An image classification deep-learning algorithm for shrapnel detection from ultrasound images

Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 12; no. 1; pp. 8427 - 12
Main Authors: Snider, Eric J., Hernandez-Torres, Sofia I., Boice, Emily N.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 19.05.2022
Nature Publishing Group
Nature Portfolio
Subjects:
ISSN:2045-2322, 2045-2322
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image analysis and diagnosis. Here, we highlight an image classification convolutional neural network for detecting shrapnel in ultrasound images. As an initial application, different shrapnel types and sizes were embedded first in a tissue mimicking phantom and then in swine thigh tissue. The algorithm architecture was optimized stepwise by minimizing validation loss and maximizing F1 score. The final algorithm design trained on tissue phantom image sets had an F1 score of 0.95 and an area under the ROC curve of 0.95. It maintained higher than a 90% accuracy for each of 8 shrapnel types. When trained only on swine image sets, the optimized algorithm format had even higher metrics: F1 and area under the ROC curve of 0.99. Overall, the algorithm developed resulted in strong classification accuracy for both the tissue phantom and animal tissue. This framework can be applied to other trauma relevant imaging applications such as internal bleeding to further simplify trauma medicine when resources and image interpretation are scarce.
AbstractList Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image analysis and diagnosis. Here, we highlight an image classification convolutional neural network for detecting shrapnel in ultrasound images. As an initial application, different shrapnel types and sizes were embedded first in a tissue mimicking phantom and then in swine thigh tissue. The algorithm architecture was optimized stepwise by minimizing validation loss and maximizing F1 score. The final algorithm design trained on tissue phantom image sets had an F1 score of 0.95 and an area under the ROC curve of 0.95. It maintained higher than a 90% accuracy for each of 8 shrapnel types. When trained only on swine image sets, the optimized algorithm format had even higher metrics: F1 and area under the ROC curve of 0.99. Overall, the algorithm developed resulted in strong classification accuracy for both the tissue phantom and animal tissue. This framework can be applied to other trauma relevant imaging applications such as internal bleeding to further simplify trauma medicine when resources and image interpretation are scarce.
Abstract Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image analysis and diagnosis. Here, we highlight an image classification convolutional neural network for detecting shrapnel in ultrasound images. As an initial application, different shrapnel types and sizes were embedded first in a tissue mimicking phantom and then in swine thigh tissue. The algorithm architecture was optimized stepwise by minimizing validation loss and maximizing F1 score. The final algorithm design trained on tissue phantom image sets had an F1 score of 0.95 and an area under the ROC curve of 0.95. It maintained higher than a 90% accuracy for each of 8 shrapnel types. When trained only on swine image sets, the optimized algorithm format had even higher metrics: F1 and area under the ROC curve of 0.99. Overall, the algorithm developed resulted in strong classification accuracy for both the tissue phantom and animal tissue. This framework can be applied to other trauma relevant imaging applications such as internal bleeding to further simplify trauma medicine when resources and image interpretation are scarce.
Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image analysis and diagnosis. Here, we highlight an image classification convolutional neural network for detecting shrapnel in ultrasound images. As an initial application, different shrapnel types and sizes were embedded first in a tissue mimicking phantom and then in swine thigh tissue. The algorithm architecture was optimized stepwise by minimizing validation loss and maximizing F1 score. The final algorithm design trained on tissue phantom image sets had an F1 score of 0.95 and an area under the ROC curve of 0.95. It maintained higher than a 90% accuracy for each of 8 shrapnel types. When trained only on swine image sets, the optimized algorithm format had even higher metrics: F1 and area under the ROC curve of 0.99. Overall, the algorithm developed resulted in strong classification accuracy for both the tissue phantom and animal tissue. This framework can be applied to other trauma relevant imaging applications such as internal bleeding to further simplify trauma medicine when resources and image interpretation are scarce.Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a challenge as proper expertise may not be available. In response, artificial intelligence algorithms are being investigated to automate image analysis and diagnosis. Here, we highlight an image classification convolutional neural network for detecting shrapnel in ultrasound images. As an initial application, different shrapnel types and sizes were embedded first in a tissue mimicking phantom and then in swine thigh tissue. The algorithm architecture was optimized stepwise by minimizing validation loss and maximizing F1 score. The final algorithm design trained on tissue phantom image sets had an F1 score of 0.95 and an area under the ROC curve of 0.95. It maintained higher than a 90% accuracy for each of 8 shrapnel types. When trained only on swine image sets, the optimized algorithm format had even higher metrics: F1 and area under the ROC curve of 0.99. Overall, the algorithm developed resulted in strong classification accuracy for both the tissue phantom and animal tissue. This framework can be applied to other trauma relevant imaging applications such as internal bleeding to further simplify trauma medicine when resources and image interpretation are scarce.
ArticleNumber 8427
Author Hernandez-Torres, Sofia I.
Boice, Emily N.
Snider, Eric J.
Author_xml – sequence: 1
  givenname: Eric J.
  surname: Snider
  fullname: Snider, Eric J.
  email: eric.j.snider3.civ@mail.mil
  organization: Engineering Technology and Automation Combat Casualty Care Research Team, United States Army Institute of Surgical Research
– sequence: 2
  givenname: Sofia I.
  surname: Hernandez-Torres
  fullname: Hernandez-Torres, Sofia I.
  organization: Engineering Technology and Automation Combat Casualty Care Research Team, United States Army Institute of Surgical Research
– sequence: 3
  givenname: Emily N.
  surname: Boice
  fullname: Boice, Emily N.
  organization: Engineering Technology and Automation Combat Casualty Care Research Team, United States Army Institute of Surgical Research
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35589931$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1905005$$D View this record in Osti.gov
BookMark eNp9kktv1DAUhS1UREvpH2CBItiwCdiOk9gbpKriUakSG1giy3GuMx557MFOKvHvuZ2U0nbRbBLF3zn34fOSHMUUgZDXjH5gtJEfi2CtkjXlvGa86fqaPyMnnIq25g3nR_e-j8lZKVuKT8uVYOoFOW7aVirVsBPy6zxWfmcmqGwwpXjnrZl9itUIsK8DmBx9nCoTppT9vNlVLuWqbLLZRwgIzWAPuMtpVy1hzqakJY6rZ3lFnjsTCpzdvk_Jzy-ff1x8q6--f728OL-qbdv1c90qkE4ZNwyNcZQ54EM3WjW0YEcjheKCDVZQ6UaFBwDW4Sh9P7RqMJINrjkll6vvmMxW7zNWz390Ml4ffqQ8aZNnbwNozgVYKXroBRetHCSjwozOYsluZNag16fVa78MOxgtRBwqPDB9eBL9Rk_pWivGeqUEGrxdDVKZvS7W4442NsWIq9JM0RYvAqH3t1Vy-r1AmfXOFwshmAhpKZp3Xd8r2jQS0XeP0G1acsR93lBdz6lE7pS8ud_2Xb__rhoBvgI2p1IyuDuEUX0TKb1GSmOk9CFSmqNIPhLhOIeA4Og-PC1tVmnBOnGC_L_tJ1R_ASX54ao
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105183
crossref_primary_10_3390_bioengineering11020109
crossref_primary_10_1038_s41598_024_55480_0
crossref_primary_10_3390_technologies13010029
crossref_primary_10_1038_s41598_023_35227_z
crossref_primary_10_3390_jimaging11070222
crossref_primary_10_3390_jimaging9100225
crossref_primary_10_3389_fvets_2024_1374890
crossref_primary_10_3389_fmed_2023_1330218
crossref_primary_10_3390_bioengineering11020128
crossref_primary_10_1016_j_anireprosci_2025_107997
crossref_primary_10_3390_diagnostics13030417
crossref_primary_10_3390_jimaging8090249
crossref_primary_10_1038_s41598_023_43386_2
crossref_primary_10_3390_bioengineering11040392
crossref_primary_10_3390_jimaging8090252
crossref_primary_10_3389_fbioe_2023_1244616
crossref_primary_10_3390_bioengineering10070807
crossref_primary_10_3390_bioengineering9070319
crossref_primary_10_3390_jimaging8050140
crossref_primary_10_3390_jimaging8100270
crossref_primary_10_1007_s10922_022_09716_x
crossref_primary_10_3390_app15073609
Cites_doi 10.1038/s41598-018-25005-7
10.1007/s11042-018-6082-6
10.1118/1.2178451
10.1002/mrd.22489
10.3390/app11020672
10.23915/distill.00026
10.1038/s41598-020-61079-y
10.1016/j.ultrasmedbio.2020.06.015
10.2174/1573405615666191023104751
10.1109/TMI.2006.891477
10.3390/brainsci10070427
10.1038/nmeth.2019
10.1097/MD.0000000000015133
10.1109/TMI.2018.2860257
10.1016/j.patrec.2020.09.020
10.1109/ACCESS.2020.3010863
10.1007/978-3-030-61702-8_28
10.1007/978-981-15-3383-9_29
10.1109/JBHI.2021.3084962
10.1109/TMI.2017.2712367
10.1016/j.jcms.2011.09.005
10.1016/S0196-0644(97)70347-0
10.7205/MILMED-D-10-00025
10.1097/00005373-199903000-00022
10.1038/s41598-020-67076-5
10.1097/JTN.0000000000000329
10.1038/s41598-021-87910-8
10.1109/SIPROCESS.2018.8600536
10.1109/CVPR.2009.5206848
ContentType Journal Article
Copyright This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022
2022. The Author(s).
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022
– notice: 2022. The Author(s).
– notice: This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States)
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1038/s41598-022-12367-2
DatabaseName SpringerOpen
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE


Publicly Available Content Database
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 12
ExternalDocumentID oai_doaj_org_article_224ec847e742458b8104adfc2b66d1ca
PMC9117994
1905005
35589931
10_1038_s41598_022_12367_2
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: U.S. Army Medical Research and Development Command
  grantid: XV5_1B_19_0002
  funderid: http://dx.doi.org/10.13039/100016156
– fundername: Oak Ridge Associated Universities
  funderid: http://dx.doi.org/10.13039/100006225
– fundername: ;
– fundername: ;
  grantid: XV5_1B_19_0002
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFFHD
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
OIOZB
OTOTI
U1R
5PM
ID FETCH-LOGICAL-c567t-59e8f9afbb3af01fe2b6dc9b5ecda849241bc408fd9b6deecf05277b59ba81bf3
IEDL.DBID M2P
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798064600130&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2045-2322
IngestDate Tue Oct 14 19:03:49 EDT 2025
Tue Nov 04 02:02:34 EST 2025
Mon May 22 04:07:24 EDT 2023
Thu Oct 02 11:49:03 EDT 2025
Tue Oct 07 07:41:41 EDT 2025
Thu Jan 02 22:29:45 EST 2025
Tue Nov 18 21:24:12 EST 2025
Sat Nov 29 06:26:04 EST 2025
Fri Feb 21 02:39:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-59e8f9afbb3af01fe2b6dc9b5ecda849241bc408fd9b6deecf05277b59ba81bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0014664
USDOE Office of Science (SC)
US Army Medical Research and Development Command (USAMRDC)
OpenAccessLink https://www.proquest.com/docview/2666720803?pq-origsite=%requestingapplication%
PMID 35589931
PQID 2666720803
PQPubID 2041939
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_224ec847e742458b8104adfc2b66d1ca
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9117994
osti_scitechconnect_1905005
proquest_miscellaneous_2667790338
proquest_journals_2666720803
pubmed_primary_35589931
crossref_primary_10_1038_s41598_022_12367_2
crossref_citationtrail_10_1038_s41598_022_12367_2
springer_journals_10_1038_s41598_022_12367_2
PublicationCentury 2000
PublicationDate 2022-05-19
PublicationDateYYYYMMDD 2022-05-19
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: United States
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Shuker (CR6) 2012; 40
Khobragade, Jain, Sisodia, Florez, Misra (CR22) 2020
Buddhavarapu (CR24) 2020; 140
Li, Weng, Shi, Gu, Mao, Wang (CR12) 2018; 8
CR19
Xu, Hamilton (CR15) 2006; 33
CR39
CR38
Schindelin, Rueden, Hiner, Eliceiri (CR29) 2015; 82
CR37
Wolf, Bucknell (CR5) 2010; 175
Born, Wiedemann, Cossio, Buhre, Brändle, Leidermann (CR11) 2021; 11
Hill, Conron, Greissinger, Heller (CR3) 1997; 29
CR34
Munien, Viriri (CR23) 2021; 9
CR33
CR31
Pencil (CR8) 2017; 24
Liu, Wang, Li, Gong, Su, Zhao (CR43) 2019; 13
Wu, Tan, Zhu, Chen, Yang, Wen (CR17) 2021; 25
Gemignani, Faita, Ghiadoni, Poggianti, Demi (CR16) 2007; 26
Miglani, Bhatia, Hassanien, Bhatnagar, Darwish (CR21) 2021
Baumgartner, Kamnitsas, Matthew, Fletcher, Smith, Koch (CR13) 2017; 36
CR4
Albahli, Albattah (CR26) 2020; 28
Snider, Cornell, Acevedo, Gross, Edsall, Lund (CR44) 2020; 10
CR7
Schindelin, Arganda-Carreras, Frise, Kaynig, Longair, Pietzsch (CR30) 2012; 9
CR28
CR27
Vakanski, Xian, Freer (CR14) 2020; 46
CR25
CR47
CR46
Tammina (CR18) 2019; 6
Yu, Wang, Ma (CR10) 2020; 16
Burgos-Artizzu, Coronado-Gutiérrez, Valenzuela-Alcaraz, Bonet-Carne, Eixarch, Crispi (CR42) 2020; 10
Shi, Hao, Zhao, Feng, He, Wang (CR20) 2019; 78
Yaqub, Feng, Zia, Arshid, Jia, Rehman (CR35) 2020; 10
Zeimarani, Costa, Nurani, Bianco, De Albuquerque Pereira, Filho (CR32) 2020; 8
Radwan, Abu-Zidan (CR1) 2006; 6
CR40
Scalea, Rodriguez, Chiu, Brenneman, Fallon, Kato (CR2) 1999; 46
Snider, Boice, Butler, Gross, Zamora (CR45) 2021; 11
Chiang, Huang, Chen, Huang, Chang (CR9) 2019; 38
Song, Chai, Masuoka, Park, Kim, Choi (CR41) 2019; 98
Agnihotri, Batra (CR36) 2020; 5
J Schindelin (12367_CR29) 2015; 82
TM Scalea (12367_CR2) 1999; 46
JM Wolf (12367_CR5) 2010; 175
VG Buddhavarapu (12367_CR24) 2020; 140
EJ Snider (12367_CR44) 2020; 10
X Yu (12367_CR10) 2020; 16
XP Burgos-Artizzu (12367_CR42) 2020; 10
Z Shi (12367_CR20) 2019; 78
12367_CR28
MM Radwan (12367_CR1) 2006; 6
12367_CR27
K Pencil (12367_CR8) 2017; 24
12367_CR34
A Vakanski (12367_CR14) 2020; 46
12367_CR37
12367_CR4
12367_CR31
12367_CR7
12367_CR33
Y Liu (12367_CR43) 2019; 13
V Khobragade (12367_CR22) 2020
EJ Snider (12367_CR45) 2021; 11
M Yaqub (12367_CR35) 2020; 10
A Agnihotri (12367_CR36) 2020; 5
V Miglani (12367_CR21) 2021
T-C Chiang (12367_CR9) 2019; 38
H Li (12367_CR12) 2018; 8
J Song (12367_CR41) 2019; 98
S Tammina (12367_CR18) 2019; 6
J Born (12367_CR11) 2021; 11
Q Xu (12367_CR15) 2006; 33
12367_CR39
12367_CR38
12367_CR19
12367_CR46
R Hill (12367_CR3) 1997; 29
12367_CR25
12367_CR47
V Gemignani (12367_CR16) 2007; 26
CF Baumgartner (12367_CR13) 2017; 36
S Albahli (12367_CR26) 2020; 28
J Schindelin (12367_CR30) 2012; 9
12367_CR40
B Zeimarani (12367_CR32) 2020; 8
ST Shuker (12367_CR6) 2012; 40
X Wu (12367_CR17) 2021; 25
C Munien (12367_CR23) 2021; 9
References_xml – volume: 8
  start-page: 6600
  issue: 1
  year: 2018
  ident: CR12
  article-title: An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25005-7
– volume: 6
  issue: 9
  year: 2019
  ident: CR18
  article-title: Transfer learning using VGG-16 with deep convolutional neural network for classifying images
  publication-title: Int. J. Sci. Res. Publ. (IJSRP).
– volume: 78
  start-page: 1017
  issue: 1
  year: 2019
  end-page: 1033
  ident: CR20
  article-title: A deep CNN based transfer learning method for false positive reduction
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6082-6
– volume: 33
  start-page: 916
  issue: 4
  year: 2006
  end-page: 921
  ident: CR15
  article-title: A novel respiratory detection method based on automated analysis of ultrasound diaphragm video
  publication-title: Med. Phys.
  doi: 10.1118/1.2178451
– ident: CR47
– volume: 9
  issue: 2021
  year: 2021
  ident: CR23
  article-title: Classification of hematoxylin and eosin-stained breast cancer histology microscopy images using transfer learning with efficientnets
  publication-title: Comput. Intell. Neurosci.
– ident: CR4
– ident: CR39
– volume: 82
  start-page: 518
  issue: 7–8
  year: 2015
  end-page: 529
  ident: CR29
  article-title: The ImageJ ecosystem: An open platform for biomedical image analysis
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.22489
– ident: CR37
– volume: 11
  start-page: 672
  issue: 2
  year: 2021
  ident: CR11
  article-title: Accelerating detection of lung pathologies with explainable ultrasound image analysis
  publication-title: Appl. Sci.
  doi: 10.3390/app11020672
– volume: 5
  issue: 5
  year: 2020
  ident: CR36
  article-title: Exploring Bayesian optimization
  publication-title: Distill.
  doi: 10.23915/distill.00026
– volume: 13
  issue: 2019
  year: 2019
  ident: CR43
  article-title: Intraocular foreign bodies: clinical characteristics and prognostic factors influencing visual outcome and globe survival in 373 eyes
  publication-title: J. Ophthalmol.
– ident: CR33
– volume: 10
  start-page: 4218
  issue: 1
  year: 2020
  ident: CR44
  article-title: Development and characterization of a benchtop corneal puncture injury model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61079-y
– volume: 46
  start-page: 2819
  issue: 10
  year: 2020
  end-page: 2833
  ident: CR14
  article-title: Attention-enriched deep learning model for breast tumor segmentation in ultrasound images
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2020.06.015
– volume: 16
  start-page: 174
  issue: 2
  year: 2020
  end-page: 180
  ident: CR10
  article-title: Detection of thyroid nodules with ultrasound images based on deep learning
  publication-title: Curr. Med. Imaging Rev.
  doi: 10.2174/1573405615666191023104751
– volume: 26
  start-page: 393
  issue: 3
  year: 2007
  end-page: 404
  ident: CR16
  article-title: A system for real-time measurement of the brachial artery diameter in B-mode ultrasound images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.891477
– volume: 10
  start-page: 427
  issue: 7
  year: 2020
  ident: CR35
  article-title: State-of-the-Art CNN optimizer for brain tumor segmentation in magnetic resonance images
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10070427
– ident: CR40
– ident: CR25
– ident: CR27
– volume: 9
  start-page: 676
  issue: 7
  year: 2012
  end-page: 682
  ident: CR30
  article-title: Fiji: An open-source platform for biological-image analysis
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.2019
– ident: CR46
– ident: CR19
– volume: 98
  issue: 15
  year: 2019
  ident: CR41
  article-title: Ultrasound image analysis using deep learning algorithm for the diagnosis of thyroid nodules
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000015133
– volume: 38
  start-page: 240
  issue: 1
  year: 2019
  end-page: 249
  ident: CR9
  article-title: Tumor detection in automated breast ultrasound using 3-D CNN and prioritized candidate aggregation
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2018.2860257
– volume: 140
  start-page: 1
  year: 2020
  end-page: 9
  ident: CR24
  article-title: An experimental study on classification of thyroid histopathology images using transfer learning
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2020.09.020
– volume: 8
  start-page: 133349
  year: 2020
  end-page: 133359
  ident: CR32
  article-title: Breast lesion classification in ultrasound images using deep convolutional neural network
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3010863
– start-page: 409
  year: 2020
  end-page: 419
  ident: CR22
  article-title: Deep transfer learning model for automated screening of cervical cancer cells using multi-cell images
  publication-title: Applied Informatics
  doi: 10.1007/978-3-030-61702-8_28
– ident: CR38
– start-page: 315
  year: 2021
  end-page: 324
  ident: CR21
  article-title: Skin lesion classification: a transfer learning approach using efficientnets
  publication-title: Advanced Machine Learning Technologies and Applications
  doi: 10.1007/978-981-15-3383-9_29
– volume: 25
  start-page: 3812
  issue: 10
  year: 2021
  end-page: 3823
  ident: CR17
  article-title: CacheTrack-YOLO: Real-time detection and tracking for thyroid nodules and surrounding tissues in ultrasound videos
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3084962
– volume: 36
  start-page: 2204
  issue: 11
  year: 2017
  end-page: 2215
  ident: CR13
  article-title: SonoNet: Real-time detection and localisation of fetal standard scan planes in freehand ultrasound
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2712367
– ident: CR31
– volume: 40
  start-page: 534
  issue: 6
  year: 2012
  end-page: 540
  ident: CR6
  article-title: The immediate lifesaving management of maxillofacial, life-threatening haemorrhages due to IED and/or shrapnel injuries: “when hazard is in hesitation, not in the action”
  publication-title: J. Craniomaxillofac. Surg.
  doi: 10.1016/j.jcms.2011.09.005
– volume: 29
  start-page: 353
  issue: 3
  year: 1997
  end-page: 356
  ident: CR3
  article-title: Ultrasound for the detection of foreign bodies in human tissue
  publication-title: Ann. Emerg. Med.
  doi: 10.1016/S0196-0644(97)70347-0
– volume: 175
  start-page: 742
  issue: 10
  year: 2010
  end-page: 744
  ident: CR5
  article-title: Arthroscopic removal of improvised explosive device (IED) debris from the wrist: A case report
  publication-title: Mil. Med.
  doi: 10.7205/MILMED-D-10-00025
– volume: 6
  start-page: 187
  issue: 3
  year: 2006
  end-page: 190
  ident: CR1
  article-title: Focussed assessment sonograph trauma (FAST) and CT scan in blunt abdominal trauma: Surgeon’s perspective
  publication-title: Afr. Health Sci.
– ident: CR34
– volume: 28
  start-page: 841
  issue: 5
  year: 2020
  end-page: 850
  ident: CR26
  article-title: Detection of coronavirus disease from X-ray images using deep learning and transfer learning algorithms
  publication-title: J. Xray Sci. Technol.
– volume: 46
  start-page: 466
  issue: 3
  year: 1999
  end-page: 472
  ident: CR2
  article-title: Focused assessment with sonography for trauma (FAST): Results from an international consensus conference
  publication-title: J. Trauma.
  doi: 10.1097/00005373-199903000-00022
– volume: 10
  start-page: 10200
  issue: 1
  year: 2020
  ident: CR42
  article-title: Evaluation of deep convolutional neural networks for automatic classification of common maternal fetal ultrasound planes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67076-5
– ident: CR7
– volume: 24
  start-page: 376
  issue: 6
  year: 2017
  end-page: 380
  ident: CR8
  article-title: eFAST simulation training for trauma providers
  publication-title: J. Trauma Nurs.
  doi: 10.1097/JTN.0000000000000329
– ident: CR28
– volume: 11
  start-page: 8546
  issue: 1
  year: 2021
  ident: CR45
  article-title: Characterization of an anterior segment organ culture model for open globe injuries
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87910-8
– volume: 5
  issue: 5
  year: 2020
  ident: 12367_CR36
  publication-title: Distill.
  doi: 10.23915/distill.00026
– ident: 12367_CR38
– ident: 12367_CR40
– volume: 8
  start-page: 6600
  issue: 1
  year: 2018
  ident: 12367_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-25005-7
– volume: 26
  start-page: 393
  issue: 3
  year: 2007
  ident: 12367_CR16
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.891477
– volume: 9
  issue: 2021
  year: 2021
  ident: 12367_CR23
  publication-title: Comput. Intell. Neurosci.
– ident: 12367_CR46
– ident: 12367_CR19
  doi: 10.1109/SIPROCESS.2018.8600536
– volume: 46
  start-page: 466
  issue: 3
  year: 1999
  ident: 12367_CR2
  publication-title: J. Trauma.
  doi: 10.1097/00005373-199903000-00022
– volume: 29
  start-page: 353
  issue: 3
  year: 1997
  ident: 12367_CR3
  publication-title: Ann. Emerg. Med.
  doi: 10.1016/S0196-0644(97)70347-0
– volume: 82
  start-page: 518
  issue: 7–8
  year: 2015
  ident: 12367_CR29
  publication-title: Mol. Reprod. Dev.
  doi: 10.1002/mrd.22489
– volume: 11
  start-page: 8546
  issue: 1
  year: 2021
  ident: 12367_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87910-8
– volume: 16
  start-page: 174
  issue: 2
  year: 2020
  ident: 12367_CR10
  publication-title: Curr. Med. Imaging Rev.
  doi: 10.2174/1573405615666191023104751
– start-page: 409
  volume-title: Applied Informatics
  year: 2020
  ident: 12367_CR22
  doi: 10.1007/978-3-030-61702-8_28
– ident: 12367_CR25
– volume: 40
  start-page: 534
  issue: 6
  year: 2012
  ident: 12367_CR6
  publication-title: J. Craniomaxillofac. Surg.
  doi: 10.1016/j.jcms.2011.09.005
– volume: 25
  start-page: 3812
  issue: 10
  year: 2021
  ident: 12367_CR17
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3084962
– ident: 12367_CR27
  doi: 10.1109/CVPR.2009.5206848
– volume: 13
  issue: 2019
  year: 2019
  ident: 12367_CR43
  publication-title: J. Ophthalmol.
– ident: 12367_CR7
– ident: 12367_CR34
– volume: 28
  start-page: 841
  issue: 5
  year: 2020
  ident: 12367_CR26
  publication-title: J. Xray Sci. Technol.
– volume: 6
  start-page: 187
  issue: 3
  year: 2006
  ident: 12367_CR1
  publication-title: Afr. Health Sci.
– ident: 12367_CR39
– ident: 12367_CR37
– volume: 36
  start-page: 2204
  issue: 11
  year: 2017
  ident: 12367_CR13
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2712367
– volume: 78
  start-page: 1017
  issue: 1
  year: 2019
  ident: 12367_CR20
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6082-6
– volume: 10
  start-page: 4218
  issue: 1
  year: 2020
  ident: 12367_CR44
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61079-y
– start-page: 315
  volume-title: Advanced Machine Learning Technologies and Applications
  year: 2021
  ident: 12367_CR21
  doi: 10.1007/978-981-15-3383-9_29
– volume: 24
  start-page: 376
  issue: 6
  year: 2017
  ident: 12367_CR8
  publication-title: J. Trauma Nurs.
  doi: 10.1097/JTN.0000000000000329
– volume: 140
  start-page: 1
  year: 2020
  ident: 12367_CR24
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2020.09.020
– volume: 98
  issue: 15
  year: 2019
  ident: 12367_CR41
  publication-title: Medicine (Baltimore)
  doi: 10.1097/MD.0000000000015133
– volume: 10
  start-page: 427
  issue: 7
  year: 2020
  ident: 12367_CR35
  publication-title: Brain Sci.
  doi: 10.3390/brainsci10070427
– volume: 46
  start-page: 2819
  issue: 10
  year: 2020
  ident: 12367_CR14
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2020.06.015
– volume: 8
  start-page: 133349
  year: 2020
  ident: 12367_CR32
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3010863
– volume: 33
  start-page: 916
  issue: 4
  year: 2006
  ident: 12367_CR15
  publication-title: Med. Phys.
  doi: 10.1118/1.2178451
– volume: 11
  start-page: 672
  issue: 2
  year: 2021
  ident: 12367_CR11
  publication-title: Appl. Sci.
  doi: 10.3390/app11020672
– volume: 10
  start-page: 10200
  issue: 1
  year: 2020
  ident: 12367_CR42
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67076-5
– ident: 12367_CR28
– volume: 38
  start-page: 240
  issue: 1
  year: 2019
  ident: 12367_CR9
  publication-title: IEEE Trans. Med. Imaging.
  doi: 10.1109/TMI.2018.2860257
– ident: 12367_CR47
– ident: 12367_CR33
– volume: 175
  start-page: 742
  issue: 10
  year: 2010
  ident: 12367_CR5
  publication-title: Mil. Med.
  doi: 10.7205/MILMED-D-10-00025
– volume: 6
  issue: 9
  year: 2019
  ident: 12367_CR18
  publication-title: Int. J. Sci. Res. Publ. (IJSRP).
– volume: 9
  start-page: 676
  issue: 7
  year: 2012
  ident: 12367_CR30
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.2019
– ident: 12367_CR31
– ident: 12367_CR4
SSID ssj0000529419
Score 2.4855483
Snippet Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation remains a...
Abstract Ultrasound imaging is essential for non-invasively diagnosing injuries where advanced diagnostics may not be possible. However, image interpretation...
SourceID doaj
pubmedcentral
osti
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8427
SubjectTerms 639/166/985
692/308
692/700/1421/1860
Algorithms
Animal tissues
Animals
Artificial Intelligence
BASIC BIOLOGICAL SCIENCES
biomedical engineering
Classification
Deep Learning
Humanities and Social Sciences
Image processing
Image Processing, Computer-Assisted - methods
medical research
Mimicry
multidisciplinary
Neural networks
Science
Science (multidisciplinary)
Swine
Trauma
Ultrasonic imaging
Ultrasonography
Ultrasound
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hCiQuiPIMLchI3CBq4iSOfSyIigOqOIDUC7L87K60za42WST-fWec7NLleeEUKXYiex72Z834G4BXQRAtuWpyF32T0-XHXKoQ81ibSpmm9dEnyvyP7fm5vLhQn26U-qKcsJEeeBTcCW4xweESGlqK0Ukr8fxgfHTcCuFLl6BR0aobh6mR1ZurulTTLZmikic97lR0m4xTLY8KVwe-txMlwn58LNGxfgc2f82Z_Clwmvajs_twbwKS7HScwCHcCt0DuDOWlvz-EL6edmx-hYsFc4SPKSEo6YD5EFb5VCvikpnF5XI9H2ZXDMEr62drs-rCAjsNKUWrY3T9hG0WOJieCjCN_-wfwZez95_ffcinUgq5a0Q75I0KMioTra1MLMoYUHzeKdsE542s8RBWWlcXMnqFDSG4iBJsW9soaxDYxuoxHHTLLjwFJgQvLNHwVYUkbhrLYymME8JIo5T1GZRbsWo38YxTuYuFTvHuSupRFRpVoZMqNM_g9e6b1ciy8dfeb0lbu57EkJ1eoN3oyW70v-wmgyPStUagQWy5jtKK3KARHzVoPRkcb01AT07da8QyouUIsasMXu6a0R0pxmK6sNykPsTgiAf_DJ6MFrMbJzHZIxwsM2j3bGlvIvst3XyWKL9VYu6rM3iztbofw_qzoJ79D0EdwV1OXkOMteoYDob1JjyH2-7bMO_XL5LbXQNcAzCA
  priority: 102
  providerName: Directory of Open Access Journals
Title An image classification deep-learning algorithm for shrapnel detection from ultrasound images
URI https://link.springer.com/article/10.1038/s41598-022-12367-2
https://www.ncbi.nlm.nih.gov/pubmed/35589931
https://www.proquest.com/docview/2666720803
https://www.proquest.com/docview/2667790338
https://www.osti.gov/servlets/purl/1905005
https://pubmed.ncbi.nlm.nih.gov/PMC9117994
https://doaj.org/article/224ec847e742458b8104adfc2b66d1ca
Volume 12
WOSCitedRecordID wos000798064600130&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M7P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (ProQuest)
  customDbUrl:
  eissn: 2045-2322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000529419
  issn: 2045-2322
  databaseCode: M2P
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSRe-B6EjSpIvEG0Jmli-wltaBNIrKoQSOUBWf5sK3VpaVIk_nvunLRT-dgLL64UO1Gud2f_4jv_DuCVK4mWXBSJ8bZI6PBjwoXziR-oXKiCWW8DZf5HNhzy8ViMug23ukur3MyJYaK2C0N75Ce4kJQsQ3yTv11-T6hqFEVXuxIae3CAyCallK7LbLTdY6Eo1iAV3VmZfs5Palyv6ExZRhU9cpwjsp31KND2488C3etvkPPPzMnfwqdhVbq4_7_yPIB7HR6NT1sDegi3XPUI7rQVKn8-hm-nVTy7wjknNgSzKa8oqDK2zi2TruTEJFbzCT67mV7FiIHjerpSy8rNcVATMr2qmE6xxOs5SlNTHaf2mfUT-HJx_vnd-6SryJCYomRNUgjHvVBe61z5fupdpktrhC6csYoP8Fsu1WbQ594K7HDOeFQBY7oQWiE-9vkh7FeLyj2DuCyzviY2v7zPieJGZz4tlSlLxZUQ2kaQbvQiTUdXTlUz5jKEzXMuW11K1KUMupRZBK-39yxbso4bR5-RurcjiWg7XFisJrLzW4kIxxlcwR2jEDHXHD9flfUGBS9talQER2QsEvEKke4ayk4yjUSYVaD5RXC8Ub7s5oZaXms-gpfbbvRqCtWoyi3WYQwRQeY5j-Bpa3Lb9yRCfESVaQRsxxh3BNntqWbTwBwuAgHgIII3G7O9fq1__1HPb5biCO5m5FBEaSuOYb9Zrd0LuG1-NLN61YM9Nmah5T04ODsfjj71wsZHL_gqtQzbg9GHy9HXX1-nRX4
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VAoIL70dogSDBCaImzss-IFQeVasuqx6K1AtyHcfurrTNLpssqH-K38iMk2y1PHrrgdNKa6-V8X4zHmdmvgF4aTKiJRdpoG2ZBlT8GHBhbGATFQuV5qUtHWX-IB8O-dGROFiDn30tDKVV9jbRGepyqukd-RYeJFnO0L-J382-BdQ1iqKrfQuNFhb75uwHXtnqt3sf8f99xdjOp8MPu0HXVSDQaZY3QSoMt0LZooiVDSNrWJGVWhSp0aXiCd5HokInIbelwAFjtA1TludFKgqFPp6Ncd0rcDUhZjFKFWQHy3c6FDVLItHV5oQx36rxfKQaNkYdRGK0SWzl_HNtAvBjiur8Nxf3z0zN38K17hTcuf2_7d8duNX52_52qyB3Yc1U9-B624Hz7D583a788SnaVF_TNYLyphxUfVxyFnQtNU58NTlBWZrRqY8-vl-P5mpWmQlOalwmW-VTlY6_mODu1dSnql2zfgBfLkW2h7BeTSvzGPwsY2FBbIVxyInCp2A2ypTOMsWVEEXpQdTjQOqOjp26gkykSwuIuWyxIxE70mFHMg9eL38za8lILpz9nuC1nElE4u6L6fxEdnZJogdnNHooJqcQOC84Xs9VaTUKnpWRVh5sEDgl-mNEKqwp-0o3Et3IFOHuwWYPNtnZvlqeI82DF8thtFoUilKVmS7cHCK6jGPuwaMW4svnJMJ_9JojD_IV8K8IsjpSjUeOGV04gsPEgze9mpw_1r836snFUjyHG7uHnwdysDfc34CbjJSZ6HvFJqw384V5Ctf092Zcz585a-DD8WWrzy-g2KBZ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tXUBceD_CLhAkOEHUvGMfEFpYVlS7VD2AtByQcRy7rdRNS5OC9q_x65hxkq7KY2974FSpdq2M-834czz-BuCZTkmWnCeeMkXi0eVHj3FtPBPLiMskK0xhJfOPsuGQHR_z0Rb87O7CUFplFxNtoC7mit6R93EhSbMQ-U3UN21axGj_4PXim0cVpOiktSun0UDkUJ_-wO1b9Wqwj__18zA8ePfx7XuvrTDgqSTNai_hmhkuTZ5H0viB0WGeForniVaFZDHuTYJcxT4zBccGrZXxkzDL8oTnEvmeiXDcS7CNlDwOe7A9GnwYfV6_4aEztDjg7U0dP2L9CldLutEWUj2RCCNUuLEa2qIB-DFH5_4b4f0zb_O3w1u7Jh7c-J9n8yZcb5m4u9e4zi3Y0uVtuNLU5jy9A1_2Snd6gtHWVbTBoIwqC2IXh1x4bbGNsStnY7Slnpy4yP7darKUi1LPsFNtc9xKl-7vuKsZzmRFFayaMau78OlCbLsHvXJe6gfgpmno56RjGPmMxH3y0ASpVGkqmeQ8LxwIOkwI1Qq1U72QmbAJAxETDY4E4khYHInQgRfr3ywamZJze78hqK17ksS4_WK-HIs2Ygnkdlohd9EZHY6znOHGXRZGoeFpESjpwA4BVSBTI7lhRXlZqhZIMBOEvgO7HfBEGxUrcYY6B56umzGe0SGVLPV8ZfuQBGYUMQfuN3BfPyeVAkA-HTiQbTjChiGbLeV0YjXTuZU-jB142bnM2WP9e6Ienm_FE7iKXiOOBsPDHbgWkl-Tri_fhV69XOlHcFl9r6fV8nEbGlz4etH-8wukdKqi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+image+classification+deep-learning+algorithm+for+shrapnel+detection+from+ultrasound+images&rft.jtitle=Scientific+reports&rft.au=Snider%2C+Eric+J&rft.au=Hernandez-Torres%2C+Sofia+I&rft.au=Boice%2C+Emily+N&rft.date=2022-05-19&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=8427&rft_id=info:doi/10.1038%2Fs41598-022-12367-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon