Classification of Diabetes Using Feature Selection and Hybrid Al-Biruni Earth Radius and Dipper Throated Optimization

Introduction: In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Diagnostics (Basel) Ročník 13; číslo 12; s. 2038
Hlavní autori: Alhussan, Amel Ali, Abdelhamid, Abdelaziz A., Towfek, S. K., Ibrahim, Abdelhameed, Eid, Marwa M., Khafaga, Doaa Sami, Saraya, Mohamed S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 01.06.2023
MDPI
Predmet:
ISSN:2075-4418, 2075-4418
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Introduction: In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures. Methodology: In this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO. Results: The proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests. Conclusions: The results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods.
AbstractList Introduction: In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures. Methodology: In this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO. Results: The proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests. Conclusions: The results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods.
In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures. In this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO. The proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests. The results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods.
In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures.INTRODUCTIONIn public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has reached epidemic proportions due to its widespread occurrence around the world. Diabetes is just one of several diseases for which machine learning techniques can be used in the diagnosis, prognosis, and assessment procedures.In this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO.METHODOLOGYIn this paper, we propose a new approach for boosting the classification of diabetes based on a new metaheuristic optimization algorithm. The proposed approach proposes a new feature selection algorithm based on a dynamic Al-Biruni earth radius and dipper-throated optimization algorithm (DBERDTO). The selected features are then classified using a random forest classifier with its parameters optimized using the proposed DBERDTO.The proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests.RESULTSThe proposed methodology is evaluated and compared with recent optimization methods and machine learning models to prove its efficiency and superiority. The overall accuracy of diabetes classification achieved by the proposed approach is 98.6%. On the other hand, statistical tests have been conducted to assess the significance and the statistical difference of the proposed approach based on the analysis of variance (ANOVA) and Wilcoxon signed-rank tests.The results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods.CONCLUSIONSThe results of these tests confirmed the superiority of the proposed approach compared to the other classification and optimization methods.
Audience Academic
Author Alhussan, Amel Ali
Ibrahim, Abdelhameed
Saraya, Mohamed S.
Eid, Marwa M.
Abdelhamid, Abdelaziz A.
Khafaga, Doaa Sami
Towfek, S. K.
AuthorAffiliation 1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aaalhussan@pnu.edu.sa
2 Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia
5 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt
7 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt; mmm@ieee.org
4 Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA; sktowfek@jcsis.org
6 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; abdelhameedibrahim79@gmail.com (A.I.); mohamedsabry83@mans.edu.eg (M.S.S.)
3 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
AuthorAffiliation_xml – name: 4 Computer Science and Intelligent Systems Research Center, Blacksburg, VA 24060, USA; sktowfek@jcsis.org
– name: 6 Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt; abdelhameedibrahim79@gmail.com (A.I.); mohamedsabry83@mans.edu.eg (M.S.S.)
– name: 1 Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; aaalhussan@pnu.edu.sa
– name: 7 Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura 11152, Egypt; mmm@ieee.org
– name: 5 Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt
– name: 2 Department of Computer Science, College of Computing and Information Technology, Shaqra University, Shaqra 11961, Saudi Arabia
– name: 3 Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
Author_xml – sequence: 1
  givenname: Amel Ali
  orcidid: 0000-0001-7530-7961
  surname: Alhussan
  fullname: Alhussan, Amel Ali
– sequence: 2
  givenname: Abdelaziz A.
  orcidid: 0000-0001-7080-1979
  surname: Abdelhamid
  fullname: Abdelhamid, Abdelaziz A.
– sequence: 3
  givenname: S. K.
  surname: Towfek
  fullname: Towfek, S. K.
– sequence: 4
  givenname: Abdelhameed
  orcidid: 0000-0002-8352-6731
  surname: Ibrahim
  fullname: Ibrahim, Abdelhameed
– sequence: 5
  givenname: Marwa M.
  surname: Eid
  fullname: Eid, Marwa M.
– sequence: 6
  givenname: Doaa Sami
  orcidid: 0000-0002-9843-6392
  surname: Khafaga
  fullname: Khafaga, Doaa Sami
– sequence: 7
  givenname: Mohamed S.
  surname: Saraya
  fullname: Saraya, Mohamed S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37370932$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1P2zAUhqMJNBjjF0yaLO1mN2V2HCfx1dQVGEhISBtcW_5sT5Xane1MYr9-pmWMIkR8Ect5zmMf531X7fngbVV9IPiEUo6_GJBzH1IGnQgldY1p_6Y6rHHHJk1D-r0n84PqOKUlLg8ntK_Z2-qAdrTDnNaH1TgbZErgQMsMwaPg0ClIZbNN6DaBn6NzK_MYLfppB6s3jPQGXdypCAZNh8k3iKMHdCZjXqAf0sCYNsQprNc2optFDDJbg67XGVbwZ7PN-2rfySHZ44f3UXV7fnYzu5hcXX-_nE2vJpq1XZ4wbtueaskbwnWjHTZcGtc51bZGKqV5p1ttba9Yy4mrDeVONYx3ThvS85rTo-py6zVBLsU6wkrGOxEkiM1CiHNRjg16sIJ3pCPUuabRvFG4VRLrxqqe44Yy1rLi-rp1rUe1skZbn6McdqS7XzwsxDz8FgTXvGs5LYbPD4YYfo02ZbGCpO0wSG_DmETdU9yWP8Oagn56hi7DGH25q0IVHWcM0__UXJYOwLtQNtb3UjHtWF98hLeFOnmBKsPYFegSKwdlfafg49NOH1v8l5oC0C2gY0gpWveIECzu4yleiGep4s-qNORNHMp5YHi19i-U9-30
CitedBy_id crossref_primary_10_1371_journal_pone_0326122
crossref_primary_10_3390_su151612601
crossref_primary_10_1038_s41598_025_09409_w
crossref_primary_10_1038_s41598_025_87471_0
crossref_primary_10_1155_int_1351522
crossref_primary_10_1007_s44163_025_00339_0
crossref_primary_10_1186_s12889_025_23318_7
crossref_primary_10_3390_biomimetics8030270
crossref_primary_10_3390_biomimetics8070552
crossref_primary_10_3390_diagnostics13223439
crossref_primary_10_3390_biomimetics8030313
crossref_primary_10_1016_j_compbiomed_2025_110924
crossref_primary_10_3390_biomimetics8040351
crossref_primary_10_1007_s11540_024_09728_x
crossref_primary_10_1016_j_swevo_2025_102100
crossref_primary_10_1016_j_compbiomed_2025_110597
crossref_primary_10_1016_j_mex_2025_103393
crossref_primary_10_33166_AETiC_2025_03_001
crossref_primary_10_1007_s44196_025_00901_9
crossref_primary_10_1016_j_aei_2025_103820
crossref_primary_10_1007_s00521_025_11553_3
crossref_primary_10_1016_j_compag_2025_110798
crossref_primary_10_3389_fenrg_2024_1391085
crossref_primary_10_1016_j_compag_2025_110691
crossref_primary_10_1016_j_cscm_2025_e04939
crossref_primary_10_1109_JSEN_2025_3565725
crossref_primary_10_3390_bioengineering11080766
crossref_primary_10_1063_5_0208862
crossref_primary_10_1007_s41060_024_00640_8
crossref_primary_10_1016_j_procs_2025_04_367
crossref_primary_10_1038_s41598_025_09368_2
Cites_doi 10.1007/s11128-018-2004-9
10.54216/JAIM.010102
10.38094/jastt20165
10.1109/ISPCC53510.2021.9609364
10.54216/JAIM.010101
10.1007/978-981-15-0978-0
10.1046/j.1524-4733.2001.45061.x
10.1016/j.advengsoft.2016.01.008
10.1002/chem.202103712
10.1007/s10118-022-2782-5
10.1007/978-3-319-67371-4
10.1109/ECTIDAMTNCON48261.2020.9090700
10.1007/s41745-019-0098-4
10.1016/j.compbiomed.2022.105757
10.1109/ICCES45898.2019.9002372
10.1016/j.diabres.2013.11.002
10.1596/978-0-8213-6179-5
10.3390/modelling4010004
10.1038/s41598-020-68771-z
10.1109/ECACE.2019.8679365
10.1046/j.1524-4733.2003.00234.x
10.1007/s00521-022-07049-z
10.54216/JAIM.010205
10.1177/1932296817706375
10.1109/ICIT52682.2021.9491788
10.1109/IGARSS39084.2020.9323727
10.1109/ACCESS.2020.2989857
10.1109/ACCESS.2022.3190508
10.54216/JAIM.020103
10.1109/ICRITO56286.2022.9964904
10.3390/modelling3040027
10.1186/s12902-021-00925-0
10.32604/csse.2023.032497
10.1007/s13410-021-00969-x
10.1186/s12902-019-0436-6
10.3390/math10203845
10.1016/j.advengsoft.2013.12.007
10.2337/diacare.29.s1.06.s43
10.1155/2021/5525271
10.3389/fgene.2018.00515
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics13122038
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
ProQuest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_971713ff44c94b06ba0c4eb890435565
PMC10297693
A758283196
37370932
10_3390_diagnostics13122038
Genre Journal Article
GrantInformation_xml – fundername: Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
  grantid: PNURSP2023R 308
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c567t-59e683ca9419c4cf0d9adf7fb66dabbc97c6cee8b5691f2d39fb4597fcd189293
IEDL.DBID DOA
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001014164000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-4418
IngestDate Fri Oct 03 12:44:37 EDT 2025
Tue Nov 04 02:06:32 EST 2025
Thu Oct 02 06:03:25 EDT 2025
Sun Nov 09 08:19:57 EST 2025
Tue Nov 11 10:32:29 EST 2025
Tue Nov 04 18:38:52 EST 2025
Thu Jan 02 22:53:03 EST 2025
Sat Nov 29 07:15:04 EST 2025
Tue Nov 18 22:01:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords random forest
machine learning
dipper throated optimization
diabetes
feature selection
Al-Biruni earth radius optimization
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-59e683ca9419c4cf0d9adf7fb66dabbc97c6cee8b5691f2d39fb4597fcd189293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9843-6392
0000-0001-7530-7961
0000-0001-7080-1979
0000-0002-8352-6731
OpenAccessLink https://doaj.org/article/971713ff44c94b06ba0c4eb890435565
PMID 37370932
PQID 2829795503
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_971713ff44c94b06ba0c4eb890435565
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10297693
proquest_miscellaneous_2830673754
proquest_journals_2829795503
gale_infotracmisc_A758283196
gale_infotracacademiconefile_A758283196
pubmed_primary_37370932
crossref_primary_10_3390_diagnostics13122038
crossref_citationtrail_10_3390_diagnostics13122038
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Weinstein (ref_17) 2003; 6
Oubelaid (ref_34) 2023; 2
ref_13
Abdelhamid (ref_22) 2022; 72
ref_55
ref_54
Shazly (ref_35) 2023; 2
ref_52
ref_51
Netrapalli (ref_43) 2019; 99
ref_18
Zou (ref_12) 2018; 9
ref_16
Khafaga (ref_26) 2022; 10
ref_15
Mahmood (ref_11) 2022; 40
Shams (ref_31) 2022; 1
ref_24
Hasan (ref_21) 2020; 8
ref_23
Charbuty (ref_44) 2021; 2
ref_27
Dang (ref_45) 2018; 17
Bukhari (ref_20) 2021; 2021
Khafaga (ref_25) 2022; 73
Khafaga (ref_29) 2022; 73
Mirjalili (ref_40) 2014; 69
Gollapalli (ref_56) 2022; 147
Dagliati (ref_28) 2018; 12
Mahmood (ref_10) 2022; 28
Abdelhamid (ref_36) 2023; 45
Saber (ref_33) 2022; 1
Naz (ref_53) 2022; 42
ref_39
ref_38
Mirjalili (ref_37) 2016; 95
Patil (ref_19) 2018; 8
Guariguata (ref_6) 2014; 103
Weinstein (ref_8) 2001; 4
ref_47
ref_46
ref_41
Saber (ref_32) 2022; 1
ref_1
Takieldeen (ref_42) 2022; 72
ref_3
ref_2
AlEisa (ref_30) 2022; 73
ref_49
ref_48
ref_9
ref_5
ref_4
ref_7
Kopitar (ref_14) 2020; 10
References_xml – volume: 17
  start-page: 239
  year: 2018
  ident: ref_45
  article-title: Image classification based on quantum K-Nearest-Neighbor algorithm
  publication-title: Quantum Inf. Process.
  doi: 10.1007/s11128-018-2004-9
– ident: ref_5
– ident: ref_51
– volume: 1
  start-page: 20
  year: 2022
  ident: ref_31
  article-title: Hybrid Neural Networks in Generic Biometric System: A Survey
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.010102
– volume: 2
  start-page: 20
  year: 2021
  ident: ref_44
  article-title: Classification Based on Decision Tree Algorithm for Machine Learning
  publication-title: J. Appl. Sci. Technol. Trends
  doi: 10.38094/jastt20165
– ident: ref_15
  doi: 10.1109/ISPCC53510.2021.9609364
– volume: 1
  start-page: 8
  year: 2022
  ident: ref_32
  article-title: Removing Powerline Interference from EEG Signal using Optimized FIR Filters
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.010101
– ident: ref_49
  doi: 10.1007/978-981-15-0978-0
– volume: 4
  start-page: 348
  year: 2001
  ident: ref_8
  article-title: Modeling for Health Care and Other Policy Decisions: Uses, Roles, and Validity
  publication-title: Value Health
  doi: 10.1046/j.1524-4733.2001.45061.x
– volume: 72
  start-page: 2305
  year: 2022
  ident: ref_22
  article-title: Robust Prediction of the Bandwidth of Metamaterial Antenna Using Deep Learning
  publication-title: Comput. Mater. Contin.
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_37
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 28
  start-page: e202103712
  year: 2022
  ident: ref_10
  article-title: Developing Efficient Small Molecule Acceptors with sp2-Hybridized Nitrogen at Different Positions by Density Functional Theory Calculations, Molecular Dynamics Simulations and Machine Learning
  publication-title: Chem.—A Eur. J.
  doi: 10.1002/chem.202103712
– volume: 40
  start-page: 870
  year: 2022
  ident: ref_11
  article-title: Machine Learning for Organic Photovoltaic Polymers: A Minireview
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-022-2782-5
– volume: 72
  start-page: 1465
  year: 2022
  ident: ref_42
  article-title: Dipper Throated Optimization Algorithm for Unconstrained Function and Feature Selection
  publication-title: Comput. Mater. Contin.
– ident: ref_52
– ident: ref_39
  doi: 10.1007/978-3-319-67371-4
– ident: ref_27
  doi: 10.1109/ECTIDAMTNCON48261.2020.9090700
– volume: 99
  start-page: 201
  year: 2019
  ident: ref_43
  article-title: Stochastic Gradient Descent and Its Variants in Machine Learning
  publication-title: J. Indian Inst. Sci.
  doi: 10.1007/s41745-019-0098-4
– ident: ref_41
– volume: 73
  start-page: 749
  year: 2022
  ident: ref_25
  article-title: Meta-heuristics for Feature Selection and Classification in Diagnostic Breast Cancer
  publication-title: Comput. Mater. Contin.
– volume: 147
  start-page: 105757
  year: 2022
  ident: ref_56
  article-title: A novel stacking ensemble for detecting three types of diabetes mellitus using a Saudi Arabian dataset: Pre-diabetes, T1DM, and T2DM
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105757
– ident: ref_38
  doi: 10.1109/ICCES45898.2019.9002372
– ident: ref_7
– volume: 103
  start-page: 137
  year: 2014
  ident: ref_6
  article-title: Global estimates of diabetes prevalence for 2013 and projections for 2035
  publication-title: Diabetes Res. Clin. Pract.
  doi: 10.1016/j.diabres.2013.11.002
– ident: ref_2
  doi: 10.1596/978-0-8213-6179-5
– ident: ref_3
– ident: ref_24
  doi: 10.3390/modelling4010004
– ident: ref_47
– volume: 10
  start-page: 11981
  year: 2020
  ident: ref_14
  article-title: Early detection of type 2 diabetes mellitus using machine learning-based prediction models
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-68771-z
– ident: ref_18
  doi: 10.1109/ECACE.2019.8679365
– volume: 6
  start-page: 9
  year: 2003
  ident: ref_17
  article-title: Principles of Good Practice for Decision Analytic Modeling in Health-Care Evaluation: Report of the ISPOR Task Force on Good Research Practices—Modeling Studies
  publication-title: Value Health
  doi: 10.1046/j.1524-4733.2003.00234.x
– volume: 2
  start-page: 46
  year: 2023
  ident: ref_35
  article-title: Credit Card Clients Classification Using Hybrid Guided wheel with Particle Swarm Optimized for Voting Ensemble
  publication-title: J. Artif. Intell. Metaheuristics
– ident: ref_54
  doi: 10.1007/s00521-022-07049-z
– volume: 1
  start-page: 42
  year: 2022
  ident: ref_33
  article-title: Arrhythmia Modern Classification Techniques: A Review
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.010205
– volume: 12
  start-page: 295
  year: 2018
  ident: ref_28
  article-title: Machine Learning Methods to Predict Diabetes Complications
  publication-title: J. Diabetes Sci. Technol.
  doi: 10.1177/1932296817706375
– ident: ref_23
  doi: 10.1109/ICIT52682.2021.9491788
– ident: ref_48
  doi: 10.1109/IGARSS39084.2020.9323727
– volume: 8
  start-page: 76516
  year: 2020
  ident: ref_21
  article-title: Diabetes Prediction Using Ensembling of Different Machine Learning Classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2989857
– volume: 10
  start-page: 74449
  year: 2022
  ident: ref_26
  article-title: Solving Optimization Problems of Metamaterial and Double T-Shape Antennas Using Advanced Meta-Heuristics Algorithms
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190508
– volume: 2
  start-page: 27
  year: 2023
  ident: ref_34
  article-title: Energy Efficiency Modeling Using Whale Optimization Algorithm and Ensemble Model
  publication-title: J. Artif. Intell. Metaheuristics
  doi: 10.54216/JAIM.020103
– ident: ref_50
– ident: ref_55
  doi: 10.1109/ICRITO56286.2022.9964904
– ident: ref_16
  doi: 10.3390/modelling3040027
– ident: ref_4
  doi: 10.1186/s12902-021-00925-0
– ident: ref_46
– volume: 73
  start-page: 2371
  year: 2022
  ident: ref_30
  article-title: Transfer Learning for Chest X-rays Diagnosis Using Dipper Throated Algorithm
  publication-title: Comput. Mater. Contin.
– volume: 45
  start-page: 1917
  year: 2023
  ident: ref_36
  article-title: Al-Biruni Earth Radius (BER) Metaheuristic Search Optimization Algorithm
  publication-title: Comput. Syst. Sci. Eng.
  doi: 10.32604/csse.2023.032497
– volume: 42
  start-page: 245
  year: 2022
  ident: ref_53
  article-title: SMOTE-SMO-based expert system for type II diabetes detection using PIMA dataset
  publication-title: Int. J. Diabetes Dev. Ctries.
  doi: 10.1007/s13410-021-00969-x
– volume: 8
  start-page: 3966
  year: 2018
  ident: ref_19
  article-title: A Comparative Analysis on the Evaluation of Classification Algorithms in the Prediction of Diabetes
  publication-title: Int. J. Electr. Comput. Eng.
– ident: ref_13
  doi: 10.1186/s12902-019-0436-6
– ident: ref_9
  doi: 10.3390/math10203845
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_40
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref_1
  doi: 10.2337/diacare.29.s1.06.s43
– volume: 2021
  start-page: 5525271
  year: 2021
  ident: ref_20
  article-title: An Improved Artificial Neural Network Model for Effective Diabetes Prediction
  publication-title: Complexity
  doi: 10.1155/2021/5525271
– volume: 73
  start-page: 865
  year: 2022
  ident: ref_29
  article-title: Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM
  publication-title: Comput. Mater. Contin.
– volume: 9
  start-page: 515
  year: 2018
  ident: ref_12
  article-title: Predicting Diabetes Mellitus With Machine Learning Techniques
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00515
SSID ssj0000913825
Score 2.4388566
Snippet Introduction: In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus,...
In public health, machine learning algorithms have been used to predict or diagnose chronic epidemiological disorders such as diabetes mellitus, which has...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2038
SubjectTerms Accuracy
Al-Biruni earth radius optimization
Algorithms
Chronic illnesses
Classification
Datasets
Decision trees
diabetes
dipper throated optimization
Disease
Epidemiology
Feature selection
Forecasts and trends
Gestational diabetes
Hyperglycemia
Insulin resistance
Literature reviews
Machine learning
Mathematical optimization
Medical research
Medicine, Experimental
Neural networks
Optimization algorithms
Optimization techniques
Public health
random forest
Risk factors
Support vector machines
Type 2 diabetes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEA96JyKIH-dX9ZQIgi-Wazdt2jzJru5xD7oe5yn3Vpovt3C2a7sV_O-dSbPrFuVefG0m0JDJzG-Smd8Q8iqyTMRaqlCLBAIUwWwodJSFMo0MB_9eKsez_fVDtljkFxfi1F-4dT6tcmMTnaHWjcI78iN88csE4Gn2dvUjxK5R-LrqW2hcJ_vIVAZ6vj-bL07PtrcsyHoJMdBAN8Qgvj_SQwYbciDHLJ5MIqxM2XFJjrn_b_u846DGyZM73uj47v-u4x6543EonQ6Kc59cM_UBufnRv7QfkNvDfR4dypQekN51z8S8IreVtLHUJ9N01KUdUASTfWvoZ9dZB2XKWtOTX1gSRqeX4axq-7qic9DVJT0rddV3TuJ9tVqZlp4v2wZwr6afwIh999WhD8mX4_n5u5PQt2wIVcqzdZgKw3OmSth4oRJlIy1KbTMrOdellEpkioNbzmXKRWwnmgkrE4hprNJxDkiNPSJ7dVObJ4RKidRuNjM8YwkH05OrTImU2ZIrAJEmIJPNrhXK85ljW43LAuIa3OriH1sdkDfbSauBzuNq8Rmqw1YUubjdh6b9VvijXQiIiGNmbZIokciIyzJSiZG5iACKAl4OyGtUpgItBvygKn3hAywTubeKaYZPl2gKA3I4koSTrsbDG5UqvKXpij_6FJCX22GcidlztWl6lGGuH1GaBOTxoL3bJTH4HgGID0g-0uvRmscjdbV0POQxNj7jgj29-r-ekVsTQIZDft0h2Vu3vXlObqif66prX_gT-xvrrE27
  priority: 102
  providerName: ProQuest
Title Classification of Diabetes Using Feature Selection and Hybrid Al-Biruni Earth Radius and Dipper Throated Optimization
URI https://www.ncbi.nlm.nih.gov/pubmed/37370932
https://www.proquest.com/docview/2829795503
https://www.proquest.com/docview/2830673754
https://pubmed.ncbi.nlm.nih.gov/PMC10297693
https://doaj.org/article/971713ff44c94b06ba0c4eb890435565
Volume 13
WOSCitedRecordID wos001014164000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (NC Live)
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest research library
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA96ivgifp7Vc4kg-GK5tmmT5nFX9zjB3VvOU9an0nyxhbO7dLeC_70zaW_ZouiLL31IJtDMTOaDTH5DyJvIMRkbpUMjU0hQJHOhNJEIVRZZDv691B5n--snMZ_ny6VcHLT6wpqwDh64Y9yphHwjZs6lqZapirgqI51alcsIHD1EI2h9IyEPkilvgyVi62UdzBCDvP7UdJVriH0cszhJInyRcuCKPGL_73b5wDENiyYPvNDZQ_KgDx_puPvtR-SWrR-Te7P-gvwJaX2TSyz_8Ryna0f7mpct9dUBFGO-trH0s2-AgzRlbej5T3y5RcfX4aRq2rqiU-DMil6Wpmq3nuJDtdnYhl6tmjWEp4ZegK353j_ifEq-nE2v3p-HfWeFUGdc7MJMWp4zXYJ8pE61i4wsjRNOcW5KpbQUmoP3zFXGZewSw6RTKaQeTps4h4CKPSNH9bq2zwlVChHYnLBcsJSDhci10DJjruQaYj0bkOSGyYXuYcex-8V1AekHSqb4g2QC8m6_aNOhbvydfILS25MiZLYfAEUqekUq_qVIAXmLsi_wYMMP6rJ_nwDbRIisYizwhhEtVkBOBpRwIPVw-kZ7it4gbAu8sBYS0kEWkNf7aVyJRW61XbdIw3zboCwNyHGnbPstMRiPINYOSD5Qw8GehzN1tfJw4TH2J-OSvfgfXHpJ7icQ5nXFcifkaNe09hW5q3_sqm0zIrfFMh-RO5PpfHE58kcSvrPkAsYWH2eLb78ATEU9cg
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAES4lFehgKLBOKCVdvr1x4QSmmrRE1CBAGVk7F3vcRScYITg_qn-I3M2E6IBeqtB67ecbTrfDuP3ZlvAJ5bmgtbJdJUwsUARXBtCmUFZuJZqY_2PZYVz_anQTAahScnYrwFv1a1MJRWudKJlaJWM0ln5Ht04xcI9Kf5m_l3k7pG0e3qqoVGDYvj9OwnhmyL1_0D_H9fOM7R4eRtz2y6CpjS84Ol6YnUD7mMcW5CulJbSsRKBzrxfRUniRSB9NFyhInnC1s7iguduOh2a6nsEJ0Jjr97CbZdBLvVge1xfzj-vD7VIZZNjLlqeiPOhbWn6ow54ly2ue04FlXCbJjAqlPA3_ZgwyC2kzU3rN_Rzf_tu92CG42fzbr1xrgNW2m-A1eGTSbBDlyvzytZXYZ1B8qqOyjlTVVQZTPNmmShBavSKhg5y2WRsg9V5yCSiXPFemdU8sa6p-Z-VpR5xg5xL07Z-1hl5aKSOMjm87Rgk2kxQ79esXeopL811a934eOFfIR70MlnefoAWJIQdZ0OUj_gro-qNZSBFB7XsS_RSU4NcFYoiWTD105tQ04jjNsIWtE_oGXAq_VL85qu5HzxfYLfWpS4xqsHs-Jr1KiuSGDEb3OtXVcKN7H8JLakmyahsNDVxnjAgJcE3og0Ik5Qxk1hBy6TuMWibkBXs6TqDdhtSaImk-3hFYSjRpMuoj_4NeDZepjepOzAPJ2VJMOrfkuea8D9eresl8TxuYVBigFhax-11tweybNpxbNuU2M3X_CH58_rKVztTYaDaNAfHT-Caw56wXUu4S50lkWZPobL8scyWxRPGm3B4MtFb7Tf4fWt-A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VgiokxKO8DAUWCcQFK7bX9noPCKWkUau2aQUt6s14X8RSsYMTg_rX-HXM2E5IBOqtB67esbW7nufuzDeEvPIsE76WytUihABFMOsK7XFXRp6Jwb5nqsHZ_nzAR6Pk7Ewcr5Ff81oYTKuc68RGUetS4Rl5D2_8uAB_mvVslxZxPBi-n3x3sYMU3rTO22m0LLJvLn5C-DZ9tzeAf_06CIY7Jx923a7DgKuimM_cSJg4YSqDeQoVKutpkWnLrYxjnUmpBFcxWJFERrHwbaCZsDIEF9wq7SfgWDD47jVynYdRiNJ1GBwtzncQbxOirxboiDHh9XSbO4foyz7zg8DDmpglY9j0DPjbMiyZxtW0zSU7OLzzP-_gXXK7875pvxWXe2TNFJtk47DLL9gkt9pTTNoWZ90nddMzFLOpGgampaVdCtGUNskWFF3oujL0U9NPCGmyQtPdCyyEo_1zdzuv6iKnOyChY_ox03k9bSgG-WRiKnoyrkrw9jU9AtX9rauJfUBOr2QTHpL1oizMY0KlREA7y03MWRiDwk0UVyJiNosVuM7GIcGcY1LVobhjM5HzFKI5ZLP0H2zmkLeLlyYtiMnl5NvIigtSRCBvHpTV17RTaKngPveZtWGoRCi9WGaeCo1MhAcOOEQJDnmDjJyinoQJqqwr94BlIuJY2ud4YYsGwCFbK5Sg39Tq8Jyd006_TtM_vOyQl4thfBNzBgtT1kjDmi5MUeiQR63kLJbE4LkHoYtDkhWZWlnz6kiRjxv0dR_bvcWCPbl8Xi_IBkhXerA32n9KbgbgGrcJhltkfVbV5hm5oX7M8mn1vFEblHy5ain7DS9utTs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Diabetes+Using+Feature+Selection+and+Hybrid+Al-Biruni+Earth+Radius+and+Dipper+Throated+Optimization&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Alhussan%2C+Amel+Ali&rft.au=Abdelhamid%2C+Abdelaziz+A.&rft.au=Towfek%2C+S.+K.&rft.au=Ibrahim%2C+Abdelhameed&rft.date=2023-06-01&rft.issn=2075-4418&rft.eissn=2075-4418&rft.volume=13&rft.issue=12&rft.spage=2038&rft_id=info:doi/10.3390%2Fdiagnostics13122038&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_diagnostics13122038
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon