Translational Control under Stress: Reshaping the Translatome
Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Repro...
Saved in:
| Published in: | BioEssays Vol. 41; no. 5; pp. e1900009 - n/a |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
Wiley Subscription Services, Inc
01.05.2019
|
| Subjects: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well‐understood stress‐activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress‐responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress‐induced translational reprogramming. These include stress‐specific regulation of tRNA pools, codon‐biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Translational control contributes to various aspects of cell homeostasis. As messenger RNA (mRNA) translation is energy‐expensive, its regulation is critical. Reprogramming of mRNA translation during stress involves signal transduction pathways and transfer RNA metabolism changes that aim at cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress. |
|---|---|
| AbstractList | Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well‐understood stress‐activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress‐responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress‐induced translational reprogramming. These include stress‐specific regulation of tRNA pools, codon‐biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.
Translational control contributes to various aspects of cell homeostasis. As messenger RNA (mRNA) translation is energy‐expensive, its regulation is critical. Reprogramming of mRNA translation during stress involves signal transduction pathways and transfer RNA metabolism changes that aim at cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress. Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress.Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress. Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of messenger RNA (mRNA) translation involves well-understood stress-activated kinases that target components of translation initiation machinery, resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies focus on the key roles of transfer RNA (tRNA) in stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress, resulting in adaptation and cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress. Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to promote cell survival. As protein synthesis is an energetically expensive process, its regulation under stress is of critical importance. Reprogramming of mRNA translation involves well-understood stress-activated kinases that target components of translation initiation machinery resulting in the robust inhibition of general translation and promotion of the translation of stress-responsive proteins. Translational arrest of mRNAs also results in the accumulation of transcripts in cytoplasmic foci called stress granules. Recent studies point on the key roles of transfer RNA (tRNA) in the stress-induced translational reprogramming. These include stress-specific regulation of tRNA pools, codon-biased translation influenced by tRNA modifications, tRNA miscoding, and tRNA cleavage. In combination, signal transduction pathways and tRNA metabolism changes regulate translation during stress resulting in the adaptation and cell survival. This review will examine molecular mechanisms that regulate protein synthesis in response to stress. Translational control contributes to various aspects of cell homeostasis. As mRNA translation is energy-expensive, its regulation is critical. Reprogramming of mRNA translation during stress involves signal transduction pathways and tRNA metabolism changes that aim on cell survival. This review examines molecular mechanisms that regulate protein synthesis in response to stress. |
| Author | Ivanov, Pavel Advani, Vivek M. |
| AuthorAffiliation | 3 The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts, United States of America 1 Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America 2 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America |
| AuthorAffiliation_xml | – name: 2 Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America – name: 1 Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America – name: 3 The Broad Institute of Harvard and M.I.T., Cambridge, Massachusetts, United States of America |
| Author_xml | – sequence: 1 givenname: Vivek M. surname: Advani fullname: Advani, Vivek M. email: vadvani@bwh.harvard.edu organization: Harvard Medical School – sequence: 2 givenname: Pavel surname: Ivanov fullname: Ivanov, Pavel email: pivanov@rics.bwh.harvard.edu organization: The Broad Institute of Harvard and MIT |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31026340$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkd1LHDEUxUOx1NX21UcZ6EtfZpvvTIQKdbGtIBSqfQ6Z2TtuJJusyYzif2_WdW0rlPa-3If7O4eTnD20E2IAhA4InhKM6cfWQZ5STDQuo1-hCRGU1KRRzQ6aYCpFrSlXu2gv5-s1ISl_g3YZKSfG8QR9ukw2ZG8HF4P11SyGIUVfjWEOqboYEuR8VP2AvLArF66qYQHVVhGX8Ba97q3P8O5p76OfX04vZ9_q8-9fz2afz-tOSKXrrpFC6TlXQvYKWyI0U63Wum8t6NYyrblkTHUWWqpaKTBtm4ZJyyzveI8p20fHG9_V2C5h3kFJab1ZJbe06d5E68yfl-AW5ireGik4YY0sBh-eDFK8GSEPZulyB97bAHHMhlLBKMdEsf9AiaSaNmQd6_0L9DqOqfzjI1WKUFiqQh3-Hv459baEAvAN0KWYc4LedG54bKS8xXlDsFl3bdZdm-eui2z6QrZ1_qtAbwR3zsP9P2hzcnZ68Uv7AHtdusw |
| CitedBy_id | crossref_primary_10_1016_j_celrep_2023_113359 crossref_primary_10_3390_ncrna9020026 crossref_primary_10_3389_fmicb_2021_671852 crossref_primary_10_1016_j_ecoenv_2023_115028 crossref_primary_10_1007_s12265_025_10619_w crossref_primary_10_1111_febs_16935 crossref_primary_10_1016_j_tibs_2025_06_009 crossref_primary_10_1038_s41467_022_29367_5 crossref_primary_10_1093_nar_gkab1247 crossref_primary_10_1371_journal_pgen_1011371 crossref_primary_10_1038_s41556_022_00938_4 crossref_primary_10_1016_j_tim_2020_06_010 crossref_primary_10_1091_mbc_E24_04_0164 crossref_primary_10_1128_MCB_00244_21 crossref_primary_10_1038_s41598_023_48287_y crossref_primary_10_1248_bpb_b25_00294 crossref_primary_10_1016_j_cbd_2021_100946 crossref_primary_10_1016_j_drudis_2023_103769 crossref_primary_10_1002_1873_3468_13491 crossref_primary_10_3390_biology12091172 crossref_primary_10_1016_j_molcel_2024_06_024 crossref_primary_10_3390_ijms252011284 crossref_primary_10_1038_s41586_025_08794_6 crossref_primary_10_1016_j_bonr_2021_101115 crossref_primary_10_3389_fmolb_2022_1066650 crossref_primary_10_1017_S0954422423000124 crossref_primary_10_1002_wrna_1623 crossref_primary_10_1038_s41571_024_00923_w crossref_primary_10_3390_ijms25126787 crossref_primary_10_3389_fmolb_2021_669939 crossref_primary_10_1186_s13059_023_02871_7 crossref_primary_10_1016_j_stem_2019_12_006 crossref_primary_10_1016_j_molmed_2024_04_008 crossref_primary_10_3389_frnar_2023_1226610 crossref_primary_10_1242_jcs_259629 crossref_primary_10_7554_eLife_90683_3 crossref_primary_10_1080_10409238_2021_2006599 crossref_primary_10_1080_10985549_2023_2229225 crossref_primary_10_1261_rna_078738_121 crossref_primary_10_1155_2022_3475955 crossref_primary_10_3390_cancers17172769 crossref_primary_10_3389_fcell_2023_1075215 crossref_primary_10_3389_fmolb_2023_1137215 crossref_primary_10_1093_genetics_iyaf134 crossref_primary_10_3390_biom10070969 crossref_primary_10_1093_bbb_zbae147 crossref_primary_10_1038_s41580_024_00822_z crossref_primary_10_1093_nar_gkaa1261 crossref_primary_10_1002_adbi_202101328 crossref_primary_10_7554_eLife_88658_3 crossref_primary_10_1371_journal_pone_0309801 crossref_primary_10_3389_fnins_2022_1071976 crossref_primary_10_1016_j_bbagrm_2019_06_009 crossref_primary_10_1016_j_cmet_2024_07_022 crossref_primary_10_1016_j_jprot_2022_104618 crossref_primary_10_1038_s41467_024_45525_3 crossref_primary_10_1002_wrna_1805 crossref_primary_10_1002_jcp_30107 crossref_primary_10_1093_nar_gkaa1116 crossref_primary_10_7554_eLife_96317_3 crossref_primary_10_1073_pnas_1918459117 crossref_primary_10_1016_j_pneurobio_2019_101697 crossref_primary_10_1242_jcs_242487 crossref_primary_10_7554_eLife_90683 crossref_primary_10_3389_fphar_2024_1343569 crossref_primary_10_1093_nar_gkab267 crossref_primary_10_1002_mds_29562 crossref_primary_10_3390_v14071505 crossref_primary_10_1093_nar_gkaa1126 crossref_primary_10_3390_genes15121602 crossref_primary_10_1042_BST20230506 crossref_primary_10_1016_j_ejphar_2025_177397 crossref_primary_10_1073_pnas_2401743121 crossref_primary_10_1016_j_dnarep_2020_102927 crossref_primary_10_3390_antiox10060952 crossref_primary_10_1038_s41467_023_35811_x crossref_primary_10_1038_s41467_025_59185_4 crossref_primary_10_1186_s13395_022_00289_6 crossref_primary_10_1007_s12035_024_03924_z crossref_primary_10_1093_function_zqac065 crossref_primary_10_1016_j_mad_2020_111324 crossref_primary_10_15252_embj_2022113240 crossref_primary_10_1080_21678421_2024_2403301 crossref_primary_10_1007_s13365_024_01215_w crossref_primary_10_1016_j_nbd_2022_105615 crossref_primary_10_3390_cells12020259 crossref_primary_10_7554_eLife_88658 crossref_primary_10_1093_jxb_erae171 crossref_primary_10_1016_j_ymthe_2022_08_004 crossref_primary_10_1371_journal_pone_0256411 crossref_primary_10_1016_j_tcb_2024_01_005 crossref_primary_10_1007_s00018_020_03565_0 crossref_primary_10_1042_BST20253061 crossref_primary_10_3390_biology11071024 crossref_primary_10_3389_fcell_2022_1033684 crossref_primary_10_1261_rna_080419_125 crossref_primary_10_1111_febs_17243 crossref_primary_10_1134_S0006297921090029 crossref_primary_10_1016_j_jbc_2024_107870 crossref_primary_10_1002_adbi_202101298 crossref_primary_10_3389_fmolb_2021_673038 crossref_primary_10_3389_fcell_2021_751892 crossref_primary_10_1515_hsz_2022_0302 crossref_primary_10_3390_ijms232113100 crossref_primary_10_1042_BST20220584 crossref_primary_10_3390_cells11101631 crossref_primary_10_1128_mbio_01622_25 crossref_primary_10_7554_eLife_96317 crossref_primary_10_1016_j_ecoenv_2021_113094 crossref_primary_10_1016_j_semcdb_2023_06_006 |
| Cites_doi | 10.1016/j.gene.2004.11.041 10.1146/annurev.biochem.73.030403.080419 10.1016/j.jmb.2017.05.017 10.1074/mcp.M400099-MCP200 10.1074/jbc.M111.253310 10.1016/j.molmed.2016.10.009 10.1371/journal.pgen.1001247 10.1016/j.bbagrm.2014.11.009 10.1158/0008-5472.CAN-16-3146 10.1126/science.286.5446.1893 10.3390/ijms19123738 10.1093/nar/gky189 10.1016/j.cell.2016.09.038 10.1101/gad.17838411 10.1007/BF00425839 10.1073/pnas.1201689109 10.1074/jbc.M412375200 10.1101/cshperspect.a032870 10.1073/pnas.1407361111 10.1038/nature10912 10.1083/jcb.200502088 10.4161/rna.27361 10.1186/s12915-014-0078-0 10.1016/j.tig.2012.07.006 10.1261/rna.030775.111 10.1098/rstb.2011.0138 10.1080/15476286.2016.1272746 10.1016/B978-0-12-386497-0.00003-7 10.1016/j.cell.2009.07.001 10.1099/00207713-46-4-1070 10.1002/j.1460-2075.1984.tb02176.x 10.1128/MCB.00319-10 10.1073/pnas.0400541101 10.1074/jbc.M109.000877 10.4161/15476286.2014.992276 10.1371/journal.pgen.0020221 10.1146/annurev-genet-111212-133522 10.1002/wrna.96 10.1146/annurev-genet-110711-155641 10.1074/jbc.273.4.2416 10.1261/rna.066126.118 10.1016/j.cell.2017.02.004 10.1002/bies.201600158 10.1146/annurev.bi.56.070187.001403 10.1128/MCB.01542-07 10.1007/b106652 10.1016/j.canlet.2017.10.031 10.1038/ng1742 10.1038/nature08576 10.1016/j.molcel.2011.06.022 10.1016/j.molcel.2014.04.033 10.1016/0092-8674(78)90039-9 10.1016/j.bbagrm.2018.01.011 10.1038/msb.2011.14 10.1083/jcb.200811106 10.4161/rna.24285 10.1101/gr.197566.115 10.1038/nature11083 10.1146/annurev-cellbio-100616-060758 10.1016/j.cell.2018.03.008 10.1074/jbc.M109.077560 10.1101/cshperspect.a033092 10.1083/jcb.201609081 10.1038/nature25005 10.1242/jcs.152470 10.1093/nar/gkv1309 10.1074/jbc.M109.071639 10.1261/rna.2057810 10.1083/jcb.201508028 10.1016/j.tibs.2011.06.008 10.1038/s41422-018-0013-y 10.1093/nar/gkn710 10.1016/j.molcel.2007.09.021 10.1016/j.tibs.2016.03.003 10.1038/nrm2838 10.1093/nar/gkh185 10.1089/dna.2011.1437 10.1016/S1097-2765(00)80330-5 10.1128/MCB.21.23.7971-7980.2001 10.1016/j.febslet.2009.10.036 10.1016/0022-2836(68)90308-2 10.1101/cshperspect.a032813 10.1038/sj.emboj.7601047 10.1016/j.cell.2012.05.003 10.1128/MCB.15.9.4990 10.1016/j.febslet.2014.09.038 10.1073/pnas.1111577108 10.1101/gad.1837609 10.26508/lsa.201800113 10.1038/emboj.2010.229 10.3389/fnmol.2017.00135 10.1093/nar/gkw1190 10.1128/MCB.15.8.4497 10.1093/nar/gkq266 10.1126/scisignal.aat6409 10.1016/j.tibs.2013.07.004 10.1016/j.bbagrm.2014.08.015 10.1038/nchembio0308-162 10.1038/ncomms1938 10.1074/jbc.M210456200 10.1523/JNEUROSCI.3399-08.2008 10.1261/rna.2000810 10.1038/nature11112 10.1101/gad.1020902 10.1083/jcb.200408003 10.1261/rna.056531.116 10.1093/nar/gkv322 10.1091/mbc.E14-06-1145 10.1002/wrna.1200 10.1093/nar/gkv1379 10.1186/gb-2003-4-9-117 10.1261/rna.5040605 10.1146/annurev-biochem-060713-035802 10.1083/jcb.151.6.1257 10.1016/j.tcb.2016.05.004 10.1128/MCB.24.8.3112-3124.2004 10.1038/sj.emboj.7601166 10.1080/15476286.2015.1031947 10.1093/nar/gkw418 10.1083/jcb.147.7.1431 |
| ContentType | Journal Article |
| Copyright | 2019 WILEY Periodicals, Inc. |
| Copyright_xml | – notice: 2019 WILEY Periodicals, Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
| DOI | 10.1002/bies.201900009 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA CrossRef Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-1878 |
| EndPage | n/a |
| ExternalDocumentID | PMC6541386 31026340 10_1002_bies_201900009 BIES201900009 |
| Genre | reviewArticle Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: Brigham and Women's Hospital – fundername: NIH funderid: GM126150 – fundername: National Institute of General Medical Sciences funderid: GM126150 – fundername: NINDS NIH HHS grantid: R21 NS094918 – fundername: NIGMS NIH HHS grantid: R01 GM126150 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c5679-c86579d4756f70a15937b999fbae9ba39946337caeb27b6502b8836a3a4c4f023 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 121 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000490273800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Tue Nov 04 02:01:13 EST 2025 Fri Jul 11 18:28:41 EDT 2025 Fri Jul 11 09:43:25 EDT 2025 Fri Jul 25 10:44:06 EDT 2025 Mon Jul 21 06:07:33 EDT 2025 Tue Nov 18 22:13:29 EST 2025 Sat Nov 29 05:24:44 EST 2025 Wed Jan 22 16:25:14 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | translation translation initiation stress tRNA translational reprogramming |
| Language | English |
| License | 2019 WILEY Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5679-c86579d4756f70a15937b999fbae9ba39946337caeb27b6502b8836a3a4c4f023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6541386 |
| PMID | 31026340 |
| PQID | 2215217067 |
| PQPubID | 37030 |
| PageCount | 10 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6541386 proquest_miscellaneous_2253240173 proquest_miscellaneous_2216292812 proquest_journals_2215217067 pubmed_primary_31026340 crossref_citationtrail_10_1002_bies_201900009 crossref_primary_10_1002_bies_201900009 wiley_primary_10_1002_bies_201900009_BIES201900009 |
| PublicationCentury | 2000 |
| PublicationDate | May 2019 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: May 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge |
| PublicationTitle | BioEssays |
| PublicationTitleAlternate | Bioessays |
| PublicationYear | 2019 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | e_1_2_7_1_55_1 e_1_2_7_1_78_1 e_1_2_7_1_32_1 e_1_2_7_1_13_1 e_1_2_7_1_51_1 e_1_2_7_1_74_1 e_1_2_7_1_97_1 e_1_2_7_1_70_1 e_1_2_7_1_93_1 e_1_2_7_1_121_1 e_1_2_7_1_5_1 e_1_2_7_1_29_1 e_1_2_7_1_106_1 e_1_2_7_1_25_1 e_1_2_7_1_48_1 e_1_2_7_1_102_1 e_1_2_7_1_21_1 e_1_2_7_1_44_1 e_1_2_7_1_67_1 e_1_2_7_1_9_1 e_1_2_7_1_40_1 e_1_2_7_1_63_1 e_1_2_7_1_86_1 e_1_2_7_1_82_1 e_1_2_7_1_18_1 e_1_2_7_1_117_1 e_1_2_7_1_14_1 e_1_2_7_1_37_1 e_1_2_7_1_113_1 Hershey J. W. B. (e_1_2_7_1_2_1) 2018; 4 e_1_2_7_1_10_1 e_1_2_7_1_33_1 e_1_2_7_1_79_1 e_1_2_7_1_56_1 e_1_2_7_1_98_1 e_1_2_7_1_75_1 e_1_2_7_1_52_1 e_1_2_7_1_94_1 e_1_2_7_1_71_1 e_1_2_7_1_90_1 e_1_2_7_1_120_1 e_1_2_7_1_105_1 e_1_2_7_1_8_1 e_1_2_7_1_101_1 e_1_2_7_1_26_1 e_1_2_7_1_4_1 e_1_2_7_1_49_1 e_1_2_7_1_22_1 e_1_2_7_1_68_1 e_1_2_7_1_45_1 e_1_2_7_1_87_1 e_1_2_7_1_109_1 e_1_2_7_1_64_1 e_1_2_7_1_41_1 e_1_2_7_1_83_1 e_1_2_7_1_60_1 e_1_2_7_1_19_1 e_1_2_7_1_116_1 e_1_2_7_1_15_1 e_1_2_7_1_38_1 e_1_2_7_1_112_1 e_1_2_7_1_11_1 e_1_2_7_1_57_1 e_1_2_7_1_76_1 e_1_2_7_1_99_1 e_1_2_7_1_34_1 e_1_2_7_1_30_1 e_1_2_7_1_53_1 e_1_2_7_1_72_1 e_1_2_7_1_95_1 e_1_2_7_1_91_1 e_1_2_7_1_104_1 e_1_2_7_1_7_1 e_1_2_7_1_100_1 e_1_2_7_1_3_1 e_1_2_7_1_27_1 e_1_2_7_1_69_1 e_1_2_7_1_23_1 e_1_2_7_1_46_1 e_1_2_7_1_65_1 e_1_2_7_1_88_1 e_1_2_7_1_108_1 e_1_2_7_1_42_1 e_1_2_7_1_61_1 e_1_2_7_1_84_1 e_1_2_7_1_80_1 e_1_2_7_1_115_1 e_1_2_7_1_16_1 e_1_2_7_1_39_1 e_1_2_7_1_58_1 e_1_2_7_1_111_1 e_1_2_7_1_54_1 e_1_2_7_1_12_1 e_1_2_7_1_35_1 e_1_2_7_1_77_1 e_1_2_7_1_50_1 e_1_2_7_1_96_1 e_1_2_7_1_119_1 e_1_2_7_1_31_1 e_1_2_7_1_73_1 e_1_2_7_1_92_1 e_1_2_7_1_6_1 e_1_2_7_1_107_1 e_1_2_7_1_47_1 e_1_2_7_1_103_1 e_1_2_7_1_122_1 e_1_2_7_1_28_1 e_1_2_7_1_43_1 e_1_2_7_1_89_1 e_1_2_7_1_24_1 e_1_2_7_1_66_1 e_1_2_7_1_85_1 e_1_2_7_1_20_1 e_1_2_7_1_62_1 e_1_2_7_1_81_1 e_1_2_7_1_110_1 e_1_2_7_1_118_1 e_1_2_7_1_36_1 e_1_2_7_1_114_1 e_1_2_7_1_17_1 e_1_2_7_1_59_1 |
| References_xml | – ident: e_1_2_7_1_18_1 doi: 10.1016/j.gene.2004.11.041 – ident: e_1_2_7_1_9_1 doi: 10.1146/annurev.biochem.73.030403.080419 – ident: e_1_2_7_1_101_1 doi: 10.1016/j.jmb.2017.05.017 – ident: e_1_2_7_1_4_1 doi: 10.1074/mcp.M400099-MCP200 – ident: e_1_2_7_1_56_1 doi: 10.1074/jbc.M111.253310 – ident: e_1_2_7_1_63_1 doi: 10.1016/j.molmed.2016.10.009 – ident: e_1_2_7_1_81_1 doi: 10.1371/journal.pgen.1001247 – ident: e_1_2_7_1_24_1 doi: 10.1016/j.bbagrm.2014.11.009 – ident: e_1_2_7_1_110_1 doi: 10.1158/0008-5472.CAN-16-3146 – ident: e_1_2_7_1_84_1 doi: 10.1126/science.286.5446.1893 – ident: e_1_2_7_1_64_1 doi: 10.3390/ijms19123738 – ident: e_1_2_7_1_114_1 doi: 10.1093/nar/gky189 – ident: e_1_2_7_1_80_1 doi: 10.1016/j.cell.2016.09.038 – ident: e_1_2_7_1_41_1 doi: 10.1101/gad.17838411 – ident: e_1_2_7_1_90_1 doi: 10.1007/BF00425839 – ident: e_1_2_7_1_38_1 doi: 10.1073/pnas.1201689109 – ident: e_1_2_7_1_51_1 doi: 10.1074/jbc.M412375200 – ident: e_1_2_7_1_17_1 doi: 10.1101/cshperspect.a032870 – ident: e_1_2_7_1_103_1 doi: 10.1073/pnas.1407361111 – ident: e_1_2_7_1_40_1 doi: 10.1038/nature10912 – ident: e_1_2_7_1_27_1 doi: 10.1083/jcb.200502088 – ident: e_1_2_7_1_44_1 doi: 10.4161/rna.27361 – ident: e_1_2_7_1_111_1 doi: 10.1186/s12915-014-0078-0 – ident: e_1_2_7_1_47_1 doi: 10.1016/j.tig.2012.07.006 – ident: e_1_2_7_1_46_1 doi: 10.1261/rna.030775.111 – ident: e_1_2_7_1_86_1 doi: 10.1098/rstb.2011.0138 – ident: e_1_2_7_1_99_1 doi: 10.1080/15476286.2016.1272746 – ident: e_1_2_7_1_88_1 doi: 10.1016/B978-0-12-386497-0.00003-7 – ident: e_1_2_7_1_98_1 doi: 10.1016/j.cell.2009.07.001 – ident: e_1_2_7_1_93_1 doi: 10.1099/00207713-46-4-1070 – ident: e_1_2_7_1_85_1 doi: 10.1002/j.1460-2075.1984.tb02176.x – ident: e_1_2_7_1_49_1 doi: 10.1128/MCB.00319-10 – ident: e_1_2_7_1_20_1 doi: 10.1073/pnas.0400541101 – ident: e_1_2_7_1_57_1 doi: 10.1074/jbc.M109.000877 – ident: e_1_2_7_1_69_1 doi: 10.4161/15476286.2014.992276 – ident: e_1_2_7_1_45_1 doi: 10.1371/journal.pgen.0020221 – ident: e_1_2_7_1_89_1 doi: 10.1146/annurev-genet-111212-133522 – ident: e_1_2_7_1_108_1 doi: 10.1002/wrna.96 – ident: e_1_2_7_1_62_1 doi: 10.1146/annurev-genet-110711-155641 – ident: e_1_2_7_1_14_1 doi: 10.1074/jbc.273.4.2416 – ident: e_1_2_7_1_109_1 doi: 10.1261/rna.066126.118 – ident: e_1_2_7_1_31_1 doi: 10.1016/j.cell.2017.02.004 – ident: e_1_2_7_1_53_1 doi: 10.1002/bies.201600158 – ident: e_1_2_7_1_70_1 doi: 10.1146/annurev.bi.56.070187.001403 – volume: 4 start-page: 1 year: 2018 ident: e_1_2_7_1_2_1 publication-title: Cold Spring Harb. Perspect. Biol – ident: e_1_2_7_1_71_1 doi: 10.1128/MCB.01542-07 – ident: e_1_2_7_1_73_1 doi: 10.1007/b106652 – ident: e_1_2_7_1_96_1 doi: 10.1016/j.canlet.2017.10.031 – ident: e_1_2_7_1_107_1 doi: 10.1038/ng1742 – ident: e_1_2_7_1_91_1 doi: 10.1038/nature08576 – ident: e_1_2_7_1_102_1 doi: 10.1016/j.molcel.2011.06.022 – ident: e_1_2_7_1_6_1 doi: 10.1016/j.molcel.2014.04.033 – ident: e_1_2_7_1_11_1 doi: 10.1016/0092-8674(78)90039-9 – ident: e_1_2_7_1_52_1 doi: 10.1016/j.bbagrm.2018.01.011 – ident: e_1_2_7_1_7_1 doi: 10.1038/msb.2011.14 – ident: e_1_2_7_1_97_1 doi: 10.1083/jcb.200811106 – ident: e_1_2_7_1_113_1 doi: 10.4161/rna.24285 – ident: e_1_2_7_1_42_1 doi: 10.1101/gr.197566.115 – ident: e_1_2_7_1_39_1 doi: 10.1038/nature11083 – ident: e_1_2_7_1_120_1 doi: 10.1146/annurev-cellbio-100616-060758 – ident: e_1_2_7_1_122_1 doi: 10.1016/j.cell.2018.03.008 – ident: e_1_2_7_1_100_1 doi: 10.1074/jbc.M109.077560 – ident: e_1_2_7_1_32_1 doi: 10.1101/cshperspect.a033092 – ident: e_1_2_7_1_29_1 doi: 10.1083/jcb.201609081 – ident: e_1_2_7_1_115_1 doi: 10.1038/nature25005 – ident: e_1_2_7_1_92_1 doi: 10.1242/jcs.152470 – ident: e_1_2_7_1_43_1 doi: 10.1093/nar/gkv1309 – ident: e_1_2_7_1_48_1 doi: 10.1074/jbc.M109.071639 – ident: e_1_2_7_1_60_1 doi: 10.1261/rna.2057810 – ident: e_1_2_7_1_23_1 doi: 10.1083/jcb.201508028 – ident: e_1_2_7_1_50_1 doi: 10.1016/j.tibs.2011.06.008 – ident: e_1_2_7_1_58_1 doi: 10.1038/s41422-018-0013-y – ident: e_1_2_7_1_59_1 doi: 10.1093/nar/gkn710 – ident: e_1_2_7_1_75_1 doi: 10.1016/j.molcel.2007.09.021 – ident: e_1_2_7_1_55_1 doi: 10.1016/j.tibs.2016.03.003 – ident: e_1_2_7_1_8_1 doi: 10.1038/nrm2838 – ident: e_1_2_7_1_66_1 doi: 10.1093/nar/gkh185 – ident: e_1_2_7_1_67_1 doi: 10.1089/dna.2011.1437 – ident: e_1_2_7_1_16_1 doi: 10.1016/S1097-2765(00)80330-5 – ident: e_1_2_7_1_13_1 doi: 10.1128/MCB.21.23.7971-7980.2001 – ident: e_1_2_7_1_5_1 doi: 10.1016/j.febslet.2009.10.036 – ident: e_1_2_7_1_68_1 doi: 10.1016/0022-2836(68)90308-2 – ident: e_1_2_7_1_28_1 doi: 10.1101/cshperspect.a032813 – ident: e_1_2_7_1_37_1 doi: 10.1038/sj.emboj.7601047 – ident: e_1_2_7_1_119_1 doi: 10.1016/j.cell.2012.05.003 – ident: e_1_2_7_1_33_1 doi: 10.1128/MCB.15.9.4990 – ident: e_1_2_7_1_78_1 doi: 10.1016/j.febslet.2014.09.038 – ident: e_1_2_7_1_117_1 doi: 10.1073/pnas.1111577108 – ident: e_1_2_7_1_95_1 doi: 10.1101/gad.1837609 – ident: e_1_2_7_1_121_1 doi: 10.26508/lsa.201800113 – ident: e_1_2_7_1_87_1 doi: 10.1038/emboj.2010.229 – ident: e_1_2_7_1_65_1 doi: 10.3389/fnmol.2017.00135 – ident: e_1_2_7_1_21_1 doi: 10.1093/nar/gkw1190 – ident: e_1_2_7_1_15_1 doi: 10.1128/MCB.15.8.4497 – ident: e_1_2_7_1_116_1 doi: 10.1093/nar/gkq266 – ident: e_1_2_7_1_54_1 doi: 10.1126/scisignal.aat6409 – ident: e_1_2_7_1_25_1 doi: 10.1016/j.tibs.2013.07.004 – ident: e_1_2_7_1_36_1 doi: 10.1016/j.bbagrm.2014.08.015 – ident: e_1_2_7_1_76_1 doi: 10.1038/nchembio0308-162 – ident: e_1_2_7_1_72_1 doi: 10.1038/ncomms1938 – ident: e_1_2_7_1_74_1 doi: 10.1074/jbc.M210456200 – ident: e_1_2_7_1_106_1 doi: 10.1523/JNEUROSCI.3399-08.2008 – ident: e_1_2_7_1_112_1 doi: 10.1261/rna.2000810 – ident: e_1_2_7_1_118_1 doi: 10.1038/nature11112 – ident: e_1_2_7_1_10_1 doi: 10.1101/gad.1020902 – ident: e_1_2_7_1_19_1 doi: 10.1083/jcb.200408003 – ident: e_1_2_7_1_61_1 doi: 10.1261/rna.056531.116 – ident: e_1_2_7_1_82_1 doi: 10.1093/nar/gkv322 – ident: e_1_2_7_1_83_1 doi: 10.1091/mbc.E14-06-1145 – ident: e_1_2_7_1_105_1 doi: 10.1002/wrna.1200 – ident: e_1_2_7_1_94_1 doi: 10.1093/nar/gkv1379 – ident: e_1_2_7_1_3_1 doi: 10.1186/gb-2003-4-9-117 – ident: e_1_2_7_1_79_1 doi: 10.1261/rna.5040605 – ident: e_1_2_7_1_12_1 doi: 10.1146/annurev-biochem-060713-035802 – ident: e_1_2_7_1_26_1 doi: 10.1083/jcb.151.6.1257 – ident: e_1_2_7_1_30_1 doi: 10.1016/j.tcb.2016.05.004 – ident: e_1_2_7_1_34_1 doi: 10.1128/MCB.24.8.3112-3124.2004 – ident: e_1_2_7_1_35_1 doi: 10.1038/sj.emboj.7601166 – ident: e_1_2_7_1_77_1 doi: 10.1080/15476286.2015.1031947 – ident: e_1_2_7_1_104_1 doi: 10.1093/nar/gkw418 – ident: e_1_2_7_1_22_1 doi: 10.1083/jcb.147.7.1431 |
| SSID | ssj0009624 |
| Score | 2.5930874 |
| SecondaryResourceType | review_article |
| Snippet | Adequate reprogramming of cellular metabolism in response to stresses or suboptimal growth conditions involves a myriad of coordinated changes that serve to... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e1900009 |
| SubjectTerms | Cell Survival cell viability Chemical synthesis cytoplasmic granules Eukaryotic Initiation Factor-2 - metabolism Growth conditions Kinases messenger RNA Metabolism Molecular modelling Phosphorylation phosphotransferases (kinases) Protein Biosynthesis Protein synthesis Proteins Ribonucleic acid RNA RNA, Transfer - metabolism Signal Transduction stress stress response Stress, Physiological - genetics Survival TOR Serine-Threonine Kinases - metabolism Transduction Transfer RNA Translation translation (genetics) Translation initiation translational reprogramming tRNA |
| Title | Translational Control under Stress: Reshaping the Translatome |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201900009 https://www.ncbi.nlm.nih.gov/pubmed/31026340 https://www.proquest.com/docview/2215217067 https://www.proquest.com/docview/2216292812 https://www.proquest.com/docview/2253240173 https://pubmed.ncbi.nlm.nih.gov/PMC6541386 |
| Volume | 41 |
| WOSCitedRecordID | wos000490273800006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7STQu9JOkjjfNCgUJPJrYkS3JueS05lFDSBPZmJK9EF7besHlA_31Hku1kCWmgudloZCx5xvONpPkG4KvOLeJ47lIjrU6502hzmrFUUsN5qZykzIViE_L8XI1G5Y9HWfyRH6JfcPOWEf7X3sC1udl_IA01PpKkPhU6Cxl8yxSVtxjA8snF8Or7A_GuCIVtMdQoUow1ZEfcmNH9xScsOqYnaPPpocnHYDZ4o-Hq68exBistEiWHUXU-wJJtPsK7WJvyzyeIXmzarhWS43iknficszn5GTJMDsiF3zDyGVcEcSTpesx-289wNTy9PD5L21oLaV0IWaa1EoUsx1wWwslMI8hh0iB4dEbb0miEMVwwJmuNkbg0COuoUYoJzTSvuUPHvw6DZtbYDSDCImawGbfO5Ty3uc6zsRm73GAworTKEki7ia7qlojc18OYVpFCmVZ-Sqp-ShL41stfRwqOZyW3u-9WtaaIrb5yrycJkgns9c1oRH5nRDd2dhdkBC0pgp1_yRSevDCXLIEvURX610GMTAXjODS5oCS9gCfxXmxpJr8Cmbevw86USIAGJXlhhNURBgn93eb_dNqC9_46HtrchsHt_M7uwNv6_nZyM9-FN3Kkdlsj-gtM-BtX |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS-QwEB5ET84XvdM77blqBeGeim2SNu29qeeiuLeIp-BbSboJJ2hXVlfw3zuTdOstch6Ij20mpZnONN8kmW8AdlRiEMcLG2lpVCSsQp9TnEeSaSGK3ErGrSs2Ifv9_PKyOG1OE1IujOeHaBfcyDPc_5ocnBakd59ZQzWFkoxyoWOXwjcn0JbQyOd-nnUves_Mu5mrbIuxRhphsCEnzI0x251-wvTM9AJuvjw1-TeaddNRd-kdBvIJFhssGu554_kMM6ZehnlfnfJxBfw8dt2sFoYH_lB7SFlno_C3yzH5EZ7RlhHlXIWIJMNJj-GN-QIX3cPzg6OoqbYQVWkmi6jKs1QWAyHTzMpYIczhUiN8tFqZQisEMqhfLiuFsbjUCOyYznOeKa5EJSxO_V9hth7WZg3CzCBqMLEw1iYiMYlK4oEe2ERjOJKrPA4gmmi6rBoqcqqIcV16EmVWkkrKViUBfG_lbz0Jxz8lO5MPVzbOiK1Uu5dogmQA220zuhHtjajaDMdOJmMFQ7jzmkxK9IWJ5AGseltoXwdRMsu4wKHJKStpBYjGe7qlvvrj6LypEjsabgDMWcl_RljuY5jQXn17S6ct-Hh0_qtX9o77J-uwQPf9Ec4OzN6PxmYDPlQP91d3o83Gl54AldseXw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB6hhSIuLS20TcsjlSpxikhsx0648egKBFohWiRukZ21VSSaRctupf77ztjZwAq1SIhj4nEUOzPxN_bMNwBfdWYRxwuXGGV1IpxGm9OcJ4oZIcrCKcadLzahBoPi6qo8b6MJKRcm8EN0G25kGf5_TQZub4du95411JArySgXOvUpfIuCKsn0YPHoon95ds-8K31lW_Q18gSdDTVjbkzZ7vwT5lemR3DzcdTkQzTrl6P-mxcYyCq8brFovB-U5y0s2OYdvArVKf-sQVjHbtrdwvgwBLXHlHU2jr_7HJO9-IKOjCjnKkYkGc96jH7Zdbjsf_txeJy01RaSOpeqTOpC5qocCpVLp1KNMIcrg_DRGW1LoxHICMm5qjX64sogsGOmKLjUXItaOFz630OvGTX2I8TSImqwqbDOZSKzmc7SoRm6zKA7UugijSCZzXRVt1TkVBHjpgokyqyiKam6KYlgp5O_DSQc_5TcmH24qjVGbKXavUQTpCL40jWjGdHZiG7saOplJCsZwp3_yeREX5gpHsGHoAvd6yBKZpILHJqa05JOgGi851ua65-ezpsqsfNCRsC8ljwxwuoA3YTu6tNzOm3D8vlRvzo7GZx-hhW6HSI4N6A3GU_tJizVvyfXd-Ot1pT-AvQTHdo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translational+Control+under+Stress%3A+Reshaping+the+Translatome&rft.jtitle=BioEssays&rft.au=Advani%2C+Vivek+M.&rft.au=Ivanov%2C+Pavel&rft.date=2019-05-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=41&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fbies.201900009&rft.externalDBID=10.1002%252Fbies.201900009&rft.externalDocID=BIES201900009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |