Classification of Diabetes Using Feature Selection and Hybrid Al-Biruni Earth Radius and Dipper Throated Optimization
Introduction: In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which...
Uložené v:
| Vydané v: | Diagnostics (Basel) Ročník 13; číslo 12; s. 2038 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Switzerland
MDPI AG
01.06.2023
MDPI |
| Predmet: | |
| ISSN: | 2075-4418, 2075-4418 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Introduction: In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures. Methodology: In this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO. Results: The proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests. Conclusions: The results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods. |
|---|---|
| AbstractList | Introduction: In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures. Methodology: In this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO. Results: The proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests. Conclusions: The results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods. In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures. In this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO. The proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests. The results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods. In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures.INTRODUCTIONIn public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures.In this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO.METHODOLOGYIn this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO.The proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests.RESULTSThe proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests.The results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods.CONCLUSIONSThe results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods. |
| Audience | Academic |
| Author | Alhussan, Amel Ali Ibrahim, Abdelhameed Saraya, Mohamed S. Eid, Marwa M. Abdelhamid, Abdelaziz A. Khafaga, Doaa Sami Towfek, S. K. |
| AuthorAffiliation | 1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aaalhussan@pnu.edu.sa 2 Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia 5 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt 7 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt; mmm@ieee.org 4 Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA; sktowfek@jcsis.org 6 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; abdelhameedibrahim79@gmail.com (A.I.); mohamedsabry83@mans.edu.eg (M.S.S.) 3 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt |
| AuthorAffiliation_xml | – name: 4 Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA; sktowfek@jcsis.org – name: 6 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; abdelhameedibrahim79@gmail.com (A.I.); mohamedsabry83@mans.edu.eg (M.S.S.) – name: 1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aaalhussan@pnu.edu.sa – name: 7 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt; mmm@ieee.org – name: 5 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt – name: 2 Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia – name: 3 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt |
| Author_xml | – sequence: 1 givenname: Amel Ali orcidid: 0000-0001-7530-7961 surname: Alhussan fullname: Alhussan, Amel Ali – sequence: 2 givenname: Abdelaziz A. orcidid: 0000-0001-7080-1979 surname: Abdelhamid fullname: Abdelhamid, Abdelaziz A. – sequence: 3 givenname: S. K. surname: Towfek fullname: Towfek, S. K. – sequence: 4 givenname: Abdelhameed orcidid: 0000-0002-8352-6731 surname: Ibrahim fullname: Ibrahim, Abdelhameed – sequence: 5 givenname: Marwa M. surname: Eid fullname: Eid, Marwa M. – sequence: 6 givenname: Doaa Sami orcidid: 0000-0002-9843-6392 surname: Khafaga fullname: Khafaga, Doaa Sami – sequence: 7 givenname: Mohamed S. surname: Saraya fullname: Saraya, Mohamed S. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37370932$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kl1P2zAUhqMJNBjjF0yaLO1mN2V2HCfx1dQVGEhISBtcW_5sT5Xane1MYr9-pmWMIkR8Ect5zmMf531X7fngbVV9IPiEUo6_GJBzH1IGnQgldY1p_6Y6rHHHJk1D-r0n84PqOKUlLg8ntK_Z2-qAdrTDnNaH1TgbZErgQMsMwaPg0ClIZbNN6DaBn6NzK_MYLfppB6s3jPQGXdypCAZNh8k3iKMHdCZjXqAf0sCYNsQprNc2optFDDJbg67XGVbwZ7PN-2rfySHZ44f3UXV7fnYzu5hcXX-_nE2vJpq1XZ4wbtueaskbwnWjHTZcGtc51bZGKqV5p1ttba9Yy4mrDeVONYx3ThvS85rTo-py6zVBLsU6wkrGOxEkiM1CiHNRjg16sIJ3pCPUuabRvFG4VRLrxqqe44Yy1rLi-rp1rUe1skZbn6McdqS7XzwsxDz8FgTXvGs5LYbPD4YYfo02ZbGCpO0wSG_DmETdU9yWP8Oagn56hi7DGH25q0IVHWcM0__UXJYOwLtQNtb3UjHtWF98hLeFOnmBKsPYFegSKwdlfafg49NOH1v8l5oC0C2gY0gpWveIECzu4yleiGep4s-qNORNHMp5YHi19i-U9-30 |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0326122 crossref_primary_10_3390_su151612601 crossref_primary_10_1038_s41598_025_09409_w crossref_primary_10_1038_s41598_025_87471_0 crossref_primary_10_1155_int_1351522 crossref_primary_10_1007_s44163_025_00339_0 crossref_primary_10_1186_s12889_025_23318_7 crossref_primary_10_3390_biomimetics8030270 crossref_primary_10_3390_biomimetics8070552 crossref_primary_10_3390_diagnostics13223439 crossref_primary_10_3390_biomimetics8030313 crossref_primary_10_1016_j_compbiomed_2025_110924 crossref_primary_10_3390_biomimetics8040351 crossref_primary_10_1007_s11540_024_09728_x crossref_primary_10_1016_j_swevo_2025_102100 crossref_primary_10_1016_j_compbiomed_2025_110597 crossref_primary_10_1016_j_mex_2025_103393 crossref_primary_10_33166_AETiC_2025_03_001 crossref_primary_10_1007_s44196_025_00901_9 crossref_primary_10_1016_j_aei_2025_103820 crossref_primary_10_1007_s00521_025_11553_3 crossref_primary_10_1016_j_compag_2025_110798 crossref_primary_10_3389_fenrg_2024_1391085 crossref_primary_10_1016_j_compag_2025_110691 crossref_primary_10_1016_j_cscm_2025_e04939 crossref_primary_10_1109_JSEN_2025_3565725 crossref_primary_10_3390_bioengineering11080766 crossref_primary_10_1063_5_0208862 crossref_primary_10_1007_s41060_024_00640_8 crossref_primary_10_1016_j_procs_2025_04_367 crossref_primary_10_1038_s41598_025_09368_2 |
| Cites_doi | 10.1007/s11128-018-2004-9 10.54216/JAIM.010102 10.38094/jastt20165 10.1109/ISPCC53510.2021.9609364 10.54216/JAIM.010101 10.1007/978-981-15-0978-0 10.1046/j.1524-4733.2001.45061.x 10.1016/j.advengsoft.2016.01.008 10.1002/chem.202103712 10.1007/s10118-022-2782-5 10.1007/978-3-319-67371-4 10.1109/ECTIDAMTNCON48261.2020.9090700 10.1007/s41745-019-0098-4 10.1016/j.compbiomed.2022.105757 10.1109/ICCES45898.2019.9002372 10.1016/j.diabres.2013.11.002 10.1596/978-0-8213-6179-5 10.3390/modelling4010004 10.1038/s41598-020-68771-z 10.1109/ECACE.2019.8679365 10.1046/j.1524-4733.2003.00234.x 10.1007/s00521-022-07049-z 10.54216/JAIM.010205 10.1177/1932296817706375 10.1109/ICIT52682.2021.9491788 10.1109/IGARSS39084.2020.9323727 10.1109/ACCESS.2020.2989857 10.1109/ACCESS.2022.3190508 10.54216/JAIM.020103 10.1109/ICRITO56286.2022.9964904 10.3390/modelling3040027 10.1186/s12902-021-00925-0 10.32604/csse.2023.032497 10.1007/s13410-021-00969-x 10.1186/s12902-019-0436-6 10.3390/math10203845 10.1016/j.advengsoft.2013.12.007 10.2337/diacare.29.s1.06.s43 10.1155/2021/5525271 10.3389/fgene.2018.00515 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
| DBID | AAYXX CITATION NPM 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
| DOI | 10.3390/diagnostics13122038 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep ProQuest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 2075-4418 |
| ExternalDocumentID | oai_doaj_org_article_971713ff44c94b06ba0c4eb890435565 PMC10297693 A758283196 37370932 10_3390_diagnostics13122038 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia grantid: PNURSP2023R 308 |
| GroupedDBID | 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACUHS ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BCNDV BENPR BPHCQ CCPQU CITATION DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH HYE IAO IHR ITC KQ8 M2O M48 MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM 3V. NPM 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
| ID | FETCH-LOGICAL-c567t-59e683ca9419c4cf0d9adf7fb66dabbc97c6cee8b5691f2d39fb4597fcd189293 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014164000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2075-4418 |
| IngestDate | Fri Oct 03 12:44:37 EDT 2025 Tue Nov 04 02:06:32 EST 2025 Thu Oct 02 06:03:25 EDT 2025 Sun Nov 09 08:19:57 EST 2025 Tue Nov 11 10:32:29 EST 2025 Tue Nov 04 18:38:52 EST 2025 Thu Jan 02 22:53:03 EST 2025 Sat Nov 29 07:15:04 EST 2025 Tue Nov 18 22:01:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | random forest machine learning dipper throated optimization diabetes feature selection Al-Biruni earth radius optimization |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c567t-59e683ca9419c4cf0d9adf7fb66dabbc97c6cee8b5691f2d39fb4597fcd189293 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9843-6392 0000-0001-7530-7961 0000-0001-7080-1979 0000-0002-8352-6731 |
| OpenAccessLink | https://doaj.org/article/971713ff44c94b06ba0c4eb890435565 |
| PMID | 37370932 |
| PQID | 2829795503 |
| PQPubID | 2032410 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_971713ff44c94b06ba0c4eb890435565 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10297693 proquest_miscellaneous_2830673754 proquest_journals_2829795503 gale_infotracmisc_A758283196 gale_infotracacademiconefile_A758283196 pubmed_primary_37370932 crossref_primary_10_3390_diagnostics13122038 crossref_citationtrail_10_3390_diagnostics13122038 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Diagnostics (Basel) |
| PublicationTitleAlternate | Diagnostics (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | ref_50 Weinstein (ref_17) 2003; 6 Oubelaid (ref_34) 2023; 2 ref_13 Abdelhamid (ref_22) 2022; 72 ref_55 ref_54 Shazly (ref_35) 2023; 2 ref_52 ref_51 Netrapalli (ref_43) 2019; 99 ref_18 Zou (ref_12) 2018; 9 ref_16 Khafaga (ref_26) 2022; 10 ref_15 Mahmood (ref_11) 2022; 40 Shams (ref_31) 2022; 1 ref_24 Hasan (ref_21) 2020; 8 ref_23 Charbuty (ref_44) 2021; 2 ref_27 Dang (ref_45) 2018; 17 Bukhari (ref_20) 2021; 2021 Khafaga (ref_25) 2022; 73 Khafaga (ref_29) 2022; 73 Mirjalili (ref_40) 2014; 69 Gollapalli (ref_56) 2022; 147 Dagliati (ref_28) 2018; 12 Mahmood (ref_10) 2022; 28 Abdelhamid (ref_36) 2023; 45 Saber (ref_33) 2022; 1 Naz (ref_53) 2022; 42 ref_39 ref_38 Mirjalili (ref_37) 2016; 95 Patil (ref_19) 2018; 8 Guariguata (ref_6) 2014; 103 Weinstein (ref_8) 2001; 4 ref_47 ref_46 ref_41 Saber (ref_32) 2022; 1 ref_1 Takieldeen (ref_42) 2022; 72 ref_3 ref_2 AlEisa (ref_30) 2022; 73 ref_49 ref_48 ref_9 ref_5 ref_4 ref_7 Kopitar (ref_14) 2020; 10 |
| References_xml | – volume: 17 start-page: 239 year: 2018 ident: ref_45 article-title: Image classification based on quantum K-Nearest-Neighbor algorithm publication-title: Quantum Inf. Process. doi: 10.1007/s11128-018-2004-9 – ident: ref_5 – ident: ref_51 – volume: 1 start-page: 20 year: 2022 ident: ref_31 article-title: Hybrid Neural Networks in Generic Biometric System: A Survey publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.010102 – volume: 2 start-page: 20 year: 2021 ident: ref_44 article-title: Classification Based on Decision Tree Algorithm for Machine Learning publication-title: J. Appl. Sci. Technol. Trends doi: 10.38094/jastt20165 – ident: ref_15 doi: 10.1109/ISPCC53510.2021.9609364 – volume: 1 start-page: 8 year: 2022 ident: ref_32 article-title: Removing Powerline Interference from EEG Signal using Optimized FIR Filters publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.010101 – ident: ref_49 doi: 10.1007/978-981-15-0978-0 – volume: 4 start-page: 348 year: 2001 ident: ref_8 article-title: Modeling for Health Care and Other Policy Decisions: Uses, Roles, and Validity publication-title: Value Health doi: 10.1046/j.1524-4733.2001.45061.x – volume: 72 start-page: 2305 year: 2022 ident: ref_22 article-title: Robust Prediction of the Bandwidth of Metamaterial Antenna Using Deep Learning publication-title: Comput. Mater. Contin. – volume: 95 start-page: 51 year: 2016 ident: ref_37 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 28 start-page: e202103712 year: 2022 ident: ref_10 article-title: Developing Efficient Small Molecule Acceptors with sp2-Hybridized Nitrogen at Different Positions by Density Functional Theory Calculations, Molecular Dynamics Simulations and Machine Learning publication-title: Chem.—A Eur. J. doi: 10.1002/chem.202103712 – volume: 40 start-page: 870 year: 2022 ident: ref_11 article-title: Machine Learning for Organic Photovoltaic Polymers: A Minireview publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-022-2782-5 – volume: 72 start-page: 1465 year: 2022 ident: ref_42 article-title: Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection publication-title: Comput. Mater. Contin. – ident: ref_52 – ident: ref_39 doi: 10.1007/978-3-319-67371-4 – ident: ref_27 doi: 10.1109/ECTIDAMTNCON48261.2020.9090700 – volume: 99 start-page: 201 year: 2019 ident: ref_43 article-title: Stochastic Gradient Descent and Its Variants in Machine Learning publication-title: J. Indian Inst. Sci. doi: 10.1007/s41745-019-0098-4 – ident: ref_41 – volume: 73 start-page: 749 year: 2022 ident: ref_25 article-title: Meta-heuristics for Feature Selection and Classification in Diagnostic Breast Cancer publication-title: Comput. Mater. Contin. – volume: 147 start-page: 105757 year: 2022 ident: ref_56 article-title: A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105757 – ident: ref_38 doi: 10.1109/ICCES45898.2019.9002372 – ident: ref_7 – volume: 103 start-page: 137 year: 2014 ident: ref_6 article-title: Global estimates of diabetes prevalence for 2013 and projections for 2035 publication-title: Diabetes Res. Clin. Pract. doi: 10.1016/j.diabres.2013.11.002 – ident: ref_2 doi: 10.1596/978-0-8213-6179-5 – ident: ref_3 – ident: ref_24 doi: 10.3390/modelling4010004 – ident: ref_47 – volume: 10 start-page: 11981 year: 2020 ident: ref_14 article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models publication-title: Sci. Rep. doi: 10.1038/s41598-020-68771-z – ident: ref_18 doi: 10.1109/ECACE.2019.8679365 – volume: 6 start-page: 9 year: 2003 ident: ref_17 article-title: Principles of Good Practice for Decision Analytic Modeling in Health-Care Evaluation: Report of the ISPOR Task Force on Good Research Practices—Modeling Studies publication-title: Value Health doi: 10.1046/j.1524-4733.2003.00234.x – volume: 2 start-page: 46 year: 2023 ident: ref_35 article-title: Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble publication-title: J. Artif. Intell. Metaheuristics – ident: ref_54 doi: 10.1007/s00521-022-07049-z – volume: 1 start-page: 42 year: 2022 ident: ref_33 article-title: Arrhythmia Modern Classification Techniques: A Review publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.010205 – volume: 12 start-page: 295 year: 2018 ident: ref_28 article-title: Machine Learning Methods to Predict Diabetes Complications publication-title: J. Diabetes Sci. Technol. doi: 10.1177/1932296817706375 – ident: ref_23 doi: 10.1109/ICIT52682.2021.9491788 – ident: ref_48 doi: 10.1109/IGARSS39084.2020.9323727 – volume: 8 start-page: 76516 year: 2020 ident: ref_21 article-title: Diabetes Prediction Using Ensembling of Different Machine Learning Classifiers publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989857 – volume: 10 start-page: 74449 year: 2022 ident: ref_26 article-title: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190508 – volume: 2 start-page: 27 year: 2023 ident: ref_34 article-title: Energy Efficiency Modeling Using Whale Optimization Algorithm and Ensemble Model publication-title: J. Artif. Intell. Metaheuristics doi: 10.54216/JAIM.020103 – ident: ref_50 – ident: ref_55 doi: 10.1109/ICRITO56286.2022.9964904 – ident: ref_16 doi: 10.3390/modelling3040027 – ident: ref_4 doi: 10.1186/s12902-021-00925-0 – ident: ref_46 – volume: 73 start-page: 2371 year: 2022 ident: ref_30 article-title: Transfer Learning for Chest X-rays Diagnosis Using Dipper Throated Algorithm publication-title: Comput. Mater. Contin. – volume: 45 start-page: 1917 year: 2023 ident: ref_36 article-title: Al-Biruni Earth Radius (BER) Metaheuristic Search Optimization Algorithm publication-title: Comput. Syst. Sci. Eng. doi: 10.32604/csse.2023.032497 – volume: 42 start-page: 245 year: 2022 ident: ref_53 article-title: SMOTE-SMO-based expert system for type II diabetes detection using PIMA dataset publication-title: Int. J. Diabetes Dev. Ctries. doi: 10.1007/s13410-021-00969-x – volume: 8 start-page: 3966 year: 2018 ident: ref_19 article-title: A Comparative Analysis on the Evaluation of Classification Algorithms in the Prediction of Diabetes publication-title: Int. J. Electr. Comput. Eng. – ident: ref_13 doi: 10.1186/s12902-019-0436-6 – ident: ref_9 doi: 10.3390/math10203845 – volume: 69 start-page: 46 year: 2014 ident: ref_40 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref_1 doi: 10.2337/diacare.29.s1.06.s43 – volume: 2021 start-page: 5525271 year: 2021 ident: ref_20 article-title: An Improved Artificial Neural Network Model for Effective Diabetes Prediction publication-title: Complexity doi: 10.1155/2021/5525271 – volume: 73 start-page: 865 year: 2022 ident: ref_29 article-title: Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM publication-title: Comput. Mater. Contin. – volume: 9 start-page: 515 year: 2018 ident: ref_12 article-title: Predicting Diabetes Mellitus With Machine Learning Techniques publication-title: Front. Genet. doi: 10.3389/fgene.2018.00515 |
| SSID | ssj0000913825 |
| Score | 2.4388566 |
| Snippet | Introduction: In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus,... In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 2038 |
| SubjectTerms | Accuracy Al-Biruni earth radius optimization Algorithms Chronic illnesses Classification Datasets Decision trees diabetes dipper throated optimization Disease Epidemiology Feature selection Forecasts and trends Gestational diabetes Hyperglycemia Insulin resistance Literature reviews Machine learning Mathematical optimization Medical research Medicine, Experimental Neural networks Optimization algorithms Optimization techniques Public health random forest Risk factors Support vector machines Type 2 diabetes |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96JyKIH-dX9ZQIgi-Wazdt2jzJru5xD7oe5yn3Vpovt3C2a7sV_O-dSbPrFuVefG0m0JDJzG-Smd8Q8iqyTMRaqlCLBAIUwWwodJSFMo0MB_9eKsez_fVDtljkFxfi1F-4dT6tcmMTnaHWjcI78iN88csE4Gn2dvUjxK5R-LrqW2hcJ_vIVAZ6vj-bL07PtrcsyHoJMdBAN8Qgvj_SQwYbciDHLJ5MIqxM2XFJjrn_b_u846DGyZM73uj47v-u4x6543EonQ6Kc59cM_UBufnRv7QfkNvDfR4dypQekN51z8S8IreVtLHUJ9N01KUdUASTfWvoZ9dZB2XKWtOTX1gSRqeX4axq-7qic9DVJT0rddV3TuJ9tVqZlp4v2wZwr6afwIh999WhD8mX4_n5u5PQt2wIVcqzdZgKw3OmSth4oRJlIy1KbTMrOdellEpkioNbzmXKRWwnmgkrE4hprNJxDkiNPSJ7dVObJ4RKidRuNjM8YwkH05OrTImU2ZIrAJEmIJPNrhXK85ljW43LAuIa3OriH1sdkDfbSauBzuNq8Rmqw1YUubjdh6b9VvijXQiIiGNmbZIokciIyzJSiZG5iACKAl4OyGtUpgItBvygKn3hAywTubeKaYZPl2gKA3I4koSTrsbDG5UqvKXpij_6FJCX22GcidlztWl6lGGuH1GaBOTxoL3bJTH4HgGID0g-0uvRmscjdbV0POQxNj7jgj29-r-ekVsTQIZDft0h2Vu3vXlObqif66prX_gT-xvrrE27 priority: 102 providerName: ProQuest |
| Title | Classification of Diabetes Using Feature Selection and Hybrid Al-Biruni Earth Radius and Dipper Throated Optimization |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37370932 https://www.proquest.com/docview/2829795503 https://www.proquest.com/docview/2830673754 https://pubmed.ncbi.nlm.nih.gov/PMC10297693 https://doaj.org/article/971713ff44c94b06ba0c4eb890435565 |
| Volume | 13 |
| WOSCitedRecordID | wos001014164000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (NC Live) customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest research library customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: M2O dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2075-4418 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913825 issn: 2075-4418 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96ivgifp7Vc4kg-GK5tmmT5nFX9zjB3VvOU9an0nyxhbO7dLeC_70zaW_ZouiLL31IJtDMTOaDTH5DyJvIMRkbpUMjU0hQJHOhNJEIVRZZDv691B5n--snMZ_ny6VcHLT6wpqwDh64Y9yphHwjZs6lqZapirgqI51alcsIHD1EI2h9IyEPkilvgyVi62UdzBCDvP7UdJVriH0cszhJInyRcuCKPGL_73b5wDENiyYPvNDZQ_KgDx_puPvtR-SWrR-Te7P-gvwJaX2TSyz_8Ryna0f7mpct9dUBFGO-trH0s2-AgzRlbej5T3y5RcfX4aRq2rqiU-DMil6Wpmq3nuJDtdnYhl6tmjWEp4ZegK353j_ifEq-nE2v3p-HfWeFUGdc7MJMWp4zXYJ8pE61i4wsjRNOcW5KpbQUmoP3zFXGZewSw6RTKaQeTps4h4CKPSNH9bq2zwlVChHYnLBcsJSDhci10DJjruQaYj0bkOSGyYXuYcex-8V1AekHSqb4g2QC8m6_aNOhbvydfILS25MiZLYfAEUqekUq_qVIAXmLsi_wYMMP6rJ_nwDbRIisYizwhhEtVkBOBpRwIPVw-kZ7it4gbAu8sBYS0kEWkNf7aVyJRW61XbdIw3zboCwNyHGnbPstMRiPINYOSD5Qw8GehzN1tfJw4TH2J-OSvfgfXHpJ7icQ5nXFcifkaNe09hW5q3_sqm0zIrfFMh-RO5PpfHE58kcSvrPkAsYWH2eLb78ATEU9cg |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAES4lFehgKLBOKCVdvr1x4QSmmrRE1CBAGVk7F3vcRScYITg_qn-I3M2E6IBeqtB67ecbTrfDuP3ZlvAJ5bmgtbJdJUwsUARXBtCmUFZuJZqY_2PZYVz_anQTAahScnYrwFv1a1MJRWudKJlaJWM0ln5Ht04xcI9Kf5m_l3k7pG0e3qqoVGDYvj9OwnhmyL1_0D_H9fOM7R4eRtz2y6CpjS84Ol6YnUD7mMcW5CulJbSsRKBzrxfRUniRSB9NFyhInnC1s7iguduOh2a6nsEJ0Jjr97CbZdBLvVge1xfzj-vD7VIZZNjLlqeiPOhbWn6ow54ly2ue04FlXCbJjAqlPA3_ZgwyC2kzU3rN_Rzf_tu92CG42fzbr1xrgNW2m-A1eGTSbBDlyvzytZXYZ1B8qqOyjlTVVQZTPNmmShBavSKhg5y2WRsg9V5yCSiXPFemdU8sa6p-Z-VpR5xg5xL07Z-1hl5aKSOMjm87Rgk2kxQ79esXeopL811a934eOFfIR70MlnefoAWJIQdZ0OUj_gro-qNZSBFB7XsS_RSU4NcFYoiWTD105tQ04jjNsIWtE_oGXAq_VL85qu5HzxfYLfWpS4xqsHs-Jr1KiuSGDEb3OtXVcKN7H8JLakmyahsNDVxnjAgJcE3og0Ik5Qxk1hBy6TuMWibkBXs6TqDdhtSaImk-3hFYSjRpMuoj_4NeDZepjepOzAPJ2VJMOrfkuea8D9eresl8TxuYVBigFhax-11tweybNpxbNuU2M3X_CH58_rKVztTYaDaNAfHT-Caw56wXUu4S50lkWZPobL8scyWxRPGm3B4MtFb7Tf4fWt-A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgiokxKO8DAUWCcQFK7bX9noPCKWkUau2aQUt6s14X8RSsYMTg_rX-HXM2E5IBOqtB67esbW7nufuzDeEvPIsE76WytUihABFMOsK7XFXRp6Jwb5nqsHZ_nzAR6Pk7Ewcr5Ff81oYTKuc68RGUetS4Rl5D2_8uAB_mvVslxZxPBi-n3x3sYMU3rTO22m0LLJvLn5C-DZ9tzeAf_06CIY7Jx923a7DgKuimM_cSJg4YSqDeQoVKutpkWnLrYxjnUmpBFcxWJFERrHwbaCZsDIEF9wq7SfgWDD47jVynYdRiNJ1GBwtzncQbxOirxboiDHh9XSbO4foyz7zg8DDmpglY9j0DPjbMiyZxtW0zSU7OLzzP-_gXXK7875pvxWXe2TNFJtk47DLL9gkt9pTTNoWZ90nddMzFLOpGgampaVdCtGUNskWFF3oujL0U9NPCGmyQtPdCyyEo_1zdzuv6iKnOyChY_ox03k9bSgG-WRiKnoyrkrw9jU9AtX9rauJfUBOr2QTHpL1oizMY0KlREA7y03MWRiDwk0UVyJiNosVuM7GIcGcY1LVobhjM5HzFKI5ZLP0H2zmkLeLlyYtiMnl5NvIigtSRCBvHpTV17RTaKngPveZtWGoRCi9WGaeCo1MhAcOOEQJDnmDjJyinoQJqqwr94BlIuJY2ud4YYsGwCFbK5Sg39Tq8Jyd006_TtM_vOyQl4thfBNzBgtT1kjDmi5MUeiQR63kLJbE4LkHoYtDkhWZWlnz6kiRjxv0dR_bvcWCPbl8Xi_IBkhXerA32n9KbgbgGrcJhltkfVbV5hm5oX7M8mn1vFEblHy5ain7DS9utTs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Diabetes+Using+Feature+Selection+and+Hybrid+Al-Biruni+Earth+Radius+and+Dipper+Throated+Optimization&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Alhussan%2C+Amel+Ali&rft.au=Abdelhamid%2C+Abdelaziz+A.&rft.au=Towfek%2C+S.+K.&rft.au=Ibrahim%2C+Abdelhameed&rft.date=2023-06-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=12&rft.spage=2038&rft_id=info:doi/10.3390%2Fdiagnostics13122038&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics13122038 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon |