Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes

Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Heliyon Ročník 9; číslo 7; s. e17662
Hlavní autoři: Beckwée, Emile Jules, Watson, Geert, Houlleberghs, Maarten, Arenas Esteban, Daniel, Bals, Sara, Van Der Voort, Pascal, Breynaert, Eric, Martens, Johan, Baron, Gino V., Denayer, Joeri F.M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: England Elsevier Ltd 01.07.2023
Elsevier
Témata:
ISSN:2405-8440, 2405-8440
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates. [Display omitted]
AbstractList Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates. Image 1
Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates. [Display omitted]
ArticleNumber e17662
Author Beckwée, Emile Jules
Breynaert, Eric
Watson, Geert
Baron, Gino V.
Van Der Voort, Pascal
Arenas Esteban, Daniel
Martens, Johan
Denayer, Joeri F.M.
Houlleberghs, Maarten
Bals, Sara
Author_xml – sequence: 1
  givenname: Emile Jules
  orcidid: 0000-0002-4135-4249
  surname: Beckwée
  fullname: Beckwée, Emile Jules
  organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
– sequence: 2
  givenname: Geert
  orcidid: 0000-0002-2324-4521
  surname: Watson
  fullname: Watson, Geert
  organization: Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
– sequence: 3
  givenname: Maarten
  orcidid: 0000-0002-8456-0886
  surname: Houlleberghs
  fullname: Houlleberghs, Maarten
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0002-5626-9848
  surname: Arenas Esteban
  fullname: Arenas Esteban, Daniel
  organization: Electron Microscopy for Materials Science, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
– sequence: 5
  givenname: Sara
  surname: Bals
  fullname: Bals, Sara
  organization: Electron Microscopy for Materials Science, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
– sequence: 6
  givenname: Pascal
  orcidid: 0000-0002-1248-479X
  surname: Van Der Voort
  fullname: Van Der Voort, Pascal
  organization: Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium
– sequence: 7
  givenname: Eric
  orcidid: 0000-0003-3499-0455
  surname: Breynaert
  fullname: Breynaert, Eric
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
– sequence: 8
  givenname: Johan
  surname: Martens
  fullname: Martens, Johan
  organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
– sequence: 9
  givenname: Gino V.
  orcidid: 0000-0003-4483-2434
  surname: Baron
  fullname: Baron, Gino V.
  organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
– sequence: 10
  givenname: Joeri F.M.
  orcidid: 0000-0001-5587-5136
  surname: Denayer
  fullname: Denayer, Joeri F.M.
  email: joeri.denayer@vub.be
  organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37449178$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuEzEUHaEiWko_ATRLNhP8GtsjFghVBSpVYgNry487iaMZO9ieSvn7OiRFLZuufGWfh3XueduchRigad5jtMII80_b1QYmv49hRRChK8CCc_KquSAM9Z1kDJ09mc-bq5y3CCHcSz4I-qY5p4KxAQt50ZSboM3kw7rd7F3SBTqjM7h2hrLRAdpcYtJraJfgILWzn1wbd1CBB4qNwfniY8it2bf12kfnbeXmuIspLrmNaa1DzH7yVrehjmUxkN81r0c9Zbg6nZfN7283v65_dHc_v99ef73rbM9F6XqLBqal5sYIGAwahNFSauC9QMwAtiNnmBruBOOMQk80RUYYCQNl0sFIL5vbo66Leqt2yc867VXUXv29qJ9TOhVvJ1BuBCOwGwkbJSMjHaovGjjpMTaj7WXV-nLU2i1mBmchlKSnZ6LPX4LfqHW8VxhRyvuBVIWPJ4UU_yyQi5p9tjBNNeealSKSSsIEJaxCPzw1--fyuLcK-HwE2BRzTjAq64s-rKJ6-6maqkNR1FadiqIORVHHolR2_x_70eAl3ikDqEu795BUth6CBecT2FJT9S8oPAAjCd8_
CitedBy_id crossref_primary_10_1016_j_cej_2025_166696
crossref_primary_10_1016_j_energy_2025_137009
crossref_primary_10_1016_j_apenergy_2023_122120
crossref_primary_10_1038_s41598_025_15942_5
crossref_primary_10_1016_j_cej_2025_164908
crossref_primary_10_1039_D4SE00114A
crossref_primary_10_1016_j_ijhydene_2025_150863
crossref_primary_10_1016_j_jechem_2024_05_038
crossref_primary_10_3390_molecules29143369
crossref_primary_10_3390_pr11113164
crossref_primary_10_1107_S1600576725000226
crossref_primary_10_1038_s41467_024_52893_3
crossref_primary_10_1039_D5TA04503G
crossref_primary_10_1016_j_micromeso_2023_112884
Cites_doi 10.1016/S1872-5813(12)60017-6
10.1021/acs.iecr.5b03908
10.1016/j.petrol.2016.09.017
10.1021/je500770m
10.1021/jp984559l
10.1002/aic.690480222
10.1021/jp510603q
10.1016/j.fuel.2020.119676
10.1016/j.carbon.2017.07.061
10.1002/aic.690481030
10.1016/j.ces.2014.12.047
10.1021/ef030067i
10.1016/j.fuel.2014.10.005
10.1016/S1004-9541(08)60287-6
10.1021/acs.iecr.9b01952
10.1021/la0257844
10.1021/acs.jpcc.9b06366
10.1016/j.cej.2016.01.026
10.1016/j.egypro.2014.12.174
10.1016/j.cej.2020.126955
10.1039/D1TA03105H
10.1021/ef900542m
10.1021/ja8048173
10.1021/acsami.0c15675
10.1080/00986445.2017.1366903
10.1016/j.cej.2018.11.216
10.1364/OE.24.025129
10.1021/acs.analchem.7b01653
10.1039/C0EE00203H
10.1021/acs.jced.8b00060
10.1016/j.apenergy.2018.02.059
10.1016/j.colsurfa.2005.08.017
10.1039/C6CP03993F
10.1021/j100200a071
10.1021/la903120p
10.1021/je5006455
10.1021/acs.iecr.5b03476
10.1002/cphc.201701250
10.1021/acs.jpcc.6b07136
10.1515/pac-2014-1117
10.1021/acs.jced.5b00322
10.1021/jp0546002
10.1016/j.biotechadv.2018.01.011
10.1039/c2jm31541f
10.1021/ar200343s
10.1039/C6TA00708B
10.1016/j.fuel.2018.01.067
10.1016/j.cej.2018.01.054
10.1016/j.micromeso.2006.03.009
10.1016/j.micromeso.2017.07.047
10.1021/jp045679y
10.1021/ja01269a023
10.1021/acs.iecr.5b03989
10.1016/j.cej.2020.126276
10.1016/j.ultramic.2015.05.002
10.5194/cp-7-831-2011
10.1021/acs.energyfuels.0c01291
10.1126/science.1084973
10.1038/nature02135
10.1016/j.fuel.2005.10.019
10.1021/ef020023u
10.1021/acs.iecr.9b04498
10.1073/pnas.1819000116
10.1070/RCR4720
10.1039/C2CS35222B
10.1016/j.ultramic.2020.113191
10.1016/j.ces.2013.11.032
10.1021/jacs.0c01459
10.1038/ncomms7432
10.1039/C6SC00272B
10.1039/D0RA00440E
ContentType Journal Article
Copyright 2023 The Authors
2023 The Authors.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: 2023 The Authors.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1016/j.heliyon.2023.e17662
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_dfeb71df24f842f39a8a0962511bfc58
PMC10336592
37449178
10_1016_j_heliyon_2023_e17662
S2405844023048703
Genre Journal Article
GroupedDBID 0R~
457
53G
5VS
6I.
AAEDW
AAFTH
AAFWJ
AALRI
AAYWO
ABMAC
ACGFS
ACLIJ
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPKN
AFPUW
AFTJW
AGHFR
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
APXCP
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
O9-
OK1
RIG
ROL
RPM
SSZ
AAYXX
CITATION
0SF
AACTN
NCXOZ
NPM
7X8
5PM
ID FETCH-LOGICAL-c567t-5c094a8a6bb7e9b097ba88ae65704be1cf6413b6d74643e52a30b7b8e9348def3
IEDL.DBID DOA
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001056264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-8440
IngestDate Fri Oct 03 12:30:28 EDT 2025
Tue Sep 30 17:12:32 EDT 2025
Fri Jul 11 08:19:50 EDT 2025
Thu Jan 02 22:43:57 EST 2025
Tue Nov 18 21:32:23 EST 2025
Thu Nov 27 00:47:10 EST 2025
Wed Dec 10 14:24:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Methane hydrate
Periodic mesoporous organosilica
Biomethane
Clathrate hydrate
Pressure-swing (un)loading
Language English
License This is an open access article under the CC BY-NC-ND license.
2023 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-5c094a8a6bb7e9b097ba88ae65704be1cf6413b6d74643e52a30b7b8e9348def3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Co-first authorship.
ORCID 0000-0003-3499-0455
0000-0002-2324-4521
0000-0002-8456-0886
0000-0002-5626-9848
0000-0002-1248-479X
0000-0003-4483-2434
0000-0001-5587-5136
0000-0002-4135-4249
OpenAccessLink https://doaj.org/article/dfeb71df24f842f39a8a0962511bfc58
PMID 37449178
PQID 2838247324
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_dfeb71df24f842f39a8a0962511bfc58
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10336592
proquest_miscellaneous_2838247324
pubmed_primary_37449178
crossref_citationtrail_10_1016_j_heliyon_2023_e17662
crossref_primary_10_1016_j_heliyon_2023_e17662
elsevier_sciencedirect_doi_10_1016_j_heliyon_2023_e17662
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Rouquerol, Rouquerol, Sing, Llewellyn, Maurin (bib67) 2013
Veluswamy, Kumar, Seo, Lee, Linga (bib2) 2018; 216
Sloan (bib3) 2003; 426
Zhao, Zhao, Liang, Gao, Yang (bib33) 2018; 220
Kim, Ahn, Lee (bib29) 2015; 60
Wei, Li, Zhang, Liu, Wang, Ling, El-Toni, Zhao (bib60) 2016; 6
Van Aarle, Jan Palenstijn, Cant, Janssens, Bleichrodt, Dabravolski, DE Beenhouwer, Joost Batenburg, Sijbers, Perilli, Le, Ma, Salmon, Reynolds, Erbou, Vester-Christensen, Hansen, Darré, Hviid, V Olsen, Aarle, Palenstijn, De Beenhouwer, Altantzis, Bals, Batenburg, Sijbers, Astra, Sheppard, Latham, Middleton, Kingston, Myers, Varslot, Fogden, Sawkins, Cruikshank, Saadatfar, Francois, Arns, Senden, Mirone, Brun, Gouillart, Tafforeau, Kieffer, Pelt, Gürsoy, De Carlo, Reid, Betcke, Chana, Speller (bib66) 2016; 24
Inkong, Veluswamy, Rangsunvigit, Kulprathipanja, Linga (bib43) 2019; 58
Zou, Wang, Shi, Dai, Zhang, Qiu (bib72) 2016; 4
Handa, Stupin (bib41) 1992; 96
Wang, Wang, Yoon, Seol (bib53) 2015; 60
Liu, Liu, Xie, Cui, Chen (bib47) 2018; 63
Casco, Zhang, Grätz, Krause, Bon, Wallacher, Grimm, Többens, Hauß, Borchardt (bib14) 2019; 123
Zhou, Sun, Zhou (bib20) 2002; 48
Vanrompay, Skorikov, Bladt, Béché, Freitag, Verbeeck, Bals (bib71) 2021; 221
Filarsky, Schmuck, Schultz (bib38) 2019; 58
Veluswamy, Wong, Babu, Kumar, Kulprathipanja, Rangsunvigit, Linga (bib13) 2016; 290
Denning, Majid, Lucero, Crawford, Carreon, Koh (bib27) 2020; 12
Uchida, Ebinuma, Ishizaki (bib37) 1999; 103
Borchardt, Casco, Silvestre-Albero (bib81) 2018; 19
Cuadrado-Collados, Fauth, Such-Basañez, Martínez-Escandell, Silvestre-Albero (bib17) 2018; 255
Seo, Lee, Uchida (bib42) 2002; 18
van Aarle, Palenstijn, De Beenhouwer, Altantzis, Bals, Batenburg, Sijbers (bib65) 2015; 157
Mohammadi, Manteghian, Mohammadi, Jahangiri (bib11) 2017; 204
Perrin, Celzard, Marěché, Furdin (bib19) 2003; 17
Nair, Ramesh, Ramadass, Sangwai (bib40) 2016; 147
Chong, Yang, Khoo, Linga (bib39) 2016; 55
Park, Shin, Kim, Lee, Seo, Maeda, Tian, Wood (bib51) 2015; 119
Siangsai, Rangsunvigit, Kitiyanan, Kulprathipanja, Linga (bib24) 2015; 126
Kroenlein, Muzny, Kazakov, Diky, Chirico, Sloan, Frenkel (bib79) 2009; 200
Fan, Yang, Wang, Lang, Wen, Lou (bib52) 2014; 106
Casco, Rey, Jordá, Rudić, Fauth, Martínez-Escandell, Rodríguez-Reinoso, Ramos-Fernández, Silvestre-Albero (bib25) 2016; 7
Li, Wang (bib54) 2015; 140
Guo, Li, Zhao (bib62) 2006; 93
Kumar, Bhattacharjee, Kulkarni, Kumar (bib10) 2015; 54
Carter, Wang, Adams, Cooper (bib49) 2010; 26
Zang, Du, Liang, Fan, Tang (bib31) 2009; 17
Borchardt, Casco, Silvestre-Albero (bib55) 2018; 19
Cyran, Donovan, Vollmer, Brigiano, Pezzotti, Galimberti, Gaigeot, Bonn, Backus (bib76) 2019; 116
Chen, Li, Cao (bib80) 2022; 12
Mahboub, Ahmadpour, Rashidi (bib21) 2012; 40
Borchardt, Nickel, Casco, Senkovska, Bon, Wallacher, Grimm, Krause, Silvestre-Albero (bib22) 2016; 18
Andres-Garcia, Dikhtiarenko, Fauth, Silvestre-Albero, Ramos-Fernández, Gascon, Corma, Kapteijn (bib30) 2019; 360
Schlumberger, Thommes (bib75) 2021; 8
Cuadrado-Collados, Mouchaham, Daemen, Cheng, Ramirez-Cuesta, Aggarwal, Missyul, Eddaoudi, Belmabkhout, Silvestre-Albero (bib28) 2020; 142
Yan, Chen, Pang, Liu (bib23) 2005; 109
Celzard, Marêché (bib18) 2006; 85
Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol, Sing (bib74) 2015; 87
Wang, Bray, Adams, Cooper (bib58) 2008; 130
Soltani, Khanian, Rashid, Yaw Choong (bib64) 2020; 10
Linga, Haligva, Nam, Ripmeester, Englezos (bib36) 2009; 23
Karaaslan, Parlaktuna (bib34) 2002; 16
Brunauer, Emmett, Teller (bib69) 1938; 60
Casco, Silvestre-Albero, Ramírez-Cuesta, Rey, Jordá, Bansode, Urakawa, Peral, Martínez-Escandell, Kaneko, Rodríguez-Reinoso (bib15) 2015; 6
Wang, Bray, Adams, Cooper (bib50) 2008; 130
Mu, Liu, Liu, Yang, Sun, Chen (bib26) 2012; 22
Angelidaki, Treu, Tsapekos, Luo, Campanaro, Wenzel, Kougias (bib1) 2018; 36
Nguyen, Nguyen, Steel, Dang, Galib (bib59) 2017; 121
Van Der Voort, Esquivel, De Canck, Goethals, Van Driessche, Francisco Romero (bib61) 2013; 42
Cuadrado-Collados, Farrando-Pérez, Martínez-Escandell, Ramírez-Montoya, Menéndez, Arenillas, Montes-Morán, Silvestre-Albero (bib77) 2020; 402
Zhou, Liu, Li, Sun, Zhou (bib78) 2006; 273
Zhou, Liu, Sun, Li, Zhou (bib45) 2005; 109
Zhong, He, Sun, Yang (bib48) 2014; 61
Manakov, V Penkov, V Rodionova, Nesterov, Fesenko (bib9) 2017; 86
Houlleberghs, Hoffmann, Dom, Kirschhock, Taulelle, Martens, Breynaert (bib70) 2017; 89
Rouquerol, Llewellyn, Rouquerol (bib68) 2007
Dickens (bib7) 2011; 7
Smith, Wilder, Seshadri (bib44) 2002; 48
Boswell, Collett (bib5) 2011; 4
Mileo, Rogge, Houlleberghs, Breynaert, Martens, Van Speybroeck (bib57) 2021
Casco, Cuadrado-Collados, Martínez-Escandell, Rodríguez-Reinoso, Silvestre-Albero (bib16) 2017; 123
Sun, Song, Zhang, Li, Wang (bib35) 2021; 288
Ruppel (bib6) 2015; 60
Casco, Grätz, Wallacher, Grimm, Többens, Bilo, Speil, Fröba, Borchardt (bib46) 2021; 405
Landskron, Hatton, Perovic, Ozin (bib73) 2003; 302
Dendy Sloan, Koh (bib8) 2008
Lee, Jin, Seo (bib12) 2018; 338
Johnson (bib4) 2011; vol. 11
Kruk (bib63) 2012; 45
Zhong, Li, Lu, Le Wang, Yan, Qing (bib32) 2016; 55
Nguyen, Galib, Nguyen (bib56) 2020; 34
Mohammadi (10.1016/j.heliyon.2023.e17662_bib11) 2017; 204
Wang (10.1016/j.heliyon.2023.e17662_bib53) 2015; 60
Uchida (10.1016/j.heliyon.2023.e17662_bib37) 1999; 103
Liu (10.1016/j.heliyon.2023.e17662_bib47) 2018; 63
Cuadrado-Collados (10.1016/j.heliyon.2023.e17662_bib28) 2020; 142
Cyran (10.1016/j.heliyon.2023.e17662_bib76) 2019; 116
Andres-Garcia (10.1016/j.heliyon.2023.e17662_bib30) 2019; 360
Nair (10.1016/j.heliyon.2023.e17662_bib40) 2016; 147
Manakov (10.1016/j.heliyon.2023.e17662_bib9) 2017; 86
Schlumberger (10.1016/j.heliyon.2023.e17662_bib75) 2021; 8
Cuadrado-Collados (10.1016/j.heliyon.2023.e17662_bib77) 2020; 402
Landskron (10.1016/j.heliyon.2023.e17662_bib73) 2003; 302
Linga (10.1016/j.heliyon.2023.e17662_bib36) 2009; 23
Rouquerol (10.1016/j.heliyon.2023.e17662_bib68) 2007
Casco (10.1016/j.heliyon.2023.e17662_bib15) 2015; 6
Casco (10.1016/j.heliyon.2023.e17662_bib25) 2016; 7
Sloan (10.1016/j.heliyon.2023.e17662_bib3) 2003; 426
Handa (10.1016/j.heliyon.2023.e17662_bib41) 1992; 96
Lee (10.1016/j.heliyon.2023.e17662_bib12) 2018; 338
Zang (10.1016/j.heliyon.2023.e17662_bib31) 2009; 17
Guo (10.1016/j.heliyon.2023.e17662_bib62) 2006; 93
Zhou (10.1016/j.heliyon.2023.e17662_bib20) 2002; 48
Boswell (10.1016/j.heliyon.2023.e17662_bib5) 2011; 4
Zhou (10.1016/j.heliyon.2023.e17662_bib45) 2005; 109
Dickens (10.1016/j.heliyon.2023.e17662_bib7) 2011; 7
Kim (10.1016/j.heliyon.2023.e17662_bib29) 2015; 60
Siangsai (10.1016/j.heliyon.2023.e17662_bib24) 2015; 126
Soltani (10.1016/j.heliyon.2023.e17662_bib64) 2020; 10
Van Aarle (10.1016/j.heliyon.2023.e17662_bib66) 2016; 24
Zou (10.1016/j.heliyon.2023.e17662_bib72) 2016; 4
Kruk (10.1016/j.heliyon.2023.e17662_bib63) 2012; 45
Johnson (10.1016/j.heliyon.2023.e17662_bib4) 2011; vol. 11
Veluswamy (10.1016/j.heliyon.2023.e17662_bib13) 2016; 290
Denning (10.1016/j.heliyon.2023.e17662_bib27) 2020; 12
Inkong (10.1016/j.heliyon.2023.e17662_bib43) 2019; 58
Wang (10.1016/j.heliyon.2023.e17662_bib58) 2008; 130
Nguyen (10.1016/j.heliyon.2023.e17662_bib59) 2017; 121
Wei (10.1016/j.heliyon.2023.e17662_bib60) 2016; 6
Wang (10.1016/j.heliyon.2023.e17662_bib50) 2008; 130
Rouquerol (10.1016/j.heliyon.2023.e17662_bib67) 2013
Casco (10.1016/j.heliyon.2023.e17662_bib14) 2019; 123
Celzard (10.1016/j.heliyon.2023.e17662_bib18) 2006; 85
Borchardt (10.1016/j.heliyon.2023.e17662_bib55) 2018; 19
Mileo (10.1016/j.heliyon.2023.e17662_bib57) 2021
Ruppel (10.1016/j.heliyon.2023.e17662_bib6) 2015; 60
Chen (10.1016/j.heliyon.2023.e17662_bib80) 2022; 12
Cuadrado-Collados (10.1016/j.heliyon.2023.e17662_bib17) 2018; 255
Perrin (10.1016/j.heliyon.2023.e17662_bib19) 2003; 17
Kroenlein (10.1016/j.heliyon.2023.e17662_bib79) 2009; 200
Karaaslan (10.1016/j.heliyon.2023.e17662_bib34) 2002; 16
Borchardt (10.1016/j.heliyon.2023.e17662_bib81) 2018; 19
Dendy Sloan (10.1016/j.heliyon.2023.e17662_bib8) 2008
Sun (10.1016/j.heliyon.2023.e17662_bib35) 2021; 288
Casco (10.1016/j.heliyon.2023.e17662_bib16) 2017; 123
Seo (10.1016/j.heliyon.2023.e17662_bib42) 2002; 18
Yan (10.1016/j.heliyon.2023.e17662_bib23) 2005; 109
Chong (10.1016/j.heliyon.2023.e17662_bib39) 2016; 55
Casco (10.1016/j.heliyon.2023.e17662_bib46) 2021; 405
Filarsky (10.1016/j.heliyon.2023.e17662_bib38) 2019; 58
Zhong (10.1016/j.heliyon.2023.e17662_bib32) 2016; 55
Brunauer (10.1016/j.heliyon.2023.e17662_bib69) 1938; 60
Kumar (10.1016/j.heliyon.2023.e17662_bib10) 2015; 54
Fan (10.1016/j.heliyon.2023.e17662_bib52) 2014; 106
Thommes (10.1016/j.heliyon.2023.e17662_bib74) 2015; 87
Zhao (10.1016/j.heliyon.2023.e17662_bib33) 2018; 220
Carter (10.1016/j.heliyon.2023.e17662_bib49) 2010; 26
Angelidaki (10.1016/j.heliyon.2023.e17662_bib1) 2018; 36
Zhong (10.1016/j.heliyon.2023.e17662_bib48) 2014; 61
Van Der Voort (10.1016/j.heliyon.2023.e17662_bib61) 2013; 42
Nguyen (10.1016/j.heliyon.2023.e17662_bib56) 2020; 34
Borchardt (10.1016/j.heliyon.2023.e17662_bib22) 2016; 18
Mu (10.1016/j.heliyon.2023.e17662_bib26) 2012; 22
Li (10.1016/j.heliyon.2023.e17662_bib54) 2015; 140
Mahboub (10.1016/j.heliyon.2023.e17662_bib21) 2012; 40
Park (10.1016/j.heliyon.2023.e17662_bib51) 2015; 119
Veluswamy (10.1016/j.heliyon.2023.e17662_bib2) 2018; 216
Smith (10.1016/j.heliyon.2023.e17662_bib44) 2002; 48
Zhou (10.1016/j.heliyon.2023.e17662_bib78) 2006; 273
Vanrompay (10.1016/j.heliyon.2023.e17662_bib71) 2021; 221
van Aarle (10.1016/j.heliyon.2023.e17662_bib65) 2015; 157
Houlleberghs (10.1016/j.heliyon.2023.e17662_bib70) 2017; 89
References_xml – volume: 200
  year: 2009
  ident: bib79
  article-title: Clathrate hydrate physical property database
  publication-title: Natl. Energy Technol. Lab. U.S. Dep. Energy.
– volume: 121
  start-page: 3830
  year: 2017
  end-page: 3840
  ident: bib59
  article-title: Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles
  publication-title: J. Phys. Chem. C
– year: 2007
  ident: bib68
  article-title: Is the BET Equation Applicable to Microporous Adsorbents?
– volume: 18
  start-page: 9164
  year: 2002
  end-page: 9170
  ident: bib42
  article-title: Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling
  publication-title: Langmuir
– volume: 216
  start-page: 262
  year: 2018
  end-page: 285
  ident: bib2
  article-title: A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates
  publication-title: Appl. Energy
– volume: 360
  start-page: 569
  year: 2019
  end-page: 576
  ident: bib30
  article-title: Methane hydrates: nucleation in microporous materials
  publication-title: Chem. Eng. J.
– volume: 16
  start-page: 1413
  year: 2002
  end-page: 1416
  ident: bib34
  article-title: Promotion effect of polymers and surfactants on hydrate formation rate
  publication-title: Energy Fuel.
– volume: 8
  year: 2021
  ident: bib75
  article-title: Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—a tutorial review
  publication-title: Adv. Mater. Interfac.
– volume: 19
  start-page: 1298
  year: 2018
  end-page: 1314
  ident: bib81
  article-title: Methane hydrate in confined spaces: an alternative storage system
  publication-title: ChemPhysChem
– volume: 24
  start-page: 25129
  year: 2016
  end-page: 25147
  ident: bib66
  article-title: Fast and flexible X-ray tomography using the ASTRA toolbox
  publication-title: Opt Express
– volume: 18
  start-page: 20607
  year: 2016
  end-page: 20614
  ident: bib22
  article-title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons
  publication-title: Phys. Chem. Chem. Phys.
– volume: 12
  start-page: 53510
  year: 2020
  end-page: 53518
  ident: bib27
  article-title: Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 3658
  year: 2016
  end-page: 3666
  ident: bib25
  article-title: Paving the way for methane hydrate formation on metal-organic frameworks (MOFs)
  publication-title: Chem. Sci.
– year: 2008
  ident: bib8
  article-title: “9078_C000”-2007/8/1-20:50-page i-#1 Clathrate Hydrates of Natural Gases
– volume: 85
  start-page: 957
  year: 2006
  end-page: 966
  ident: bib18
  article-title: Optimal wetting of active carbons for methane hydrate formation
  publication-title: Fuel
– volume: 220
  start-page: 185
  year: 2018
  end-page: 191
  ident: bib33
  article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites
  publication-title: Fuel
– volume: 23
  start-page: 5496
  year: 2009
  end-page: 5507
  ident: bib36
  article-title: Gas hydrate formation in a variable volume bed of silica sand particles
  publication-title: Energy Fuel.
– volume: 123
  start-page: 299
  year: 2017
  end-page: 301
  ident: bib16
  article-title: Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon
  publication-title: Carbon N. Y.
– volume: 119
  start-page: 1690
  year: 2015
  end-page: 1699
  ident: bib51
  article-title: Effect of hydrate shell formation on the stability of dry water
  publication-title: J. Phys. Chem. C
– volume: 130
  start-page: 11608
  year: 2008
  end-page: 11609
  ident: bib50
  article-title: Methane storage in dry water gas hydrates
  publication-title: J. Am. Chem. Soc.
– volume: 93
  start-page: 285
  year: 2006
  end-page: 293
  ident: bib62
  article-title: Understanding the hydrothermal stability of large-pore periodic mesoporous organosilicas and pure silicas
  publication-title: Microporous Mesoporous Mater.
– volume: 302
  year: 2003
  ident: bib73
  article-title: Periodic mesoporous organosilicas containing interconnected [Si(CH
  publication-title: Science (80-.)
– volume: 58
  start-page: 16687
  year: 2019
  end-page: 16695
  ident: bib38
  article-title: Impact of modified silica beads on methane hydrate formation in a fixed-bed reactor
  publication-title: Ind. Eng. Chem. Res.
– volume: 126
  start-page: 383
  year: 2015
  end-page: 389
  ident: bib24
  article-title: Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation
  publication-title: Chem. Eng. Sci.
– volume: 17
  start-page: 854
  year: 2009
  end-page: 859
  ident: bib31
  article-title: Influence of A-type zeolite on methane hydrate formation
  publication-title: Chin. J. Chem. Eng.
– volume: 10
  start-page: 16431
  year: 2020
  end-page: 16456
  ident: bib64
  article-title: Fundamentals and recent progress relating to the fabrication, functionalization and characterization of mesostructured materials using diverse synthetic methodologies
  publication-title: RSC Adv.
– volume: 402
  year: 2020
  ident: bib77
  article-title: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels
  publication-title: Chem. Eng. J.
– volume: 36
  start-page: 452
  year: 2018
  end-page: 466
  ident: bib1
  article-title: Biogas upgrading and utilization: current status and perspectives
  publication-title: Biotechnol. Adv.
– volume: 60
  start-page: 429
  year: 2015
  end-page: 436
  ident: bib6
  article-title: Permafrost-associated gas hydrate: is it really approximately 1 % of the global system?
  publication-title: J. Chem. Eng. Data
– volume: 103
  start-page: 3659
  year: 1999
  end-page: 3662
  ident: bib37
  article-title: Dissociation condition measurements of methane hydrate in confined small pores of porous glass
  publication-title: J. Phys. Chem. B
– volume: 405
  year: 2021
  ident: bib46
  article-title: Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 3913
  year: 2013
  end-page: 3955
  ident: bib61
  article-title: Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications
  publication-title: Chem. Soc. Rev.
– volume: 116
  start-page: 1520
  year: 2019
  end-page: 1525
  ident: bib76
  article-title: Molecular hydrophobicity at a macroscopically hydrophilic surface
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 58
  start-page: 22178
  year: 2019
  end-page: 22192
  ident: bib43
  article-title: Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications
  publication-title: Ind. Eng. Chem. Res.
– volume: 34
  start-page: 6751
  year: 2020
  end-page: 6760
  ident: bib56
  article-title: Critical review on gas hydrate formation at solid surfaces and in confined spaces - why and how does interfacial regime matter?
  publication-title: Energy Fuel.
– volume: 86
  start-page: 845
  year: 2017
  end-page: 869
  ident: bib9
  article-title: Kinetics of formation and dissociation of gas hydrates
  publication-title: Russ. Chem. Rev.
– volume: 109
  start-page: 6025
  year: 2005
  end-page: 6030
  ident: bib23
  article-title: Experimental and modeling study on hydrate formation in wet activated carbon
  publication-title: J. Phys. Chem. B
– volume: 19
  start-page: 1298
  year: 2018
  end-page: 1314
  ident: bib55
  article-title: Methane hydrate in confined spaces: an alternative storage system
  publication-title: ChemPhysChem
– volume: 204
  start-page: 1420
  year: 2017
  end-page: 1427
  ident: bib11
  article-title: Induction time, storage capacity, and rate of methane hydrate formation in the presence of SDS and silver nanoparticles
  publication-title: Chem. Eng. Commun.
– volume: 142
  start-page: 13391
  year: 2020
  end-page: 13397
  ident: bib28
  article-title: Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
– year: 2013
  ident: bib67
  article-title: Adsorption by Powders and Porous Solids
– volume: 63
  start-page: 1767
  year: 2018
  end-page: 1772
  ident: bib47
  article-title: Methane hydrate uptake of MCM-41 mesoporous molecular sieves with preadsorbed water
  publication-title: J. Chem. Eng. Data
– volume: 60
  start-page: 383
  year: 2015
  end-page: 388
  ident: bib53
  article-title: Use of hydrophobic particles as kinetic promoters for gas hydrate formation
  publication-title: J. Chem. Eng. Data
– volume: 338
  start-page: 572
  year: 2018
  end-page: 578
  ident: bib12
  article-title: Characterization of cyclopentane clathrates with gaseous guests for gas storage and separation
  publication-title: Chem. Eng. J.
– volume: 61
  start-page: 1573
  year: 2014
  end-page: 1576
  ident: bib48
  article-title: Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS
  publication-title: Energy Proc.
– volume: 109
  start-page: 22710
  year: 2005
  end-page: 22714
  ident: bib45
  article-title: Methane sorption in ordered mesoporous silica SBA-15 in the presence of water
  publication-title: J. Phys. Chem. B
– volume: 140
  start-page: 440
  year: 2015
  end-page: 445
  ident: bib54
  article-title: Hydrophobized particles can accelerate nucleation of clathrate hydrates
  publication-title: Fuel
– volume: 130
  start-page: 11608
  year: 2008
  end-page: 11609
  ident: bib58
  article-title: Methane storage in dry water gas hydrates
  publication-title: J. Am. Chem. Soc.
– volume: 273
  start-page: 117
  year: 2006
  end-page: 120
  ident: bib78
  article-title: Sorption/desorption equilibrium of methane in silica gel with pre-adsorption of water
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib60
  article-title: Periodic mesoporous organosilica nanocubes with ultrahigh surface areas for efficient CO2 adsorption
  publication-title: Sci. Rep.
– volume: 48
  start-page: 393
  year: 2002
  end-page: 400
  ident: bib44
  article-title: Methane hydrate equilibria in silica gels with broad pore-size distributions
  publication-title: AIChE J.
– volume: 60
  start-page: 309
  year: 1938
  end-page: 319
  ident: bib69
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 831
  year: 2011
  end-page: 846
  ident: bib7
  article-title: Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
  publication-title: Clim. Past
– volume: 96
  start-page: 8599
  year: 1992
  end-page: 8603
  ident: bib41
  article-title: Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores
  publication-title: J. Phys. Chem.
– volume: 87
  start-page: 1051
  year: 2015
  end-page: 1069
  ident: bib74
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
– volume: vol. 11
  start-page: 1
  year: 2011
  end-page: 4
  ident: bib4
  publication-title: Global ResouRce Potential of Gas HydRate-A New Calculation, MEthane Hydrate Newsl
– volume: 17
  start-page: 1283
  year: 2003
  end-page: 1291
  ident: bib19
  article-title: Methane storage within dry and wet active carbons: a comparative study
  publication-title: Energy Fuel.
– volume: 290
  start-page: 161
  year: 2016
  end-page: 173
  ident: bib13
  article-title: Rapid methane hydrate formation to develop a cost effective large scale energy storage system
  publication-title: Chem. Eng. J.
– volume: 288
  year: 2021
  ident: bib35
  article-title: Polymeric superabsorbent hydrogel-based kinetic promotion for gas hydrate formation
  publication-title: Fuel
– volume: 255
  start-page: 220
  year: 2018
  end-page: 225
  ident: bib17
  article-title: Methane hydrate formation in the confined nanospace of activated carbons in seawater environment
  publication-title: Microporous Mesoporous Mater.
– volume: 22
  start-page: 12246
  year: 2012
  end-page: 12252
  ident: bib26
  article-title: A novel method to improve the gas storage capacity of ZIF-8
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 4145
  year: 2016
  end-page: 4154
  ident: bib72
  article-title: One-dimensional periodic mesoporous organosilica helical nanotubes with amphiphilic properties for the removal of contaminants from water
  publication-title: J. Mater. Chem. A.
– volume: 54
  start-page: 12217
  year: 2015
  end-page: 12232
  ident: bib10
  article-title: Role of surfactants in promoting gas hydrate formation
  publication-title: Ind. Eng. Chem. Res.
– volume: 45
  start-page: 1678
  year: 2012
  end-page: 1687
  ident: bib63
  article-title: Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 1206
  year: 2011
  end-page: 1215
  ident: bib5
  article-title: Current perspectives on gas hydrate resources
  publication-title: Energy Environ. Sci.
– volume: 123
  start-page: 24071
  year: 2019
  end-page: 24079
  ident: bib14
  article-title: Experimental evidence of confined methane hydrate in hydrophilic and hydrophobic model carbons
  publication-title: J. Phys. Chem. C
– volume: 55
  start-page: 7973
  year: 2016
  end-page: 7980
  ident: bib32
  article-title: Investigation of CO
  publication-title: Ind. Eng. Chem. Res.
– volume: 12
  start-page: 1
  year: 2022
  end-page: 13
  ident: bib80
  article-title: Methane hydrate formation in hollow ZIF-8 nanoparticles for improved methane storage capacity
  publication-title: Catalysts
– volume: 106
  start-page: 53
  year: 2014
  end-page: 59
  ident: bib52
  article-title: Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution
  publication-title: Chem. Eng. Sci.
– volume: 89
  start-page: 14
  year: 2017
  ident: bib70
  article-title: Absolute quantification of water in microporous solids with 1 H magic angle spinning NMR and standard addition
  publication-title: Anal. Chem.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 8
  ident: bib15
  article-title: Methane hydrate formation in confined nanospace can surpass nature
  publication-title: Nat. Commun.
– volume: 48
  start-page: 2412
  year: 2002
  end-page: 2416
  ident: bib20
  article-title: Enhancement of the methane storage on activated carbon by preadsorbed water
  publication-title: AIChE J.
– volume: 147
  start-page: 547
  year: 2016
  end-page: 559
  ident: bib40
  article-title: Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir
  publication-title: J. Pet. Sci. Eng.
– year: 2021
  ident: bib57
  article-title: Interfacial study of clathrates confined in reversed silica pores
  publication-title: J. Mater. Chem.
– volume: 221
  year: 2021
  ident: bib71
  article-title: Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges
  publication-title: Ultramicroscopy
– volume: 40
  start-page: 385
  year: 2012
  end-page: 389
  ident: bib21
  article-title: Improving methane storage on wet activated carbons at various amounts of water
  publication-title: Ranliao Huaxue Xuebao/J. Fuel Chem. Technol.
– volume: 55
  start-page: 7981
  year: 2016
  end-page: 7991
  ident: bib39
  article-title: Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment
  publication-title: Ind. Eng. Chem. Res.
– volume: 157
  start-page: 35
  year: 2015
  end-page: 47
  ident: bib65
  article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography
  publication-title: Ultramicroscopy
– volume: 60
  start-page: 2178
  year: 2015
  end-page: 2185
  ident: bib29
  article-title: Phase equilibria of CO2 and CH4 hydrates in intergranular meso/macro pores of MIL-53 metal organic framework
  publication-title: J. Chem. Eng. Data
– volume: 26
  start-page: 3186
  year: 2010
  end-page: 3193
  ident: bib49
  article-title: Gas storage in “dry water” and “dry gel” clathrates
  publication-title: Langmuir
– volume: 426
  start-page: 353
  year: 2003
  end-page: 359
  ident: bib3
  article-title: Fundamental principles and applications of natural gas hydrates
  publication-title: Nature
– volume: 40
  start-page: 385
  year: 2012
  ident: 10.1016/j.heliyon.2023.e17662_bib21
  article-title: Improving methane storage on wet activated carbons at various amounts of water
  publication-title: Ranliao Huaxue Xuebao/J. Fuel Chem. Technol.
  doi: 10.1016/S1872-5813(12)60017-6
– volume: 55
  start-page: 7981
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib39
  article-title: Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03908
– volume: 147
  start-page: 547
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib40
  article-title: Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2016.09.017
– volume: 60
  start-page: 429
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib6
  article-title: Permafrost-associated gas hydrate: is it really approximately 1 % of the global system?
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je500770m
– volume: 103
  start-page: 3659
  year: 1999
  ident: 10.1016/j.heliyon.2023.e17662_bib37
  article-title: Dissociation condition measurements of methane hydrate in confined small pores of porous glass
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp984559l
– volume: 48
  start-page: 393
  year: 2002
  ident: 10.1016/j.heliyon.2023.e17662_bib44
  article-title: Methane hydrate equilibria in silica gels with broad pore-size distributions
  publication-title: AIChE J.
  doi: 10.1002/aic.690480222
– volume: 119
  start-page: 1690
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib51
  article-title: Effect of hydrate shell formation on the stability of dry water
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp510603q
– volume: 12
  start-page: 1
  year: 2022
  ident: 10.1016/j.heliyon.2023.e17662_bib80
  article-title: Methane hydrate formation in hollow ZIF-8 nanoparticles for improved methane storage capacity
  publication-title: Catalysts
– volume: 288
  year: 2021
  ident: 10.1016/j.heliyon.2023.e17662_bib35
  article-title: Polymeric superabsorbent hydrogel-based kinetic promotion for gas hydrate formation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119676
– volume: 123
  start-page: 299
  year: 2017
  ident: 10.1016/j.heliyon.2023.e17662_bib16
  article-title: Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2017.07.061
– volume: 48
  start-page: 2412
  year: 2002
  ident: 10.1016/j.heliyon.2023.e17662_bib20
  article-title: Enhancement of the methane storage on activated carbon by preadsorbed water
  publication-title: AIChE J.
  doi: 10.1002/aic.690481030
– volume: 126
  start-page: 383
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib24
  article-title: Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.12.047
– volume: 17
  start-page: 1283
  year: 2003
  ident: 10.1016/j.heliyon.2023.e17662_bib19
  article-title: Methane storage within dry and wet active carbons: a comparative study
  publication-title: Energy Fuel.
  doi: 10.1021/ef030067i
– volume: 140
  start-page: 440
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib54
  article-title: Hydrophobized particles can accelerate nucleation of clathrate hydrates
  publication-title: Fuel
  doi: 10.1016/j.fuel.2014.10.005
– volume: 17
  start-page: 854
  year: 2009
  ident: 10.1016/j.heliyon.2023.e17662_bib31
  article-title: Influence of A-type zeolite on methane hydrate formation
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/S1004-9541(08)60287-6
– volume: 58
  start-page: 16687
  year: 2019
  ident: 10.1016/j.heliyon.2023.e17662_bib38
  article-title: Impact of modified silica beads on methane hydrate formation in a fixed-bed reactor
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01952
– volume: 18
  start-page: 9164
  year: 2002
  ident: 10.1016/j.heliyon.2023.e17662_bib42
  article-title: Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling
  publication-title: Langmuir
  doi: 10.1021/la0257844
– volume: 123
  start-page: 24071
  year: 2019
  ident: 10.1016/j.heliyon.2023.e17662_bib14
  article-title: Experimental evidence of confined methane hydrate in hydrophilic and hydrophobic model carbons
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b06366
– volume: 290
  start-page: 161
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib13
  article-title: Rapid methane hydrate formation to develop a cost effective large scale energy storage system
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.01.026
– volume: 61
  start-page: 1573
  year: 2014
  ident: 10.1016/j.heliyon.2023.e17662_bib48
  article-title: Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2014.12.174
– volume: 405
  year: 2021
  ident: 10.1016/j.heliyon.2023.e17662_bib46
  article-title: Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126955
– year: 2021
  ident: 10.1016/j.heliyon.2023.e17662_bib57
  article-title: Interfacial study of clathrates confined in reversed silica pores
  publication-title: J. Mater. Chem.
  doi: 10.1039/D1TA03105H
– volume: 23
  start-page: 5496
  year: 2009
  ident: 10.1016/j.heliyon.2023.e17662_bib36
  article-title: Gas hydrate formation in a variable volume bed of silica sand particles
  publication-title: Energy Fuel.
  doi: 10.1021/ef900542m
– volume: 130
  start-page: 11608
  year: 2008
  ident: 10.1016/j.heliyon.2023.e17662_bib58
  article-title: Methane storage in dry water gas hydrates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8048173
– volume: 12
  start-page: 53510
  year: 2020
  ident: 10.1016/j.heliyon.2023.e17662_bib27
  article-title: Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c15675
– year: 2008
  ident: 10.1016/j.heliyon.2023.e17662_bib8
– volume: 204
  start-page: 1420
  year: 2017
  ident: 10.1016/j.heliyon.2023.e17662_bib11
  article-title: Induction time, storage capacity, and rate of methane hydrate formation in the presence of SDS and silver nanoparticles
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986445.2017.1366903
– volume: 360
  start-page: 569
  year: 2019
  ident: 10.1016/j.heliyon.2023.e17662_bib30
  article-title: Methane hydrates: nucleation in microporous materials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.11.216
– volume: 24
  start-page: 25129
  issue: 22
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib66
  article-title: Fast and flexible X-ray tomography using the ASTRA toolbox
  publication-title: Opt Express
  doi: 10.1364/OE.24.025129
– volume: 89
  start-page: 14
  year: 2017
  ident: 10.1016/j.heliyon.2023.e17662_bib70
  article-title: Absolute quantification of water in microporous solids with 1 H magic angle spinning NMR and standard addition
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b01653
– volume: 4
  start-page: 1206
  year: 2011
  ident: 10.1016/j.heliyon.2023.e17662_bib5
  article-title: Current perspectives on gas hydrate resources
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C0EE00203H
– volume: 63
  start-page: 1767
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17662_bib47
  article-title: Methane hydrate uptake of MCM-41 mesoporous molecular sieves with preadsorbed water
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.8b00060
– volume: 216
  start-page: 262
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17662_bib2
  article-title: A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.059
– volume: 273
  start-page: 117
  year: 2006
  ident: 10.1016/j.heliyon.2023.e17662_bib78
  article-title: Sorption/desorption equilibrium of methane in silica gel with pre-adsorption of water
  publication-title: Colloids Surfaces A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2005.08.017
– volume: 18
  start-page: 20607
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib22
  article-title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03993F
– volume: 96
  start-page: 8599
  year: 1992
  ident: 10.1016/j.heliyon.2023.e17662_bib41
  article-title: Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100200a071
– volume: 26
  start-page: 3186
  year: 2010
  ident: 10.1016/j.heliyon.2023.e17662_bib49
  article-title: Gas storage in “dry water” and “dry gel” clathrates
  publication-title: Langmuir
  doi: 10.1021/la903120p
– year: 2007
  ident: 10.1016/j.heliyon.2023.e17662_bib68
– volume: 60
  start-page: 383
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib53
  article-title: Use of hydrophobic particles as kinetic promoters for gas hydrate formation
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je5006455
– volume: 8
  year: 2021
  ident: 10.1016/j.heliyon.2023.e17662_bib75
  article-title: Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—a tutorial review
  publication-title: Adv. Mater. Interfac.
– volume: 54
  start-page: 12217
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib10
  article-title: Role of surfactants in promoting gas hydrate formation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03476
– volume: 19
  start-page: 1298
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17662_bib81
  article-title: Methane hydrate in confined spaces: an alternative storage system
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201701250
– volume: vol. 11
  start-page: 1
  year: 2011
  ident: 10.1016/j.heliyon.2023.e17662_bib4
– volume: 121
  start-page: 3830
  year: 2017
  ident: 10.1016/j.heliyon.2023.e17662_bib59
  article-title: Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07136
– volume: 87
  start-page: 1051
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib74
  article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)
  publication-title: Pure Appl. Chem.
  doi: 10.1515/pac-2014-1117
– volume: 60
  start-page: 2178
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib29
  article-title: Phase equilibria of CO2 and CH4 hydrates in intergranular meso/macro pores of MIL-53 metal organic framework
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/acs.jced.5b00322
– volume: 109
  start-page: 22710
  year: 2005
  ident: 10.1016/j.heliyon.2023.e17662_bib45
  article-title: Methane sorption in ordered mesoporous silica SBA-15 in the presence of water
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0546002
– volume: 36
  start-page: 452
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17662_bib1
  article-title: Biogas upgrading and utilization: current status and perspectives
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2018.01.011
– volume: 22
  start-page: 12246
  year: 2012
  ident: 10.1016/j.heliyon.2023.e17662_bib26
  article-title: A novel method to improve the gas storage capacity of ZIF-8
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm31541f
– volume: 45
  start-page: 1678
  year: 2012
  ident: 10.1016/j.heliyon.2023.e17662_bib63
  article-title: Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar200343s
– volume: 4
  start-page: 4145
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib72
  article-title: One-dimensional periodic mesoporous organosilica helical nanotubes with amphiphilic properties for the removal of contaminants from water
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA00708B
– volume: 220
  start-page: 185
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17662_bib33
  article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.01.067
– volume: 338
  start-page: 572
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17662_bib12
  article-title: Characterization of cyclopentane clathrates with gaseous guests for gas storage and separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.01.054
– volume: 93
  start-page: 285
  year: 2006
  ident: 10.1016/j.heliyon.2023.e17662_bib62
  article-title: Understanding the hydrothermal stability of large-pore periodic mesoporous organosilicas and pure silicas
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2006.03.009
– volume: 255
  start-page: 220
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17662_bib17
  article-title: Methane hydrate formation in the confined nanospace of activated carbons in seawater environment
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2017.07.047
– volume: 200
  year: 2009
  ident: 10.1016/j.heliyon.2023.e17662_bib79
  article-title: Clathrate hydrate physical property database
  publication-title: Natl. Energy Technol. Lab. U.S. Dep. Energy.
– volume: 109
  start-page: 6025
  year: 2005
  ident: 10.1016/j.heliyon.2023.e17662_bib23
  article-title: Experimental and modeling study on hydrate formation in wet activated carbon
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp045679y
– volume: 60
  start-page: 309
  year: 1938
  ident: 10.1016/j.heliyon.2023.e17662_bib69
  article-title: Adsorption of gases in multimolecular layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01269a023
– volume: 55
  start-page: 7973
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib32
  article-title: Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.5b03989
– volume: 402
  year: 2020
  ident: 10.1016/j.heliyon.2023.e17662_bib77
  article-title: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126276
– volume: 157
  start-page: 35
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib65
  article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.05.002
– volume: 7
  start-page: 831
  year: 2011
  ident: 10.1016/j.heliyon.2023.e17662_bib7
  article-title: Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events
  publication-title: Clim. Past
  doi: 10.5194/cp-7-831-2011
– volume: 34
  start-page: 6751
  year: 2020
  ident: 10.1016/j.heliyon.2023.e17662_bib56
  article-title: Critical review on gas hydrate formation at solid surfaces and in confined spaces - why and how does interfacial regime matter?
  publication-title: Energy Fuel.
  doi: 10.1021/acs.energyfuels.0c01291
– volume: 302
  year: 2003
  ident: 10.1016/j.heliyon.2023.e17662_bib73
  article-title: Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings
  publication-title: Science (80-.)
  doi: 10.1126/science.1084973
– volume: 426
  start-page: 353
  year: 2003
  ident: 10.1016/j.heliyon.2023.e17662_bib3
  article-title: Fundamental principles and applications of natural gas hydrates
  publication-title: Nature
  doi: 10.1038/nature02135
– volume: 85
  start-page: 957
  year: 2006
  ident: 10.1016/j.heliyon.2023.e17662_bib18
  article-title: Optimal wetting of active carbons for methane hydrate formation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2005.10.019
– volume: 16
  start-page: 1413
  year: 2002
  ident: 10.1016/j.heliyon.2023.e17662_bib34
  article-title: Promotion effect of polymers and surfactants on hydrate formation rate
  publication-title: Energy Fuel.
  doi: 10.1021/ef020023u
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib60
  article-title: Periodic mesoporous organosilica nanocubes with ultrahigh surface areas for efficient CO2 adsorption
  publication-title: Sci. Rep.
– volume: 58
  start-page: 22178
  year: 2019
  ident: 10.1016/j.heliyon.2023.e17662_bib43
  article-title: Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b04498
– volume: 116
  start-page: 1520
  year: 2019
  ident: 10.1016/j.heliyon.2023.e17662_bib76
  article-title: Molecular hydrophobicity at a macroscopically hydrophilic surface
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1819000116
– volume: 86
  start-page: 845
  year: 2017
  ident: 10.1016/j.heliyon.2023.e17662_bib9
  article-title: Kinetics of formation and dissociation of gas hydrates
  publication-title: Russ. Chem. Rev.
  doi: 10.1070/RCR4720
– volume: 42
  start-page: 3913
  year: 2013
  ident: 10.1016/j.heliyon.2023.e17662_bib61
  article-title: Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35222B
– volume: 221
  year: 2021
  ident: 10.1016/j.heliyon.2023.e17662_bib71
  article-title: Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2020.113191
– volume: 106
  start-page: 53
  year: 2014
  ident: 10.1016/j.heliyon.2023.e17662_bib52
  article-title: Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.11.032
– volume: 142
  start-page: 13391
  year: 2020
  ident: 10.1016/j.heliyon.2023.e17662_bib28
  article-title: Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c01459
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.heliyon.2023.e17662_bib15
  article-title: Methane hydrate formation in confined nanospace can surpass nature
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7432
– volume: 19
  start-page: 1298
  year: 2018
  ident: 10.1016/j.heliyon.2023.e17662_bib55
  article-title: Methane hydrate in confined spaces: an alternative storage system
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201701250
– volume: 7
  start-page: 3658
  year: 2016
  ident: 10.1016/j.heliyon.2023.e17662_bib25
  article-title: Paving the way for methane hydrate formation on metal-organic frameworks (MOFs)
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00272B
– volume: 10
  start-page: 16431
  year: 2020
  ident: 10.1016/j.heliyon.2023.e17662_bib64
  article-title: Fundamentals and recent progress relating to the fabrication, functionalization and characterization of mesostructured materials using diverse synthetic methodologies
  publication-title: RSC Adv.
  doi: 10.1039/D0RA00440E
– year: 2013
  ident: 10.1016/j.heliyon.2023.e17662_bib67
– volume: 130
  start-page: 11608
  year: 2008
  ident: 10.1016/j.heliyon.2023.e17662_bib50
  article-title: Methane storage in dry water gas hydrates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8048173
SSID ssj0001586973
Score 2.3389273
Snippet Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e17662
SubjectTerms Biomethane
Clathrate hydrate
Methane hydrate
Periodic mesoporous organosilica
Pressure-swing (un)loading
Title Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
URI https://dx.doi.org/10.1016/j.heliyon.2023.e17662
https://www.ncbi.nlm.nih.gov/pubmed/37449178
https://www.proquest.com/docview/2838247324
https://pubmed.ncbi.nlm.nih.gov/PMC10336592
https://doaj.org/article/dfeb71df24f842f39a8a0962511bfc58
Volume 9
WOSCitedRecordID wos001056264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVghRAXxDddYGUkrukmsR07R0BdcWBXHAD1ZsVfalbdZNW0SL3w23cmTksDh164VFFbx7Fnkvccz7wh5INQNiusEEnuXJpwaWxSAkomADaVdHCU9VJKP7_Kqys1n5ffDkp9YUxYlAeOE3fugjcycyHnQfE8sLJSFdBuZMYmWNGn-aayPFhMxfxgVZT99jIglkgU5-mf9J3z6-nCL-tti_qnOZt6FEnMR8DU6_eP8Olf_vl3GOUBLl08IY8HQkk_xoE8Jfd884w8vBy2zJ-T9QyzowCg6GLrUBciQeByFEtHV42nGB0JzxSKyWQrelMvHW1vUWkZm8Bi2cWYLmq2FEWRWzgvtO1a4O3tpqN9Vai2q_HdH23gcL0xvntBflzMvn_-kgylFhIrCrlOhIVlHsxsYYz0pUlLaSqlKo-BMdz4zIYC0M4UTnKgMF7kFUuNNMqXjCvnA3tJTpq28a8JrVhQLMCDUBaWmzQ3ilVlwUUQ3oNNignhu3nWdtAhx3IYS70LOLvWg3k0mkdH80zIdN_sNgpxHGvwCY24_zPqaPdfwMTowbv0Me-aELVzAT1Qkkg14FT1sf7f71xGwy2L-zBgVbCMBkanci6Byk7Iq-hC-6tkknNYQWPHI-caDWP8S1MvelnwLGUMN8lP_8fA35BHOJYYmPyWnKxXG_-OPLC_1nW3OiP35Vyd9bccfF7-nt0BeV4z0w
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+hydrate-based+methane+storage+under+mild+operating+conditions+by+periodic+mesoporous+organosilica+nanotubes&rft.jtitle=Heliyon&rft.au=Beckw%C3%A9e%2C+Emile+Jules&rft.au=Watson%2C+Geert&rft.au=Houlleberghs%2C+Maarten&rft.au=Arenas+Esteban%2C+Daniel&rft.date=2023-07-01&rft.pub=Elsevier+Ltd&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=9&rft.issue=7&rft_id=info:doi/10.1016%2Fj.heliyon.2023.e17662&rft.externalDocID=S2405844023048703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon