Translational Control under Stress: Reshaping the Translatome

Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Repro...

Full description

Saved in:
Bibliographic Details
Published in:BioEssays Vol. 41; no. 5; pp. e1900009 - n/a
Main Authors: Advani, Vivek M., Ivanov, Pavel
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.05.2019
Subjects:
ISSN:0265-9247, 1521-1878, 1521-1878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well‐understood stress‐activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress‐responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress‐induced translational reprogramming. These include stress‐specific regulation of tRNA pools, codon‐biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress. Translational control contributes to various aspects of cell homeostasis. As messenger RNA (mRNA) translation is energy‐expensive, its regulation is critical. Reprogramming of mRNA translation during stress involves signal transduction pathways and transfer RNA metabolism changes that aim at cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
AbstractList Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well‐understood stress‐activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress‐responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress‐induced translational reprogramming. These include stress‐specific regulation of tRNA pools, codon‐biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress. Translational control contributes to various aspects of cell homeostasis. As messenger RNA (mRNA) translation is energy‐expensive, its regulation is critical. Reprogramming of mRNA translation during stress involves signal transduction pathways and transfer RNA metabolism changes that aim at cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of mRNA translation involves well-understood stress-activated kinases that target components of translation initiation machinery resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies point on the key roles of transfer RNA (tRNA) in the stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress resulting in the adaptation and cell survival. This review will examine molecular mechanisms that regulate protein synthesis in response to stress. Translational control contributes to various aspects of cell homeostasis. As mRNA translation is energy-expensive, its regulation is critical. Reprogramming of mRNA translation during stress involves signal transduction pathways and tRNA metabolism changes that aim on cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Author Ivanov, Pavel
Advani, Vivek M.
AuthorAffiliation 3 The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts, United States of America
1 Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
2 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
AuthorAffiliation_xml – name: 2 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
– name: 1 Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
– name: 3 The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts, United States of America
Author_xml – sequence: 1
  givenname: Vivek M.
  surname: Advani
  fullname: Advani, Vivek M.
  email: vadvani@bwh.harvard.edu
  organization: Harvard Medical School
– sequence: 2
  givenname: Pavel
  surname: Ivanov
  fullname: Ivanov, Pavel
  email: pivanov@rics.bwh.harvard.edu
  organization: The Broad Institute of Harvard and MIT
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31026340$$D View this record in MEDLINE/PubMed
BookMark eNqNkd1LHDEUxUOx1NX21UcZ6EtfZpvvTIQKdbGtIBSqfQ6Z2TtuJJusyYzif2_WdW0rlPa-3If7O4eTnD20E2IAhA4InhKM6cfWQZ5STDQuo1-hCRGU1KRRzQ6aYCpFrSlXu2gv5-s1ISl_g3YZKSfG8QR9ukw2ZG8HF4P11SyGIUVfjWEOqboYEuR8VP2AvLArF66qYQHVVhGX8Ba97q3P8O5p76OfX04vZ9_q8-9fz2afz-tOSKXrrpFC6TlXQvYKWyI0U63Wum8t6NYyrblkTHUWWqpaKTBtm4ZJyyzveI8p20fHG9_V2C5h3kFJab1ZJbe06d5E68yfl-AW5ireGik4YY0sBh-eDFK8GSEPZulyB97bAHHMhlLBKMdEsf9AiaSaNmQd6_0L9DqOqfzjI1WKUFiqQh3-Hv459baEAvAN0KWYc4LedG54bKS8xXlDsFl3bdZdm-eui2z6QrZ1_qtAbwR3zsP9P2hzcnZ68Uv7AHtdusw
CitedBy_id crossref_primary_10_1016_j_celrep_2023_113359
crossref_primary_10_3390_ncrna9020026
crossref_primary_10_3389_fmicb_2021_671852
crossref_primary_10_1016_j_ecoenv_2023_115028
crossref_primary_10_1007_s12265_025_10619_w
crossref_primary_10_1111_febs_16935
crossref_primary_10_1016_j_tibs_2025_06_009
crossref_primary_10_1038_s41467_022_29367_5
crossref_primary_10_1093_nar_gkab1247
crossref_primary_10_1371_journal_pgen_1011371
crossref_primary_10_1038_s41556_022_00938_4
crossref_primary_10_1016_j_tim_2020_06_010
crossref_primary_10_1091_mbc_E24_04_0164
crossref_primary_10_1128_MCB_00244_21
crossref_primary_10_1038_s41598_023_48287_y
crossref_primary_10_1248_bpb_b25_00294
crossref_primary_10_1016_j_cbd_2021_100946
crossref_primary_10_1016_j_drudis_2023_103769
crossref_primary_10_1002_1873_3468_13491
crossref_primary_10_3390_biology12091172
crossref_primary_10_1016_j_molcel_2024_06_024
crossref_primary_10_3390_ijms252011284
crossref_primary_10_1038_s41586_025_08794_6
crossref_primary_10_1016_j_bonr_2021_101115
crossref_primary_10_3389_fmolb_2022_1066650
crossref_primary_10_1017_S0954422423000124
crossref_primary_10_1002_wrna_1623
crossref_primary_10_1038_s41571_024_00923_w
crossref_primary_10_3390_ijms25126787
crossref_primary_10_3389_fmolb_2021_669939
crossref_primary_10_1186_s13059_023_02871_7
crossref_primary_10_1016_j_stem_2019_12_006
crossref_primary_10_1016_j_molmed_2024_04_008
crossref_primary_10_3389_frnar_2023_1226610
crossref_primary_10_1242_jcs_259629
crossref_primary_10_7554_eLife_90683_3
crossref_primary_10_1080_10409238_2021_2006599
crossref_primary_10_1080_10985549_2023_2229225
crossref_primary_10_1261_rna_078738_121
crossref_primary_10_1155_2022_3475955
crossref_primary_10_3390_cancers17172769
crossref_primary_10_3389_fcell_2023_1075215
crossref_primary_10_3389_fmolb_2023_1137215
crossref_primary_10_1093_genetics_iyaf134
crossref_primary_10_3390_biom10070969
crossref_primary_10_1093_bbb_zbae147
crossref_primary_10_1038_s41580_024_00822_z
crossref_primary_10_1093_nar_gkaa1261
crossref_primary_10_1002_adbi_202101328
crossref_primary_10_7554_eLife_88658_3
crossref_primary_10_1371_journal_pone_0309801
crossref_primary_10_3389_fnins_2022_1071976
crossref_primary_10_1016_j_bbagrm_2019_06_009
crossref_primary_10_1016_j_cmet_2024_07_022
crossref_primary_10_1016_j_jprot_2022_104618
crossref_primary_10_1038_s41467_024_45525_3
crossref_primary_10_1002_wrna_1805
crossref_primary_10_1002_jcp_30107
crossref_primary_10_1093_nar_gkaa1116
crossref_primary_10_7554_eLife_96317_3
crossref_primary_10_1073_pnas_1918459117
crossref_primary_10_1016_j_pneurobio_2019_101697
crossref_primary_10_1242_jcs_242487
crossref_primary_10_7554_eLife_90683
crossref_primary_10_3389_fphar_2024_1343569
crossref_primary_10_1093_nar_gkab267
crossref_primary_10_1002_mds_29562
crossref_primary_10_3390_v14071505
crossref_primary_10_1093_nar_gkaa1126
crossref_primary_10_3390_genes15121602
crossref_primary_10_1042_BST20230506
crossref_primary_10_1016_j_ejphar_2025_177397
crossref_primary_10_1073_pnas_2401743121
crossref_primary_10_1016_j_dnarep_2020_102927
crossref_primary_10_3390_antiox10060952
crossref_primary_10_1038_s41467_023_35811_x
crossref_primary_10_1038_s41467_025_59185_4
crossref_primary_10_1186_s13395_022_00289_6
crossref_primary_10_1007_s12035_024_03924_z
crossref_primary_10_1093_function_zqac065
crossref_primary_10_1016_j_mad_2020_111324
crossref_primary_10_15252_embj_2022113240
crossref_primary_10_1080_21678421_2024_2403301
crossref_primary_10_1007_s13365_024_01215_w
crossref_primary_10_1016_j_nbd_2022_105615
crossref_primary_10_3390_cells12020259
crossref_primary_10_7554_eLife_88658
crossref_primary_10_1093_jxb_erae171
crossref_primary_10_1016_j_ymthe_2022_08_004
crossref_primary_10_1371_journal_pone_0256411
crossref_primary_10_1016_j_tcb_2024_01_005
crossref_primary_10_1007_s00018_020_03565_0
crossref_primary_10_1042_BST20253061
crossref_primary_10_3390_biology11071024
crossref_primary_10_3389_fcell_2022_1033684
crossref_primary_10_1261_rna_080419_125
crossref_primary_10_1111_febs_17243
crossref_primary_10_1134_S0006297921090029
crossref_primary_10_1016_j_jbc_2024_107870
crossref_primary_10_1002_adbi_202101298
crossref_primary_10_3389_fmolb_2021_673038
crossref_primary_10_3389_fcell_2021_751892
crossref_primary_10_1515_hsz_2022_0302
crossref_primary_10_3390_ijms232113100
crossref_primary_10_1042_BST20220584
crossref_primary_10_3390_cells11101631
crossref_primary_10_1128_mbio_01622_25
crossref_primary_10_7554_eLife_96317
crossref_primary_10_1016_j_ecoenv_2021_113094
crossref_primary_10_1016_j_semcdb_2023_06_006
Cites_doi 10.1016/j.gene.2004.11.041
10.1146/annurev.biochem.73.030403.080419
10.1016/j.jmb.2017.05.017
10.1074/mcp.M400099-MCP200
10.1074/jbc.M111.253310
10.1016/j.molmed.2016.10.009
10.1371/journal.pgen.1001247
10.1016/j.bbagrm.2014.11.009
10.1158/0008-5472.CAN-16-3146
10.1126/science.286.5446.1893
10.3390/ijms19123738
10.1093/nar/gky189
10.1016/j.cell.2016.09.038
10.1101/gad.17838411
10.1007/BF00425839
10.1073/pnas.1201689109
10.1074/jbc.M412375200
10.1101/cshperspect.a032870
10.1073/pnas.1407361111
10.1038/nature10912
10.1083/jcb.200502088
10.4161/rna.27361
10.1186/s12915-014-0078-0
10.1016/j.tig.2012.07.006
10.1261/rna.030775.111
10.1098/rstb.2011.0138
10.1080/15476286.2016.1272746
10.1016/B978-0-12-386497-0.00003-7
10.1016/j.cell.2009.07.001
10.1099/00207713-46-4-1070
10.1002/j.1460-2075.1984.tb02176.x
10.1128/MCB.00319-10
10.1073/pnas.0400541101
10.1074/jbc.M109.000877
10.4161/15476286.2014.992276
10.1371/journal.pgen.0020221
10.1146/annurev-genet-111212-133522
10.1002/wrna.96
10.1146/annurev-genet-110711-155641
10.1074/jbc.273.4.2416
10.1261/rna.066126.118
10.1016/j.cell.2017.02.004
10.1002/bies.201600158
10.1146/annurev.bi.56.070187.001403
10.1128/MCB.01542-07
10.1007/b106652
10.1016/j.canlet.2017.10.031
10.1038/ng1742
10.1038/nature08576
10.1016/j.molcel.2011.06.022
10.1016/j.molcel.2014.04.033
10.1016/0092-8674(78)90039-9
10.1016/j.bbagrm.2018.01.011
10.1038/msb.2011.14
10.1083/jcb.200811106
10.4161/rna.24285
10.1101/gr.197566.115
10.1038/nature11083
10.1146/annurev-cellbio-100616-060758
10.1016/j.cell.2018.03.008
10.1074/jbc.M109.077560
10.1101/cshperspect.a033092
10.1083/jcb.201609081
10.1038/nature25005
10.1242/jcs.152470
10.1093/nar/gkv1309
10.1074/jbc.M109.071639
10.1261/rna.2057810
10.1083/jcb.201508028
10.1016/j.tibs.2011.06.008
10.1038/s41422-018-0013-y
10.1093/nar/gkn710
10.1016/j.molcel.2007.09.021
10.1016/j.tibs.2016.03.003
10.1038/nrm2838
10.1093/nar/gkh185
10.1089/dna.2011.1437
10.1016/S1097-2765(00)80330-5
10.1128/MCB.21.23.7971-7980.2001
10.1016/j.febslet.2009.10.036
10.1016/0022-2836(68)90308-2
10.1101/cshperspect.a032813
10.1038/sj.emboj.7601047
10.1016/j.cell.2012.05.003
10.1128/MCB.15.9.4990
10.1016/j.febslet.2014.09.038
10.1073/pnas.1111577108
10.1101/gad.1837609
10.26508/lsa.201800113
10.1038/emboj.2010.229
10.3389/fnmol.2017.00135
10.1093/nar/gkw1190
10.1128/MCB.15.8.4497
10.1093/nar/gkq266
10.1126/scisignal.aat6409
10.1016/j.tibs.2013.07.004
10.1016/j.bbagrm.2014.08.015
10.1038/nchembio0308-162
10.1038/ncomms1938
10.1074/jbc.M210456200
10.1523/JNEUROSCI.3399-08.2008
10.1261/rna.2000810
10.1038/nature11112
10.1101/gad.1020902
10.1083/jcb.200408003
10.1261/rna.056531.116
10.1093/nar/gkv322
10.1091/mbc.E14-06-1145
10.1002/wrna.1200
10.1093/nar/gkv1379
10.1186/gb-2003-4-9-117
10.1261/rna.5040605
10.1146/annurev-biochem-060713-035802
10.1083/jcb.151.6.1257
10.1016/j.tcb.2016.05.004
10.1128/MCB.24.8.3112-3124.2004
10.1038/sj.emboj.7601166
10.1080/15476286.2015.1031947
10.1093/nar/gkw418
10.1083/jcb.147.7.1431
ContentType Journal Article
Copyright 2019 WILEY Periodicals, Inc.
Copyright_xml – notice: 2019 WILEY Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1002/bies.201900009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
CrossRef
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID PMC6541386
31026340
10_1002_bies_201900009
BIES201900009
Genre reviewArticle
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Brigham and Women's Hospital
– fundername: NIH
  funderid: GM126150
– fundername: National Institute of General Medical Sciences
  funderid: GM126150
– fundername: NINDS NIH HHS
  grantid: R21 NS094918
– fundername: NIGMS NIH HHS
  grantid: R01 GM126150
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5679-c86579d4756f70a15937b999fbae9ba39946337caeb27b6502b8836a3a4c4f023
IEDL.DBID DRFUL
ISICitedReferencesCount 121
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490273800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0265-9247
1521-1878
IngestDate Tue Nov 04 02:01:13 EST 2025
Fri Jul 11 18:28:41 EDT 2025
Fri Jul 11 09:43:25 EDT 2025
Fri Jul 25 10:44:06 EDT 2025
Mon Jul 21 06:07:33 EDT 2025
Tue Nov 18 22:13:29 EST 2025
Sat Nov 29 05:24:44 EST 2025
Wed Jan 22 16:25:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords translation
translation initiation
stress
tRNA
translational reprogramming
Language English
License 2019 WILEY Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5679-c86579d4756f70a15937b999fbae9ba39946337caeb27b6502b8836a3a4c4f023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6541386
PMID 31026340
PQID 2215217067
PQPubID 37030
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6541386
proquest_miscellaneous_2253240173
proquest_miscellaneous_2216292812
proquest_journals_2215217067
pubmed_primary_31026340
crossref_citationtrail_10_1002_bies_201900009
crossref_primary_10_1002_bies_201900009
wiley_primary_10_1002_bies_201900009_BIES201900009
PublicationCentury 2000
PublicationDate May 2019
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: May 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_7_1_55_1
e_1_2_7_1_78_1
e_1_2_7_1_32_1
e_1_2_7_1_13_1
e_1_2_7_1_51_1
e_1_2_7_1_74_1
e_1_2_7_1_97_1
e_1_2_7_1_70_1
e_1_2_7_1_93_1
e_1_2_7_1_121_1
e_1_2_7_1_5_1
e_1_2_7_1_29_1
e_1_2_7_1_106_1
e_1_2_7_1_25_1
e_1_2_7_1_48_1
e_1_2_7_1_102_1
e_1_2_7_1_21_1
e_1_2_7_1_44_1
e_1_2_7_1_67_1
e_1_2_7_1_9_1
e_1_2_7_1_40_1
e_1_2_7_1_63_1
e_1_2_7_1_86_1
e_1_2_7_1_82_1
e_1_2_7_1_18_1
e_1_2_7_1_117_1
e_1_2_7_1_14_1
e_1_2_7_1_37_1
e_1_2_7_1_113_1
Hershey J. W. B. (e_1_2_7_1_2_1) 2018; 4
e_1_2_7_1_10_1
e_1_2_7_1_33_1
e_1_2_7_1_79_1
e_1_2_7_1_56_1
e_1_2_7_1_98_1
e_1_2_7_1_75_1
e_1_2_7_1_52_1
e_1_2_7_1_94_1
e_1_2_7_1_71_1
e_1_2_7_1_90_1
e_1_2_7_1_120_1
e_1_2_7_1_105_1
e_1_2_7_1_8_1
e_1_2_7_1_101_1
e_1_2_7_1_26_1
e_1_2_7_1_4_1
e_1_2_7_1_49_1
e_1_2_7_1_22_1
e_1_2_7_1_68_1
e_1_2_7_1_45_1
e_1_2_7_1_87_1
e_1_2_7_1_109_1
e_1_2_7_1_64_1
e_1_2_7_1_41_1
e_1_2_7_1_83_1
e_1_2_7_1_60_1
e_1_2_7_1_19_1
e_1_2_7_1_116_1
e_1_2_7_1_15_1
e_1_2_7_1_38_1
e_1_2_7_1_112_1
e_1_2_7_1_11_1
e_1_2_7_1_57_1
e_1_2_7_1_76_1
e_1_2_7_1_99_1
e_1_2_7_1_34_1
e_1_2_7_1_30_1
e_1_2_7_1_53_1
e_1_2_7_1_72_1
e_1_2_7_1_95_1
e_1_2_7_1_91_1
e_1_2_7_1_104_1
e_1_2_7_1_7_1
e_1_2_7_1_100_1
e_1_2_7_1_3_1
e_1_2_7_1_27_1
e_1_2_7_1_69_1
e_1_2_7_1_23_1
e_1_2_7_1_46_1
e_1_2_7_1_65_1
e_1_2_7_1_88_1
e_1_2_7_1_108_1
e_1_2_7_1_42_1
e_1_2_7_1_61_1
e_1_2_7_1_84_1
e_1_2_7_1_80_1
e_1_2_7_1_115_1
e_1_2_7_1_16_1
e_1_2_7_1_39_1
e_1_2_7_1_58_1
e_1_2_7_1_111_1
e_1_2_7_1_54_1
e_1_2_7_1_12_1
e_1_2_7_1_35_1
e_1_2_7_1_77_1
e_1_2_7_1_50_1
e_1_2_7_1_96_1
e_1_2_7_1_119_1
e_1_2_7_1_31_1
e_1_2_7_1_73_1
e_1_2_7_1_92_1
e_1_2_7_1_6_1
e_1_2_7_1_107_1
e_1_2_7_1_47_1
e_1_2_7_1_103_1
e_1_2_7_1_122_1
e_1_2_7_1_28_1
e_1_2_7_1_43_1
e_1_2_7_1_89_1
e_1_2_7_1_24_1
e_1_2_7_1_66_1
e_1_2_7_1_85_1
e_1_2_7_1_20_1
e_1_2_7_1_62_1
e_1_2_7_1_81_1
e_1_2_7_1_110_1
e_1_2_7_1_118_1
e_1_2_7_1_36_1
e_1_2_7_1_114_1
e_1_2_7_1_17_1
e_1_2_7_1_59_1
References_xml – ident: e_1_2_7_1_18_1
  doi: 10.1016/j.gene.2004.11.041
– ident: e_1_2_7_1_9_1
  doi: 10.1146/annurev.biochem.73.030403.080419
– ident: e_1_2_7_1_101_1
  doi: 10.1016/j.jmb.2017.05.017
– ident: e_1_2_7_1_4_1
  doi: 10.1074/mcp.M400099-MCP200
– ident: e_1_2_7_1_56_1
  doi: 10.1074/jbc.M111.253310
– ident: e_1_2_7_1_63_1
  doi: 10.1016/j.molmed.2016.10.009
– ident: e_1_2_7_1_81_1
  doi: 10.1371/journal.pgen.1001247
– ident: e_1_2_7_1_24_1
  doi: 10.1016/j.bbagrm.2014.11.009
– ident: e_1_2_7_1_110_1
  doi: 10.1158/0008-5472.CAN-16-3146
– ident: e_1_2_7_1_84_1
  doi: 10.1126/science.286.5446.1893
– ident: e_1_2_7_1_64_1
  doi: 10.3390/ijms19123738
– ident: e_1_2_7_1_114_1
  doi: 10.1093/nar/gky189
– ident: e_1_2_7_1_80_1
  doi: 10.1016/j.cell.2016.09.038
– ident: e_1_2_7_1_41_1
  doi: 10.1101/gad.17838411
– ident: e_1_2_7_1_90_1
  doi: 10.1007/BF00425839
– ident: e_1_2_7_1_38_1
  doi: 10.1073/pnas.1201689109
– ident: e_1_2_7_1_51_1
  doi: 10.1074/jbc.M412375200
– ident: e_1_2_7_1_17_1
  doi: 10.1101/cshperspect.a032870
– ident: e_1_2_7_1_103_1
  doi: 10.1073/pnas.1407361111
– ident: e_1_2_7_1_40_1
  doi: 10.1038/nature10912
– ident: e_1_2_7_1_27_1
  doi: 10.1083/jcb.200502088
– ident: e_1_2_7_1_44_1
  doi: 10.4161/rna.27361
– ident: e_1_2_7_1_111_1
  doi: 10.1186/s12915-014-0078-0
– ident: e_1_2_7_1_47_1
  doi: 10.1016/j.tig.2012.07.006
– ident: e_1_2_7_1_46_1
  doi: 10.1261/rna.030775.111
– ident: e_1_2_7_1_86_1
  doi: 10.1098/rstb.2011.0138
– ident: e_1_2_7_1_99_1
  doi: 10.1080/15476286.2016.1272746
– ident: e_1_2_7_1_88_1
  doi: 10.1016/B978-0-12-386497-0.00003-7
– ident: e_1_2_7_1_98_1
  doi: 10.1016/j.cell.2009.07.001
– ident: e_1_2_7_1_93_1
  doi: 10.1099/00207713-46-4-1070
– ident: e_1_2_7_1_85_1
  doi: 10.1002/j.1460-2075.1984.tb02176.x
– ident: e_1_2_7_1_49_1
  doi: 10.1128/MCB.00319-10
– ident: e_1_2_7_1_20_1
  doi: 10.1073/pnas.0400541101
– ident: e_1_2_7_1_57_1
  doi: 10.1074/jbc.M109.000877
– ident: e_1_2_7_1_69_1
  doi: 10.4161/15476286.2014.992276
– ident: e_1_2_7_1_45_1
  doi: 10.1371/journal.pgen.0020221
– ident: e_1_2_7_1_89_1
  doi: 10.1146/annurev-genet-111212-133522
– ident: e_1_2_7_1_108_1
  doi: 10.1002/wrna.96
– ident: e_1_2_7_1_62_1
  doi: 10.1146/annurev-genet-110711-155641
– ident: e_1_2_7_1_14_1
  doi: 10.1074/jbc.273.4.2416
– ident: e_1_2_7_1_109_1
  doi: 10.1261/rna.066126.118
– ident: e_1_2_7_1_31_1
  doi: 10.1016/j.cell.2017.02.004
– ident: e_1_2_7_1_53_1
  doi: 10.1002/bies.201600158
– ident: e_1_2_7_1_70_1
  doi: 10.1146/annurev.bi.56.070187.001403
– volume: 4
  start-page: 1
  year: 2018
  ident: e_1_2_7_1_2_1
  publication-title: Cold Spring Harb. Perspect. Biol
– ident: e_1_2_7_1_71_1
  doi: 10.1128/MCB.01542-07
– ident: e_1_2_7_1_73_1
  doi: 10.1007/b106652
– ident: e_1_2_7_1_96_1
  doi: 10.1016/j.canlet.2017.10.031
– ident: e_1_2_7_1_107_1
  doi: 10.1038/ng1742
– ident: e_1_2_7_1_91_1
  doi: 10.1038/nature08576
– ident: e_1_2_7_1_102_1
  doi: 10.1016/j.molcel.2011.06.022
– ident: e_1_2_7_1_6_1
  doi: 10.1016/j.molcel.2014.04.033
– ident: e_1_2_7_1_11_1
  doi: 10.1016/0092-8674(78)90039-9
– ident: e_1_2_7_1_52_1
  doi: 10.1016/j.bbagrm.2018.01.011
– ident: e_1_2_7_1_7_1
  doi: 10.1038/msb.2011.14
– ident: e_1_2_7_1_97_1
  doi: 10.1083/jcb.200811106
– ident: e_1_2_7_1_113_1
  doi: 10.4161/rna.24285
– ident: e_1_2_7_1_42_1
  doi: 10.1101/gr.197566.115
– ident: e_1_2_7_1_39_1
  doi: 10.1038/nature11083
– ident: e_1_2_7_1_120_1
  doi: 10.1146/annurev-cellbio-100616-060758
– ident: e_1_2_7_1_122_1
  doi: 10.1016/j.cell.2018.03.008
– ident: e_1_2_7_1_100_1
  doi: 10.1074/jbc.M109.077560
– ident: e_1_2_7_1_32_1
  doi: 10.1101/cshperspect.a033092
– ident: e_1_2_7_1_29_1
  doi: 10.1083/jcb.201609081
– ident: e_1_2_7_1_115_1
  doi: 10.1038/nature25005
– ident: e_1_2_7_1_92_1
  doi: 10.1242/jcs.152470
– ident: e_1_2_7_1_43_1
  doi: 10.1093/nar/gkv1309
– ident: e_1_2_7_1_48_1
  doi: 10.1074/jbc.M109.071639
– ident: e_1_2_7_1_60_1
  doi: 10.1261/rna.2057810
– ident: e_1_2_7_1_23_1
  doi: 10.1083/jcb.201508028
– ident: e_1_2_7_1_50_1
  doi: 10.1016/j.tibs.2011.06.008
– ident: e_1_2_7_1_58_1
  doi: 10.1038/s41422-018-0013-y
– ident: e_1_2_7_1_59_1
  doi: 10.1093/nar/gkn710
– ident: e_1_2_7_1_75_1
  doi: 10.1016/j.molcel.2007.09.021
– ident: e_1_2_7_1_55_1
  doi: 10.1016/j.tibs.2016.03.003
– ident: e_1_2_7_1_8_1
  doi: 10.1038/nrm2838
– ident: e_1_2_7_1_66_1
  doi: 10.1093/nar/gkh185
– ident: e_1_2_7_1_67_1
  doi: 10.1089/dna.2011.1437
– ident: e_1_2_7_1_16_1
  doi: 10.1016/S1097-2765(00)80330-5
– ident: e_1_2_7_1_13_1
  doi: 10.1128/MCB.21.23.7971-7980.2001
– ident: e_1_2_7_1_5_1
  doi: 10.1016/j.febslet.2009.10.036
– ident: e_1_2_7_1_68_1
  doi: 10.1016/0022-2836(68)90308-2
– ident: e_1_2_7_1_28_1
  doi: 10.1101/cshperspect.a032813
– ident: e_1_2_7_1_37_1
  doi: 10.1038/sj.emboj.7601047
– ident: e_1_2_7_1_119_1
  doi: 10.1016/j.cell.2012.05.003
– ident: e_1_2_7_1_33_1
  doi: 10.1128/MCB.15.9.4990
– ident: e_1_2_7_1_78_1
  doi: 10.1016/j.febslet.2014.09.038
– ident: e_1_2_7_1_117_1
  doi: 10.1073/pnas.1111577108
– ident: e_1_2_7_1_95_1
  doi: 10.1101/gad.1837609
– ident: e_1_2_7_1_121_1
  doi: 10.26508/lsa.201800113
– ident: e_1_2_7_1_87_1
  doi: 10.1038/emboj.2010.229
– ident: e_1_2_7_1_65_1
  doi: 10.3389/fnmol.2017.00135
– ident: e_1_2_7_1_21_1
  doi: 10.1093/nar/gkw1190
– ident: e_1_2_7_1_15_1
  doi: 10.1128/MCB.15.8.4497
– ident: e_1_2_7_1_116_1
  doi: 10.1093/nar/gkq266
– ident: e_1_2_7_1_54_1
  doi: 10.1126/scisignal.aat6409
– ident: e_1_2_7_1_25_1
  doi: 10.1016/j.tibs.2013.07.004
– ident: e_1_2_7_1_36_1
  doi: 10.1016/j.bbagrm.2014.08.015
– ident: e_1_2_7_1_76_1
  doi: 10.1038/nchembio0308-162
– ident: e_1_2_7_1_72_1
  doi: 10.1038/ncomms1938
– ident: e_1_2_7_1_74_1
  doi: 10.1074/jbc.M210456200
– ident: e_1_2_7_1_106_1
  doi: 10.1523/JNEUROSCI.3399-08.2008
– ident: e_1_2_7_1_112_1
  doi: 10.1261/rna.2000810
– ident: e_1_2_7_1_118_1
  doi: 10.1038/nature11112
– ident: e_1_2_7_1_10_1
  doi: 10.1101/gad.1020902
– ident: e_1_2_7_1_19_1
  doi: 10.1083/jcb.200408003
– ident: e_1_2_7_1_61_1
  doi: 10.1261/rna.056531.116
– ident: e_1_2_7_1_82_1
  doi: 10.1093/nar/gkv322
– ident: e_1_2_7_1_83_1
  doi: 10.1091/mbc.E14-06-1145
– ident: e_1_2_7_1_105_1
  doi: 10.1002/wrna.1200
– ident: e_1_2_7_1_94_1
  doi: 10.1093/nar/gkv1379
– ident: e_1_2_7_1_3_1
  doi: 10.1186/gb-2003-4-9-117
– ident: e_1_2_7_1_79_1
  doi: 10.1261/rna.5040605
– ident: e_1_2_7_1_12_1
  doi: 10.1146/annurev-biochem-060713-035802
– ident: e_1_2_7_1_26_1
  doi: 10.1083/jcb.151.6.1257
– ident: e_1_2_7_1_30_1
  doi: 10.1016/j.tcb.2016.05.004
– ident: e_1_2_7_1_34_1
  doi: 10.1128/MCB.24.8.3112-3124.2004
– ident: e_1_2_7_1_35_1
  doi: 10.1038/sj.emboj.7601166
– ident: e_1_2_7_1_77_1
  doi: 10.1080/15476286.2015.1031947
– ident: e_1_2_7_1_104_1
  doi: 10.1093/nar/gkw418
– ident: e_1_2_7_1_22_1
  doi: 10.1083/jcb.147.7.1431
SSID ssj0009624
Score 2.5930874
SecondaryResourceType review_article
Snippet Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1900009
SubjectTerms Cell Survival
cell viability
Chemical synthesis
cytoplasmic granules
Eukaryotic Initiation Factor-2 - metabolism
Growth conditions
Kinases
messenger RNA
Metabolism
Molecular modelling
Phosphorylation
phosphotransferases (kinases)
Protein Biosynthesis
Protein synthesis
Proteins
Ribonucleic acid
RNA
RNA, Transfer - metabolism
Signal Transduction
stress
stress response
Stress, Physiological - genetics
Survival
TOR Serine-Threonine Kinases - metabolism
Transduction
Transfer RNA
Translation
translation (genetics)
Translation initiation
translational reprogramming
tRNA
Title Translational Control under Stress: Reshaping the Translatome
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201900009
https://www.ncbi.nlm.nih.gov/pubmed/31026340
https://www.proquest.com/docview/2215217067
https://www.proquest.com/docview/2216292812
https://www.proquest.com/docview/2253240173
https://pubmed.ncbi.nlm.nih.gov/PMC6541386
Volume 41
WOSCitedRecordID wos000490273800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-1878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009624
  issn: 0265-9247
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STQu9JOkjjfNCgUJPJrYkS3JueS05lFDSBPZmJK9EF7besHlA_31Hku1kCWmgudloZCx5xvONpPkG4KvOLeJ47lIjrU6502hzmrFUUsN5qZykzIViE_L8XI1G5Y9HWfyRH6JfcPOWEf7X3sC1udl_IA01PpKkPhU6Cxl8yxSVtxjA8snF8Or7A_GuCIVtMdQoUow1ZEfcmNH9xScsOqYnaPPpocnHYDZ4o-Hq68exBistEiWHUXU-wJJtPsK7WJvyzyeIXmzarhWS43iknficszn5GTJMDsiF3zDyGVcEcSTpesx-289wNTy9PD5L21oLaV0IWaa1EoUsx1wWwslMI8hh0iB4dEbb0miEMVwwJmuNkbg0COuoUYoJzTSvuUPHvw6DZtbYDSDCImawGbfO5Ty3uc6zsRm73GAworTKEki7ia7qlojc18OYVpFCmVZ-Sqp-ShL41stfRwqOZyW3u-9WtaaIrb5yrycJkgns9c1oRH5nRDd2dhdkBC0pgp1_yRSevDCXLIEvURX610GMTAXjODS5oCS9gCfxXmxpJr8Cmbevw86USIAGJXlhhNURBgn93eb_dNqC9_46HtrchsHt_M7uwNv6_nZyM9-FN3Kkdlsj-gtM-BtX
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS-QwEB5ET84XvdM77blqBeGeim2SNu29qeeiuLeIp-BbSboJJ2hXVlfw3zuTdOstch6Ij20mpZnONN8kmW8AdlRiEMcLG2lpVCSsQp9TnEeSaSGK3ErGrSs2Ifv9_PKyOG1OE1IujOeHaBfcyDPc_5ocnBakd59ZQzWFkoxyoWOXwjcn0JbQyOd-nnUves_Mu5mrbIuxRhphsCEnzI0x251-wvTM9AJuvjw1-TeaddNRd-kdBvIJFhssGu554_kMM6ZehnlfnfJxBfw8dt2sFoYH_lB7SFlno_C3yzH5EZ7RlhHlXIWIJMNJj-GN-QIX3cPzg6OoqbYQVWkmi6jKs1QWAyHTzMpYIczhUiN8tFqZQisEMqhfLiuFsbjUCOyYznOeKa5EJSxO_V9hth7WZg3CzCBqMLEw1iYiMYlK4oEe2ERjOJKrPA4gmmi6rBoqcqqIcV16EmVWkkrKViUBfG_lbz0Jxz8lO5MPVzbOiK1Uu5dogmQA220zuhHtjajaDMdOJmMFQ7jzmkxK9IWJ5AGseltoXwdRMsu4wKHJKStpBYjGe7qlvvrj6LypEjsabgDMWcl_RljuY5jQXn17S6ct-Hh0_qtX9o77J-uwQPf9Ec4OzN6PxmYDPlQP91d3o83Gl54AldseXw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6hhSIuLS20TcsjlSpxikhsx0648egKBFohWiRukZ21VSSaRctupf77ztjZwAq1SIhj4nEUOzPxN_bMNwBfdWYRxwuXGGV1IpxGm9OcJ4oZIcrCKcadLzahBoPi6qo8b6MJKRcm8EN0G25kGf5_TQZub4du95411JArySgXOvUpfIuCKsn0YPHoon95ds-8K31lW_Q18gSdDTVjbkzZ7vwT5lemR3DzcdTkQzTrl6P-mxcYyCq8brFovB-U5y0s2OYdvArVKf-sQVjHbtrdwvgwBLXHlHU2jr_7HJO9-IKOjCjnKkYkGc96jH7Zdbjsf_txeJy01RaSOpeqTOpC5qocCpVLp1KNMIcrg_DRGW1LoxHICMm5qjX64sogsGOmKLjUXItaOFz630OvGTX2I8TSImqwqbDOZSKzmc7SoRm6zKA7UugijSCZzXRVt1TkVBHjpgokyqyiKam6KYlgp5O_DSQc_5TcmH24qjVGbKXavUQTpCL40jWjGdHZiG7saOplJCsZwp3_yeREX5gpHsGHoAvd6yBKZpILHJqa05JOgGi851ua65-ezpsqsfNCRsC8ljwxwuoA3YTu6tNzOm3D8vlRvzo7GZx-hhW6HSI4N6A3GU_tJizVvyfXd-Ot1pT-AvQTHdo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translational+Control+under+Stress%3A+Reshaping+the+Translatome&rft.jtitle=BioEssays&rft.au=Advani%2C+Vivek+M.&rft.au=Ivanov%2C+Pavel&rft.date=2019-05-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=41&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fbies.201900009&rft.externalDBID=10.1002%252Fbies.201900009&rft.externalDocID=BIES201900009
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon