Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes
Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodi...
Gespeichert in:
| Veröffentlicht in: | Heliyon Jg. 9; H. 7; S. e17662 |
|---|---|
| Hauptverfasser: | , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
England
Elsevier Ltd
01.07.2023
Elsevier |
| Schlagworte: | |
| ISSN: | 2405-8440, 2405-8440 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
[Display omitted] |
|---|---|
| AbstractList | Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
Image 1 Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates. Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates. Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formation-dissociation cycles demonstrates the material’s excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates. [Display omitted] |
| ArticleNumber | e17662 |
| Author | Beckwée, Emile Jules Breynaert, Eric Watson, Geert Baron, Gino V. Van Der Voort, Pascal Arenas Esteban, Daniel Martens, Johan Denayer, Joeri F.M. Houlleberghs, Maarten Bals, Sara |
| Author_xml | – sequence: 1 givenname: Emile Jules orcidid: 0000-0002-4135-4249 surname: Beckwée fullname: Beckwée, Emile Jules organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium – sequence: 2 givenname: Geert orcidid: 0000-0002-2324-4521 surname: Watson fullname: Watson, Geert organization: Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium – sequence: 3 givenname: Maarten orcidid: 0000-0002-8456-0886 surname: Houlleberghs fullname: Houlleberghs, Maarten organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium – sequence: 4 givenname: Daniel orcidid: 0000-0002-5626-9848 surname: Arenas Esteban fullname: Arenas Esteban, Daniel organization: Electron Microscopy for Materials Science, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium – sequence: 5 givenname: Sara surname: Bals fullname: Bals, Sara organization: Electron Microscopy for Materials Science, Department of Physics, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium – sequence: 6 givenname: Pascal orcidid: 0000-0002-1248-479X surname: Van Der Voort fullname: Van Der Voort, Pascal organization: Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, B-9000, Ghent, Belgium – sequence: 7 givenname: Eric orcidid: 0000-0003-3499-0455 surname: Breynaert fullname: Breynaert, Eric organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium – sequence: 8 givenname: Johan surname: Martens fullname: Martens, Johan organization: Centre for Surface Chemistry and Catalysis, NMRCoRe - NMR - XRAY - EM Platform for Convergence Research, Department of Microbial and Molecular Systems (M2S), KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium – sequence: 9 givenname: Gino V. orcidid: 0000-0003-4483-2434 surname: Baron fullname: Baron, Gino V. organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium – sequence: 10 givenname: Joeri F.M. orcidid: 0000-0001-5587-5136 surname: Denayer fullname: Denayer, Joeri F.M. email: joeri.denayer@vub.be organization: Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37449178$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUstuEzEUHaEiWko_ATRLNhP8GtsjFghVBSpVYgNry487iaMZO9ieSvn7OiRFLZuufGWfh3XueduchRigad5jtMII80_b1QYmv49hRRChK8CCc_KquSAM9Z1kDJ09mc-bq5y3CCHcSz4I-qY5p4KxAQt50ZSboM3kw7rd7F3SBTqjM7h2hrLRAdpcYtJraJfgILWzn1wbd1CBB4qNwfniY8it2bf12kfnbeXmuIspLrmNaa1DzH7yVrehjmUxkN81r0c9Zbg6nZfN7283v65_dHc_v99ef73rbM9F6XqLBqal5sYIGAwahNFSauC9QMwAtiNnmBruBOOMQk80RUYYCQNl0sFIL5vbo66Leqt2yc867VXUXv29qJ9TOhVvJ1BuBCOwGwkbJSMjHaovGjjpMTaj7WXV-nLU2i1mBmchlKSnZ6LPX4LfqHW8VxhRyvuBVIWPJ4UU_yyQi5p9tjBNNeealSKSSsIEJaxCPzw1--fyuLcK-HwE2BRzTjAq64s-rKJ6-6maqkNR1FadiqIORVHHolR2_x_70eAl3ikDqEu795BUth6CBecT2FJT9S8oPAAjCd8_ |
| CitedBy_id | crossref_primary_10_1016_j_cej_2025_166696 crossref_primary_10_1016_j_energy_2025_137009 crossref_primary_10_1016_j_apenergy_2023_122120 crossref_primary_10_1038_s41598_025_15942_5 crossref_primary_10_1016_j_cej_2025_164908 crossref_primary_10_1039_D4SE00114A crossref_primary_10_1016_j_ijhydene_2025_150863 crossref_primary_10_1016_j_jechem_2024_05_038 crossref_primary_10_3390_molecules29143369 crossref_primary_10_3390_pr11113164 crossref_primary_10_1107_S1600576725000226 crossref_primary_10_1038_s41467_024_52893_3 crossref_primary_10_1039_D5TA04503G crossref_primary_10_1016_j_micromeso_2023_112884 |
| Cites_doi | 10.1016/S1872-5813(12)60017-6 10.1021/acs.iecr.5b03908 10.1016/j.petrol.2016.09.017 10.1021/je500770m 10.1021/jp984559l 10.1002/aic.690480222 10.1021/jp510603q 10.1016/j.fuel.2020.119676 10.1016/j.carbon.2017.07.061 10.1002/aic.690481030 10.1016/j.ces.2014.12.047 10.1021/ef030067i 10.1016/j.fuel.2014.10.005 10.1016/S1004-9541(08)60287-6 10.1021/acs.iecr.9b01952 10.1021/la0257844 10.1021/acs.jpcc.9b06366 10.1016/j.cej.2016.01.026 10.1016/j.egypro.2014.12.174 10.1016/j.cej.2020.126955 10.1039/D1TA03105H 10.1021/ef900542m 10.1021/ja8048173 10.1021/acsami.0c15675 10.1080/00986445.2017.1366903 10.1016/j.cej.2018.11.216 10.1364/OE.24.025129 10.1021/acs.analchem.7b01653 10.1039/C0EE00203H 10.1021/acs.jced.8b00060 10.1016/j.apenergy.2018.02.059 10.1016/j.colsurfa.2005.08.017 10.1039/C6CP03993F 10.1021/j100200a071 10.1021/la903120p 10.1021/je5006455 10.1021/acs.iecr.5b03476 10.1002/cphc.201701250 10.1021/acs.jpcc.6b07136 10.1515/pac-2014-1117 10.1021/acs.jced.5b00322 10.1021/jp0546002 10.1016/j.biotechadv.2018.01.011 10.1039/c2jm31541f 10.1021/ar200343s 10.1039/C6TA00708B 10.1016/j.fuel.2018.01.067 10.1016/j.cej.2018.01.054 10.1016/j.micromeso.2006.03.009 10.1016/j.micromeso.2017.07.047 10.1021/jp045679y 10.1021/ja01269a023 10.1021/acs.iecr.5b03989 10.1016/j.cej.2020.126276 10.1016/j.ultramic.2015.05.002 10.5194/cp-7-831-2011 10.1021/acs.energyfuels.0c01291 10.1126/science.1084973 10.1038/nature02135 10.1016/j.fuel.2005.10.019 10.1021/ef020023u 10.1021/acs.iecr.9b04498 10.1073/pnas.1819000116 10.1070/RCR4720 10.1039/C2CS35222B 10.1016/j.ultramic.2020.113191 10.1016/j.ces.2013.11.032 10.1021/jacs.0c01459 10.1038/ncomms7432 10.1039/C6SC00272B 10.1039/D0RA00440E |
| ContentType | Journal Article |
| Copyright | 2023 The Authors 2023 The Authors. 2023 The Authors 2023 |
| Copyright_xml | – notice: 2023 The Authors – notice: 2023 The Authors. – notice: 2023 The Authors 2023 |
| DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 5PM DOA |
| DOI | 10.1016/j.heliyon.2023.e17662 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2405-8440 |
| ExternalDocumentID | oai_doaj_org_article_dfeb71df24f842f39a8a0962511bfc58 PMC10336592 37449178 10_1016_j_heliyon_2023_e17662 S2405844023048703 |
| Genre | Journal Article |
| GroupedDBID | 0R~ 457 53G 5VS 6I. AAEDW AAFTH AAFWJ AALRI AAYWO ABMAC ACGFS ACLIJ ACVFH ADBBV ADCNI ADEZE ADVLN AEUPX AEXQZ AFJKZ AFPKN AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS APXCP BAWUL BCNDV DIK EBS EJD FDB GROUPED_DOAJ HYE IPNFZ KQ8 M~E O9- OK1 RIG ROL RPM SSZ AAYXX CITATION 0SF AACTN NCXOZ NPM 7X8 5PM |
| ID | FETCH-LOGICAL-c567t-5c094a8a6bb7e9b097ba88ae65704be1cf6413b6d74643e52a30b7b8e9348def3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001056264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2405-8440 |
| IngestDate | Fri Oct 03 12:30:28 EDT 2025 Tue Sep 30 17:12:32 EDT 2025 Fri Jul 11 08:19:50 EDT 2025 Thu Jan 02 22:43:57 EST 2025 Tue Nov 18 21:32:23 EST 2025 Thu Nov 27 00:47:10 EST 2025 Wed Dec 10 14:24:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Methane hydrate Periodic mesoporous organosilica Biomethane Clathrate hydrate Pressure-swing (un)loading |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. 2023 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-5c094a8a6bb7e9b097ba88ae65704be1cf6413b6d74643e52a30b7b8e9348def3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Co-first authorship. |
| ORCID | 0000-0003-3499-0455 0000-0002-2324-4521 0000-0002-8456-0886 0000-0002-5626-9848 0000-0002-1248-479X 0000-0003-4483-2434 0000-0001-5587-5136 0000-0002-4135-4249 |
| OpenAccessLink | https://doaj.org/article/dfeb71df24f842f39a8a0962511bfc58 |
| PMID | 37449178 |
| PQID | 2838247324 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dfeb71df24f842f39a8a0962511bfc58 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10336592 proquest_miscellaneous_2838247324 pubmed_primary_37449178 crossref_citationtrail_10_1016_j_heliyon_2023_e17662 crossref_primary_10_1016_j_heliyon_2023_e17662 elsevier_sciencedirect_doi_10_1016_j_heliyon_2023_e17662 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Heliyon |
| PublicationTitleAlternate | Heliyon |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Rouquerol, Rouquerol, Sing, Llewellyn, Maurin (bib67) 2013 Veluswamy, Kumar, Seo, Lee, Linga (bib2) 2018; 216 Sloan (bib3) 2003; 426 Zhao, Zhao, Liang, Gao, Yang (bib33) 2018; 220 Kim, Ahn, Lee (bib29) 2015; 60 Wei, Li, Zhang, Liu, Wang, Ling, El-Toni, Zhao (bib60) 2016; 6 Van Aarle, Jan Palenstijn, Cant, Janssens, Bleichrodt, Dabravolski, DE Beenhouwer, Joost Batenburg, Sijbers, Perilli, Le, Ma, Salmon, Reynolds, Erbou, Vester-Christensen, Hansen, Darré, Hviid, V Olsen, Aarle, Palenstijn, De Beenhouwer, Altantzis, Bals, Batenburg, Sijbers, Astra, Sheppard, Latham, Middleton, Kingston, Myers, Varslot, Fogden, Sawkins, Cruikshank, Saadatfar, Francois, Arns, Senden, Mirone, Brun, Gouillart, Tafforeau, Kieffer, Pelt, Gürsoy, De Carlo, Reid, Betcke, Chana, Speller (bib66) 2016; 24 Inkong, Veluswamy, Rangsunvigit, Kulprathipanja, Linga (bib43) 2019; 58 Zou, Wang, Shi, Dai, Zhang, Qiu (bib72) 2016; 4 Handa, Stupin (bib41) 1992; 96 Wang, Wang, Yoon, Seol (bib53) 2015; 60 Liu, Liu, Xie, Cui, Chen (bib47) 2018; 63 Casco, Zhang, Grätz, Krause, Bon, Wallacher, Grimm, Többens, Hauß, Borchardt (bib14) 2019; 123 Zhou, Sun, Zhou (bib20) 2002; 48 Vanrompay, Skorikov, Bladt, Béché, Freitag, Verbeeck, Bals (bib71) 2021; 221 Filarsky, Schmuck, Schultz (bib38) 2019; 58 Veluswamy, Wong, Babu, Kumar, Kulprathipanja, Rangsunvigit, Linga (bib13) 2016; 290 Denning, Majid, Lucero, Crawford, Carreon, Koh (bib27) 2020; 12 Uchida, Ebinuma, Ishizaki (bib37) 1999; 103 Borchardt, Casco, Silvestre-Albero (bib81) 2018; 19 Cuadrado-Collados, Fauth, Such-Basañez, Martínez-Escandell, Silvestre-Albero (bib17) 2018; 255 Seo, Lee, Uchida (bib42) 2002; 18 van Aarle, Palenstijn, De Beenhouwer, Altantzis, Bals, Batenburg, Sijbers (bib65) 2015; 157 Mohammadi, Manteghian, Mohammadi, Jahangiri (bib11) 2017; 204 Perrin, Celzard, Marěché, Furdin (bib19) 2003; 17 Nair, Ramesh, Ramadass, Sangwai (bib40) 2016; 147 Chong, Yang, Khoo, Linga (bib39) 2016; 55 Park, Shin, Kim, Lee, Seo, Maeda, Tian, Wood (bib51) 2015; 119 Siangsai, Rangsunvigit, Kitiyanan, Kulprathipanja, Linga (bib24) 2015; 126 Kroenlein, Muzny, Kazakov, Diky, Chirico, Sloan, Frenkel (bib79) 2009; 200 Fan, Yang, Wang, Lang, Wen, Lou (bib52) 2014; 106 Casco, Rey, Jordá, Rudić, Fauth, Martínez-Escandell, Rodríguez-Reinoso, Ramos-Fernández, Silvestre-Albero (bib25) 2016; 7 Li, Wang (bib54) 2015; 140 Guo, Li, Zhao (bib62) 2006; 93 Kumar, Bhattacharjee, Kulkarni, Kumar (bib10) 2015; 54 Carter, Wang, Adams, Cooper (bib49) 2010; 26 Zang, Du, Liang, Fan, Tang (bib31) 2009; 17 Borchardt, Casco, Silvestre-Albero (bib55) 2018; 19 Cyran, Donovan, Vollmer, Brigiano, Pezzotti, Galimberti, Gaigeot, Bonn, Backus (bib76) 2019; 116 Chen, Li, Cao (bib80) 2022; 12 Mahboub, Ahmadpour, Rashidi (bib21) 2012; 40 Borchardt, Nickel, Casco, Senkovska, Bon, Wallacher, Grimm, Krause, Silvestre-Albero (bib22) 2016; 18 Andres-Garcia, Dikhtiarenko, Fauth, Silvestre-Albero, Ramos-Fernández, Gascon, Corma, Kapteijn (bib30) 2019; 360 Schlumberger, Thommes (bib75) 2021; 8 Cuadrado-Collados, Mouchaham, Daemen, Cheng, Ramirez-Cuesta, Aggarwal, Missyul, Eddaoudi, Belmabkhout, Silvestre-Albero (bib28) 2020; 142 Yan, Chen, Pang, Liu (bib23) 2005; 109 Celzard, Marêché (bib18) 2006; 85 Thommes, Kaneko, Neimark, Olivier, Rodriguez-Reinoso, Rouquerol, Sing (bib74) 2015; 87 Wang, Bray, Adams, Cooper (bib58) 2008; 130 Soltani, Khanian, Rashid, Yaw Choong (bib64) 2020; 10 Linga, Haligva, Nam, Ripmeester, Englezos (bib36) 2009; 23 Karaaslan, Parlaktuna (bib34) 2002; 16 Brunauer, Emmett, Teller (bib69) 1938; 60 Casco, Silvestre-Albero, Ramírez-Cuesta, Rey, Jordá, Bansode, Urakawa, Peral, Martínez-Escandell, Kaneko, Rodríguez-Reinoso (bib15) 2015; 6 Wang, Bray, Adams, Cooper (bib50) 2008; 130 Mu, Liu, Liu, Yang, Sun, Chen (bib26) 2012; 22 Angelidaki, Treu, Tsapekos, Luo, Campanaro, Wenzel, Kougias (bib1) 2018; 36 Nguyen, Nguyen, Steel, Dang, Galib (bib59) 2017; 121 Van Der Voort, Esquivel, De Canck, Goethals, Van Driessche, Francisco Romero (bib61) 2013; 42 Cuadrado-Collados, Farrando-Pérez, Martínez-Escandell, Ramírez-Montoya, Menéndez, Arenillas, Montes-Morán, Silvestre-Albero (bib77) 2020; 402 Zhou, Liu, Li, Sun, Zhou (bib78) 2006; 273 Zhou, Liu, Sun, Li, Zhou (bib45) 2005; 109 Zhong, He, Sun, Yang (bib48) 2014; 61 Manakov, V Penkov, V Rodionova, Nesterov, Fesenko (bib9) 2017; 86 Houlleberghs, Hoffmann, Dom, Kirschhock, Taulelle, Martens, Breynaert (bib70) 2017; 89 Rouquerol, Llewellyn, Rouquerol (bib68) 2007 Dickens (bib7) 2011; 7 Smith, Wilder, Seshadri (bib44) 2002; 48 Boswell, Collett (bib5) 2011; 4 Mileo, Rogge, Houlleberghs, Breynaert, Martens, Van Speybroeck (bib57) 2021 Casco, Cuadrado-Collados, Martínez-Escandell, Rodríguez-Reinoso, Silvestre-Albero (bib16) 2017; 123 Sun, Song, Zhang, Li, Wang (bib35) 2021; 288 Ruppel (bib6) 2015; 60 Casco, Grätz, Wallacher, Grimm, Többens, Bilo, Speil, Fröba, Borchardt (bib46) 2021; 405 Landskron, Hatton, Perovic, Ozin (bib73) 2003; 302 Dendy Sloan, Koh (bib8) 2008 Lee, Jin, Seo (bib12) 2018; 338 Johnson (bib4) 2011; vol. 11 Kruk (bib63) 2012; 45 Zhong, Li, Lu, Le Wang, Yan, Qing (bib32) 2016; 55 Nguyen, Galib, Nguyen (bib56) 2020; 34 Mohammadi (10.1016/j.heliyon.2023.e17662_bib11) 2017; 204 Wang (10.1016/j.heliyon.2023.e17662_bib53) 2015; 60 Uchida (10.1016/j.heliyon.2023.e17662_bib37) 1999; 103 Liu (10.1016/j.heliyon.2023.e17662_bib47) 2018; 63 Cuadrado-Collados (10.1016/j.heliyon.2023.e17662_bib28) 2020; 142 Cyran (10.1016/j.heliyon.2023.e17662_bib76) 2019; 116 Andres-Garcia (10.1016/j.heliyon.2023.e17662_bib30) 2019; 360 Nair (10.1016/j.heliyon.2023.e17662_bib40) 2016; 147 Manakov (10.1016/j.heliyon.2023.e17662_bib9) 2017; 86 Schlumberger (10.1016/j.heliyon.2023.e17662_bib75) 2021; 8 Cuadrado-Collados (10.1016/j.heliyon.2023.e17662_bib77) 2020; 402 Landskron (10.1016/j.heliyon.2023.e17662_bib73) 2003; 302 Linga (10.1016/j.heliyon.2023.e17662_bib36) 2009; 23 Rouquerol (10.1016/j.heliyon.2023.e17662_bib68) 2007 Casco (10.1016/j.heliyon.2023.e17662_bib15) 2015; 6 Casco (10.1016/j.heliyon.2023.e17662_bib25) 2016; 7 Sloan (10.1016/j.heliyon.2023.e17662_bib3) 2003; 426 Handa (10.1016/j.heliyon.2023.e17662_bib41) 1992; 96 Lee (10.1016/j.heliyon.2023.e17662_bib12) 2018; 338 Zang (10.1016/j.heliyon.2023.e17662_bib31) 2009; 17 Guo (10.1016/j.heliyon.2023.e17662_bib62) 2006; 93 Zhou (10.1016/j.heliyon.2023.e17662_bib20) 2002; 48 Boswell (10.1016/j.heliyon.2023.e17662_bib5) 2011; 4 Zhou (10.1016/j.heliyon.2023.e17662_bib45) 2005; 109 Dickens (10.1016/j.heliyon.2023.e17662_bib7) 2011; 7 Kim (10.1016/j.heliyon.2023.e17662_bib29) 2015; 60 Siangsai (10.1016/j.heliyon.2023.e17662_bib24) 2015; 126 Soltani (10.1016/j.heliyon.2023.e17662_bib64) 2020; 10 Van Aarle (10.1016/j.heliyon.2023.e17662_bib66) 2016; 24 Zou (10.1016/j.heliyon.2023.e17662_bib72) 2016; 4 Kruk (10.1016/j.heliyon.2023.e17662_bib63) 2012; 45 Johnson (10.1016/j.heliyon.2023.e17662_bib4) 2011; vol. 11 Veluswamy (10.1016/j.heliyon.2023.e17662_bib13) 2016; 290 Denning (10.1016/j.heliyon.2023.e17662_bib27) 2020; 12 Inkong (10.1016/j.heliyon.2023.e17662_bib43) 2019; 58 Wang (10.1016/j.heliyon.2023.e17662_bib58) 2008; 130 Nguyen (10.1016/j.heliyon.2023.e17662_bib59) 2017; 121 Wei (10.1016/j.heliyon.2023.e17662_bib60) 2016; 6 Wang (10.1016/j.heliyon.2023.e17662_bib50) 2008; 130 Rouquerol (10.1016/j.heliyon.2023.e17662_bib67) 2013 Casco (10.1016/j.heliyon.2023.e17662_bib14) 2019; 123 Celzard (10.1016/j.heliyon.2023.e17662_bib18) 2006; 85 Borchardt (10.1016/j.heliyon.2023.e17662_bib55) 2018; 19 Mileo (10.1016/j.heliyon.2023.e17662_bib57) 2021 Ruppel (10.1016/j.heliyon.2023.e17662_bib6) 2015; 60 Chen (10.1016/j.heliyon.2023.e17662_bib80) 2022; 12 Cuadrado-Collados (10.1016/j.heliyon.2023.e17662_bib17) 2018; 255 Perrin (10.1016/j.heliyon.2023.e17662_bib19) 2003; 17 Kroenlein (10.1016/j.heliyon.2023.e17662_bib79) 2009; 200 Karaaslan (10.1016/j.heliyon.2023.e17662_bib34) 2002; 16 Borchardt (10.1016/j.heliyon.2023.e17662_bib81) 2018; 19 Dendy Sloan (10.1016/j.heliyon.2023.e17662_bib8) 2008 Sun (10.1016/j.heliyon.2023.e17662_bib35) 2021; 288 Casco (10.1016/j.heliyon.2023.e17662_bib16) 2017; 123 Seo (10.1016/j.heliyon.2023.e17662_bib42) 2002; 18 Yan (10.1016/j.heliyon.2023.e17662_bib23) 2005; 109 Chong (10.1016/j.heliyon.2023.e17662_bib39) 2016; 55 Casco (10.1016/j.heliyon.2023.e17662_bib46) 2021; 405 Filarsky (10.1016/j.heliyon.2023.e17662_bib38) 2019; 58 Zhong (10.1016/j.heliyon.2023.e17662_bib32) 2016; 55 Brunauer (10.1016/j.heliyon.2023.e17662_bib69) 1938; 60 Kumar (10.1016/j.heliyon.2023.e17662_bib10) 2015; 54 Fan (10.1016/j.heliyon.2023.e17662_bib52) 2014; 106 Thommes (10.1016/j.heliyon.2023.e17662_bib74) 2015; 87 Zhao (10.1016/j.heliyon.2023.e17662_bib33) 2018; 220 Carter (10.1016/j.heliyon.2023.e17662_bib49) 2010; 26 Angelidaki (10.1016/j.heliyon.2023.e17662_bib1) 2018; 36 Zhong (10.1016/j.heliyon.2023.e17662_bib48) 2014; 61 Van Der Voort (10.1016/j.heliyon.2023.e17662_bib61) 2013; 42 Nguyen (10.1016/j.heliyon.2023.e17662_bib56) 2020; 34 Borchardt (10.1016/j.heliyon.2023.e17662_bib22) 2016; 18 Mu (10.1016/j.heliyon.2023.e17662_bib26) 2012; 22 Li (10.1016/j.heliyon.2023.e17662_bib54) 2015; 140 Mahboub (10.1016/j.heliyon.2023.e17662_bib21) 2012; 40 Park (10.1016/j.heliyon.2023.e17662_bib51) 2015; 119 Veluswamy (10.1016/j.heliyon.2023.e17662_bib2) 2018; 216 Smith (10.1016/j.heliyon.2023.e17662_bib44) 2002; 48 Zhou (10.1016/j.heliyon.2023.e17662_bib78) 2006; 273 Vanrompay (10.1016/j.heliyon.2023.e17662_bib71) 2021; 221 van Aarle (10.1016/j.heliyon.2023.e17662_bib65) 2015; 157 Houlleberghs (10.1016/j.heliyon.2023.e17662_bib70) 2017; 89 |
| References_xml | – volume: 200 year: 2009 ident: bib79 article-title: Clathrate hydrate physical property database publication-title: Natl. Energy Technol. Lab. U.S. Dep. Energy. – volume: 121 start-page: 3830 year: 2017 end-page: 3840 ident: bib59 article-title: Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles publication-title: J. Phys. Chem. C – year: 2007 ident: bib68 article-title: Is the BET Equation Applicable to Microporous Adsorbents? – volume: 18 start-page: 9164 year: 2002 end-page: 9170 ident: bib42 article-title: Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling publication-title: Langmuir – volume: 216 start-page: 262 year: 2018 end-page: 285 ident: bib2 article-title: A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates publication-title: Appl. Energy – volume: 360 start-page: 569 year: 2019 end-page: 576 ident: bib30 article-title: Methane hydrates: nucleation in microporous materials publication-title: Chem. Eng. J. – volume: 16 start-page: 1413 year: 2002 end-page: 1416 ident: bib34 article-title: Promotion effect of polymers and surfactants on hydrate formation rate publication-title: Energy Fuel. – volume: 8 year: 2021 ident: bib75 article-title: Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—a tutorial review publication-title: Adv. Mater. Interfac. – volume: 19 start-page: 1298 year: 2018 end-page: 1314 ident: bib81 article-title: Methane hydrate in confined spaces: an alternative storage system publication-title: ChemPhysChem – volume: 24 start-page: 25129 year: 2016 end-page: 25147 ident: bib66 article-title: Fast and flexible X-ray tomography using the ASTRA toolbox publication-title: Opt Express – volume: 18 start-page: 20607 year: 2016 end-page: 20614 ident: bib22 article-title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons publication-title: Phys. Chem. Chem. Phys. – volume: 12 start-page: 53510 year: 2020 end-page: 53518 ident: bib27 article-title: Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 3658 year: 2016 end-page: 3666 ident: bib25 article-title: Paving the way for methane hydrate formation on metal-organic frameworks (MOFs) publication-title: Chem. Sci. – year: 2008 ident: bib8 article-title: “9078_C000”-2007/8/1-20:50-page i-#1 Clathrate Hydrates of Natural Gases – volume: 85 start-page: 957 year: 2006 end-page: 966 ident: bib18 article-title: Optimal wetting of active carbons for methane hydrate formation publication-title: Fuel – volume: 220 start-page: 185 year: 2018 end-page: 191 ident: bib33 article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites publication-title: Fuel – volume: 23 start-page: 5496 year: 2009 end-page: 5507 ident: bib36 article-title: Gas hydrate formation in a variable volume bed of silica sand particles publication-title: Energy Fuel. – volume: 123 start-page: 299 year: 2017 end-page: 301 ident: bib16 article-title: Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon publication-title: Carbon N. Y. – volume: 119 start-page: 1690 year: 2015 end-page: 1699 ident: bib51 article-title: Effect of hydrate shell formation on the stability of dry water publication-title: J. Phys. Chem. C – volume: 130 start-page: 11608 year: 2008 end-page: 11609 ident: bib50 article-title: Methane storage in dry water gas hydrates publication-title: J. Am. Chem. Soc. – volume: 93 start-page: 285 year: 2006 end-page: 293 ident: bib62 article-title: Understanding the hydrothermal stability of large-pore periodic mesoporous organosilicas and pure silicas publication-title: Microporous Mesoporous Mater. – volume: 302 year: 2003 ident: bib73 article-title: Periodic mesoporous organosilicas containing interconnected [Si(CH publication-title: Science (80-.) – volume: 58 start-page: 16687 year: 2019 end-page: 16695 ident: bib38 article-title: Impact of modified silica beads on methane hydrate formation in a fixed-bed reactor publication-title: Ind. Eng. Chem. Res. – volume: 126 start-page: 383 year: 2015 end-page: 389 ident: bib24 article-title: Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation publication-title: Chem. Eng. Sci. – volume: 17 start-page: 854 year: 2009 end-page: 859 ident: bib31 article-title: Influence of A-type zeolite on methane hydrate formation publication-title: Chin. J. Chem. Eng. – volume: 10 start-page: 16431 year: 2020 end-page: 16456 ident: bib64 article-title: Fundamentals and recent progress relating to the fabrication, functionalization and characterization of mesostructured materials using diverse synthetic methodologies publication-title: RSC Adv. – volume: 402 year: 2020 ident: bib77 article-title: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels publication-title: Chem. Eng. J. – volume: 36 start-page: 452 year: 2018 end-page: 466 ident: bib1 article-title: Biogas upgrading and utilization: current status and perspectives publication-title: Biotechnol. Adv. – volume: 60 start-page: 429 year: 2015 end-page: 436 ident: bib6 article-title: Permafrost-associated gas hydrate: is it really approximately 1 % of the global system? publication-title: J. Chem. Eng. Data – volume: 103 start-page: 3659 year: 1999 end-page: 3662 ident: bib37 article-title: Dissociation condition measurements of methane hydrate in confined small pores of porous glass publication-title: J. Phys. Chem. B – volume: 405 year: 2021 ident: bib46 article-title: Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas publication-title: Chem. Eng. J. – volume: 42 start-page: 3913 year: 2013 end-page: 3955 ident: bib61 article-title: Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications publication-title: Chem. Soc. Rev. – volume: 116 start-page: 1520 year: 2019 end-page: 1525 ident: bib76 article-title: Molecular hydrophobicity at a macroscopically hydrophilic surface publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 58 start-page: 22178 year: 2019 end-page: 22192 ident: bib43 article-title: Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications publication-title: Ind. Eng. Chem. Res. – volume: 34 start-page: 6751 year: 2020 end-page: 6760 ident: bib56 article-title: Critical review on gas hydrate formation at solid surfaces and in confined spaces - why and how does interfacial regime matter? publication-title: Energy Fuel. – volume: 86 start-page: 845 year: 2017 end-page: 869 ident: bib9 article-title: Kinetics of formation and dissociation of gas hydrates publication-title: Russ. Chem. Rev. – volume: 109 start-page: 6025 year: 2005 end-page: 6030 ident: bib23 article-title: Experimental and modeling study on hydrate formation in wet activated carbon publication-title: J. Phys. Chem. B – volume: 19 start-page: 1298 year: 2018 end-page: 1314 ident: bib55 article-title: Methane hydrate in confined spaces: an alternative storage system publication-title: ChemPhysChem – volume: 204 start-page: 1420 year: 2017 end-page: 1427 ident: bib11 article-title: Induction time, storage capacity, and rate of methane hydrate formation in the presence of SDS and silver nanoparticles publication-title: Chem. Eng. Commun. – volume: 142 start-page: 13391 year: 2020 end-page: 13397 ident: bib28 article-title: Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks publication-title: J. Am. Chem. Soc. – year: 2013 ident: bib67 article-title: Adsorption by Powders and Porous Solids – volume: 63 start-page: 1767 year: 2018 end-page: 1772 ident: bib47 article-title: Methane hydrate uptake of MCM-41 mesoporous molecular sieves with preadsorbed water publication-title: J. Chem. Eng. Data – volume: 60 start-page: 383 year: 2015 end-page: 388 ident: bib53 article-title: Use of hydrophobic particles as kinetic promoters for gas hydrate formation publication-title: J. Chem. Eng. Data – volume: 338 start-page: 572 year: 2018 end-page: 578 ident: bib12 article-title: Characterization of cyclopentane clathrates with gaseous guests for gas storage and separation publication-title: Chem. Eng. J. – volume: 61 start-page: 1573 year: 2014 end-page: 1576 ident: bib48 article-title: Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS publication-title: Energy Proc. – volume: 109 start-page: 22710 year: 2005 end-page: 22714 ident: bib45 article-title: Methane sorption in ordered mesoporous silica SBA-15 in the presence of water publication-title: J. Phys. Chem. B – volume: 140 start-page: 440 year: 2015 end-page: 445 ident: bib54 article-title: Hydrophobized particles can accelerate nucleation of clathrate hydrates publication-title: Fuel – volume: 130 start-page: 11608 year: 2008 end-page: 11609 ident: bib58 article-title: Methane storage in dry water gas hydrates publication-title: J. Am. Chem. Soc. – volume: 273 start-page: 117 year: 2006 end-page: 120 ident: bib78 article-title: Sorption/desorption equilibrium of methane in silica gel with pre-adsorption of water publication-title: Colloids Surfaces A Physicochem. Eng. Asp. – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: bib60 article-title: Periodic mesoporous organosilica nanocubes with ultrahigh surface areas for efficient CO2 adsorption publication-title: Sci. Rep. – volume: 48 start-page: 393 year: 2002 end-page: 400 ident: bib44 article-title: Methane hydrate equilibria in silica gels with broad pore-size distributions publication-title: AIChE J. – volume: 60 start-page: 309 year: 1938 end-page: 319 ident: bib69 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 831 year: 2011 end-page: 846 ident: bib7 article-title: Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events publication-title: Clim. Past – volume: 96 start-page: 8599 year: 1992 end-page: 8603 ident: bib41 article-title: Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores publication-title: J. Phys. Chem. – volume: 87 start-page: 1051 year: 2015 end-page: 1069 ident: bib74 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl. Chem. – volume: vol. 11 start-page: 1 year: 2011 end-page: 4 ident: bib4 publication-title: Global ResouRce Potential of Gas HydRate-A New Calculation, MEthane Hydrate Newsl – volume: 17 start-page: 1283 year: 2003 end-page: 1291 ident: bib19 article-title: Methane storage within dry and wet active carbons: a comparative study publication-title: Energy Fuel. – volume: 290 start-page: 161 year: 2016 end-page: 173 ident: bib13 article-title: Rapid methane hydrate formation to develop a cost effective large scale energy storage system publication-title: Chem. Eng. J. – volume: 288 year: 2021 ident: bib35 article-title: Polymeric superabsorbent hydrogel-based kinetic promotion for gas hydrate formation publication-title: Fuel – volume: 255 start-page: 220 year: 2018 end-page: 225 ident: bib17 article-title: Methane hydrate formation in the confined nanospace of activated carbons in seawater environment publication-title: Microporous Mesoporous Mater. – volume: 22 start-page: 12246 year: 2012 end-page: 12252 ident: bib26 article-title: A novel method to improve the gas storage capacity of ZIF-8 publication-title: J. Mater. Chem. – volume: 4 start-page: 4145 year: 2016 end-page: 4154 ident: bib72 article-title: One-dimensional periodic mesoporous organosilica helical nanotubes with amphiphilic properties for the removal of contaminants from water publication-title: J. Mater. Chem. A. – volume: 54 start-page: 12217 year: 2015 end-page: 12232 ident: bib10 article-title: Role of surfactants in promoting gas hydrate formation publication-title: Ind. Eng. Chem. Res. – volume: 45 start-page: 1678 year: 2012 end-page: 1687 ident: bib63 article-title: Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates publication-title: Acc. Chem. Res. – volume: 4 start-page: 1206 year: 2011 end-page: 1215 ident: bib5 article-title: Current perspectives on gas hydrate resources publication-title: Energy Environ. Sci. – volume: 123 start-page: 24071 year: 2019 end-page: 24079 ident: bib14 article-title: Experimental evidence of confined methane hydrate in hydrophilic and hydrophobic model carbons publication-title: J. Phys. Chem. C – volume: 55 start-page: 7973 year: 2016 end-page: 7980 ident: bib32 article-title: Investigation of CO publication-title: Ind. Eng. Chem. Res. – volume: 12 start-page: 1 year: 2022 end-page: 13 ident: bib80 article-title: Methane hydrate formation in hollow ZIF-8 nanoparticles for improved methane storage capacity publication-title: Catalysts – volume: 106 start-page: 53 year: 2014 end-page: 59 ident: bib52 article-title: Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution publication-title: Chem. Eng. Sci. – volume: 89 start-page: 14 year: 2017 ident: bib70 article-title: Absolute quantification of water in microporous solids with 1 H magic angle spinning NMR and standard addition publication-title: Anal. Chem. – volume: 6 start-page: 1 year: 2015 end-page: 8 ident: bib15 article-title: Methane hydrate formation in confined nanospace can surpass nature publication-title: Nat. Commun. – volume: 48 start-page: 2412 year: 2002 end-page: 2416 ident: bib20 article-title: Enhancement of the methane storage on activated carbon by preadsorbed water publication-title: AIChE J. – volume: 147 start-page: 547 year: 2016 end-page: 559 ident: bib40 article-title: Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir publication-title: J. Pet. Sci. Eng. – year: 2021 ident: bib57 article-title: Interfacial study of clathrates confined in reversed silica pores publication-title: J. Mater. Chem. – volume: 221 year: 2021 ident: bib71 article-title: Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges publication-title: Ultramicroscopy – volume: 40 start-page: 385 year: 2012 end-page: 389 ident: bib21 article-title: Improving methane storage on wet activated carbons at various amounts of water publication-title: Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. – volume: 55 start-page: 7981 year: 2016 end-page: 7991 ident: bib39 article-title: Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment publication-title: Ind. Eng. Chem. Res. – volume: 157 start-page: 35 year: 2015 end-page: 47 ident: bib65 article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography publication-title: Ultramicroscopy – volume: 60 start-page: 2178 year: 2015 end-page: 2185 ident: bib29 article-title: Phase equilibria of CO2 and CH4 hydrates in intergranular meso/macro pores of MIL-53 metal organic framework publication-title: J. Chem. Eng. Data – volume: 26 start-page: 3186 year: 2010 end-page: 3193 ident: bib49 article-title: Gas storage in “dry water” and “dry gel” clathrates publication-title: Langmuir – volume: 426 start-page: 353 year: 2003 end-page: 359 ident: bib3 article-title: Fundamental principles and applications of natural gas hydrates publication-title: Nature – volume: 40 start-page: 385 year: 2012 ident: 10.1016/j.heliyon.2023.e17662_bib21 article-title: Improving methane storage on wet activated carbons at various amounts of water publication-title: Ranliao Huaxue Xuebao/J. Fuel Chem. Technol. doi: 10.1016/S1872-5813(12)60017-6 – volume: 55 start-page: 7981 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib39 article-title: Size effect of porous media on methane hydrate formation and dissociation in an excess gas environment publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03908 – volume: 147 start-page: 547 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib40 article-title: Influence of thermal stimulation on the methane hydrate dissociation in porous media under confined reservoir publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2016.09.017 – volume: 60 start-page: 429 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib6 article-title: Permafrost-associated gas hydrate: is it really approximately 1 % of the global system? publication-title: J. Chem. Eng. Data doi: 10.1021/je500770m – volume: 103 start-page: 3659 year: 1999 ident: 10.1016/j.heliyon.2023.e17662_bib37 article-title: Dissociation condition measurements of methane hydrate in confined small pores of porous glass publication-title: J. Phys. Chem. B doi: 10.1021/jp984559l – volume: 48 start-page: 393 year: 2002 ident: 10.1016/j.heliyon.2023.e17662_bib44 article-title: Methane hydrate equilibria in silica gels with broad pore-size distributions publication-title: AIChE J. doi: 10.1002/aic.690480222 – volume: 119 start-page: 1690 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib51 article-title: Effect of hydrate shell formation on the stability of dry water publication-title: J. Phys. Chem. C doi: 10.1021/jp510603q – volume: 12 start-page: 1 year: 2022 ident: 10.1016/j.heliyon.2023.e17662_bib80 article-title: Methane hydrate formation in hollow ZIF-8 nanoparticles for improved methane storage capacity publication-title: Catalysts – volume: 288 year: 2021 ident: 10.1016/j.heliyon.2023.e17662_bib35 article-title: Polymeric superabsorbent hydrogel-based kinetic promotion for gas hydrate formation publication-title: Fuel doi: 10.1016/j.fuel.2020.119676 – volume: 123 start-page: 299 year: 2017 ident: 10.1016/j.heliyon.2023.e17662_bib16 article-title: Influence of the oxygen-containing surface functional groups in the methane hydrate nucleation and growth in nanoporous carbon publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2017.07.061 – volume: 48 start-page: 2412 year: 2002 ident: 10.1016/j.heliyon.2023.e17662_bib20 article-title: Enhancement of the methane storage on activated carbon by preadsorbed water publication-title: AIChE J. doi: 10.1002/aic.690481030 – volume: 126 start-page: 383 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib24 article-title: Investigation on the roles of activated carbon particle sizes on methane hydrate formation and dissociation publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.12.047 – volume: 17 start-page: 1283 year: 2003 ident: 10.1016/j.heliyon.2023.e17662_bib19 article-title: Methane storage within dry and wet active carbons: a comparative study publication-title: Energy Fuel. doi: 10.1021/ef030067i – volume: 140 start-page: 440 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib54 article-title: Hydrophobized particles can accelerate nucleation of clathrate hydrates publication-title: Fuel doi: 10.1016/j.fuel.2014.10.005 – volume: 17 start-page: 854 year: 2009 ident: 10.1016/j.heliyon.2023.e17662_bib31 article-title: Influence of A-type zeolite on methane hydrate formation publication-title: Chin. J. Chem. Eng. doi: 10.1016/S1004-9541(08)60287-6 – volume: 58 start-page: 16687 year: 2019 ident: 10.1016/j.heliyon.2023.e17662_bib38 article-title: Impact of modified silica beads on methane hydrate formation in a fixed-bed reactor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01952 – volume: 18 start-page: 9164 year: 2002 ident: 10.1016/j.heliyon.2023.e17662_bib42 article-title: Methane and carbon dioxide hydrate phase behavior in small porous silica gels: three-phase equilibrium determination and thermodynamic modeling publication-title: Langmuir doi: 10.1021/la0257844 – volume: 123 start-page: 24071 year: 2019 ident: 10.1016/j.heliyon.2023.e17662_bib14 article-title: Experimental evidence of confined methane hydrate in hydrophilic and hydrophobic model carbons publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b06366 – volume: 290 start-page: 161 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib13 article-title: Rapid methane hydrate formation to develop a cost effective large scale energy storage system publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.01.026 – volume: 61 start-page: 1573 year: 2014 ident: 10.1016/j.heliyon.2023.e17662_bib48 article-title: Comparison of methane hydrate formation in stirred reactor and porous media in the presence of SDS publication-title: Energy Proc. doi: 10.1016/j.egypro.2014.12.174 – volume: 405 year: 2021 ident: 10.1016/j.heliyon.2023.e17662_bib46 article-title: Influence of surface wettability on methane hydrate formation in hydrophilic and hydrophobic mesoporous silicas publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126955 – year: 2021 ident: 10.1016/j.heliyon.2023.e17662_bib57 article-title: Interfacial study of clathrates confined in reversed silica pores publication-title: J. Mater. Chem. doi: 10.1039/D1TA03105H – volume: 23 start-page: 5496 year: 2009 ident: 10.1016/j.heliyon.2023.e17662_bib36 article-title: Gas hydrate formation in a variable volume bed of silica sand particles publication-title: Energy Fuel. doi: 10.1021/ef900542m – volume: 130 start-page: 11608 year: 2008 ident: 10.1016/j.heliyon.2023.e17662_bib58 article-title: Methane storage in dry water gas hydrates publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8048173 – volume: 12 start-page: 53510 year: 2020 ident: 10.1016/j.heliyon.2023.e17662_bib27 article-title: Metal-organic framework HKUST-1 promotes methane hydrate formation for improved gas storage capacity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15675 – year: 2008 ident: 10.1016/j.heliyon.2023.e17662_bib8 – volume: 204 start-page: 1420 year: 2017 ident: 10.1016/j.heliyon.2023.e17662_bib11 article-title: Induction time, storage capacity, and rate of methane hydrate formation in the presence of SDS and silver nanoparticles publication-title: Chem. Eng. Commun. doi: 10.1080/00986445.2017.1366903 – volume: 360 start-page: 569 year: 2019 ident: 10.1016/j.heliyon.2023.e17662_bib30 article-title: Methane hydrates: nucleation in microporous materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.11.216 – volume: 24 start-page: 25129 issue: 22 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib66 article-title: Fast and flexible X-ray tomography using the ASTRA toolbox publication-title: Opt Express doi: 10.1364/OE.24.025129 – volume: 89 start-page: 14 year: 2017 ident: 10.1016/j.heliyon.2023.e17662_bib70 article-title: Absolute quantification of water in microporous solids with 1 H magic angle spinning NMR and standard addition publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01653 – volume: 4 start-page: 1206 year: 2011 ident: 10.1016/j.heliyon.2023.e17662_bib5 article-title: Current perspectives on gas hydrate resources publication-title: Energy Environ. Sci. doi: 10.1039/C0EE00203H – volume: 63 start-page: 1767 year: 2018 ident: 10.1016/j.heliyon.2023.e17662_bib47 article-title: Methane hydrate uptake of MCM-41 mesoporous molecular sieves with preadsorbed water publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.8b00060 – volume: 216 start-page: 262 year: 2018 ident: 10.1016/j.heliyon.2023.e17662_bib2 article-title: A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.059 – volume: 273 start-page: 117 year: 2006 ident: 10.1016/j.heliyon.2023.e17662_bib78 article-title: Sorption/desorption equilibrium of methane in silica gel with pre-adsorption of water publication-title: Colloids Surfaces A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2005.08.017 – volume: 18 start-page: 20607 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib22 article-title: Illuminating solid gas storage in confined spaces – methane hydrate formation in porous model carbons publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03993F – volume: 96 start-page: 8599 year: 1992 ident: 10.1016/j.heliyon.2023.e17662_bib41 article-title: Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-Å-radius silica gel pores publication-title: J. Phys. Chem. doi: 10.1021/j100200a071 – volume: 26 start-page: 3186 year: 2010 ident: 10.1016/j.heliyon.2023.e17662_bib49 article-title: Gas storage in “dry water” and “dry gel” clathrates publication-title: Langmuir doi: 10.1021/la903120p – year: 2007 ident: 10.1016/j.heliyon.2023.e17662_bib68 – volume: 60 start-page: 383 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib53 article-title: Use of hydrophobic particles as kinetic promoters for gas hydrate formation publication-title: J. Chem. Eng. Data doi: 10.1021/je5006455 – volume: 8 year: 2021 ident: 10.1016/j.heliyon.2023.e17662_bib75 article-title: Characterization of hierarchically ordered porous materials by physisorption and mercury porosimetry—a tutorial review publication-title: Adv. Mater. Interfac. – volume: 54 start-page: 12217 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib10 article-title: Role of surfactants in promoting gas hydrate formation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03476 – volume: 19 start-page: 1298 year: 2018 ident: 10.1016/j.heliyon.2023.e17662_bib81 article-title: Methane hydrate in confined spaces: an alternative storage system publication-title: ChemPhysChem doi: 10.1002/cphc.201701250 – volume: vol. 11 start-page: 1 year: 2011 ident: 10.1016/j.heliyon.2023.e17662_bib4 – volume: 121 start-page: 3830 year: 2017 ident: 10.1016/j.heliyon.2023.e17662_bib59 article-title: Interfacial gas enrichment at hydrophobic surfaces and the origin of promotion of gas hydrate formation by hydrophobic solid particles publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b07136 – volume: 87 start-page: 1051 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib74 article-title: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) publication-title: Pure Appl. Chem. doi: 10.1515/pac-2014-1117 – volume: 60 start-page: 2178 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib29 article-title: Phase equilibria of CO2 and CH4 hydrates in intergranular meso/macro pores of MIL-53 metal organic framework publication-title: J. Chem. Eng. Data doi: 10.1021/acs.jced.5b00322 – volume: 109 start-page: 22710 year: 2005 ident: 10.1016/j.heliyon.2023.e17662_bib45 article-title: Methane sorption in ordered mesoporous silica SBA-15 in the presence of water publication-title: J. Phys. Chem. B doi: 10.1021/jp0546002 – volume: 36 start-page: 452 year: 2018 ident: 10.1016/j.heliyon.2023.e17662_bib1 article-title: Biogas upgrading and utilization: current status and perspectives publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2018.01.011 – volume: 22 start-page: 12246 year: 2012 ident: 10.1016/j.heliyon.2023.e17662_bib26 article-title: A novel method to improve the gas storage capacity of ZIF-8 publication-title: J. Mater. Chem. doi: 10.1039/c2jm31541f – volume: 45 start-page: 1678 year: 2012 ident: 10.1016/j.heliyon.2023.e17662_bib63 article-title: Access to ultralarge-pore ordered mesoporous materials through selection of surfactant/swelling-agent micellar templates publication-title: Acc. Chem. Res. doi: 10.1021/ar200343s – volume: 4 start-page: 4145 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib72 article-title: One-dimensional periodic mesoporous organosilica helical nanotubes with amphiphilic properties for the removal of contaminants from water publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA00708B – volume: 220 start-page: 185 year: 2018 ident: 10.1016/j.heliyon.2023.e17662_bib33 article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites publication-title: Fuel doi: 10.1016/j.fuel.2018.01.067 – volume: 338 start-page: 572 year: 2018 ident: 10.1016/j.heliyon.2023.e17662_bib12 article-title: Characterization of cyclopentane clathrates with gaseous guests for gas storage and separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.01.054 – volume: 93 start-page: 285 year: 2006 ident: 10.1016/j.heliyon.2023.e17662_bib62 article-title: Understanding the hydrothermal stability of large-pore periodic mesoporous organosilicas and pure silicas publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2006.03.009 – volume: 255 start-page: 220 year: 2018 ident: 10.1016/j.heliyon.2023.e17662_bib17 article-title: Methane hydrate formation in the confined nanospace of activated carbons in seawater environment publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2017.07.047 – volume: 200 year: 2009 ident: 10.1016/j.heliyon.2023.e17662_bib79 article-title: Clathrate hydrate physical property database publication-title: Natl. Energy Technol. Lab. U.S. Dep. Energy. – volume: 109 start-page: 6025 year: 2005 ident: 10.1016/j.heliyon.2023.e17662_bib23 article-title: Experimental and modeling study on hydrate formation in wet activated carbon publication-title: J. Phys. Chem. B doi: 10.1021/jp045679y – volume: 60 start-page: 309 year: 1938 ident: 10.1016/j.heliyon.2023.e17662_bib69 article-title: Adsorption of gases in multimolecular layers publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01269a023 – volume: 55 start-page: 7973 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib32 article-title: Investigation of CO2 capture from a CO2 + CH4 gas mixture by gas hydrate formation in the fixed bed of a molecular sieve publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.5b03989 – volume: 402 year: 2020 ident: 10.1016/j.heliyon.2023.e17662_bib77 article-title: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: organic versus carbon xerogels publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126276 – volume: 157 start-page: 35 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib65 article-title: The ASTRA Toolbox: a platform for advanced algorithm development in electron tomography publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2015.05.002 – volume: 7 start-page: 831 year: 2011 ident: 10.1016/j.heliyon.2023.e17662_bib7 article-title: Down the Rabbit Hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events publication-title: Clim. Past doi: 10.5194/cp-7-831-2011 – volume: 34 start-page: 6751 year: 2020 ident: 10.1016/j.heliyon.2023.e17662_bib56 article-title: Critical review on gas hydrate formation at solid surfaces and in confined spaces - why and how does interfacial regime matter? publication-title: Energy Fuel. doi: 10.1021/acs.energyfuels.0c01291 – volume: 302 year: 2003 ident: 10.1016/j.heliyon.2023.e17662_bib73 article-title: Periodic mesoporous organosilicas containing interconnected [Si(CH2)]3 rings publication-title: Science (80-.) doi: 10.1126/science.1084973 – volume: 426 start-page: 353 year: 2003 ident: 10.1016/j.heliyon.2023.e17662_bib3 article-title: Fundamental principles and applications of natural gas hydrates publication-title: Nature doi: 10.1038/nature02135 – volume: 85 start-page: 957 year: 2006 ident: 10.1016/j.heliyon.2023.e17662_bib18 article-title: Optimal wetting of active carbons for methane hydrate formation publication-title: Fuel doi: 10.1016/j.fuel.2005.10.019 – volume: 16 start-page: 1413 year: 2002 ident: 10.1016/j.heliyon.2023.e17662_bib34 article-title: Promotion effect of polymers and surfactants on hydrate formation rate publication-title: Energy Fuel. doi: 10.1021/ef020023u – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib60 article-title: Periodic mesoporous organosilica nanocubes with ultrahigh surface areas for efficient CO2 adsorption publication-title: Sci. Rep. – volume: 58 start-page: 22178 year: 2019 ident: 10.1016/j.heliyon.2023.e17662_bib43 article-title: Innovative approach to enhance the methane hydrate formation at near-ambient temperature and moderate pressure for gas storage applications publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b04498 – volume: 116 start-page: 1520 year: 2019 ident: 10.1016/j.heliyon.2023.e17662_bib76 article-title: Molecular hydrophobicity at a macroscopically hydrophilic surface publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1819000116 – volume: 86 start-page: 845 year: 2017 ident: 10.1016/j.heliyon.2023.e17662_bib9 article-title: Kinetics of formation and dissociation of gas hydrates publication-title: Russ. Chem. Rev. doi: 10.1070/RCR4720 – volume: 42 start-page: 3913 year: 2013 ident: 10.1016/j.heliyon.2023.e17662_bib61 article-title: Periodic Mesoporous Organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35222B – volume: 221 year: 2021 ident: 10.1016/j.heliyon.2023.e17662_bib71 article-title: Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2020.113191 – volume: 106 start-page: 53 year: 2014 ident: 10.1016/j.heliyon.2023.e17662_bib52 article-title: Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.11.032 – volume: 142 start-page: 13391 year: 2020 ident: 10.1016/j.heliyon.2023.e17662_bib28 article-title: Quest for an optimal methane hydrate formation in the pores of hydrolytically stable metal-organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c01459 – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.heliyon.2023.e17662_bib15 article-title: Methane hydrate formation in confined nanospace can surpass nature publication-title: Nat. Commun. doi: 10.1038/ncomms7432 – volume: 19 start-page: 1298 year: 2018 ident: 10.1016/j.heliyon.2023.e17662_bib55 article-title: Methane hydrate in confined spaces: an alternative storage system publication-title: ChemPhysChem doi: 10.1002/cphc.201701250 – volume: 7 start-page: 3658 year: 2016 ident: 10.1016/j.heliyon.2023.e17662_bib25 article-title: Paving the way for methane hydrate formation on metal-organic frameworks (MOFs) publication-title: Chem. Sci. doi: 10.1039/C6SC00272B – volume: 10 start-page: 16431 year: 2020 ident: 10.1016/j.heliyon.2023.e17662_bib64 article-title: Fundamentals and recent progress relating to the fabrication, functionalization and characterization of mesostructured materials using diverse synthetic methodologies publication-title: RSC Adv. doi: 10.1039/D0RA00440E – year: 2013 ident: 10.1016/j.heliyon.2023.e17662_bib67 – volume: 130 start-page: 11608 year: 2008 ident: 10.1016/j.heliyon.2023.e17662_bib50 article-title: Methane storage in dry water gas hydrates publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8048173 |
| SSID | ssj0001586973 |
| Score | 2.3390195 |
| Snippet | Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated... |
| SourceID | doaj pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e17662 |
| SubjectTerms | Biomethane Clathrate hydrate Methane hydrate Periodic mesoporous organosilica Pressure-swing (un)loading |
| Title | Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes |
| URI | https://dx.doi.org/10.1016/j.heliyon.2023.e17662 https://www.ncbi.nlm.nih.gov/pubmed/37449178 https://www.proquest.com/docview/2838247324 https://pubmed.ncbi.nlm.nih.gov/PMC10336592 https://doaj.org/article/dfeb71df24f842f39a8a0962511bfc58 |
| Volume | 9 |
| WOSCitedRecordID | wos001056264100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2405-8440 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001586973 issn: 2405-8440 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVghRAXxDddYGUkrukmsRPbR0BdcWBXHAD1ZsXORM2qm6yaFqkXfvvOxGlp4NALlyhK4jiemWSe45k3jH0gSi2thYwKoeNISod7hZGRTnzulYcE-pIsP7-qqys9n5tvB6W-KCYs0AMHwZ2XFTiVlFUqKy3TSphCFwi7CRm7ymd9mm-szMFkKuQH69z0y8vosbJISxn_Sd85v54uYFlvW-I_TcUUiCQxHTmmnr9_5J_-xZ9_h1Ee-KWLJ-zxACj5xzCQp-weNM_Yw8thyfw5W88oOwodFF9sS-KFiMhxlZxKRxcNcIqOxG8Kp2SyFb-plyVvb4lpmZrgZLkMMV3cbTmRIrd4X2zbtYjb203H-6pQbVfTvz_e4O5646B7wX5czL5__hINpRYin-VqHWUep3ko2dw5BcbFRrlC6wIoMEY6SHyVo7dzeakkQhjI0kLETjkNRkhdQiVespOmbeA14wg6DAhEAt57FLsrEMKAqYSoROYNyAmTOzlbP_CQUzmMpd0FnF3bQT2W1GODeiZsum92G4g4jjX4RErcX0w82v0BFIwdrMses64J0zsTsAMkCVADb1Uf6__9zmQsvrK0DoNaRc1YRHQ6lQqh7IS9Cia0f0qhpMQZNHU8Mq7RMMZnmnrR04InsRC0SH76Pwb-hj2isYTA5LfsZL3awDv2wP9a193qjN1Xc33Wv3K4vfw9uwNqBTQg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enabling+hydrate-based+methane+storage+under+mild+operating+conditions+by+periodic+mesoporous+organosilica+nanotubes&rft.jtitle=Heliyon&rft.au=Beckw%C3%A9e%2C+Emile+Jules&rft.au=Watson%2C+Geert&rft.au=Houlleberghs%2C+Maarten&rft.au=Arenas+Esteban%2C+Daniel&rft.date=2023-07-01&rft.pub=Elsevier&rft.eissn=2405-8440&rft.volume=9&rft.issue=7&rft_id=info:doi/10.1016%2Fj.heliyon.2023.e17662&rft.externalDocID=PMC10336592 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |