Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances

Transport of large viral nucleocapsids from replication centers to assembly sites requires contributions from the host cytoskeleton via cellular adaptor and motor proteins. For the Marburg and Ebola viruses, related viruses that cause severe hemorrhagic fevers, the mechanism of nucleocapsid transpor...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 35; p. 14402
Main Authors: Schudt, Gordian, Kolesnikova, Larissa, Dolnik, Olga, Sodeik, Beate, Becker, Stephan
Format: Journal Article
Language:English
Published: United States 27.08.2013
Subjects:
ISSN:1091-6490, 1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Transport of large viral nucleocapsids from replication centers to assembly sites requires contributions from the host cytoskeleton via cellular adaptor and motor proteins. For the Marburg and Ebola viruses, related viruses that cause severe hemorrhagic fevers, the mechanism of nucleocapsid transport remains poorly understood. Here we developed and used live-cell imaging of fluorescently labeled viral and host proteins to characterize the dynamics and molecular requirements of nucleocapsid transport in Marburg virus-infected cells under biosafety level 4 conditions. The study showed a complex actin-based transport of nucleocapsids over long distances from the viral replication centers to the budding sites. Only after the nucleocapsids had associated with the matrix viral protein VP40 at the plasma membrane were they recruited into filopodia and cotransported with host motor myosin 10 toward the budding sites at the tip or side of the long cellular protrusions. Three different transport modes and velocities were identified: (i) Along actin filaments in the cytosol, nucleocapsids were transported at ∼200 nm/s; (ii) nucleocapsids migrated from one actin filament to another at ∼400 nm/s; and (iii) VP40-associated nucleocapsids moved inside filopodia at 100 nm/s. Unique insights into the spatiotemporal dynamics of nucleocapsids and their interaction with the cytoskeleton and motor proteins can lead to novel classes of antivirals that interfere with the trafficking and subsequent release of the Marburg virus from infected cells.
AbstractList Transport of large viral nucleocapsids from replication centers to assembly sites requires contributions from the host cytoskeleton via cellular adaptor and motor proteins. For the Marburg and Ebola viruses, related viruses that cause severe hemorrhagic fevers, the mechanism of nucleocapsid transport remains poorly understood. Here we developed and used live-cell imaging of fluorescently labeled viral and host proteins to characterize the dynamics and molecular requirements of nucleocapsid transport in Marburg virus-infected cells under biosafety level 4 conditions. The study showed a complex actin-based transport of nucleocapsids over long distances from the viral replication centers to the budding sites. Only after the nucleocapsids had associated with the matrix viral protein VP40 at the plasma membrane were they recruited into filopodia and cotransported with host motor myosin 10 toward the budding sites at the tip or side of the long cellular protrusions. Three different transport modes and velocities were identified: (i) Along actin filaments in the cytosol, nucleocapsids were transported at ∼200 nm/s; (ii) nucleocapsids migrated from one actin filament to another at ∼400 nm/s; and (iii) VP40-associated nucleocapsids moved inside filopodia at 100 nm/s. Unique insights into the spatiotemporal dynamics of nucleocapsids and their interaction with the cytoskeleton and motor proteins can lead to novel classes of antivirals that interfere with the trafficking and subsequent release of the Marburg virus from infected cells.
Transport of large viral nucleocapsids from replication centers to assembly sites requires contributions from the host cytoskeleton via cellular adaptor and motor proteins. For the Marburg and Ebola viruses, related viruses that cause severe hemorrhagic fevers, the mechanism of nucleocapsid transport remains poorly understood. Here we developed and used live-cell imaging of fluorescently labeled viral and host proteins to characterize the dynamics and molecular requirements of nucleocapsid transport in Marburg virus-infected cells under biosafety level 4 conditions. The study showed a complex actin-based transport of nucleocapsids over long distances from the viral replication centers to the budding sites. Only after the nucleocapsids had associated with the matrix viral protein VP40 at the plasma membrane were they recruited into filopodia and cotransported with host motor myosin 10 toward the budding sites at the tip or side of the long cellular protrusions. Three different transport modes and velocities were identified: (i) Along actin filaments in the cytosol, nucleocapsids were transported at ∼200 nm/s; (ii) nucleocapsids migrated from one actin filament to another at ∼400 nm/s; and (iii) VP40-associated nucleocapsids moved inside filopodia at 100 nm/s. Unique insights into the spatiotemporal dynamics of nucleocapsids and their interaction with the cytoskeleton and motor proteins can lead to novel classes of antivirals that interfere with the trafficking and subsequent release of the Marburg virus from infected cells.Transport of large viral nucleocapsids from replication centers to assembly sites requires contributions from the host cytoskeleton via cellular adaptor and motor proteins. For the Marburg and Ebola viruses, related viruses that cause severe hemorrhagic fevers, the mechanism of nucleocapsid transport remains poorly understood. Here we developed and used live-cell imaging of fluorescently labeled viral and host proteins to characterize the dynamics and molecular requirements of nucleocapsid transport in Marburg virus-infected cells under biosafety level 4 conditions. The study showed a complex actin-based transport of nucleocapsids over long distances from the viral replication centers to the budding sites. Only after the nucleocapsids had associated with the matrix viral protein VP40 at the plasma membrane were they recruited into filopodia and cotransported with host motor myosin 10 toward the budding sites at the tip or side of the long cellular protrusions. Three different transport modes and velocities were identified: (i) Along actin filaments in the cytosol, nucleocapsids were transported at ∼200 nm/s; (ii) nucleocapsids migrated from one actin filament to another at ∼400 nm/s; and (iii) VP40-associated nucleocapsids moved inside filopodia at 100 nm/s. Unique insights into the spatiotemporal dynamics of nucleocapsids and their interaction with the cytoskeleton and motor proteins can lead to novel classes of antivirals that interfere with the trafficking and subsequent release of the Marburg virus from infected cells.
Author Schudt, Gordian
Kolesnikova, Larissa
Dolnik, Olga
Sodeik, Beate
Becker, Stephan
Author_xml – sequence: 1
  givenname: Gordian
  surname: Schudt
  fullname: Schudt, Gordian
  organization: Institut für Virologie, Philipps-Universität Marburg, D-35043 Marburg, Germany
– sequence: 2
  givenname: Larissa
  surname: Kolesnikova
  fullname: Kolesnikova, Larissa
– sequence: 3
  givenname: Olga
  surname: Dolnik
  fullname: Dolnik, Olga
– sequence: 4
  givenname: Beate
  surname: Sodeik
  fullname: Sodeik, Beate
– sequence: 5
  givenname: Stephan
  surname: Becker
  fullname: Becker, Stephan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23940347$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAQQC1URD9gZkMeWVJsx_kaUUUBqYgF5uhiXyqj1A62U6n_nkQUieluePeke0sys84iIbecrTkr0ofeQljzlBV5yTlnF2TBWcWTXFZs9m-fk2UIX4yxKivZFZmLtJIslcWCnHbmiInCrqPmAHtj99S19A18M_g9PRo_hMTYFlVETScs0MEqd0QfKKhobKKxR6vRRho92NA7HyeFHVSHTkEfjA50OqCdG-3ahAhWYbgmly10AW_Oc0U-t08fm5dk9_78unncJSrLi5jwskXQQqomRQaqZUxDlXHkEhuhMtBQZpzhWABzVFC1ogIJJQehmqYVKFbk_tfbe_c9YIj1wYTpE7DohlBzKcqiSDOZjujdGR2aA-q692MTf6r_cokfn8pyqQ
CitedBy_id crossref_primary_10_1016_j_jconrel_2024_07_043
crossref_primary_10_1371_journal_ppat_1011595
crossref_primary_10_1093_infdis_jiv083
crossref_primary_10_1371_journal_ppat_1007733
crossref_primary_10_3390_v14020231
crossref_primary_10_1016_j_bbamcr_2020_118831
crossref_primary_10_3390_cells9071728
crossref_primary_10_2174_0122113525341920241015041123
crossref_primary_10_3389_fimmu_2022_986589
crossref_primary_10_1016_j_virol_2017_09_006
crossref_primary_10_1371_journal_ppat_1004463
crossref_primary_10_1016_j_jmb_2019_06_029
crossref_primary_10_1371_journal_ppat_1010616
crossref_primary_10_1088_2040_8986_ac57b3
crossref_primary_10_1091_mbc_E19_09_0490
crossref_primary_10_1128_jvi_01083_22
crossref_primary_10_3390_v15030776
crossref_primary_10_1038_s42003_024_06300_8
crossref_primary_10_1016_j_antiviral_2014_03_018
crossref_primary_10_3389_fmicb_2016_00300
crossref_primary_10_1002_pro_2541
crossref_primary_10_1016_j_antiviral_2023_105622
crossref_primary_10_3389_fimmu_2020_00435
crossref_primary_10_3390_cells10061460
crossref_primary_10_1016_j_antiviral_2017_12_022
crossref_primary_10_1016_j_virol_2018_10_002
crossref_primary_10_3390_microorganisms10112110
crossref_primary_10_1016_j_ejcb_2015_05_006
crossref_primary_10_1128_mbio_01557_25
crossref_primary_10_3390_v8060178
crossref_primary_10_3389_fmicb_2022_834927
crossref_primary_10_1128_JVI_01815_14
crossref_primary_10_1002_rmv_2202
crossref_primary_10_1128_jvi_00935_24
crossref_primary_10_1093_jmicro_dfz034
crossref_primary_10_1007_s40475_015_0039_x
crossref_primary_10_1080_22221751_2019_1659552
crossref_primary_10_1111_boc_202200059
crossref_primary_10_1111_tra_12835
crossref_primary_10_1186_s12985_019_1267_9
crossref_primary_10_1002_cm_21718
crossref_primary_10_1016_j_bbrc_2020_04_041
crossref_primary_10_1128_JVI_01282_17
crossref_primary_10_12688_f1000research_17573_1
crossref_primary_10_3389_fimmu_2017_01197
crossref_primary_10_1038_s41467_025_57236_4
crossref_primary_10_1128_JVI_02120_19
crossref_primary_10_1128_spectrum_00269_24
crossref_primary_10_1016_j_peptides_2016_12_015
crossref_primary_10_3390_ijms26178485
crossref_primary_10_1038_s41467_017_00102_9
crossref_primary_10_1016_j_virusres_2019_03_002
crossref_primary_10_1016_j_virol_2015_06_013
crossref_primary_10_3390_v14051044
crossref_primary_10_1093_infdis_jiy424
crossref_primary_10_3390_ijms25052993
crossref_primary_10_3390_v10040166
crossref_primary_10_1016_j_antiviral_2019_104569
crossref_primary_10_1016_j_yexcr_2015_03_014
crossref_primary_10_1016_j_virol_2025_110503
crossref_primary_10_1002_jmv_29620
crossref_primary_10_3389_fmicb_2021_551602
crossref_primary_10_3390_v10010028
crossref_primary_10_1042_BST20211239
crossref_primary_10_1093_infdis_jiv303
crossref_primary_10_1073_pnas_1712263115
crossref_primary_10_1371_journal_pone_0171746
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1073/pnas.1307681110
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 23940347
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DU5
E3Z
EBS
ECM
EIF
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
7X8
ADXHL
ID FETCH-LOGICAL-c567t-18fead24cb3e0acf00da951e14eb2c5ada8510e076e6eca9f29a4a81a2cbbf2e2
IEDL.DBID 7X8
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000323564600067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1091-6490
IngestDate Wed Oct 01 11:53:24 EDT 2025
Thu Apr 03 07:02:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords viral inclusion bodies
dual-color imaging
reverse genetics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c567t-18fead24cb3e0acf00da951e14eb2c5ada8510e076e6eca9f29a4a81a2cbbf2e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.pnas.org/content/pnas/110/35/14402.full.pdf
PMID 23940347
PQID 1428773543
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1428773543
pubmed_primary_23940347
PublicationCentury 2000
PublicationDate 2013-08-27
PublicationDateYYYYMMDD 2013-08-27
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2013
References 21642953 - EMBO J. 2011 Jul 6;30(13):2734-47
20107861 - Cell Mol Life Sci. 2010 Apr;67(8):1239-54
15507615 - J Virol. 2004 Nov;78(22):12277-87
16894163 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12411-6
17940943 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S148-53
16337369 - Curr Opin Cell Biol. 2006 Feb;18(1):18-25
11715020 - Nat Cell Biol. 2001 Nov;3(11):992-1000
21987762 - J Infect Dis. 2011 Nov;204 Suppl 3:S861-70
11854753 - Nat Cell Biol. 2002 Mar;4(3):246-50
14963134 - J Virol. 2004 Mar;78(5):2382-93
21983562 - Nat Cell Biol. 2011 Dec;13(12):1431-6
16904206 - Biochim Biophys Acta. 2007 May;1773(5):615-30
20071483 - J Gen Virol. 2010 May;91(Pt 5):1325-34
8176365 - J Gen Virol. 1994 May;75 ( Pt 5):1031-42
4294540 - Dtsch Med Wochenschr. 1967 Dec 22;92(51):2341-3
8402892 - Cell. 1993 Oct 8;75(1):13-23
16469052 - Cell Microbiol. 2006 Mar;8(3):387-400
8232536 - Nature. 1993 Nov 4;366(6450):44-8
20543880 - PLoS One. 2010;5(6):e10994
20006842 - Cell Host Microbe. 2009 Dec 17;6(6):536-50
17140405 - Cell Microbiol. 2007 Apr;9(4):939-51
9791031 - Virology. 1998 Sep 30;249(2):406-17
16869831 - Cell Microbiol. 2006 Nov;8(11):1803-11
23383374 - Sci Rep. 2013;3:1206
20466533 - Curr Opin Cell Biol. 2010 Aug;22(4):479-87
20660627 - J Cell Biol. 2010 Jul 26;190(2):187-95
12052831 - J Biol Chem. 2002 Sep 6;277(36):33099-104
23186212 - Cell Microbiol. 2013 Feb;15(2):270-84
17293854 - Nat Cell Biol. 2007 Mar;9(3):310-5
22915810 - J Virol. 2012 Nov;86(21):11779-88
11470826 - J Cell Biol. 2001 Jul 23;154(2):389-402
2024471 - Virology. 1991 May;182(1):353-6
9844633 - Mol Cell. 1998 Nov;2(5):605-16
8837880 - Virus Res. 1995 Dec;39(2-3):129-50
16497585 - Cell. 2006 Feb 24;124(4):741-54
20808767 - PLoS Negl Trop Dis. 2010;4(8):e802
16227263 - J Virol. 2005 Nov;79(21):13421-33
20442788 - PLoS Pathog. 2010 Apr;6(4):e1000875
16775325 - J Virol. 2006 Jul;80(13):6368-77
22110401 - PLoS Biol. 2011 Nov;9(11):e1001196
20444481 - Virology. 2010 Jul 20;403(1):56-66
18158582 - Cell Mol Life Sci. 2008 Mar;65(5):756-76
16775337 - J Virol. 2006 Jul;80(13):6497-516
21975549 - Cell Adh Migr. 2011 Sep-Oct;5(5):402-8
11799178 - J Virol. 2002 Feb;76(4):1825-38
19088071 - J Biol Chem. 2009 Feb 13;284(7):4500-9
17217427 - Cell Microbiol. 2007 May;9(5):1203-14
8918541 - Virology. 1996 Nov 1;225(1):145-55
22685410 - PLoS Pathog. 2012;8(6):e1002762
10729166 - J Virol. 2000 Apr;74(8):3899-904
16027225 - J Cell Biol. 2005 Jul 18;170(2):317-25
16227217 - J Gen Virol. 2005 Nov;86(Pt 11):2961-8
3404120 - J Gen Virol. 1988 Aug;69 ( Pt 8):1957-67
References_xml – reference: 20543880 - PLoS One. 2010;5(6):e10994
– reference: 8918541 - Virology. 1996 Nov 1;225(1):145-55
– reference: 16469052 - Cell Microbiol. 2006 Mar;8(3):387-400
– reference: 20466533 - Curr Opin Cell Biol. 2010 Aug;22(4):479-87
– reference: 17293854 - Nat Cell Biol. 2007 Mar;9(3):310-5
– reference: 9844633 - Mol Cell. 1998 Nov;2(5):605-16
– reference: 19088071 - J Biol Chem. 2009 Feb 13;284(7):4500-9
– reference: 16027225 - J Cell Biol. 2005 Jul 18;170(2):317-25
– reference: 18158582 - Cell Mol Life Sci. 2008 Mar;65(5):756-76
– reference: 16337369 - Curr Opin Cell Biol. 2006 Feb;18(1):18-25
– reference: 16497585 - Cell. 2006 Feb 24;124(4):741-54
– reference: 16775337 - J Virol. 2006 Jul;80(13):6497-516
– reference: 11470826 - J Cell Biol. 2001 Jul 23;154(2):389-402
– reference: 16894163 - Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12411-6
– reference: 10729166 - J Virol. 2000 Apr;74(8):3899-904
– reference: 23186212 - Cell Microbiol. 2013 Feb;15(2):270-84
– reference: 20660627 - J Cell Biol. 2010 Jul 26;190(2):187-95
– reference: 20444481 - Virology. 2010 Jul 20;403(1):56-66
– reference: 21975549 - Cell Adh Migr. 2011 Sep-Oct;5(5):402-8
– reference: 15507615 - J Virol. 2004 Nov;78(22):12277-87
– reference: 11854753 - Nat Cell Biol. 2002 Mar;4(3):246-50
– reference: 17140405 - Cell Microbiol. 2007 Apr;9(4):939-51
– reference: 21987762 - J Infect Dis. 2011 Nov;204 Suppl 3:S861-70
– reference: 23383374 - Sci Rep. 2013;3:1206
– reference: 17217427 - Cell Microbiol. 2007 May;9(5):1203-14
– reference: 2024471 - Virology. 1991 May;182(1):353-6
– reference: 20006842 - Cell Host Microbe. 2009 Dec 17;6(6):536-50
– reference: 20107861 - Cell Mol Life Sci. 2010 Apr;67(8):1239-54
– reference: 22915810 - J Virol. 2012 Nov;86(21):11779-88
– reference: 17940943 - J Infect Dis. 2007 Nov 15;196 Suppl 2:S148-53
– reference: 16227217 - J Gen Virol. 2005 Nov;86(Pt 11):2961-8
– reference: 9791031 - Virology. 1998 Sep 30;249(2):406-17
– reference: 8837880 - Virus Res. 1995 Dec;39(2-3):129-50
– reference: 12052831 - J Biol Chem. 2002 Sep 6;277(36):33099-104
– reference: 20442788 - PLoS Pathog. 2010 Apr;6(4):e1000875
– reference: 11799178 - J Virol. 2002 Feb;76(4):1825-38
– reference: 20071483 - J Gen Virol. 2010 May;91(Pt 5):1325-34
– reference: 20808767 - PLoS Negl Trop Dis. 2010;4(8):e802
– reference: 21642953 - EMBO J. 2011 Jul 6;30(13):2734-47
– reference: 16227263 - J Virol. 2005 Nov;79(21):13421-33
– reference: 3404120 - J Gen Virol. 1988 Aug;69 ( Pt 8):1957-67
– reference: 8232536 - Nature. 1993 Nov 4;366(6450):44-8
– reference: 16904206 - Biochim Biophys Acta. 2007 May;1773(5):615-30
– reference: 21983562 - Nat Cell Biol. 2011 Dec;13(12):1431-6
– reference: 22685410 - PLoS Pathog. 2012;8(6):e1002762
– reference: 8402892 - Cell. 1993 Oct 8;75(1):13-23
– reference: 4294540 - Dtsch Med Wochenschr. 1967 Dec 22;92(51):2341-3
– reference: 16775325 - J Virol. 2006 Jul;80(13):6368-77
– reference: 11715020 - Nat Cell Biol. 2001 Nov;3(11):992-1000
– reference: 14963134 - J Virol. 2004 Mar;78(5):2382-93
– reference: 8176365 - J Gen Virol. 1994 May;75 ( Pt 5):1031-42
– reference: 16869831 - Cell Microbiol. 2006 Nov;8(11):1803-11
– reference: 22110401 - PLoS Biol. 2011 Nov;9(11):e1001196
SSID ssj0009580
Score 2.4239535
Snippet Transport of large viral nucleocapsids from replication centers to assembly sites requires contributions from the host cytoskeleton via cellular adaptor and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 14402
SubjectTerms Actins - metabolism
Cell Line
Humans
Marburgvirus - genetics
Marburgvirus - metabolism
Nucleocapsid - metabolism
Protein Transport
Pseudopodia - metabolism
Viral Matrix Proteins - genetics
Viral Matrix Proteins - metabolism
Title Live-cell imaging of Marburg virus-infected cells uncovers actin-dependent transport of nucleocapsids over long distances
URI https://www.ncbi.nlm.nih.gov/pubmed/23940347
https://www.proquest.com/docview/1428773543
Volume 110
WOSCitedRecordID wos000323564600067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAMrAA5VleMhIDDFbT2InjCSFExUCrDiB1q2zHQZUgKXVbiX_PXR6CBQmJJUMUW87lfP5yPn8fIVdwV7rIJsyYBCXMjGNaxoIpw0OjdRRnthKbkMNhMh6rUZ1w83VZZRMTy0CdFhZz5F1kBpOSR4Lfzj4Yqkbh7motobFOWhygDJZ0yXHyg3Q3qdgIVI_FQgUNtY_k3VmuPSohA9qG2R78ji_Ldaa_898R7pLtGmHSu8ol2mTN5XukXc9hT69roumbffL5BKGOYeqeTt9LtSJaZHSg0dCvdDWdLz2rirVcSvExT2EVxJpPT_E8RM4aCd0FXTQk6dhFjiTJsEjOwNU9xQb0rYDeUwSrOIoD8tJ_eL5_ZLUUA7NRLBesl2TgcqGwhrtA2ywIUg3YzPUE_JnbSKcakFvgwJwudlarLFRa6KSnQ2tMFrrwkGzkRe6OCcV9OZmkHHAiF8YpZWUgjdOREIF2Ku6Qy8a8E3B1fDudu2LpJ98G7pCj6htNZhUnx6RUeOdCnvyh9SnZCktRC4gR8oy0Mpjo7pxs2tVi6ucXpQ_BdTgafAEAztVn
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Live-cell+imaging+of+Marburg+virus-infected+cells+uncovers+actin-dependent+transport+of+nucleocapsids+over+long+distances&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Schudt%2C+Gordian&rft.au=Kolesnikova%2C+Larissa&rft.au=Dolnik%2C+Olga&rft.au=Sodeik%2C+Beate&rft.date=2013-08-27&rft.eissn=1091-6490&rft.volume=110&rft.issue=35&rft.spage=14402&rft_id=info:doi/10.1073%2Fpnas.1307681110&rft_id=info%3Apmid%2F23940347&rft_id=info%3Apmid%2F23940347&rft.externalDocID=23940347
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6490&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6490&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6490&client=summon