_journal_pone_0309609
crossref_primary_10_1016_j_biopha_2025_118286
crossref_primary_10_1016_j_xhgg_2025_100410
crossref_primary_10_1016_j_biopha_2024_116441
crossref_primary_10_1016_j_biopha_2025_118100
crossref_primary_10_3390_molecules29245938
crossref_primary_10_1007_s00018_024_05322_z
crossref_primary_10_1038_s41541_025_01095_z
crossref_primary_10_3389_fimmu_2025_1460089
crossref_primary_10_1016_j_vacune_2025_100380
crossref_primary_10_1159_000545432
crossref_primary_10_3892_etm_2025_12835
crossref_primary_10_3390_ijms25179709
crossref_primary_10_1016_j_bj_2024_100766
crossref_primary_10_1111_iji_70002
crossref_primary_10_1016_j_vacun_2024_10_002
crossref_primary_10_3389_fmed_2025_1458281
crossref_primary_10_1016_j_cytogfr_2024_10_001
crossref_primary_10_3390_ijms25105451
crossref_primary_10_1016_j_virol_2025_110607
crossref_primary_10_3390_biomedicines12112530
crossref_primary_10_3892_etm_2025_12884
crossref_primary_10_1016_j_tim_2024_07_001
crossref_primary_10_1016_j_jsb_2025_108229
Cites_doi 10.1126/scitranslmed.abe8146
10.1186/gb-2010-11-2-r14
10.1074/jbc.M513041200
10.1038/s41598-021-99291-z
10.1016/S0006-291X(02)00566-1
10.1016/j.freeradbiomed.2016.12.034
10.4161/auto.6058
10.1093/eurheartj/ehaa140
10.1016/j.ajpath.2017.04.009
10.1128/mBio.00638-15
10.1038/ni.1863
10.3389/fimmu.2021.644664
10.1016/S0140-6736(22)02465-5
10.1038/s41590-021-00937-x
10.1038/s41579-022-00713-0
10.1371/journal.pone.0191452
10.1073/pnas.1008322108
10.1002/JLB.4COVA0121-084RR
10.1093/bioinformatics/bty560
10.1016/j.molmet.2017.11.002
10.1016/j.cell.2008.02.043
10.1093/bioinformatics/bts635
10.1124/mol.113.089821
10.1126/sciadv.abe5575
10.1038/s41586-021-03475-6
10.1038/s41577-019-0244-2
10.1016/j.heliyon.2021.e06187
10.1016/j.ejphar.2016.01.007
10.1007/s00011-007-6115-5
10.1074/jbc.RA118.002649
10.1016/j.molliq.2022.118633
10.1038/s41467-020-15646-6
10.1016/j.jaci.2021.01.024
10.1111/febs.12145
10.1016/j.humimm.2021.05.001
10.1016/j.jaci.2021.03.038
10.1111/his.14134
10.1016/j.freeradbiomed.2011.08.026
10.2119/molmed.2012.00306
10.1186/s13059-014-0550-8
10.1038/nmeth.4197
10.1016/S2213-2600(21)00139-9
10.1038/nm1267
10.1016/j.cell.2020.05.016
10.2217/fvl-2021-0249
10.4049/jimmunol.182.2.851
10.1016/S0140-6736(20)30628-0
10.1083/jcb.201707027
10.1002/jmv.26387
10.1038/nmeth.3047
10.4049/jimmunol.178.12.7840
10.1002/jmv.26776
10.1016/j.imbio.2019.05.004
10.1128/JVI.00445-07
10.1038/s41587-020-0439-x
10.1038/s41590-020-0778-2
10.4049/jimmunol.182.2.820
10.1038/s41586-021-03234-7
10.1124/mol.105.019695
10.1189/jlb.1008647
10.1021/ja111312h
10.1038/s41590-022-01248-5
10.1002/jmv.25987
10.1074/jbc.M800352200
10.1038/s41591-020-0901-9
10.1128/JVI.00683-18
10.1016/j.pep.2020.105686
10.1126/sciimmunol.abl4348
10.1016/S2213-2600(21)00331-3
10.1016/j.omtn.2019.02.013
10.1016/j.cell.2019.03.016
10.1089/omi.2011.0118
10.3389/fphys.2021.688946
ContentType Journal Article
Copyright 2023 The Authors
2023 The Authors.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: 2023 The Authors.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2023.e21893
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_b479cdcafed844cf82d56244de04c06b
PMC10686889
38034686
10_1016_j_heliyon_2023_e21893
S2405844023091016
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: UM1 AI068618
– fundername: Austrian Science Fund FWF
  grantid: DOC 82
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c567t-653f58e718ef0cfa9ed9075b3b3af5f2a93262f46b21a5f179f224bc821b73b73
IEDL.DBID DOA
ISICitedReferencesCount 25
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001128475200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-8440
IngestDate Tue Oct 14 19:07:20 EDT 2025
Tue Sep 30 17:17:58 EDT 2025
Fri Aug 22 20:34:41 EDT 2025
Thu Oct 02 07:01:34 EDT 2025
Mon Jul 21 05:52:37 EDT 2025
Thu Nov 27 00:34:06 EST 2025
Tue Nov 18 21:46:35 EST 2025
Wed Dec 10 14:23:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords COVID-19
Toll-like receptors
Innate immunity
SARS-CoV-2
Macrophages
Language English
License This is an open access article under the CC BY license.
2023 The Authors.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-653f58e718ef0cfa9ed9075b3b3af5f2a93262f46b21a5f179f224bc821b73b73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5478-0511
0000-0001-9208-7809
0000-0002-3609-9730
0000-0002-5656-5030
0000-0002-3464-0343
0000-0002-1100-3819
0000-0002-0398-6034
0000-0002-5888-5118
0000-0002-0516-4747
OpenAccessLink https://doaj.org/article/b479cdcafed844cf82d56244de04c06b
PMID 38034686
PQID 2896808280
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_b479cdcafed844cf82d56244de04c06b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10686889
proquest_miscellaneous_3153761464
proquest_miscellaneous_2896808280
pubmed_primary_38034686
crossref_primary_10_1016_j_heliyon_2023_e21893
crossref_citationtrail_10_1016_j_heliyon_2023_e21893
elsevier_sciencedirect_doi_10_1016_j_heliyon_2023_e21893
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Ewels, Peltzer, Fillinger, Patel, Alneberg, Wilm (bib52) 2020; 38
Winkler, Bailey, Kafai, Nair, McCune, Yu (bib59) 2020; 21
Angriman, Ferreyro, Burry, Fan, Ferguson, Husain (bib10) 2021; 9
Yusa, Zhou, Li, Bradley, Craig (bib28) 2011; 108
Blanco-Melo, Nilsson-Payant, Liu, Uhl, Hoagland, Møller (bib71) 2020
Ehrchen, Sunderkötter, Foell, Vogl, Roth (bib20) 2009; 86
Choudhury, Sen Gupta, Panda, Rana, Mukherjee (bib91) 2022; 351
Ii, Matsunaga, Hazeki, Nakamura, Takashima, Seya (bib29) 2006 Apr 1; 69
Lamphier, Zheng, Latz, Spyvee, Hansen, Rose (bib35) 2014 Mar 1; 85
Choudhury, Das, Patra, Mukherjee (bib90) 2021 Apr 1; 93
Kuba, Imai, Rao, Gao, Guo, Guan (bib45) 2005; 11
Kim, Young Kim, Pribis, Lotze, Mollen, Shapiro (bib21) 2013; 19
Lafon, Diem, Witting, Zaderer, Bellmann-Weiler, Reindl (bib39) 2021
Xu, Wang, Liu, Zhang, Han, Hong (bib36) 2021 Jan; 7
Ariza, Glaser, Kaumaya, Jones, Williams (bib62) 2009; 182
Zhang, Liu, Moncada-Velez, Chen, Ogishi, Bigio (bib65) 2020; 80
Pinski, Steffen, Zulu, George, Dickson, Tifrea (bib82) 2021; 110
Zheng, Karki, Williams, Yang, Fitzpatrick, Vogel (bib84) 2021; 22
Casanova, Su, Abel, Aiuti, Almuhsen, Arias (bib68) 2020; 181
Kawai, Akira (bib15) 2010; 11
Joshi, Balasubramanian, Vasam, Jarajapu (bib30) 2016 Mar; 774
Kyriazopoulou, Poulakou, Milionis, Metallidis, Adamis, Tsiakos (bib11) 2021; 27
Demetz, Tymoszuk, Hilbe, Volani, Haschka, Heim (bib44) 2020; 41
Sahanic, Löffler-Ragg, Tymoszuk, Hilbe, Demetz, Masanetz (bib49) 2021; 12
Patro, Duggal, Love, Irizarry, Kingsford (bib54) 2017; 14
Kuzmich, Sivak, Chubarev, Porozov, Savateeva-Lyubimova, Peri (bib76) 2017; 5
Yamada, Sano, Shimizu, Mitsuzawa, Nishitani, Himi (bib23) 2006; 281
Qi, Liu, Wang, Zhang (bib5) 2022; 23
Kadl, Sharma, Chen, Agrawal, Meher, Rudraiah (bib86) 2011; 51
Bochkov, Gesslbauer, Mauerhofer, Philippova, Erne, Oskolkova (bib88) 2017; 111
Posch, Vosper, Zaderer, Noureen, Constant, Bellmann-Weiler (bib42) 2021
Lan, Ge, Yu, Shan, Zhou, Fan (bib77) 2020
Sanjana, Shalem, Zhang (bib25) 2014; 11
Mayr, Grabherr, Schwärzler, Reitmeier, Sommer, Gehmacher (bib27) 2020; 11
Yu, Wang, Han, He (bib56) 2012; 16
Richez, Yasuda, Watkins, Akira, Lafyatis, van Seventer (bib79) 2009; 182
Posch, Vosper, Noureen, Zaderer, Witting, Bertacchi (bib43) 2021; 147
Choudhury, Mukherjee, Mukherjee (bib3) 2021; 82
Wilson, Simpson, Ferreira, Rustagi, Roque, Asuni (bib73) 2020
Matsuyama, Shirato, Kawase, Terada, Kawachi, Fukushi (bib33) 2018 Oct; 92
Bastard, Rosen, Zhang, Michailidis, Hoffmann, Zhang (bib67) 2020; 80
Yurchenko, Skjesol, Ryan, Richard, Kandasamy, Wang (bib26) 2018; 217
Patra, Chandra Das, Mukherjee (bib89) 2021 Feb 1; 93
Demichev, Tober-Lau, Lemke, Nazarenko, Thibeault, Whitwell (bib72) 2021; 12
Park, Jung, Yang, Yoo, Kim, Kim (bib24) 2007; 56
Chadly, Best, Ran, Bruska, Woźniak, Kempisty (bib46) 2018; 13
Wang, Xu-Monette, Jabbar, Shen, Manyam, Tzankov (bib47) 2017; 187
Asano, Boisson, Onodi, Matuozzo, Moncada-Velez, Renkilaraj (bib69) 2021; 6
Sancho-Shimizu, Perez De Diego, Jouanguy, Zhang, Casanova (bib74) 2011; 1
Erridge, Kennedy, Spickett, Webb (bib85) 2008; 283
Lamers, Haagmans (bib1) 2022; 20
Franzetti, Forastieri, Borsa, Pandolfo, Molteni, Borghesi (bib81) 2021
Serbulea, Upchurch, Ahern, Bories, Voigt, DeWeese (bib87) 2018; 7
Mukherjee (bib2) 2022 Apr 19; 17
Hutt-Fletcher (bib75) 2007; 81
Choudhury, Mukherjee (bib18) 2020; 92
Frey, Schroeder, Manon-Jensen, Iozzo, Schaefer (bib22) 2013; 280
Shirato, Kizaki (bib16) 2021; 7
Durán-Méndez, Aguilar-Arroyo, Vivanco-Gómez, Nieto-Ortega, Pérez-Ortega, Jiménez-Pérez (bib80) 2021; 11
Marconi, Ramanan, de Bono, Kartman, Krishnan, Liao (bib13) 2021; 9
Cheng, Wang, Yin (bib31) 2011 Mar 23; 133
Esposito, Mehalko, Drew, Snead, Wall, Taylor (bib37) 2020 Oct; 174
Brenke, Popowicz, Schorpp, Rothenaigner, Roesner, Meininger (bib32) 2018 Aug; 293
Dobin, Davis, Schlesinger, Drenkow, Zaleski, Jha (bib53) 2013; 29
Totura, Whitmore, Agnihothram, Schäfer, Katze, Heise (bib78) 2015; 6
Stein, Nassereldine, Sorensen, Amlag, Bisignano, Byrne (bib6) 2023 Mar 11; 401
Kim, Yang, Jang (bib61) 2019; 224
Liao, Liu, Yuan, Wen, Xu, Zhao (bib48) 2020; 26
Rendeiro, Ravichandran, Bram, Chandar, Kim, Meydan (bib63) 2021 May; 593
Akkaya, Kwak, Pierce (bib7) 2020; 20
Biotech (bib92) 2021
Menter, Haslbauer, Nienhold, Savic, Hopfer, Deigendesch (bib57) 2020; 77
Combes, Courau, Kuhn, Hu, Ray, Chen (bib66) 2021; 591
Pontali, Volpi, Signori, Antonucci, Castellaneta, Buzzi (bib12) 2021; 147
Das, Chakraborty, Bayry, Mukherjee (bib4) 2022; 12
Paul, Adrian, Tom, Jérémie, Quentin, Jérémy (bib70) 2021 Aug 19; 6
Ng, Cash-Mason, Wang, Seitzer, Burchard, Brown (bib83) 2019 Aug 3; 16
Wilflingseder, Banki, Garcia, Pruenster, Pfister, Muellauer (bib40) 2007 Jun 15; 178
Mehta, McAuley, Brown, Sanchez, Tattersall, Manson (bib9) 2020; 395
Imai, Kuba, Neely, Yaghubian-Malhami, Perkmann, van Loo (bib19) 2008; 133
Chen, Zhou, Chen, Gu (bib51) 2018; 34
Verzosa, McGeever, Bhark, Delgado, Salazar, Sanchez (bib60) 2021; 12
Young, Wakefield, Smyth, Oshlack (bib50) 2010; 11
Zhao, Kuang, Li, Zhu, Jia, Guo (bib17) 2021
Love, Huber, Anders (bib55) 2014; 15
Kim, Hwang, Moretti, Jaboin, Cha, Lu (bib34) 2008 Jul; 4
Luo (bib64) 2022
Matsuyama, Nao, Shirato, Kawase, Saito, Takayama (bib41) 2020
Speranza, Williamson, Feldmann, Sturdevant, Pérez- Pérez, Meade-White (bib58) 2021; 13
Cyster, Allen (bib8) 2019; 177
(bib14) 2020 Jul 17; 384
Barash, Wang, Shi (bib38) 2002; 294
Yusa (10.1016/j.heliyon.2023.e21893_bib28) 2011; 108
Wilflingseder (10.1016/j.heliyon.2023.e21893_bib40) 2007; 178
Wang (10.1016/j.heliyon.2023.e21893_bib47) 2017; 187
Totura (10.1016/j.heliyon.2023.e21893_bib78) 2015; 6
Mukherjee (10.1016/j.heliyon.2023.e21893_bib2) 2022; 17
Kyriazopoulou (10.1016/j.heliyon.2023.e21893_bib11) 2021; 27
Bochkov (10.1016/j.heliyon.2023.e21893_bib88) 2017; 111
Matsuyama (10.1016/j.heliyon.2023.e21893_bib41) 2020
Casanova (10.1016/j.heliyon.2023.e21893_bib68) 2020; 181
Qi (10.1016/j.heliyon.2023.e21893_bib5) 2022; 23
Shirato (10.1016/j.heliyon.2023.e21893_bib16) 2021; 7
Kim (10.1016/j.heliyon.2023.e21893_bib61) 2019; 224
Posch (10.1016/j.heliyon.2023.e21893_bib43) 2021; 147
Imai (10.1016/j.heliyon.2023.e21893_bib19) 2008; 133
Pontali (10.1016/j.heliyon.2023.e21893_bib12) 2021; 147
Erridge (10.1016/j.heliyon.2023.e21893_bib85) 2008; 283
Kawai (10.1016/j.heliyon.2023.e21893_bib15) 2010; 11
Ewels (10.1016/j.heliyon.2023.e21893_bib52) 2020; 38
Asano (10.1016/j.heliyon.2023.e21893_bib69) 2021; 6
Park (10.1016/j.heliyon.2023.e21893_bib24) 2007; 56
Lamphier (10.1016/j.heliyon.2023.e21893_bib35) 2014; 85
Combes (10.1016/j.heliyon.2023.e21893_bib66) 2021; 591
Ariza (10.1016/j.heliyon.2023.e21893_bib62) 2009; 182
Ii (10.1016/j.heliyon.2023.e21893_bib29) 2006; 69
Mayr (10.1016/j.heliyon.2023.e21893_bib27) 2020; 11
Durán-Méndez (10.1016/j.heliyon.2023.e21893_bib80) 2021; 11
Cheng (10.1016/j.heliyon.2023.e21893_bib31) 2011; 133
Esposito (10.1016/j.heliyon.2023.e21893_bib37) 2020; 174
Love (10.1016/j.heliyon.2023.e21893_bib55) 2014; 15
Biotech (10.1016/j.heliyon.2023.e21893_bib92) 2021
Kadl (10.1016/j.heliyon.2023.e21893_bib86) 2011; 51
Frey (10.1016/j.heliyon.2023.e21893_bib22) 2013; 280
Ehrchen (10.1016/j.heliyon.2023.e21893_bib20) 2009; 86
Xu (10.1016/j.heliyon.2023.e21893_bib36) 2021; 7
Luo (10.1016/j.heliyon.2023.e21893_bib64) 2022
Lafon (10.1016/j.heliyon.2023.e21893_bib39) 2021
(10.1016/j.heliyon.2023.e21893_bib14) 2020; 384
Yu (10.1016/j.heliyon.2023.e21893_bib56) 2012; 16
Zheng (10.1016/j.heliyon.2023.e21893_bib84) 2021; 22
Verzosa (10.1016/j.heliyon.2023.e21893_bib60) 2021; 12
Wilson (10.1016/j.heliyon.2023.e21893_bib73) 2020
Young (10.1016/j.heliyon.2023.e21893_bib50) 2010; 11
Marconi (10.1016/j.heliyon.2023.e21893_bib13) 2021; 9
Sahanic (10.1016/j.heliyon.2023.e21893_bib49) 2021; 12
Yamada (10.1016/j.heliyon.2023.e21893_bib23) 2006; 281
Barash (10.1016/j.heliyon.2023.e21893_bib38) 2002; 294
Franzetti (10.1016/j.heliyon.2023.e21893_bib81) 2021
Matsuyama (10.1016/j.heliyon.2023.e21893_bib33) 2018; 92
Speranza (10.1016/j.heliyon.2023.e21893_bib58) 2021; 13
Zhang (10.1016/j.heliyon.2023.e21893_bib65) 2020; 80
Kuba (10.1016/j.heliyon.2023.e21893_bib45) 2005; 11
Kuzmich (10.1016/j.heliyon.2023.e21893_bib76) 2017; 5
Das (10.1016/j.heliyon.2023.e21893_bib4) 2022; 12
Kim (10.1016/j.heliyon.2023.e21893_bib34) 2008; 4
Richez (10.1016/j.heliyon.2023.e21893_bib79) 2009; 182
Serbulea (10.1016/j.heliyon.2023.e21893_bib87) 2018; 7
Choudhury (10.1016/j.heliyon.2023.e21893_bib90) 2021; 93
Sancho-Shimizu (10.1016/j.heliyon.2023.e21893_bib74) 2011; 1
Rendeiro (10.1016/j.heliyon.2023.e21893_bib63) 2021; 593
Choudhury (10.1016/j.heliyon.2023.e21893_bib18) 2020; 92
Paul (10.1016/j.heliyon.2023.e21893_bib70) 2021; 6
Dobin (10.1016/j.heliyon.2023.e21893_bib53) 2013; 29
Demetz (10.1016/j.heliyon.2023.e21893_bib44) 2020; 41
Winkler (10.1016/j.heliyon.2023.e21893_bib59) 2020; 21
Menter (10.1016/j.heliyon.2023.e21893_bib57) 2020; 77
Demichev (10.1016/j.heliyon.2023.e21893_bib72) 2021; 12
Ng (10.1016/j.heliyon.2023.e21893_bib83) 2019; 16
Bastard (10.1016/j.heliyon.2023.e21893_bib67) 2020; 80
Sanjana (10.1016/j.heliyon.2023.e21893_bib25) 2014; 11
Stein (10.1016/j.heliyon.2023.e21893_bib6) 2023; 401
Chadly (10.1016/j.heliyon.2023.e21893_bib46) 2018; 13
Chen (10.1016/j.heliyon.2023.e21893_bib51) 2018; 34
Lamers (10.1016/j.heliyon.2023.e21893_bib1) 2022; 20
Mehta (10.1016/j.heliyon.2023.e21893_bib9) 2020; 395
Blanco-Melo (10.1016/j.heliyon.2023.e21893_bib71) 2020
Patro (10.1016/j.heliyon.2023.e21893_bib54) 2017; 14
Posch (10.1016/j.heliyon.2023.e21893_bib42) 2021
Joshi (10.1016/j.heliyon.2023.e21893_bib30) 2016; 774
Brenke (10.1016/j.heliyon.2023.e21893_bib32) 2018; 293
Hutt-Fletcher (10.1016/j.heliyon.2023.e21893_bib75) 2007; 81
Yurchenko (10.1016/j.heliyon.2023.e21893_bib26) 2018; 217
Choudhury (10.1016/j.heliyon.2023.e21893_bib91) 2022; 351
Akkaya (10.1016/j.heliyon.2023.e21893_bib7) 2020; 20
Zhao (10.1016/j.heliyon.2023.e21893_bib17) 2021
Pinski (10.1016/j.heliyon.2023.e21893_bib82) 2021; 110
Cyster (10.1016/j.heliyon.2023.e21893_bib8) 2019; 177
Patra (10.1016/j.heliyon.2023.e21893_bib89) 2021; 93
Liao (10.1016/j.heliyon.2023.e21893_bib48) 2020; 26
Choudhury (10.1016/j.heliyon.2023.e21893_bib3) 2021; 82
Angriman (10.1016/j.heliyon.2023.e21893_bib10) 2021; 9
Kim (10.1016/j.heliyon.2023.e21893_bib21) 2013; 19
Lan (10.1016/j.heliyon.2023.e21893_bib77) 2020
References_xml – volume: 187
  start-page: 1700
  year: 2017
  end-page: 1716
  ident: bib47
  article-title: AKT hyperactivation and the potential of AKT-targeted therapy in diffuse large B-cell lymphoma
  publication-title: Am. J. Pathol.
– volume: 7
  year: 2021
  ident: bib16
  article-title: SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages
  publication-title: Heliyon
– volume: 293
  start-page: 13191
  year: 2018 Aug
  end-page: 13203
  ident: bib32
  article-title: Targeting TRAF6 E3 ligase activity with a small-molecule inhibitor combats autoimmunity
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 373
  year: 2010
  end-page: 384
  ident: bib15
  article-title: The role of pattern-recognition receptors in innate immunity: update on toll-like receptors
  publication-title: Nat. Immunol.
– volume: 56
  start-page: 45
  year: 2007
  end-page: 50
  ident: bib24
  article-title: Optimized THP-1 differentiation is required for the detection of responses to weak stimuli
  publication-title: Inflamm. Res.
– volume: 13
  year: 2018
  ident: bib46
  article-title: Developmental profiling of microRNAs in the human embryonic inner ear
  publication-title: PLoS One
– volume: 16
  start-page: 194
  year: 2019 Aug 3
  end-page: 205
  ident: bib83
  article-title: Intratracheal administration of siRNA triggers mRNA silencing in the lung to modulate T cell immune response and lung inflammation
  publication-title: Mol. Ther. Nucleic Acids
– volume: 774
  start-page: 25
  year: 2016 Mar
  end-page: 33
  ident: bib30
  article-title: Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells
  publication-title: Eur. J. Pharmacol.
– volume: 4
  start-page: 659
  year: 2008 Jul
  end-page: 668
  ident: bib34
  article-title: Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer
  publication-title: Autophagy
– volume: 16
  start-page: 284
  year: 2012
  end-page: 287
  ident: bib56
  article-title: ClusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS A J. Integr. Biol.
– volume: 111
  start-page: 6
  year: 2017
  end-page: 24
  ident: bib88
  article-title: Pleiotropic effects of oxidized phospholipids
  publication-title: Free Radic. Biol. Med.
– volume: 27
  year: 2021
  ident: bib11
  article-title: Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial
  publication-title: Nat. Med.
– volume: 17
  start-page: 415
  year: 2022 Apr 19
  end-page: 417
  ident: bib2
  article-title: Toll-like receptor 4 in COVID-19: friend or foe?
  publication-title: Future Virol.
– year: 2020
  ident: bib41
  article-title: Enhanced Isolation of SARS-CoV-2 by TMPRSS2- Expressing Cells
– volume: 283
  year: 2008
  ident: bib85
  article-title: Oxidized phospholipid inhibition of Toll-Like Receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition
  publication-title: J. Biol. Chem.
– volume: 93
  start-page: 615
  year: 2021 Feb 1
  end-page: 617
  ident: bib89
  article-title: Targeting human TLRs to combat COVID-19: a solution?
  publication-title: J. Med. Virol.
– volume: 12
  year: 2022
  ident: bib4
  article-title: In Silico Analyses on the Comparative Potential of Therapeutic Human Monoclonal Antibodies against Newly Emerged SARS-CoV-2 Variants Bearing Mutant Spike Protein
  publication-title: Frontiers in Immunology
– volume: 19
  year: 2013
  ident: bib21
  article-title: Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14
  publication-title: Mol. Med.
– volume: 384
  start-page: 693
  year: 2020 Jul 17
  end-page: 704
  ident: bib14
  article-title: Dexamethasone in hospitalized patients with covid-19
  publication-title: N. Engl. J. Med.
– volume: 9
  year: 2021
  ident: bib13
  article-title: Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial
  publication-title: Lancet Respir. Med.
– volume: 178
  start-page: 7840
  year: 2007 Jun 15
  end-page: 7848
  ident: bib40
  article-title: IgG opsonization of HIV impedes provirus formation in and infection of dendritic cells and subsequent long-term transfer to T Cells1
  publication-title: J. Immunol.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 14
  ident: bib78
  article-title: Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection
  publication-title: mBio
– start-page: 206
  year: 2021
  ident: bib81
  article-title: IL-1 receptor antagonist anakinra in the treatment of COVID-19 acute respiratory distress syndrome: a retrospective, observational study
  publication-title: J. Immunol.
– volume: 26
  start-page: 842
  year: 2020
  end-page: 844
  ident: bib48
  article-title: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19
  publication-title: Nat. Med.
– volume: 12
  year: 2021
  ident: bib60
  article-title: Herpes simplex virus 1 infection of neuronal and non-neuronal cells elicits specific innate immune responses and immune evasion mechanisms
  publication-title: Front. Immunol.
– volume: 77
  start-page: 198
  year: 2020
  end-page: 209
  ident: bib57
  article-title: Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction
  publication-title: Histopathology
– volume: 14
  start-page: 417
  year: 2017
  end-page: 419
  ident: bib54
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nat. Methods.
– volume: 401
  year: 2023 Mar 11
  ident: bib6
  article-title: Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis
  publication-title: Lancet
– volume: 294
  start-page: 835
  year: 2002
  end-page: 842
  ident: bib38
  article-title: Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression
  publication-title: Biochem. Biophys. Res. Commun.
– year: 2022
  ident: bib64
  article-title: Nasopharyngeal Carcinoma Ecology Theory: Cancer as Multidimensional Spatiotemporal “Unity of Ecology and Evolution” Pathological Ecosystem
– volume: 280
  year: 2013
  ident: bib22
  article-title: Biological interplay between proteoglycans and their innate immune receptors in inflammation
  publication-title: FEBS J.
– volume: 21
  start-page: 1327
  year: 2020
  end-page: 1335
  ident: bib59
  article-title: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function
  publication-title: Nat. Immunol.
– volume: 41
  start-page: 3949
  year: 2020
  end-page: 3959
  ident: bib44
  article-title: The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development
  publication-title: Eur. Heart J.
– year: 2021
  ident: bib17
  article-title: SARS-CoV-2 Spike Protein Interacts with and Activates TLR41
– volume: 13
  year: 2021
  ident: bib58
  article-title: Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of African green monkeys
  publication-title: Sci. Transl. Med.
– volume: 110
  year: 2021
  ident: bib82
  article-title: Corticosteroid treatment in COVID-19 modulates host inflammatory responses and transcriptional signatures of immune dysregulation
  publication-title: J. Leukoc. Biol.
– year: 2021
  ident: bib42
  article-title: Coldzyme Maintains Integrity in Sars-Cov-2-Infected Airway Epithelia
– volume: 395
  year: 2020
  ident: bib9
  article-title: COVID-19: consider cytokine storm syndromes and immunosuppression
  publication-title: Lancet
– volume: 85
  start-page: 429
  year: 2014 Mar 1
  ident: bib35
  article-title: Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo
  publication-title: Mol. Pharmacol.
– volume: 177
  start-page: 524
  year: 2019
  end-page: 540
  ident: bib8
  article-title: B cell responses: cell interaction dynamics and decisions
  publication-title: Cell
– volume: 593
  start-page: 564
  year: 2021 May
  end-page: 569
  ident: bib63
  article-title: The spatial landscape of lung pathology during COVID-19 progression
  publication-title: Nature
– volume: 6
  year: 2021 Aug 19
  ident: bib70
  article-title: Autoantibodies neutralizing type I IFNs are present in ∼4% of uninfected individuals over 70 years old and account for ∼20% of COVID-19 deaths
  publication-title: Sci Immunol
– volume: 591
  start-page: 124
  year: 2021
  end-page: 130
  ident: bib66
  article-title: Global absence and targeting of protective immune states in severe COVID-19
  publication-title: Nature
– volume: 12
  year: 2021
  ident: bib72
  article-title: A time-resolved proteomic and prognostic map of COVID-19
  publication-title: Cell Syst
– volume: 147
  year: 2021
  ident: bib12
  article-title: Efficacy of early anti-inflammatory treatment with high doses of intravenous anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia
  publication-title: J. Allergy Clin. Immunol.
– volume: 351
  year: 2022
  ident: bib91
  article-title: Designing AbhiSCoVac - a single potential vaccine for all ‘corona culprits’: immunoinformatics and immune simulation approaches
  publication-title: J. Mol. Liq.
– volume: 23
  start-page: 1008
  year: 2022
  end-page: 1020
  ident: bib5
  article-title: The humoral response and antibodies against SARS-CoV-2 infection
  publication-title: Nat. Immunol.
– volume: 133
  start-page: 3764
  year: 2011 Mar 23
  end-page: 3767
  ident: bib31
  article-title: Small-Molecule inhibitors of the TLR3/dsRNA complex
  publication-title: J. Am. Chem. Soc.
– year: 2020
  ident: bib73
  article-title: Cytokine Profile in Plasma of Severe COVID-19 Does Not Differ from ARDS and Sepsis
– volume: 108
  start-page: 1531
  year: 2011
  end-page: 1536
  ident: bib28
  article-title: A hyperactive piggyBac transposase for mammalian applications
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 11
  year: 2021
  ident: bib80
  article-title: Tocilizumab reduces COVID-19 mortality and pathology in a dose and timing-dependent fashion: a multi-centric study
  publication-title: Sci. Rep.
– volume: 86
  year: 2009
  ident: bib20
  article-title: The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer
  publication-title: J. Leukoc. Biol.
– volume: 281
  year: 2006
  ident: bib23
  article-title: Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response: importance of supratrimeric oligomerization
  publication-title: J. Biol. Chem.
– volume: 217
  year: 2018
  ident: bib26
  article-title: SLA MF1 is required for TLR4-mediated TRAM-TRIF- dependent signaling in human macrophages
  publication-title: J. Cell Biol.
– volume: 29
  start-page: 15
  year: 2013
  end-page: 21
  ident: bib53
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
– volume: 182
  year: 2009
  ident: bib79
  article-title: TLR4 ligands induce IFN-α production by mouse conventional dendritic cells and human monocytes after IFN-β priming
  publication-title: J. Immunol.
– volume: 224
  start-page: 502
  year: 2019
  end-page: 510
  ident: bib61
  article-title: Human β-defensin 2 is involved in CCR2-mediated Nod2 signal transduction, leading to activation of the innate immune response in macrophages
  publication-title: Immunobiolog
– volume: 133
  start-page: 235
  year: 2008
  end-page: 249
  ident: bib19
  article-title: Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury
  publication-title: Cell
– volume: 11
  start-page: 875
  year: 2005
  end-page: 879
  ident: bib45
  article-title: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury
  publication-title: Nat. Med.
– volume: 51
  year: 2011
  ident: bib86
  article-title: Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2
  publication-title: Free Radic. Biol. Med.
– volume: 69
  start-page: 1288
  year: 2006 Apr 1
  ident: bib29
  article-title: A novel cyclohexene derivative, ethyl (6emR/em)-6-[emN/em-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression
  publication-title: Mol. Pharmacol.
– volume: 12
  start-page: 1052
  year: 2021
  ident: bib49
  article-title: The role of innate immunity and bioactive lipid mediators in COVID-19 and influenza [internet]
  publication-title: Front. Physiol.
– volume: 20
  start-page: 229
  year: 2020
  end-page: 238
  ident: bib7
  article-title: B cell memory: building two walls of protection against pathogens
  publication-title: Nat. Rev. Immunol.
– volume: 38
  start-page: 276
  year: 2020
  end-page: 278
  ident: bib52
  article-title: The nf-core framework for community-curated bioinformatics pipelines
  publication-title: Nat. Biotechnol.
– year: 2021
  ident: bib92
  article-title: Edesa Biotech Reports Favorable Mortality Reductions in COVID-19 Study
– volume: 15
  start-page: 550
  year: 2014
  ident: bib55
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
– volume: 80
  year: 2020
  ident: bib67
  article-title: Autoantibodies against type I IFNs in patients with life-threatening COVID-19
  publication-title: Science
– start-page: 12
  year: 2021
  ident: bib39
  article-title: Potent SARS-CoV-2-specific T cell immunity and low anaphylatoxin levels correlate with mild disease progression in COVID-19 patients
  publication-title: Front. Immunol.
– volume: 181
  year: 2020
  ident: bib68
  article-title: A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection
  publication-title: Cell
– volume: 93
  start-page: 2476
  year: 2021 Apr 1
  end-page: 2486
  ident: bib90
  article-title: In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans
  publication-title: J. Med. Virol.
– volume: 20
  start-page: 270
  year: 2022
  end-page: 284
  ident: bib1
  article-title: SARS-CoV-2 pathogenesis
  publication-title: Nat. Rev. Microbiol.
– volume: 9
  year: 2021
  ident: bib10
  article-title: Interleukin-6 receptor blockade in patients with COVID-19: placing clinical trials into context
  publication-title: Lancet Respir. Med.
– volume: 7
  year: 2018
  ident: bib87
  article-title: Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism
  publication-title: Mol. Metabol.
– volume: 6
  year: 2021
  ident: bib69
  article-title: X-linked recessive TLR7 deficiency in ∼1% of men under 60 years old with life-threatening COVID-19
  publication-title: Sci Immunol
– volume: 5
  year: 2017
  ident: bib76
  publication-title: TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis
– start-page: 581
  year: 2020
  ident: bib77
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
– volume: 147
  start-page: 2083
  year: 2021
  end-page: 2097
  ident: bib43
  article-title: C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2–infected primary human airway epithelia
  publication-title: J. Allergy Clin. Immunol.
– volume: 92
  year: 2018 Oct
  ident: bib33
  article-title: Middle East respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells
  publication-title: J. Virol.
– volume: 7
  year: 2021 Jan
  ident: bib36
  article-title: Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM
  publication-title: Sci. Adv.
– year: 2020
  ident: bib71
  article-title: Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19
– volume: 11
  start-page: 1775
  year: 2020
  ident: bib27
  article-title: Dietary lipids fuel GPX4-restricted enteritis resembling Crohn's disease
  publication-title: Nat. Commun.
– volume: 11
  year: 2010
  ident: bib50
  article-title: Gene ontology analysis for RNA-seq: accounting for selection bias
  publication-title: Genome Biol
– volume: 80
  year: 2020
  ident: bib65
  article-title: Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
  publication-title: Science
– volume: 92
  start-page: 2105
  year: 2020
  end-page: 2113
  ident: bib18
  article-title: In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs
  publication-title: J. Med. Virol.
– volume: 81
  year: 2007
  ident: bib75
  article-title: Epstein-barr virus entry
  publication-title: J. Virol.
– volume: 174
  year: 2020 Oct
  ident: bib37
  article-title: Optimizing high-yield production of SARS-CoV-2 soluble spike trimers for serology assays
  publication-title: Protein Expr. Purif.
– volume: 82
  year: 2021
  ident: bib3
  article-title: Chemotherapy vs. Immunotherapy in combating nCOVID19: an update
  publication-title: Hum. Immunol.
– volume: 182
  year: 2009
  ident: bib62
  article-title: The EBV-encoded dUTPase activates NF-κB through the TLR2 and MyD88-dependent signaling pathway
  publication-title: J. Immunol.
– volume: 22
  year: 2021
  ident: bib84
  article-title: TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines
  publication-title: Nat. Immunol.
– volume: 11
  year: 2014
  ident: bib25
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nat. Methods
– volume: 1
  start-page: 487
  year: 2011
  end-page: 496
  ident: bib74
  publication-title: Inborn errors of anti-viral interferon immunity in humans, Current Opinion in Virology
– volume: 34
  start-page: i884
  year: 2018
  end-page: i890
  ident: bib51
  article-title: Fastp: an ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
– volume: 13
  issue: 578
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib58
  article-title: Single-cell RNA sequencing reveals SARS-CoV-2 infection dynamics in lungs of African green monkeys
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abe8146
– volume: 11
  issue: 2
  year: 2010
  ident: 10.1016/j.heliyon.2023.e21893_bib50
  article-title: Gene ontology analysis for RNA-seq: accounting for selection bias
  publication-title: Genome Biol
  doi: 10.1186/gb-2010-11-2-r14
– year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib73
– volume: 12
  year: 2022
  ident: 10.1016/j.heliyon.2023.e21893_bib4
  article-title: In Silico Analyses on the Comparative Potential of Therapeutic Human Monoclonal Antibodies against Newly Emerged SARS-CoV-2 Variants Bearing Mutant Spike Protein
– volume: 281
  issue: 31
  year: 2006
  ident: 10.1016/j.heliyon.2023.e21893_bib23
  article-title: Surfactant protein A directly interacts with TLR4 and MD-2 and regulates inflammatory cellular response: importance of supratrimeric oligomerization
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M513041200
– volume: 11
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib80
  article-title: Tocilizumab reduces COVID-19 mortality and pathology in a dose and timing-dependent fashion: a multi-centric study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99291-z
– year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib17
– volume: 294
  start-page: 835
  year: 2002
  ident: 10.1016/j.heliyon.2023.e21893_bib38
  article-title: Human secretory signal peptide description by hidden Markov model and generation of a strong artificial signal peptide for secreted protein expression
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/S0006-291X(02)00566-1
– volume: 111
  start-page: 6
  year: 2017
  ident: 10.1016/j.heliyon.2023.e21893_bib88
  article-title: Pleiotropic effects of oxidized phospholipids
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2016.12.034
– volume: 4
  start-page: 659
  issue: 5
  year: 2008
  ident: 10.1016/j.heliyon.2023.e21893_bib34
  article-title: Autophagy upregulation by inhibitors of caspase-3 and mTOR enhances radiotherapy in a mouse model of lung cancer
  publication-title: Autophagy
  doi: 10.4161/auto.6058
– volume: 41
  start-page: 3949
  issue: 40
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib44
  article-title: The haemochromatosis gene Hfe and Kupffer cells control LDL cholesterol homeostasis and impact on atherosclerosis development
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehaa140
– volume: 187
  start-page: 1700
  issue: 8
  year: 2017
  ident: 10.1016/j.heliyon.2023.e21893_bib47
  article-title: AKT hyperactivation and the potential of AKT-targeted therapy in diffuse large B-cell lymphoma
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2017.04.009
– volume: 6
  start-page: 1
  issue: 3
  year: 2015
  ident: 10.1016/j.heliyon.2023.e21893_bib78
  article-title: Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection
  publication-title: mBio
  doi: 10.1128/mBio.00638-15
– volume: 11
  start-page: 373
  year: 2010
  ident: 10.1016/j.heliyon.2023.e21893_bib15
  article-title: The role of pattern-recognition receptors in innate immunity: update on toll-like receptors
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1863
– volume: 12
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib60
  article-title: Herpes simplex virus 1 infection of neuronal and non-neuronal cells elicits specific innate immune responses and immune evasion mechanisms
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.644664
– volume: 401
  issue: 10379
  year: 2023
  ident: 10.1016/j.heliyon.2023.e21893_bib6
  article-title: Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(22)02465-5
– volume: 22
  issue: 7
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib84
  article-title: TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-021-00937-x
– volume: 20
  start-page: 270
  issue: 5
  year: 2022
  ident: 10.1016/j.heliyon.2023.e21893_bib1
  article-title: SARS-CoV-2 pathogenesis
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-022-00713-0
– volume: 13
  issue: 1
  year: 2018
  ident: 10.1016/j.heliyon.2023.e21893_bib46
  article-title: Developmental profiling of microRNAs in the human embryonic inner ear
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0191452
– volume: 108
  start-page: 1531
  year: 2011
  ident: 10.1016/j.heliyon.2023.e21893_bib28
  article-title: A hyperactive piggyBac transposase for mammalian applications
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1008322108
– year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib92
– volume: 110
  issue: 6
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib82
  article-title: Corticosteroid treatment in COVID-19 modulates host inflammatory responses and transcriptional signatures of immune dysregulation
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.4COVA0121-084RR
– volume: 34
  start-page: i884
  issue: 17
  year: 2018
  ident: 10.1016/j.heliyon.2023.e21893_bib51
  article-title: Fastp: an ultra-fast all-in-one FASTQ preprocessor
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty560
– volume: 7
  year: 2018
  ident: 10.1016/j.heliyon.2023.e21893_bib87
  article-title: Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism
  publication-title: Mol. Metabol.
  doi: 10.1016/j.molmet.2017.11.002
– volume: 133
  start-page: 235
  year: 2008
  ident: 10.1016/j.heliyon.2023.e21893_bib19
  article-title: Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury
  publication-title: Cell
  doi: 10.1016/j.cell.2008.02.043
– volume: 5
  year: 2017
  ident: 10.1016/j.heliyon.2023.e21893_bib76
– volume: 29
  start-page: 15
  issue: 1
  year: 2013
  ident: 10.1016/j.heliyon.2023.e21893_bib53
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 85
  start-page: 429
  issue: 3
  year: 2014
  ident: 10.1016/j.heliyon.2023.e21893_bib35
  article-title: Novel small molecule inhibitors of TLR7 and TLR9: mechanism of action and efficacy in vivo
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.113.089821
– volume: 80
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib67
  article-title: Autoantibodies against type I IFNs in patients with life-threatening COVID-19
  publication-title: Science
– volume: 7
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib36
  article-title: Conformational dynamics of SARS-CoV-2 trimeric spike glycoprotein in complex with receptor ACE2 revealed by cryo-EM
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abe5575
– volume: 593
  start-page: 564
  issue: 7860
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib63
  article-title: The spatial landscape of lung pathology during COVID-19 progression
  publication-title: Nature
  doi: 10.1038/s41586-021-03475-6
– volume: 20
  start-page: 229
  issue: 4
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib7
  article-title: B cell memory: building two walls of protection against pathogens
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0244-2
– volume: 7
  issue: 2
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib16
  article-title: SARS-CoV-2 spike protein S1 subunit induces pro-inflammatory responses via toll-like receptor 4 signaling in murine and human macrophages
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e06187
– volume: 774
  start-page: 25
  year: 2016
  ident: 10.1016/j.heliyon.2023.e21893_bib30
  article-title: Angiotensin converting enzyme versus angiotensin converting enzyme-2 selectivity of MLN-4760 and DX600 in human and murine bone marrow-derived cells
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2016.01.007
– volume: 56
  start-page: 45
  year: 2007
  ident: 10.1016/j.heliyon.2023.e21893_bib24
  article-title: Optimized THP-1 differentiation is required for the detection of responses to weak stimuli
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-007-6115-5
– volume: 293
  start-page: 13191
  issue: 34
  year: 2018
  ident: 10.1016/j.heliyon.2023.e21893_bib32
  article-title: Targeting TRAF6 E3 ligase activity with a small-molecule inhibitor combats autoimmunity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.RA118.002649
– volume: 12
  issue: 8
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib72
  article-title: A time-resolved proteomic and prognostic map of COVID-19
  publication-title: Cell Syst
– volume: 351
  year: 2022
  ident: 10.1016/j.heliyon.2023.e21893_bib91
  article-title: Designing AbhiSCoVac - a single potential vaccine for all ‘corona culprits’: immunoinformatics and immune simulation approaches
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.118633
– volume: 11
  start-page: 1775
  issue: 1
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib27
  article-title: Dietary lipids fuel GPX4-restricted enteritis resembling Crohn's disease
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15646-6
– volume: 147
  issue: 4
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib12
  article-title: Efficacy of early anti-inflammatory treatment with high doses of intravenous anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2021.01.024
– volume: 280
  year: 2013
  ident: 10.1016/j.heliyon.2023.e21893_bib22
  article-title: Biological interplay between proteoglycans and their innate immune receptors in inflammation
  publication-title: FEBS J.
  doi: 10.1111/febs.12145
– volume: 82
  issue: 9
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib3
  article-title: Chemotherapy vs. Immunotherapy in combating nCOVID19: an update
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2021.05.001
– year: 2022
  ident: 10.1016/j.heliyon.2023.e21893_bib64
– volume: 147
  start-page: 2083
  issue: 6
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib43
  article-title: C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2–infected primary human airway epithelia
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2021.03.038
– volume: 6
  issue: 62
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib70
  article-title: Autoantibodies neutralizing type I IFNs are present in ∼4% of uninfected individuals over 70 years old and account for ∼20% of COVID-19 deaths
  publication-title: Sci Immunol
– volume: 77
  start-page: 198
  issue: 2
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib57
  article-title: Postmortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction
  publication-title: Histopathology
  doi: 10.1111/his.14134
– volume: 51
  issue: 10
  year: 2011
  ident: 10.1016/j.heliyon.2023.e21893_bib86
  article-title: Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2011.08.026
– volume: 19
  issue: 1
  year: 2013
  ident: 10.1016/j.heliyon.2023.e21893_bib21
  article-title: Signaling of high mobility group box 1 (HMGB1) through toll-like receptor 4 in macrophages requires CD14
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2012.00306
– volume: 15
  start-page: 550
  issue: 12
  year: 2014
  ident: 10.1016/j.heliyon.2023.e21893_bib55
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol
  doi: 10.1186/s13059-014-0550-8
– volume: 14
  start-page: 417
  issue: 4
  year: 2017
  ident: 10.1016/j.heliyon.2023.e21893_bib54
  article-title: Salmon provides fast and bias-aware quantification of transcript expression
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.4197
– volume: 9
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib10
  article-title: Interleukin-6 receptor blockade in patients with COVID-19: placing clinical trials into context
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(21)00139-9
– volume: 80
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib65
  article-title: Inborn errors of type I IFN immunity in patients with life-threatening COVID-19
  publication-title: Science
– volume: 11
  start-page: 875
  issue: 8
  year: 2005
  ident: 10.1016/j.heliyon.2023.e21893_bib45
  article-title: A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury
  publication-title: Nat. Med.
  doi: 10.1038/nm1267
– volume: 181
  issue: 6
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib68
  article-title: A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection
  publication-title: Cell
  doi: 10.1016/j.cell.2020.05.016
– volume: 1
  start-page: 487
  issue: 6
  year: 2011
  ident: 10.1016/j.heliyon.2023.e21893_bib74
  publication-title: Inborn errors of anti-viral interferon immunity in humans, Current Opinion in Virology
– volume: 17
  start-page: 415
  issue: 7
  year: 2022
  ident: 10.1016/j.heliyon.2023.e21893_bib2
  article-title: Toll-like receptor 4 in COVID-19: friend or foe?
  publication-title: Future Virol.
  doi: 10.2217/fvl-2021-0249
– volume: 182
  issue: 2
  year: 2009
  ident: 10.1016/j.heliyon.2023.e21893_bib62
  article-title: The EBV-encoded dUTPase activates NF-κB through the TLR2 and MyD88-dependent signaling pathway
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.182.2.851
– volume: 395
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib9
  article-title: COVID-19: consider cytokine storm syndromes and immunosuppression
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30628-0
– volume: 217
  issue: 4
  year: 2018
  ident: 10.1016/j.heliyon.2023.e21893_bib26
  article-title: SLA MF1 is required for TLR4-mediated TRAM-TRIF- dependent signaling in human macrophages
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201707027
– volume: 93
  start-page: 615
  issue: 2
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib89
  article-title: Targeting human TLRs to combat COVID-19: a solution?
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.26387
– volume: 11
  year: 2014
  ident: 10.1016/j.heliyon.2023.e21893_bib25
  article-title: Improved vectors and genome-wide libraries for CRISPR screening
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3047
– year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib41
– volume: 178
  start-page: 7840
  issue: 12
  year: 2007
  ident: 10.1016/j.heliyon.2023.e21893_bib40
  article-title: IgG opsonization of HIV impedes provirus formation in and infection of dendritic cells and subsequent long-term transfer to T Cells1
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.178.12.7840
– start-page: 206
  issue: 7
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib81
  article-title: IL-1 receptor antagonist anakinra in the treatment of COVID-19 acute respiratory distress syndrome: a retrospective, observational study
  publication-title: J. Immunol.
– volume: 93
  start-page: 2476
  issue: 4
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib90
  article-title: In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.26776
– year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib71
– volume: 224
  start-page: 502
  issue: 4
  year: 2019
  ident: 10.1016/j.heliyon.2023.e21893_bib61
  article-title: Human β-defensin 2 is involved in CCR2-mediated Nod2 signal transduction, leading to activation of the innate immune response in macrophages
  publication-title: Immunobiolog
  doi: 10.1016/j.imbio.2019.05.004
– volume: 81
  issue: 15
  year: 2007
  ident: 10.1016/j.heliyon.2023.e21893_bib75
  article-title: Epstein-barr virus entry
  publication-title: J. Virol.
  doi: 10.1128/JVI.00445-07
– volume: 27
  issue: 10
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib11
  article-title: Early treatment of COVID-19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double-blind, randomized controlled phase 3 trial
  publication-title: Nat. Med.
– volume: 38
  start-page: 276
  issue: 3
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib52
  article-title: The nf-core framework for community-curated bioinformatics pipelines
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0439-x
– volume: 21
  start-page: 1327
  issue: 11
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib59
  article-title: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0778-2
– year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib42
– volume: 182
  issue: 2
  year: 2009
  ident: 10.1016/j.heliyon.2023.e21893_bib79
  article-title: TLR4 ligands induce IFN-α production by mouse conventional dendritic cells and human monocytes after IFN-β priming
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.182.2.820
– volume: 591
  start-page: 124
  issue: 7848
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib66
  article-title: Global absence and targeting of protective immune states in severe COVID-19
  publication-title: Nature
  doi: 10.1038/s41586-021-03234-7
– volume: 69
  start-page: 1288
  issue: 4
  year: 2006
  ident: 10.1016/j.heliyon.2023.e21893_bib29
  article-title: A novel cyclohexene derivative, ethyl (6emR/em)-6-[emN/em-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression
  publication-title: Mol. Pharmacol.
  doi: 10.1124/mol.105.019695
– volume: 86
  issue: 3
  year: 2009
  ident: 10.1016/j.heliyon.2023.e21893_bib20
  article-title: The endogenous Toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.1008647
– volume: 133
  start-page: 3764
  issue: 11
  year: 2011
  ident: 10.1016/j.heliyon.2023.e21893_bib31
  article-title: Small-Molecule inhibitors of the TLR3/dsRNA complex
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja111312h
– volume: 23
  start-page: 1008
  issue: 7
  year: 2022
  ident: 10.1016/j.heliyon.2023.e21893_bib5
  article-title: The humoral response and antibodies against SARS-CoV-2 infection
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-022-01248-5
– volume: 384
  start-page: 693
  issue: 8
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib14
  article-title: Dexamethasone in hospitalized patients with covid-19
  publication-title: N. Engl. J. Med.
– volume: 92
  start-page: 2105
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib18
  article-title: In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.25987
– start-page: 12
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib39
  article-title: Potent SARS-CoV-2-specific T cell immunity and low anaphylatoxin levels correlate with mild disease progression in COVID-19 patients
  publication-title: Front. Immunol.
– volume: 283
  issue: 36
  year: 2008
  ident: 10.1016/j.heliyon.2023.e21893_bib85
  article-title: Oxidized phospholipid inhibition of Toll-Like Receptor (TLR) signaling is restricted to TLR2 and TLR4: roles for CD14, LPS-binding protein, and MD2 as targets for specificity of inhibition
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M800352200
– volume: 26
  start-page: 842
  issue: 6
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib48
  article-title: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0901-9
– volume: 92
  issue: 19
  year: 2018
  ident: 10.1016/j.heliyon.2023.e21893_bib33
  article-title: Middle East respiratory syndrome coronavirus spike protein is not activated directly by cellular furin during viral entry into target cells
  publication-title: J. Virol.
  doi: 10.1128/JVI.00683-18
– volume: 174
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib37
  article-title: Optimizing high-yield production of SARS-CoV-2 soluble spike trimers for serology assays
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2020.105686
– volume: 6
  issue: 62
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib69
  article-title: X-linked recessive TLR7 deficiency in ∼1% of men under 60 years old with life-threatening COVID-19
  publication-title: Sci Immunol
  doi: 10.1126/sciimmunol.abl4348
– volume: 9
  issue: 12
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib13
  article-title: Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebo-controlled phase 3 trial
  publication-title: Lancet Respir. Med.
  doi: 10.1016/S2213-2600(21)00331-3
– volume: 16
  start-page: 194
  year: 2019
  ident: 10.1016/j.heliyon.2023.e21893_bib83
  article-title: Intratracheal administration of siRNA triggers mRNA silencing in the lung to modulate T cell immune response and lung inflammation
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1016/j.omtn.2019.02.013
– volume: 177
  start-page: 524
  issue: 3
  year: 2019
  ident: 10.1016/j.heliyon.2023.e21893_bib8
  article-title: B cell responses: cell interaction dynamics and decisions
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.016
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  ident: 10.1016/j.heliyon.2023.e21893_bib56
  article-title: ClusterProfiler: an R package for comparing biological themes among gene clusters
  publication-title: OMICS A J. Integr. Biol.
  doi: 10.1089/omi.2011.0118
– volume: 12
  start-page: 1052
  year: 2021
  ident: 10.1016/j.heliyon.2023.e21893_bib49
  article-title: The role of innate immunity and bioactive lipid mediators in COVID-19 and influenza [internet]
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2021.688946
– start-page: 581
  issue: 7807
  year: 2020
  ident: 10.1016/j.heliyon.2023.e21893_bib77
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
SSID ssj0001586973
Score 2.3853528
Snippet Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection....
• TLR4 is the most abundantly upregulated TLR in human lung irrespective of the underlying pathology. • BALF MΦ from patients with severe COVID-19 show strong...
Background: Toll-like receptors (TLRs) play a pivotal role in the immunologic response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e21893
SubjectTerms COVID-19
COVID-19 infection
CRISPR-Cas systems
death
domain
genes
humans
immune response
inflammation
Innate immunity
interferons
lungs
Macrophages
morbidity
SARS-CoV-2
sequence analysis
Severe acute respiratory syndrome coronavirus 2
therapeutics
Toll-like receptors
transcriptomics
Title SARS-CoV-2 activates the TLR4/MyD88 pathway in human macrophages: A possible correlation with strong pro-inflammatory responses in severe COVID-19
URI https://dx.doi.org/10.1016/j.heliyon.2023.e21893
https://www.ncbi.nlm.nih.gov/pubmed/38034686
https://www.proquest.com/docview/2896808280
https://www.proquest.com/docview/3153761464
https://pubmed.ncbi.nlm.nih.gov/PMC10686889
https://doaj.org/article/b479cdcafed844cf82d56244de04c06b
Volume 9
WOSCitedRecordID wos001128475200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELdgQogXxDflYzISr2mT2Ekc3kq3CSQ60Damvlm2Y9NMXTK13VBf-CP4i7mL09KAUF-QojwkjmP7zrmf47v7EfKWMRNrl-dBwlIT8CSLAoWZMJ1KtElCBwiBN2QT2fGxmEzyL1tUX-gT5tMD-4EbaJ7lpjDK2UJwbpyICzDZnBc25CZMNX59wyzfWkz5-GCR5hn7HbIzuOhP7axc1ZjzNGZ9C6YtZx1j1OTs79ikvzHnn66TW7bo6AG534JIOvSNf0hu2eoRuTtut8kfk5-nw5PTYFSfBzHFwIUbBJQUoB49-3TCB-PVgRAUuYi_qxUtK9oQ9dFLhXReU_jALN7RIb2qcbrMLDVI4OFd5ij-tqUL_H3-jUKzA9BPUKnLZquezr2_LbwK6oTe2bmlo8_nHw-CKH9Cvh4dno0-BC35QmCSNFsGacJcIiyYLutC41RuC1hHJ5ppplziYoXAL3Y81XGkEgfz2gEa0EbEkc4YHE_JXlVX9jmh1mjA8FAZzxiHUpoXqrCwTrQFGMdU9AhfS0GaNjM5EmTM5NoF7UK2wpMoPOmF1yP9zWNXPjXHrgfeo4g3hTGzdnMB9E22-iZ36VuPiLWCyBakePABVZW73v9mrVASJjHuzKjK1tcLCatepECJRfjvMizCzDtg2HiPPPNKuOkJEyGDgUyhcR317HS1e6cqp00y8QhjhITIX_yPwXlJ7mF_fazmK7K3nF_b1-SOuVmWi_k-uZ1NxH4zUeE8_nH4C8SxRws
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+activates+the+TLR4%2FMyD88+pathway+in+human+macrophages%3A+A+possible+correlation+with+strong+pro-inflammatory+responses+in+severe+COVID-19&rft.jtitle=Heliyon&rft.au=Sabina+Sahanic&rft.au=Richard+Hilbe&rft.au=Christina+D%C3%BCnser&rft.au=Piotr+Tymoszuk&rft.date=2023-11-01&rft.pub=Elsevier&rft.eissn=2405-8440&rft.volume=9&rft.issue=11&rft.spage=e21893&rft_id=info:doi/10.1016%2Fj.heliyon.2023.e21893&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b479cdcafed844cf82d56244de04c06b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon