The life sulfuric: microbial ecology of sulfur cycling in marine sediments
Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy c...
Uloženo v:
| Vydáno v: | Environmental microbiology reports Ročník 9; číslo 4; s. 323 - 344 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
John Wiley & Sons, Inc
01.08.2017
John Wiley and Sons Inc |
| Témata: | |
| ISSN: | 1758-2229, 1758-2229 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Summary
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. |
|---|---|
| AbstractList | Summary
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle. |
| Author | Loy, Alexander Wasmund, Kenneth Mußmann, Marc |
| AuthorAffiliation | 1 Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology” University of Vienna Althanstrasse 14 Vienna A‐1090 Austria 2 Austrian Polar Research Institute Vienna Austria |
| AuthorAffiliation_xml | – name: 1 Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology” University of Vienna Althanstrasse 14 Vienna A‐1090 Austria – name: 2 Austrian Polar Research Institute Vienna Austria |
| Author_xml | – sequence: 1 givenname: Kenneth surname: Wasmund fullname: Wasmund, Kenneth organization: Austrian Polar Research Institute – sequence: 2 givenname: Marc surname: Mußmann fullname: Mußmann, Marc organization: University of Vienna – sequence: 3 givenname: Alexander orcidid: 0000-0001-8923-5882 surname: Loy fullname: Loy, Alexander email: loy@microbial-ecology.net organization: Austrian Polar Research Institute |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28419734$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUU1vGyEURFWqJk577q1aKZdenAC7LNBDpMhyPipHvaRntAsPm4iFdPG28r8vGztWkkPCBcSbmTfvzQQdhBgAoa8En5J8zghnYkoplaeEslJ8QEf7n4Nn70M0Seke47qSmH5Ch1RURPKyOkI_71ZQeGehSIO3Q-_0j6Jzuo-ta3wBOvq43BTR7sqF3mjvwrJwoeia3oXMA-M6COv0GX20jU_wZXcfo9-X87vZ9XTx6-pmdrGYalZzMZWUAuacGGKqFmvLOLNYALSUcm50o60xbWuAAQDFomqlkdhWhpWt5JaK8hidb3UfhrYDo3PvvvHqoXfZ0UbFxqmXleBWahn_KsZ4KesyC3zfCfTxzwBprTqXNHjfBIhDUhRTLAmRtXwXSoSQXOTVj6onr6D3cehD3oQqcR66FjUnGfXtufm966dEMuBsC8gZpNSD3UMIVmPmakxVjamqx8wzg71iaLdu1i6O0zv_Bq_e8v45D5v32qj57U21Jf4Ha3y-xg |
| CitedBy_id | crossref_primary_10_1002_pro_5222 crossref_primary_10_1016_j_scitotenv_2021_146085 crossref_primary_10_1093_femsec_fiaa223 crossref_primary_10_1093_femsec_fiz006 crossref_primary_10_1016_j_envres_2023_117144 crossref_primary_10_1016_j_scitotenv_2021_146526 crossref_primary_10_1016_j_aquaculture_2019_03_038 crossref_primary_10_1016_j_envres_2024_118196 crossref_primary_10_3389_fmicb_2025_1614055 crossref_primary_10_1038_s41598_023_39415_9 crossref_primary_10_1186_s40168_023_01628_5 crossref_primary_10_3390_ijms24076491 crossref_primary_10_1016_j_biortech_2025_133246 crossref_primary_10_1038_s41467_018_07839_x crossref_primary_10_1007_s11104_024_06658_y crossref_primary_10_1016_j_gca_2022_07_018 crossref_primary_10_1016_j_watres_2018_10_070 crossref_primary_10_3389_fmicb_2021_581124 crossref_primary_10_1038_s41467_025_59241_z crossref_primary_10_1128_mra_00030_24 crossref_primary_10_1016_j_scitotenv_2022_154537 crossref_primary_10_3390_antiox12030627 crossref_primary_10_1016_j_biortech_2023_129664 crossref_primary_10_1080_10610278_2023_2300832 crossref_primary_10_3389_fmicb_2019_02558 crossref_primary_10_1038_s41598_025_05178_8 crossref_primary_10_1007_s00253_023_12572_7 crossref_primary_10_1111_gbi_70013 crossref_primary_10_1016_j_eti_2023_103450 crossref_primary_10_1038_s41579_018_0046_8 crossref_primary_10_1016_j_margen_2020_100800 crossref_primary_10_3389_fmicb_2019_00024 crossref_primary_10_1007_s11427_021_1996_x crossref_primary_10_1093_ismeco_ycaf033 crossref_primary_10_1093_femsec_fiae140 crossref_primary_10_1038_s41396_018_0078_0 crossref_primary_10_1016_j_syapm_2025_126600 crossref_primary_10_3390_app14041538 crossref_primary_10_1111_1758_2229_12933 crossref_primary_10_1007_s00248_023_02239_1 crossref_primary_10_1016_j_ecss_2025_109130 crossref_primary_10_1073_pnas_1913413116 crossref_primary_10_1016_j_micres_2019_126345 crossref_primary_10_1016_j_scitotenv_2019_135790 crossref_primary_10_3389_fmars_2021_715335 crossref_primary_10_1016_j_apgeochem_2021_104895 crossref_primary_10_7717_peerj_5583 crossref_primary_10_1016_j_ecolind_2020_106785 crossref_primary_10_1016_j_scitotenv_2018_12_031 crossref_primary_10_1002_lno_11759 crossref_primary_10_3390_microorganisms8081132 crossref_primary_10_1111_1462_2920_16369 crossref_primary_10_1007_s13399_021_02026_3 crossref_primary_10_1016_j_jhazmat_2021_126964 crossref_primary_10_3389_fmicb_2020_618373 crossref_primary_10_1128_AEM_03009_20 crossref_primary_10_1016_j_geoderma_2025_117295 crossref_primary_10_3389_fmicb_2022_1034401 crossref_primary_10_1155_2023_9963635 crossref_primary_10_1016_j_jclepro_2024_142156 crossref_primary_10_1038_s41564_020_0776_z crossref_primary_10_1016_j_marenvres_2025_107541 crossref_primary_10_7717_peerj_9017 crossref_primary_10_3390_w15010147 crossref_primary_10_1007_s12040_024_02330_2 crossref_primary_10_1038_s41586_025_09467_0 crossref_primary_10_1099_ijsem_0_006782 crossref_primary_10_1016_j_scitotenv_2023_164042 crossref_primary_10_1007_s00284_018_1587_9 crossref_primary_10_1111_1462_2920_16255 crossref_primary_10_3389_fmicb_2018_02792 crossref_primary_10_1128_aem_02165_24 crossref_primary_10_3389_fmicb_2019_00849 crossref_primary_10_1093_femsec_fiaa026 crossref_primary_10_1016_j_jhazmat_2022_129703 crossref_primary_10_1016_j_scitotenv_2024_176491 crossref_primary_10_3390_microorganisms13102224 crossref_primary_10_1016_j_cej_2022_137845 crossref_primary_10_1128_jmbe_00044_24 crossref_primary_10_1371_journal_pone_0242339 crossref_primary_10_1016_j_catena_2021_106002 crossref_primary_10_1016_j_trac_2023_117331 crossref_primary_10_1016_j_orggeochem_2020_104164 crossref_primary_10_1016_j_biotechadv_2025_108580 crossref_primary_10_1016_j_watres_2024_122018 crossref_primary_10_1002_ldr_3803 crossref_primary_10_1128_mSystems_00442_19 crossref_primary_10_1002_lno_12087 crossref_primary_10_1016_j_scitotenv_2024_176142 crossref_primary_10_1002_lno_11551 crossref_primary_10_1186_s40793_025_00699_1 crossref_primary_10_1007_s00300_021_02997_z crossref_primary_10_1128_MRA_00862_21 crossref_primary_10_1016_j_jenvman_2019_01_078 crossref_primary_10_5194_bg_20_4875_2023 crossref_primary_10_18016_ksutarimdoga_vi_1212062 crossref_primary_10_1007_s11157_022_09632_1 crossref_primary_10_1016_j_marpolbul_2024_116420 crossref_primary_10_1038_s41579_024_01044_y crossref_primary_10_3389_fmars_2024_1445441 crossref_primary_10_1029_2019GB006298 crossref_primary_10_1016_j_catena_2021_105847 crossref_primary_10_1038_s41396_021_01057_y crossref_primary_10_1016_j_scitotenv_2021_149213 crossref_primary_10_1016_j_marpolbul_2023_115608 crossref_primary_10_1089_ast_2023_0076 crossref_primary_10_1016_j_scitotenv_2019_135591 crossref_primary_10_7717_peerj_14288 crossref_primary_10_1038_s41396_021_00992_0 crossref_primary_10_1155_2019_1039487 crossref_primary_10_3389_fmicb_2024_1369263 crossref_primary_10_1016_j_gca_2020_05_024 crossref_primary_10_1038_s43247_022_00426_5 crossref_primary_10_1016_j_jhazmat_2023_131738 crossref_primary_10_3389_fmars_2020_00206 crossref_primary_10_1186_s40168_021_00999_x crossref_primary_10_3389_fmicb_2017_02137 crossref_primary_10_1128_msystems_00954_22 crossref_primary_10_1007_s42995_020_00086_4 crossref_primary_10_1038_s41598_020_62411_2 crossref_primary_10_3390_microorganisms11061436 crossref_primary_10_1016_j_biortech_2023_130191 crossref_primary_10_1016_j_scitotenv_2024_175272 crossref_primary_10_1016_j_jhazmat_2025_139383 crossref_primary_10_1038_s41598_023_34995_y crossref_primary_10_1016_j_earscirev_2021_103799 crossref_primary_10_1016_j_scitotenv_2022_159794 crossref_primary_10_1128_aem_00988_23 crossref_primary_10_1186_s40793_024_00585_2 crossref_primary_10_1007_s12237_025_01578_1 crossref_primary_10_3390_ijerph19074163 crossref_primary_10_3390_microorganisms8060920 crossref_primary_10_1186_s12915_019_0688_7 crossref_primary_10_1016_j_jsb_2019_01_001 crossref_primary_10_3390_microorganisms7100419 crossref_primary_10_3389_fmicb_2019_00160 crossref_primary_10_1016_j_revpalbo_2019_04_004 crossref_primary_10_1016_j_scitotenv_2021_151035 crossref_primary_10_1111_are_15014 crossref_primary_10_3389_fmicb_2024_1358222 crossref_primary_10_1007_s00343_021_1173_z crossref_primary_10_1016_j_marpolbul_2019_110635 crossref_primary_10_1016_j_heliyon_2024_e39055 crossref_primary_10_1016_j_marenvres_2025_106963 crossref_primary_10_33073_pjm_2024_022 crossref_primary_10_1371_journal_pone_0256305 crossref_primary_10_1128_msystems_00667_23 crossref_primary_10_1128_aem_00216_22 crossref_primary_10_3390_min14040425 crossref_primary_10_1038_s41396_020_00817_6 crossref_primary_10_1093_ismeco_ycad005 crossref_primary_10_1099_mgen_0_000865 crossref_primary_10_1038_s41396_020_0684_5 crossref_primary_10_1093_femsle_fnaa061 crossref_primary_10_3389_fmicb_2019_00898 crossref_primary_10_3389_fmicb_2019_00658 crossref_primary_10_1016_j_jhazmat_2025_138594 crossref_primary_10_1016_j_marenvres_2025_107365 crossref_primary_10_7717_peerj_12474 crossref_primary_10_1016_j_jhazmat_2023_133343 crossref_primary_10_1073_pnas_2118880119 crossref_primary_10_1073_pnas_2313650121 crossref_primary_10_1016_j_jes_2023_12_010 crossref_primary_10_1016_j_scitotenv_2022_156468 crossref_primary_10_3389_fmicb_2020_580024 crossref_primary_10_1016_j_envres_2023_117886 crossref_primary_10_1038_s41396_023_01477_y crossref_primary_10_1128_AEM_01547_17 crossref_primary_10_3389_fmars_2021_762292 crossref_primary_10_1093_femsre_fuad058 crossref_primary_10_1038_s41396_019_0373_4 crossref_primary_10_3390_genes12060886 crossref_primary_10_3390_w13213053 crossref_primary_10_1038_s41561_023_01217_z crossref_primary_10_1128_AEM_01610_17 crossref_primary_10_1093_ismeco_ycae112 crossref_primary_10_3389_fmicb_2023_1204102 crossref_primary_10_1007_s12275_024_00191_4 crossref_primary_10_3390_microorganisms10040729 crossref_primary_10_5194_bg_17_4611_2020 crossref_primary_10_1007_s10230_024_01016_x crossref_primary_10_1186_s40168_023_01601_2 crossref_primary_10_1180_gbi_2024_8 crossref_primary_10_1093_ismejo_wrae167 crossref_primary_10_3389_fmicb_2018_02038 crossref_primary_10_1071_EN22057 crossref_primary_10_1016_j_catena_2024_108233 crossref_primary_10_1016_j_psep_2024_04_142 crossref_primary_10_1111_1462_2920_15205 crossref_primary_10_1038_s41598_024_72191_8 crossref_primary_10_1134_S0026261719050138 crossref_primary_10_1038_s41396_018_0077_1 crossref_primary_10_1186_s40793_019_0348_0 crossref_primary_10_1016_j_ecss_2024_108615 crossref_primary_10_1016_j_seares_2024_102469 crossref_primary_10_1186_s40168_018_0454_z crossref_primary_10_1186_s40168_020_00876_z crossref_primary_10_3389_fmars_2023_1256393 crossref_primary_10_1016_j_envres_2025_121685 crossref_primary_10_1093_ismejo_wraf124 crossref_primary_10_1128_mbio_01722_25 crossref_primary_10_1093_ismejo_wraf126 crossref_primary_10_1007_s13131_023_2263_x crossref_primary_10_1111_1462_2920_15389 crossref_primary_10_1128_mSystems_01025_20 crossref_primary_10_1111_1462_2920_14297 crossref_primary_10_1111_1462_2920_15265 crossref_primary_10_1002_lom3_10568 crossref_primary_10_1016_j_scitotenv_2022_160919 crossref_primary_10_1016_j_nbt_2019_12_004 crossref_primary_10_1016_j_chemosphere_2020_128597 crossref_primary_10_1099_mgen_0_001351 crossref_primary_10_1111_gbi_12591 crossref_primary_10_1128_spectrum_04210_22 crossref_primary_10_1371_journal_pone_0287914 crossref_primary_10_1021_acs_est_5c02107 crossref_primary_10_1016_j_copbio_2024_103164 crossref_primary_10_1128_Spectrum_00955_21 crossref_primary_10_1128_msystems_01135_23 crossref_primary_10_3389_fmicb_2025_1590477 crossref_primary_10_1128_AEM_02224_17 crossref_primary_10_1128_MRA_00072_21 crossref_primary_10_3390_life14050591 crossref_primary_10_1016_j_chemosphere_2024_141366 crossref_primary_10_3390_microorganisms9020429 crossref_primary_10_1093_femsec_fiy171 crossref_primary_10_3390_microorganisms10010060 crossref_primary_10_1016_j_ecss_2025_109456 crossref_primary_10_1099_ijsem_0_004213 crossref_primary_10_1016_j_wasman_2022_09_033 crossref_primary_10_1016_j_scitotenv_2020_143233 crossref_primary_10_1016_j_chemosphere_2022_136899 crossref_primary_10_1016_j_jes_2024_08_005 crossref_primary_10_3389_fmicb_2024_1461252 crossref_primary_10_1016_j_scitotenv_2021_148097 crossref_primary_10_1016_j_watres_2024_122433 crossref_primary_10_1128_msystems_00473_25 crossref_primary_10_3389_fmars_2020_00068 crossref_primary_10_3389_fmicb_2020_615221 crossref_primary_10_1128_spectrum_03338_22 crossref_primary_10_1016_j_watres_2020_116270 crossref_primary_10_1007_s10123_023_00358_w crossref_primary_10_3389_fmicb_2020_578209 crossref_primary_10_1016_j_gexplo_2022_107052 crossref_primary_10_1016_j_envres_2025_122320 crossref_primary_10_1007_s11430_017_9234_x crossref_primary_10_1016_j_scitotenv_2023_167757 crossref_primary_10_1016_j_marenvres_2020_104968 crossref_primary_10_1111_1462_2920_15807 crossref_primary_10_1111_1758_2229_70022 crossref_primary_10_3389_fmicb_2018_03049 crossref_primary_10_1002_mlf2_12038 crossref_primary_10_1186_s40168_025_02153_3 crossref_primary_10_1111_1462_2920_15006 |
| Cites_doi | 10.1128/AEM.68.1.316-325.2002 10.1128/JB.00849-10 10.1016/0016-7037(89)90005-7 10.1130/0-8137-2379-5.97 10.1023/A:1009676107330 10.1080/01490458609385944 10.1038/ismej.2014.51 10.1093/femsec/fiv084 10.1016/j.gca.2007.11.031 10.1111/1462-2920.12930 10.1016/j.syapm.2016.05.006 10.1128/JB.00569-09 10.1016/B978-0-12-410515-7.00002-0 10.1038/ismej.2011.66 10.1016/j.bbabio.2014.03.007 10.1016/S0014-5793(01)02727-2 10.1016/j.gca.2014.05.038 10.1007/3-540-32144-6_8 10.1074/jbc.M113.536425 10.1111/1462-2920.12410 10.1074/jbc.272.15.9890 10.1038/nature12947 10.3389/fmicb.2012.00137 10.1186/s12864-016-3236-7 10.1016/bs.ampbs.2015.05.002 10.1073/pnas.1431443100 10.1038/ismej.2016.84 10.1016/0016-7037(94)90200-3 10.1021/bi101232y 10.1038/296643a0 10.1038/ismej.2014.208 10.1038/ismej.2010.113 10.1111/j.1574-6968.2006.00343.x 10.1038/ismej.2015.233 10.1128/mBio.00266-16 10.1021/bi047334b 10.1016/0016-7037(96)00087-7 10.3389/fmicb.2011.00062 10.1038/nature11586 10.1016/j.gca.2004.03.012 10.1128/jb.172.7.4100-4102.1990 10.1002/anie.200300632 10.1128/AEM.69.5.2463-2483.2003 10.1016/j.gca.2012.05.036 10.1007/978-3-662-04242-7_5 10.1126/science.1249213 10.1073/pnas.1322132111 10.1111/1758-2229.12387 10.1016/j.gca.2017.03.005 10.1016/j.resmic.2005.05.009 10.1038/nature08790 10.1016/j.bbrc.2003.11.021 10.1016/j.chemgeo.2006.05.011 10.4056/sigs.3777412 10.1128/AEM.04182-13 10.1111/1462-2920.12316 10.3389/fmicb.2016.00964 10.3389/fmicb.2013.00362 10.1016/0038-0717(93)90131-T 10.1264/jsme2.ME15023 10.1080/17415990802105770 10.1038/nature07588 10.1016/S0021-9258(19)85257-2 10.1128/AEM.00888-09 10.1111/j.1432-1033.1992.tb16953.x 10.1126/science.1145861 10.1007/s00248-004-0070-2 10.1111/j.1574-6941.2007.00373.x 10.1074/jbc.M116.753863 10.1099/mic.0.27548-0 10.1038/nature20152 10.1111/j.1462-2920.2010.02279.x 10.1038/nature12365 10.1038/nmicrobiol.2016.195 10.1371/journal.pone.0040785 10.1016/j.febslet.2009.03.020 10.1007/978-3-642-38922-1_290 10.3389/fmicb.2015.00846 10.1099/mic.0.2008/018580-0 10.3389/fmicb.2011.00081 10.1128/jb.178.18.5438-5446.1996 10.1111/j.1472-4669.2009.00214.x 10.1093/femsec/fiw187 10.1126/science.aad3558 10.1073/pnas.90.11.5341 10.3389/feart.2016.00075 10.1007/s00253-010-2597-0 10.1128/AEM.52.2.225-233.1986 10.1016/j.cub.2015.11.014 10.1016/j.gca.2011.03.028 10.1111/j.1462-2920.2012.02820.x 10.1002/pmic.201600041 10.1126/science.aad7154 10.1016/j.cbpa.2016.01.011 10.1128/AEM.65.8.3328-3334.1999 10.1021/es505531u 10.1029/2011GL049725 10.1038/nature11656 10.1074/jbc.M005820200 10.1128/jb.172.4.2065-2070.1990 10.1016/j.syapm.2011.02.001 10.1007/BF00402310 10.1093/emboj/cdf566 10.1128/AEM.65.9.3982-3989.1999 10.1016/0016-7037(94)90446-4 10.1023/A:1002449227469 10.1016/j.margen.2012.12.001 10.1007/BF00413135 10.1038/ismej.2017.8 10.1038/nrmicro1992 10.1038/ismej.2012.66 10.1038/ismej.2014.41 10.2475/ajs.282.4.451 10.3389/fmicb.2016.00440 10.1038/ismej.2014.19 10.1038/nature15512 10.1128/AEM.64.1.119-125.1998 10.1016/j.gca.2011.03.033 10.1074/jbc.M503492200 10.1111/1462-2920.13283 10.1073/pnas.1507049112 10.1111/1758-2229.12296 10.1099/ijsem.0.000683 10.1007/978-3-319-13521-2_5 10.4319/lo.1999.44.3.0650 10.1016/0304-4203(95)00072-0 10.1126/science.1174012 10.1038/ismej.2015.157 10.1111/j.1365-2958.2011.07906.x 10.1371/journal.pone.0164846 10.1007/s00203-004-0683-3 10.1099/13500872-141-11-2897 10.1128/AEM.59.1.101-108.1993 10.3389/fmicb.2014.00309 10.1038/ismej.2016.185 10.1007/BF00249025 10.1042/BST20110713 10.1128/JB.00208-10 10.1074/jbc.275.18.13202 10.1016/0378-1119(92)90702-Q 10.1371/journal.pone.0101443 10.1016/0016-7037(90)90008-9 10.1080/014904502317246219 10.1038/ismej.2015.257 10.3389/fmicb.2016.01576 10.1038/326891a0 10.1038/ismej.2016.136 10.1128/JB.182.7.1864-1871.2000 10.1038/nature15733 10.1016/j.bbabio.2009.07.005 10.1046/j.1365-2958.1999.01345.x 10.1128/AEM.67.1.387-395.2001 10.1126/science.1218344 10.1128/AEM.01382-15 10.3389/fmicb.2016.00950 10.1128/AEM.57.3.847-856.1991 10.1111/j.1462-2920.2008.01855.x 10.1186/s40793-016-0196-0 10.1016/0038-0717(93)90178-E 10.1016/j.jsb.2008.07.007 10.1128/AEM.66.8.3650-3653.2000 10.1111/mmi.12176 10.1016/j.margen.2013.08.001 10.1038/nsmb827 10.1073/pnas.1510152112 10.1126/science.1196889 10.1111/j.1462-2920.2010.02380.x 10.1146/annurev-marine-120308-081000 10.1186/s40168-015-0077-6 10.1016/0076-6879(94)43018-7 10.1016/0146-6380(88)90079-4 10.3389/fmicb.2011.00253 10.1016/S0016-7037(98)00089-1 10.1016/j.jbiotec.2007.08.030 10.1038/ismej.2015.10 10.1021/bi9816709 10.1126/science.249.4965.152 10.1111/j.1462-2920.2006.01122.x 10.1038/ismej.2007.63 10.5194/bg-2016-362 10.1038/ngeo1238 10.1021/acs.est.5b04369 10.1126/science.1219973 |
| ContentType | Journal Article |
| Copyright | 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. Copyright John Wiley & Sons, Inc. 2017 |
| Copyright_xml | – notice: 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd – notice: 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: Copyright John Wiley & Sons, Inc. 2017 |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
| DOI | 10.1111/1758-2229.12538 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef AGRICOLA |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Ecology |
| DocumentTitleAlternate | Microbial sulfur cycling in marine sediments |
| EISSN | 1758-2229 |
| EndPage | 344 |
| ExternalDocumentID | PMC5573963 1011111758222912538 28419734 10_1111_1758_2229_12538 EMI412538 |
| Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: Austrian Science Fund funderid: P25111‐B22 ; P29426‐B22 – fundername: Austrian Science Fund FWF grantid: P 29426 – fundername: Austrian Science Fund FWF grantid: P 25111 – fundername: Austrian Science Fund grantid: P25111‐B22 ; P29426‐B22 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OC 24P 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFO ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADPDF ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIAGR AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVUZU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HVGLF HZ~ IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM. MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD OVEED P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RPM RWI RX1 SUPJJ TEORI TUS UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AGQPQ AGXDD AIDQK AIDYY CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c5678-922e0771d1d4b0cf575f08eeb2277dcacfddbbde5eee2084b9d90f4d53b97f283 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 285 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405931900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1758-2229 |
| IngestDate | Tue Nov 04 01:55:26 EST 2025 Fri Jul 11 18:27:55 EDT 2025 Sun Nov 09 12:44:44 EST 2025 Sun Jul 13 04:26:39 EDT 2025 Mon Jul 21 06:02:43 EDT 2025 Sat Nov 29 07:00:20 EST 2025 Tue Nov 18 21:47:12 EST 2025 Wed Jan 22 16:35:25 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5678-922e0771d1d4b0cf575f08eeb2277dcacfddbbde5eee2084b9d90f4d53b97f283 |
| Notes | All authors contributed equally to this review. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-8923-5882 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1758-2229.12538 |
| PMID | 28419734 |
| PQID | 3092268671 |
| PQPubID | 866375 |
| PageCount | 22 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5573963 proquest_miscellaneous_2020911969 proquest_miscellaneous_1889782533 proquest_journals_3092268671 pubmed_primary_28419734 crossref_primary_10_1111_1758_2229_12538 crossref_citationtrail_10_1111_1758_2229_12538 wiley_primary_10_1111_1758_2229_12538_EMI412538 |
| PublicationCentury | 2000 |
| PublicationDate | August 2017 |
| PublicationDateYYYYMMDD | 2017-08-01 |
| PublicationDate_xml | – month: 08 year: 2017 text: August 2017 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Oxford – name: Hoboken |
| PublicationTitle | Environmental microbiology reports |
| PublicationTitleAlternate | Environ Microbiol Rep |
| PublicationYear | 2017 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2010; 12 1990; 54 2013; 4 2002; 19 1997; 272 2013; 62 2016; 31 2010; 463 1999; 44 2016; 2016 2012; 14 2013; 8 2003; 312 2016; 39 2013; 9 2012; 491 2009; 11 2014; 1837 2015; 81 2008; 29 1986; 4 1992; 114 2014; 16 1996; 60 2007; 9 2010; 192 2007; 62 2015; 91 2016a; 16 2010; 2 2007; 1 1990; 172 2004; 43 1990; 249 2011; 2 2013; 88 1987; 326 2011; 82 2000; 66 2013; 500 2016; 10 2011; 75 1988; 13 1994 2015; 526 2016; 92 2016; 18 2011; 4 1998; 62 2011; 5 1998; 64 2006; 235 2009; 457 2016; 11 1982; 282 2016; 4 2015; 350 1993; 59 2016; 7 2007; 317 1989; 53 2016; 2 2009; 75 2009; 191 2015; 112 2000; 77 2002; 68 2015; 66 2010; 330 2000; 182 2009; 583 1999; 32 2014; 140 2016; 291 1995; 141 2016; 26 2003; 100 2016; 8 1991; 57 2015; 30 2004; 68 1992; 206 2011; 13 2008; 6 2008; 72 2001; 503 2014; 5 2004; 379 2015; 49 2013; 11 2000 2007; 132 1993b; 25 1982; 296 1989; 151 2014; 9 2014; 8 2008; 154 2012; 336 1996; 178 2016; 351 2009; 325 2014; 289 2009; 1787 2015; 6 2005; 151 2015; 3 2016b; 17 1986; 52 2005; 156 2004; 182 1996; 52 2006 1999; 65 2016; 50 2000; 275 1993; 90 2011; 34 2004 1978; 117 2005; 48 1993; 268 2011; 39 2005; 49 2014; 111 2011; 38 2015; 9 2001; 67 2015; 7 2008; 164 1999; 5 2005; 44 1993a; 25 1998; 37 2004; 11 2005; 280 2010; 87 2012; 92 2014; 507 2012; 3 2014; 80 2016; 539 2017; 11 2002; 21 2011; 50 2003; 69 2006; 261 1994; 58 2017 2009; 7 2016 2014 2012; 6 2012; 7 1993; 159 2014; 344 2016; 66 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_40_1 e_1_2_10_109_1 e_1_2_10_131_1 e_1_2_10_177_1 e_1_2_10_158_1 e_1_2_10_70_1 e_1_2_10_93_1 e_1_2_10_2_1 e_1_2_10_139_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_97_1 e_1_2_10_116_1 e_1_2_10_150_1 e_1_2_10_6_1 e_1_2_10_55_1 e_1_2_10_135_1 e_1_2_10_173_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_78_1 e_1_2_10_112_1 e_1_2_10_154_1 e_1_2_10_13_1 e_1_2_10_32_1 e_1_2_10_51_1 e_1_2_10_120_1 e_1_2_10_166_1 e_1_2_10_147_1 e_1_2_10_82_1 e_1_2_10_128_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_105_1 e_1_2_10_181_1 e_1_2_10_124_1 e_1_2_10_162_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_101_1 e_1_2_10_143_1 e_1_2_10_185_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_41_1 e_1_2_10_132_1 e_1_2_10_155_1 e_1_2_10_178_1 e_1_2_10_159_1 e_1_2_10_90_1 e_1_2_10_71_1 e_1_2_10_117_1 e_1_2_10_170_1 e_1_2_10_94_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_113_1 e_1_2_10_136_1 e_1_2_10_151_1 e_1_2_10_174_1 e_1_2_10_38_1 e_1_2_10_98_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_121_1 e_1_2_10_144_1 e_1_2_10_167_1 e_1_2_10_148_1 e_1_2_10_60_1 e_1_2_10_106_1 e_1_2_10_129_1 e_1_2_10_182_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_102_1 e_1_2_10_125_1 e_1_2_10_140_1 e_1_2_10_163_1 e_1_2_10_186_1 e_1_2_10_49_1 e_1_2_10_87_1 e_1_2_10_26_1 e_1_2_10_68_1 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_42_1 e_1_2_10_110_1 e_1_2_10_156_1 e_1_2_10_179_1 e_1_2_10_91_1 e_1_2_10_95_1 e_1_2_10_118_1 e_1_2_10_4_1 e_1_2_10_53_1 e_1_2_10_137_1 e_1_2_10_171_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_99_1 e_1_2_10_114_1 e_1_2_10_152_1 e_1_2_10_8_1 e_1_2_10_57_1 e_1_2_10_133_1 e_1_2_10_175_1 e_1_2_10_58_1 e_1_2_10_11_1 Dolata M.M. (e_1_2_10_34_1) 1993; 268 e_1_2_10_30_1 e_1_2_10_119_1 e_1_2_10_145_1 e_1_2_10_168_1 e_1_2_10_80_1 e_1_2_10_149_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_107_1 e_1_2_10_183_1 e_1_2_10_126_1 e_1_2_10_160_1 e_1_2_10_65_1 e_1_2_10_88_1 e_1_2_10_103_1 e_1_2_10_141_1 e_1_2_10_122_1 e_1_2_10_164_1 e_1_2_10_24_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_108_1 e_1_2_10_130_1 e_1_2_10_157_1 Canfield D.E. (e_1_2_10_27_1) 2005; 48 e_1_2_10_92_1 e_1_2_10_73_1 e_1_2_10_115_1 e_1_2_10_138_1 e_1_2_10_172_1 e_1_2_10_96_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_77_1 e_1_2_10_111_1 e_1_2_10_134_1 e_1_2_10_153_1 e_1_2_10_176_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_31_1 Jørgensen B.B. (e_1_2_10_72_1) 2004; 379 e_1_2_10_50_1 e_1_2_10_146_1 e_1_2_10_169_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_104_1 e_1_2_10_127_1 e_1_2_10_161_1 e_1_2_10_180_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_66_1 e_1_2_10_100_1 e_1_2_10_123_1 e_1_2_10_142_1 e_1_2_10_165_1 e_1_2_10_184_1 e_1_2_10_47_1 e_1_2_10_89_1 |
| References_xml | – volume: 379 start-page: 63 year: 2004 end-page: 81 article-title: Sulfide oxidation in marine sediments: Geochemistry meets microbiology publication-title: Geol Soc Am Spec Pap – volume: 500 start-page: 194 year: 2013 end-page: 198 article-title: Nitrogen losses in anoxic marine sediments driven by Thioploca‐anammox bacterial consortia publication-title: Nature – start-page: 173 year: 2000 end-page: 208 – volume: 2 start-page: 279 year: 2010 end-page: 304 article-title: Microbial provinces in the subseafloor publication-title: Ann Rev Mar Sci – volume: 12 start-page: 3022 year: 2010 end-page: 3034 article-title: Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments publication-title: Environ Microbiol – volume: 8 start-page: 2029 year: 2014 end-page: 2044 article-title: Diverse sulfate‐reducing bacteria of the / clade are the key alkane degraders at marine seeps publication-title: ISME J – volume: 7 start-page: 614 year: 2015 end-page: 622 article-title: Uncultured Desulfobacteraceae and Crenarchaeotal group C3 incorporate C‐acetate in coastal marine sediment publication-title: Environ Microbiol Rep – volume: 82 start-page: 1515 year: 2011 end-page: 1530 article-title: The gene cluster encodes an unconventional respiratory sulphite reduction system publication-title: Mol Microbiol – volume: 11 start-page: 53 year: 2013 end-page: 65 article-title: Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament publication-title: Mar Genomics – volume: 112 start-page: 13278 year: 2015 end-page: 13283 article-title: Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins publication-title: Proc Natl Acad Sci USA – volume: 325 start-page: 1541 year: 2009 end-page: 1544 article-title: A constant flux of diverse thermophilic bacteria into the Cold Arctic Seabed publication-title: Science – volume: 54 start-page: 2731 year: 1990 end-page: 2742 article-title: Oxidation and reduction of radiolabeled inorganic sulfur‐compounds in an estuarine sediment, Kysing Fjord, Denmark publication-title: Geochim Cosmochim Acta – volume: 317 start-page: 1534 year: 2007 end-page: 1537 article-title: Early Archaean microorganisms preferred elemental sulfur, not sulfate publication-title: Science – volume: 178 start-page: 5438 year: 1996 end-page: 5446 article-title: Identification of sulfate starvation‐regulated genes in : a gene cluster involved in the utilization of taurine as a sulfur source publication-title: J Bacteriol – volume: 275 start-page: 31661 year: 2000 end-page: 31667 article-title: Characterization of a sulfur‐regulated oxygenative alkylsulfatase from S‐313 publication-title: J Biol Chem – volume: 140 start-page: 418 year: 2014 end-page: 434 article-title: Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank publication-title: Geochim Cosmochim Acta – volume: 11 start-page: 1023 year: 2004 end-page: 1024 article-title: Octaheme tetrathionate reductase is a respiratory enzyme with novel heme ligation publication-title: Nat Struct Mol Biol – volume: 235 start-page: 12 year: 2006 end-page: 20 article-title: Oxidation and incorporation of hydrogen sulfide by dissolved organic matter publication-title: Chem Geol – volume: 29 start-page: 281 year: 2008 end-page: 292 article-title: Microbiological disproportionation of inorganic sulfur compounds publication-title: J Sulfur Chem – volume: 90 start-page: 5341 year: 1993 end-page: 5344 article-title: Hydrogenase of the Hyperthermophile Is an Elemental Sulfur Reductase or Sulfhydrogenase ‐ Evidence for a Sulfur‐Reducing Hydrogenase Ancestor publication-title: Proc Natl Acad Sci USA – volume: 491 start-page: 541 year: 2012 end-page: 546 article-title: Zero‐valent sulphur is a key intermediate in marine methane oxidation publication-title: Nature – volume: 10 start-page: 1939 year: 2016 end-page: 1953 article-title: Ubiquitous dominate dark carbon fixation in coastal sediments publication-title: ISME J – volume: 13 start-page: 593 year: 1988 end-page: 606 article-title: Origin of organic sulphur compounds and sulphur‐containing high molecular weight substances in sediments and immature crude oils publication-title: Org Geochem – volume: 9 start-page: e101443 year: 2014 article-title: Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments publication-title: PLoS One – volume: 66 start-page: 55 year: 2015 end-page: 321 article-title: A Post‐Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate‐Reducing Prokaryotes publication-title: Adv Microb Physiol – volume: 351 start-page: 703 year: 2016 end-page: 707 article-title: Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction publication-title: Science – volume: 13 start-page: 758 year: 2011 end-page: 774 article-title: Novel groups of catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment publication-title: Environ Microbiol – volume: 296 start-page: 643 year: 1982 end-page: 645 article-title: Mineralization of organic matter in the sea bed ‐ the role of sulphate reduction publication-title: Nature – volume: 62 start-page: 108 year: 2007 end-page: 117 article-title: Different bacterial communities associated with the roots and bulk sediment of the seagrass publication-title: FEMS Microbiol Ecol – volume: 5 start-page: 285 year: 2011 end-page: 304 article-title: Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara publication-title: ISME J – volume: 164 start-page: 236 year: 2008 end-page: 239 article-title: Purification, crystallization and preliminary crystallographic analysis of a dissimilatory DsrAB sulfite reductase in complex with DsrC publication-title: J Struct Biol – volume: 39 start-page: 1864 year: 2011 end-page: 1870 article-title: Physiological function and catalytic versatility of bacterial multihaem cytochromes c involved in nitrogen and sulfur cycling publication-title: Biochem Soc Trans – volume: 172 start-page: 2065 year: 1990 end-page: 2070 article-title: Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB‐1, a reductively dechlorinating anaerobe publication-title: J Bacteriol – volume: 291 start-page: 24804 year: 2016 end-page: 24818 article-title: Electron accepting units of the diheme cytochrome c TsdA, a bifunctional thiosulfate dehydrogenase/tetrathionate reductase publication-title: J Biol Chem – volume: 92 start-page: 1 year: 2012 end-page: 13 article-title: Sulfur, iron‐, and calcium cycling associated with natural electric currents running through marine sediment publication-title: Geochim Cosmochim Acta – volume: 58 start-page: 67 year: 1994 end-page: 73 article-title: Thiosulfate and sulfite distributions in porewater of marine‐sediments related to manganese, iron, and sulfur geochemistry publication-title: Geochim Cosmochim Acta – volume: 350 start-page: 1541 year: 2015 end-page: 1545 article-title: A protein trisulfide couples dissimilatory sulfate reduction to energy conservation publication-title: Science – year: 2017 article-title: Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments publication-title: Geochim Cosmochim Acta. – volume: 31 start-page: 58 year: 2016 end-page: 65 article-title: Enzymatic breakage of dimethylsulfoniopropionate‐a signature molecule for life at sea publication-title: Curr Opin Chem Biol – volume: 77 start-page: 271 year: 2000 end-page: 280 article-title: Overexpression, purification and immunodetection of DsrD from Hildenborough publication-title: A Van Leeuw J Microb – volume: 38 start-page: 1 year: 2011 end-page: 4 article-title: Chemoautotrophy in the ocean publication-title: Geophys Res Lett – volume: 280 start-page: 38776 year: 2005 end-page: 38786 article-title: A new type of sulfite reductase, a novel coenzyme F420‐dependent enzyme, from the methanarchaeon publication-title: J Biol Chem – volume: 330 start-page: 1375 year: 2010 end-page: 1378 article-title: A Cryptic Sulfur Cycle in Oxygen‐Minimum‐Zone Waters off the Chilean Coast publication-title: Science – volume: 192 start-page: 2938 year: 2010 end-page: 2939 article-title: Genome sequence of HTCC2155T, the type species of the order in the phylum publication-title: J Bacteriol – volume: 81 start-page: 6901 year: 2015 end-page: 6914 article-title: Seagrass ( ) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling publication-title: Appl Environ Microbiol – volume: 457 start-page: 581 year: 2009 end-page: 584 article-title: Detoxification of sulphidic African shelf waters by blooming chemolithotrophs publication-title: Nature – volume: 7 start-page: 385 year: 2009 end-page: 392 article-title: Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic' would go away publication-title: Geobiology – volume: 9 start-page: 1152 year: 2015 end-page: 1165 article-title: Phylogenetic and environmental diversity of DsrAB‐type dissimilatory (bi) sulfite reductases publication-title: ISME J – volume: 67 start-page: 387 year: 2001 end-page: 395 article-title: Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard) publication-title: Appl Environ Microbiol – volume: 7 start-page: e00266 year: 2016 end-page: e00216 article-title: Single‐cell genome and group‐specific dsrAB sequencing implicate marine members of the class (Phylum ) in sulfur cycling publication-title: MBio – volume: 3 start-page: 137 year: 2012 article-title: The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5 ′‐phosphosulfate reductase sulfate reducing bacteria publication-title: Front Microbiol – volume: 9 start-page: 51 year: 2013 end-page: 61 article-title: Expression of sulfatases in and the diversity of sulfatases in the genus publication-title: Mar Genomics – volume: 5 start-page: 1926 year: 2011 end-page: 1935 article-title: Dimorphism in methane seep‐dwelling ecotypes of the largest known bacteria publication-title: ISME J – volume: 44 start-page: 7024 year: 2005 end-page: 7034 article-title: Sulfur dehydrogenase of : the heme‐2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity publication-title: Biochemistry – volume: 182 start-page: 165 year: 2004 end-page: 174 article-title: The role of the sulfur globule proteins of : mutagenesis of the sulfur globule protein genes and expression studies by real‐time RT‐PCR publication-title: Arch Microbiol – volume: 1787 start-page: 1516 year: 2009 end-page: 1525 article-title: Sulfite oxidation in publication-title: Biochim Biophys Acta – volume: 52 start-page: 225 year: 1986 end-page: 233 article-title: Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen‐Sulfide Microgradients publication-title: Appl Environ Microbiol – volume: 80 start-page: 2279 year: 2014 end-page: 2292 article-title: A comparative quantitative proteomic study identifies new proteins relevant for sulfur oxidation in the purple sulfur bacterium publication-title: Appl Environ Microbiol – year: 2016 – volume: 19 start-page: 121 year: 2002 end-page: 132 article-title: Sulfur disproportionation by the facultative anaerobe SP1 as a mechanism for chromium(VI) reduction publication-title: Geomicrobiol J – volume: 65 start-page: 3328 year: 1999 end-page: 3334 article-title: Sulfidogenesis from 2‐aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate‐reducing bacterium, sp. nov publication-title: Appl Environ Microbiol – volume: 463 start-page: 1071 year: 2010 end-page: 1074 article-title: Electric currents couple spatially separated biogeochemical processes in marine sediment publication-title: Nature – volume: 75 start-page: 2997 year: 2011 end-page: 3010 article-title: Concurrent low‐ and high‐affinity sulfate reduction kinetics in marine sediment publication-title: Geochim Cosmochim Acta – volume: 7 start-page: 440 year: 2016 article-title: Rhizosphere microbiomes of European + seagrasses are selected by the plant, but are not species specific publication-title: Front Microbiol – volume: 11 start-page: 1278 year: 2009 end-page: 1291 article-title: Sulfate‐reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation publication-title: Environ Microbiol – volume: 8 start-page: 1843 year: 2014 end-page: 1854 article-title: Natural occurrence of microbial sulphur oxidation by long‐range electron transport in the seafloor publication-title: ISME J – volume: 491 start-page: 218 year: 2012 end-page: 221 article-title: Filamentous bacteria transport electrons over centimetre distances publication-title: Nature – volume: 5 start-page: 309 year: 2014 article-title: Rhizosphere heterogeneity shapes abundance and activity of sulfur‐oxidizing bacteria in vegetated salt marsh sediments publication-title: Front Microbiol – volume: 16 start-page: 3416 year: 2014 end-page: 3430 article-title: Microbial consumption of zero‐valence sulfur in marine benthic habitats publication-title: Environ Microbiol – volume: 182 start-page: 1864 year: 2000 end-page: 1871 article-title: Characterization of hydrogenase II from the hyperthermophilic archaeon and assessment of its role in sulfur reduction publication-title: J Bacteriol – volume: 7 start-page: 950 year: 2016 article-title: Genome Analysis of , the first thermophilic sulfur‐disproportionating bacterium of the phylum publication-title: Front Microbiol – volume: 87 start-page: 1499 year: 2010 end-page: 1506 article-title: Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment publication-title: Appl Microbiol Biotechnol – volume: 111 start-page: 11395 year: 2014 end-page: 11400 article-title: Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 1682 year: 2014 end-page: 1690 article-title: Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment publication-title: ISME J – volume: 268 start-page: 14426 year: 1993 end-page: 14431 article-title: Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, . A 2.6‐kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin publication-title: J Biol Chem – volume: 49 start-page: 5441 year: 2015 end-page: 5449 article-title: Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter publication-title: Environ Sci Technol – volume: 326 start-page: 891 year: 1987 end-page: 892 article-title: A novel type of energy‐metabolism involving fermentation of inorganic sulfur‐compounds publication-title: Nature – volume: 50 start-page: 1227 year: 2016 end-page: 1233 article-title: Cable Bacteria Control Iron‐Phosphorus Dynamics in Sediments of a Coastal Hypoxic Basin publication-title: Environ Sci Technol – volume: 49 start-page: 451 year: 2005 end-page: 460 article-title: Biogeographic and quantitative analyses of abundant uncultivated gamma‐proteobacterial clades from marine sediment publication-title: Microb Ecol – volume: 151 start-page: 232 year: 1989 end-page: 237 article-title: Sulfate formation via ATP sulfurylase in thiosulfate‐ and sulfite‐disproportionating bacteria publication-title: Arch Microbiol – volume: 62 start-page: 567 year: 1998 end-page: 1586 article-title: Early diagenesis of sulfur in estuarine sediments: The role of sedimentary humic and fulvic acids publication-title: Geochim Cosmochim Acta – volume: 2 start-page: 62 year: 2011 article-title: Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment publication-title: Front Microbiol – volume: 66 start-page: 3650 year: 2000 end-page: 3653 article-title: Thiosulfate disproportionation by publication-title: Appl Environ Microbiol – volume: 206 start-page: 503 year: 1992 end-page: 510 article-title: Cloning and nucleotide sequence of the gene of polysulphide reductase publication-title: Eur J Biochem – volume: 4 start-page: 362 year: 2013 article-title: spp. and related Gram‐positive sulfate‐reducing bacteria in deep subsurface environments publication-title: Front Microbiol – volume: 112 start-page: E4298 year: 2015 end-page: E4305 article-title: Entner‐Doudoroff pathway for sulfoquinovose degradation in SQ1 publication-title: Proc Natl Acad Sci USA – volume: 156 start-page: 1031 year: 2005 end-page: 1038 article-title: rdlA, a new gene encoding a rhodanese‐like protein in and other thiosulfate‐reducing anaerobes publication-title: Res Microbiol – volume: 2 start-page: 16195 year: 2016 article-title: Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation publication-title: Nat Microbiol – volume: 191 start-page: 5648 year: 2009 end-page: 5656 article-title: Bifurcated degradative pathway of 3‐sulfolactate in ISM via sulfoacetaldehyde acetyltransferase and (S)‐cysteate sulfolyase publication-title: J Bacteriol – volume: 34 start-page: 243 year: 2011 end-page: 259 article-title: A single‐cell sequencing approach to the classification of large, vacuolated sulfur bacteria publication-title: Syst Appl Microbiol – volume: 151 start-page: 737 year: 2005 end-page: 747 article-title: Dissimilation of cysteate via 3‐sulfolactate sulfo‐lyase and a sulfate exporter in NKNCYSA publication-title: Microbiology – volume: 30 start-page: 276 year: 2015 end-page: 280 article-title: Phylogenetic Diversity of Genes in Subseafloor Sediments on the Northwestern Pacific Margin off Japan publication-title: Microbes Environ – volume: 11 start-page: e0164846 year: 2016 article-title: Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity publication-title: PLoS One – volume: 88 start-page: 173 year: 2013 end-page: 188 article-title: Tetrathionate stimulated growth of identifies a new type of bi‐functional tetrathionate reductase (TsdA) that is widely distributed in bacteria publication-title: Mol Microbiol – start-page: 93 year: 2014 end-page: 134 – volume: 6 start-page: 846 year: 2015 article-title: Formate, acetate, and propionate as substrates for sulfate reduction in sub‐arctic sediments of Southwest Greenland publication-title: Front Microbiol – volume: 172 start-page: 4100 year: 1990 end-page: 4102 article-title: Identification and cloning of genes involved in anaerobic sulfite reduction by publication-title: J Bacteriol – volume: 17 start-page: 918 year: 2016b article-title: Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate‐reducing bacterium DSM 2059 publication-title: BMC Genomics – volume: 4 start-page: 698 year: 2011 end-page: 702 article-title: Microfossils of sulphur‐metabolizing cells in 3.4‐billion‐year‐old rocks of Western Australia publication-title: Nat Geosci – volume: 5 start-page: 99 year: 1999 end-page: 118 article-title: Sulphur enrichment in organic matter of eastern Mediterranean sapropels: A study of sulphur isotope partitioning publication-title: Aquat Geochem – volume: 62 start-page: 45 year: 2013 end-page: 117 article-title: Microbial sulfite respiration publication-title: Adv Microb Physiol – volume: 8 start-page: 452 year: 2016 end-page: 460 article-title: Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor publication-title: Environ Microbiol Rep – volume: 503 start-page: 168 year: 2001 end-page: 172 article-title: The cysteine residue of the SoxY protein as the active site of protein‐bound sulfur oxidation of GB17 publication-title: FEBS Lett – volume: 272 start-page: 9890 year: 1997 end-page: 9894 article-title: Sulfide‐quinone reductase from . Purification, cloning, and expression publication-title: J Biol Chem – volume: 3 start-page: 1 year: 2015 end-page: 12 article-title: Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria publication-title: Microbiome – volume: 289 start-page: 12390 year: 2014 end-page: 12403 article-title: New proteins involved in sulfur trafficking in the cytoplasm of publication-title: J Biol Chem – volume: 141 start-page: 2897 year: 1995 end-page: 2904 article-title: Arylsulphatase from publication-title: Microbiology – volume: 37 start-page: 16225 year: 1998 end-page: 16232 article-title: ATP sulfurylases from sulfate‐reducing bacteria of the genus . A novel metalloprotein containing cobalt and zinc publication-title: Biochemistry – volume: 14 start-page: 2673 year: 2012 end-page: 2688 article-title: Thiosulfate dehydrogenase: a widespread unusual acidophilic c‐type cytochrome publication-title: Environ Microbiol – volume: 60 start-page: 2325 year: 1996 end-page: 2332 article-title: Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St Andrew Bay, Florida, USA publication-title: Geochim Cosmochim Acta – volume: 43 start-page: 5736 year: 2004 end-page: 5763 article-title: Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility publication-title: Angew Chem Int Ed Engl – volume: 18 start-page: 3073 year: 2016 end-page: 3091 article-title: Candidatus , a hydrogenotrophic sulfate‐reducing bacterium involved in the thermophilic anaerobic oxidation of methane publication-title: Environ Microbiol – volume: 11 start-page: 327 year: 2016 end-page: 336 article-title: Happy together: microbial communities that hook up to swap electrons publication-title: ISME J – volume: 68 start-page: 316 year: 2002 end-page: 325 article-title: Characterization of an autotrophic sulfide‐oxidizing marine sp. that produces filamentous sulfur publication-title: Appl Environ Microbiol – volume: 57 start-page: 847 year: 1991 end-page: 856 article-title: Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark) publication-title: Appl Environ Microbiol – volume: 7 start-page: 964 year: 2016 article-title: Single‐cell sequencing of reveals genomic flexibility for adaptation to dynamic redox conditions publication-title: Front Microbiol – volume: 75 start-page: 3581 year: 2011 end-page: 3599 article-title: A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark) publication-title: Geochim Cosmochim Acta – volume: 25 start-page: 1739 year: 1993a end-page: 1744 article-title: Mobilization of Recently‐Formed Soil Organic Sulfur publication-title: Soil Biol Biochem – volume: 92 start-page: fiw187 year: 2016 publication-title: FEMS Microbiol Ecol – volume: 16 start-page: 1612 year: 2014 end-page: 1626 article-title: Close association of active nitrifiers with mats covering deep‐sea hydrothermal sediments publication-title: Environ Microbiol – volume: 114 start-page: 19 year: 1992 end-page: 24 article-title: Cloning and sequencing of genes determining sodium dodecyl sulfate biodegradation publication-title: Gene – volume: 8 start-page: 58 year: 2013 end-page: 68 article-title: Complete genome sequence of , a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds publication-title: Stand Genomic Sci – volume: 526 start-page: 531 year: 2015 end-page: 535 article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia publication-title: Nature – volume: 10 start-page: 2801 year: 2016 end-page: 2816 article-title: Characterization of the first cultured representative of subdivision 5 indicates the proposal of a novel phylum publication-title: ISME J – volume: 9 start-page: 131 year: 2007 end-page: 142 article-title: Diversity and abundance of sulfate‐reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea publication-title: Environ Microbiol – volume: 75 start-page: 5209 year: 2009 end-page: 5217 article-title: Anaerobic respiration of elemental sulfur and thiosulfate by MR‐1 requires , a homolog of the gene of serovar typhimurium LT2 publication-title: Appl Environ Microbiol – volume: 58 start-page: 4681 year: 1994 end-page: 4687 article-title: Sulfonates ‐ a Novel Class of Organic Sulfur‐Compounds in Marine‐Sediments publication-title: Geochim Cosmochim Acta – volume: 1 start-page: 419 year: 2007 end-page: 435 article-title: Fosmids of novel marine from the Namibian and Oregon coast upwelling systems and their cross‐comparison with planctomycete genomes publication-title: ISME J – volume: 6 start-page: 2178 year: 2012 end-page: 2187 article-title: Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes publication-title: ISME J – volume: 7 start-page: 1576 year: 2016 article-title: Microbial sulfate reduction potential in coal‐bearing sediments down to ∼2.5 km below the Seafloor off Shimokita Peninsula, Japan publication-title: Front Microbiol – start-page: 97 year: 2004 end-page: 116 – volume: 159 start-page: 491 year: 1993 end-page: 497 article-title: Bacterial sulfur respiration publication-title: Archiv Microbiol – volume: 336 start-page: 1432 year: 2012 end-page: 1434 article-title: A three‐stage symbiosis forms the foundation of seagrass ecosystems publication-title: Science – volume: 64 start-page: 119 year: 1998 end-page: 125 article-title: Elemental sulfur and thiosulfate disproportionation by sp. nov., a new anaerobic bacterium isolated from marine surface sediment publication-title: Appl Environ Microbiol – volume: 261 start-page: 194 year: 2006 end-page: 202 article-title: Siro(haem)amide in and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c‐diamide synthase, for sulphur oxidation publication-title: FEMS Microbiol Lett – volume: 18 start-page: 159 year: 2016 end-page: 173 article-title: Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages publication-title: Environ Microbiol – volume: 100 start-page: 8298 year: 2003 end-page: 8303 article-title: Complete genome sequence of the marine planctomycete sp. strain 1 publication-title: Proc Natl Acad Sci USA – volume: 507 start-page: 114 year: 2014 end-page: 117 article-title: Sulphoglycolysis in K‐12 closes a gap in the biogeochemical sulphur cycle publication-title: Nature – volume: 32 start-page: 275 year: 1999 end-page: 287 article-title: The genetic basis of tetrathionate respiration in publication-title: Mol Microbiol – volume: 50 start-page: 194 year: 2011 end-page: 206 article-title: Characterization of an NADH‐dependent persulfide reductase from PV‐4: implications for the mechanism of sulfur respiration via FAD‐dependent enzymes publication-title: Biochemistry – volume: 2 start-page: 253 year: 2011 article-title: Real‐time PCR quantification and diversity analysis of the functional genes and of sulfate‐reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea publication-title: Front Microbiol – volume: 4 start-page: 361 year: 1986 end-page: 387 article-title: Chemical and microbiological studies of sulfide‐mediated manganese reduction publication-title: Geomicrobiol J – volume: 526 start-page: 587 year: 2015 end-page: 590 article-title: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria publication-title: Nature – volume: 69 start-page: 2463 year: 2003 end-page: 2483 article-title: Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment publication-title: Appl Environ Microbiol – volume: 117 start-page: 209 year: 1978 end-page: 214 article-title: Growth yields and growth rates of (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources publication-title: Arch Microbiol – volume: 10 start-page: 796 year: 2016 end-page: 809 article-title: Activity and community structures of sulfate‐reducing microorganisms in polar, temperate and tropical marine sediments publication-title: ISME J – volume: 4 year: 2016 article-title: Off limits: Sulfate below the sulfate‐methane transition publication-title: Front Earth Sci – volume: 539 start-page: 396 year: 2016 end-page: 401 article-title: Thermophilic archaea activate butane via alkyl‐coenzyme M formation publication-title: Nature – volume: 2016 start-page: 1 year: 2016 end-page: 35 article-title: Long‐distance electron transport occurs globally in marine sediments publication-title: Biogeosciences Discuss – volume: 16 start-page: 2878 year: 2016a end-page: 2893 article-title: Differential proteomic analysis of the metabolic network of the marine sulfate‐reducer HRM2 publication-title: Proteomics – volume: 192 start-page: 6369 year: 2010 end-page: 6377 article-title: Biochemical characterization of individual components of the DsrMKJOP transmembrane complex aids understanding of complex function publication-title: J Bacteriol – volume: 11 start-page: 1058 year: 2017 end-page: 1058 article-title: Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches publication-title: ISME J. – start-page: 271 year: 2006 end-page: 309 – volume: 6 start-page: 725 year: 2008 end-page: 740 article-title: Symbiotic diversity in marine animals: the art of harnessing chemosynthesis publication-title: Nat Rev Microbiol – volume: 312 start-page: 1011 year: 2003 end-page: 1018 article-title: Sulfur oxidation in : interaction of the sulfur‐binding protein SoxYZ with the dimanganese SoxB protein publication-title: Biochem Biophys Res Commun – volume: 91 start-page: fiv084 year: 2015 article-title: Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes publication-title: FEMS Microbiol Ecol – volume: 66 start-page: 107 year: 2016 end-page: 112 article-title: gen. nov., sp. nov., a chemoheterotrophic member of the order , and proposal of fam. nov publication-title: Int J Syst Evol Microbiol – volume: 154 start-page: 3112 year: 2008 end-page: 3121 article-title: Molecular analysis of the diversity of the sulfide:quinone reductase ( ) gene in sediment environments publication-title: Microbiology – volume: 39 start-page: 297 year: 2016 end-page: 306 article-title: A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema publication-title: Syst Appl Microbiol – volume: 44 start-page: 650 year: 1999 end-page: 661 article-title: Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15 degrees 38'S and 27 degrees 57'S (Angola and Namibia) publication-title: Limnol Oceanogr – volume: 583 start-page: 1281 year: 2009 end-page: 1286 article-title: Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation publication-title: FEBS Lett – volume: 48 start-page: 1 year: 2005 end-page: 640 article-title: Aquatic Geomicrobiology publication-title: Aquat Geomicrobiol – volume: 11 start-page: 71 year: 2016 article-title: The complete genome sequences of sulfur‐oxidizing Gammaproteobacteria skN76(T) and HA5(T) publication-title: Stand Genomic Sci – volume: 132 start-page: 16 year: 2007 end-page: 22 article-title: Identification of a gene encoding a tetrathionate hydrolase in publication-title: J Biotechnol – volume: 249 start-page: 152 year: 1990 end-page: 154 article-title: A thiosulfate shunt in the sulfur cycle of marine‐sediments publication-title: Science – volume: 21 start-page: 5599 year: 2002 end-page: 5610 article-title: Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme publication-title: EMBO J – volume: 282 start-page: 451 year: 1982 end-page: 473 article-title: Burial of organic‐carbon and pyrite sulfur in the modern ocean ‐ its geochemical and environmental significance publication-title: Am J Sci – volume: 2 start-page: 81 year: 2011 article-title: Metabolic flexibility of sulfate‐reducing bacteria publication-title: Front Microbiol – start-page: 241 year: 1994 end-page: 260 – volume: 9 start-page: 1966 year: 2015 end-page: 1978 article-title: Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments publication-title: ISME J – volume: 53 start-page: 619 year: 1989 end-page: 632 article-title: Reactive iron in marine sediments publication-title: Geochim Cosmochim Acta – volume: 68 start-page: 3703 year: 2004 end-page: 3715 article-title: A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide publication-title: Geochim Cosmochim Acta – volume: 1837 start-page: 1148 year: 2014 end-page: 1164 article-title: The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism publication-title: Biochim Biophys Acta Bioenerg – volume: 26 start-page: R32 year: 2016 end-page: R33 article-title: Ecology: Electrical cable bacteria save marine life publication-title: Curr Biol – volume: 344 start-page: 889 year: 2014 end-page: 891 article-title: Global rates of marine sulfate reduction and implications for sub‐sea‐floor metabolic activities publication-title: Science – volume: 25 start-page: 327 year: 1993b end-page: 335 article-title: The incorporation and transformations of sulfur‐35 in soil: Effects of soil conditioning and glucose or sulphate additions publication-title: Soil Biol Biochem – volume: 65 start-page: 3982 year: 1999 end-page: 3989 article-title: High bacterial diversity in permanently cold marine sediments publication-title: Appl Environ Microbiol – volume: 10 start-page: 1696 year: 2016 end-page: 1705 article-title: Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction publication-title: ISME J – volume: 7 start-page: e40785 year: 2012 article-title: Cytoplasmic sulfur transferases in the purple sulfur bacterium : evidence for sulfur transfer from DsrEFH to DsrC publication-title: PLoS One – volume: 336 start-page: 608 year: 2012 end-page: 611 article-title: Substrate‐controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom publication-title: Science – volume: 52 start-page: 1 year: 1996 end-page: 16 article-title: Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater publication-title: Mar Chem – volume: 11 start-page: 1276 year: 2017 end-page: 1281 article-title: Genomic repertoire of the /JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments publication-title: ISME J. – volume: 59 start-page: 101 year: 1993 end-page: 108 article-title: Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese publication-title: Appl Environ Microbiol – volume: 275 start-page: 13202 year: 2000 end-page: 13212 article-title: Sulfite:Cytochrome c oxidoreductase from . Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family publication-title: J Biol Chem – volume: 72 start-page: 827 year: 2008 end-page: 843 article-title: Biogeochemistry of sulfur and iron in ‐colonized surface sediments in the upwelling area off central Chile publication-title: Geochim Cosmochim Acta – ident: e_1_2_10_181_1 doi: 10.1128/AEM.68.1.316-325.2002 – ident: e_1_2_10_53_1 doi: 10.1128/JB.00849-10 – ident: e_1_2_10_25_1 doi: 10.1016/0016-7037(89)90005-7 – ident: e_1_2_10_185_1 doi: 10.1130/0-8137-2379-5.97 – ident: e_1_2_10_117_1 doi: 10.1023/A:1009676107330 – ident: e_1_2_10_22_1 doi: 10.1080/01490458609385944 – ident: e_1_2_10_78_1 doi: 10.1038/ismej.2014.51 – ident: e_1_2_10_138_1 doi: 10.1093/femsec/fiv084 – ident: e_1_2_10_186_1 doi: 10.1016/j.gca.2007.11.031 – ident: e_1_2_10_63_1 doi: 10.1111/1462-2920.12930 – ident: e_1_2_10_164_1 doi: 10.1016/j.syapm.2016.05.006 – ident: e_1_2_10_31_1 doi: 10.1128/JB.00569-09 – ident: e_1_2_10_149_1 doi: 10.1016/B978-0-12-410515-7.00002-0 – ident: e_1_2_10_5_1 doi: 10.1038/ismej.2011.66 – ident: e_1_2_10_170_1 doi: 10.1016/j.bbabio.2014.03.007 – ident: e_1_2_10_128_1 doi: 10.1016/S0014-5793(01)02727-2 – ident: e_1_2_10_146_1 doi: 10.1016/j.gca.2014.05.038 – ident: e_1_2_10_73_1 doi: 10.1007/3-540-32144-6_8 – ident: e_1_2_10_154_1 doi: 10.1074/jbc.M113.536425 – ident: e_1_2_10_122_1 doi: 10.1111/1462-2920.12410 – ident: e_1_2_10_145_1 doi: 10.1074/jbc.272.15.9890 – ident: e_1_2_10_32_1 doi: 10.1038/nature12947 – ident: e_1_2_10_131_1 doi: 10.3389/fmicb.2012.00137 – ident: e_1_2_10_36_1 doi: 10.1186/s12864-016-3236-7 – ident: e_1_2_10_130_1 doi: 10.1016/bs.ampbs.2015.05.002 – ident: e_1_2_10_50_1 doi: 10.1073/pnas.1431443100 – ident: e_1_2_10_152_1 doi: 10.1038/ismej.2016.84 – ident: e_1_2_10_166_1 doi: 10.1016/0016-7037(94)90200-3 – ident: e_1_2_10_172_1 doi: 10.1021/bi101232y – ident: e_1_2_10_68_1 doi: 10.1038/296643a0 – ident: e_1_2_10_108_1 doi: 10.1038/ismej.2014.208 – ident: e_1_2_10_127_1 doi: 10.1038/ismej.2010.113 – ident: e_1_2_10_94_1 doi: 10.1111/j.1574-6968.2006.00343.x – ident: e_1_2_10_148_1 doi: 10.1038/ismej.2015.233 – ident: e_1_2_10_173_1 doi: 10.1128/mBio.00266-16 – ident: e_1_2_10_11_1 doi: 10.1021/bi047334b – ident: e_1_2_10_20_1 doi: 10.1016/0016-7037(96)00087-7 – ident: e_1_2_10_95_1 doi: 10.3389/fmicb.2011.00062 – ident: e_1_2_10_119_1 doi: 10.1038/nature11586 – ident: e_1_2_10_124_1 doi: 10.1016/j.gca.2004.03.012 – ident: e_1_2_10_61_1 doi: 10.1128/jb.172.7.4100-4102.1990 – ident: e_1_2_10_54_1 doi: 10.1002/anie.200300632 – ident: e_1_2_10_17_1 doi: 10.1128/AEM.69.5.2463-2483.2003 – ident: e_1_2_10_136_1 doi: 10.1016/j.gca.2012.05.036 – ident: e_1_2_10_70_1 doi: 10.1007/978-3-662-04242-7_5 – ident: e_1_2_10_16_1 doi: 10.1126/science.1249213 – ident: e_1_2_10_56_1 doi: 10.1073/pnas.1322132111 – ident: e_1_2_10_116_1 doi: 10.1111/1758-2229.12387 – ident: e_1_2_10_143_1 doi: 10.1016/j.gca.2017.03.005 – ident: e_1_2_10_134_1 doi: 10.1016/j.resmic.2005.05.009 – ident: e_1_2_10_113_1 doi: 10.1038/nature08790 – ident: e_1_2_10_129_1 doi: 10.1016/j.bbrc.2003.11.021 – ident: e_1_2_10_57_1 doi: 10.1016/j.chemgeo.2006.05.011 – ident: e_1_2_10_44_1 doi: 10.4056/sigs.3777412 – ident: e_1_2_10_176_1 doi: 10.1128/AEM.04182-13 – ident: e_1_2_10_179_1 doi: 10.1111/1462-2920.12316 – ident: e_1_2_10_180_1 doi: 10.3389/fmicb.2016.00964 – ident: e_1_2_10_3_1 doi: 10.3389/fmicb.2013.00362 – ident: e_1_2_10_49_1 doi: 10.1016/0038-0717(93)90131-T – ident: e_1_2_10_2_1 doi: 10.1264/jsme2.ME15023 – ident: e_1_2_10_42_1 doi: 10.1080/17415990802105770 – ident: e_1_2_10_85_1 doi: 10.1038/nature07588 – volume: 268 start-page: 14426 year: 1993 ident: e_1_2_10_34_1 article-title: Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6‐kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)85257-2 – ident: e_1_2_10_24_1 doi: 10.1128/AEM.00888-09 – ident: e_1_2_10_79_1 doi: 10.1111/j.1432-1033.1992.tb16953.x – ident: e_1_2_10_121_1 doi: 10.1126/science.1145861 – ident: e_1_2_10_18_1 doi: 10.1007/s00248-004-0070-2 – ident: e_1_2_10_65_1 doi: 10.1111/j.1574-6941.2007.00373.x – volume: 48 start-page: 1 year: 2005 ident: e_1_2_10_27_1 article-title: Aquatic Geomicrobiology publication-title: Aquat Geomicrobiol – ident: e_1_2_10_82_1 doi: 10.1074/jbc.M116.753863 – ident: e_1_2_10_135_1 doi: 10.1099/mic.0.27548-0 – ident: e_1_2_10_84_1 doi: 10.1038/nature20152 – ident: e_1_2_10_13_1 doi: 10.1111/j.1462-2920.2010.02279.x – ident: e_1_2_10_126_1 doi: 10.1038/nature12365 – ident: e_1_2_10_118_1 doi: 10.1038/nmicrobiol.2016.195 – ident: e_1_2_10_153_1 doi: 10.1371/journal.pone.0040785 – ident: e_1_2_10_177_1 doi: 10.1016/j.febslet.2009.03.020 – ident: e_1_2_10_159_1 doi: 10.1007/978-3-642-38922-1_290 – ident: e_1_2_10_51_1 doi: 10.3389/fmicb.2015.00846 – ident: e_1_2_10_120_1 doi: 10.1099/mic.0.2008/018580-0 – ident: e_1_2_10_123_1 doi: 10.3389/fmicb.2011.00081 – ident: e_1_2_10_168_1 doi: 10.1128/jb.178.18.5438-5446.1996 – ident: e_1_2_10_26_1 doi: 10.1111/j.1472-4669.2009.00214.x – ident: e_1_2_10_55_1 doi: 10.1093/femsec/fiw187 – ident: e_1_2_10_140_1 doi: 10.1126/science.aad3558 – ident: e_1_2_10_97_1 doi: 10.1073/pnas.90.11.5341 – ident: e_1_2_10_21_1 doi: 10.3389/feart.2016.00075 – ident: e_1_2_10_103_1 doi: 10.1007/s00253-010-2597-0 – ident: e_1_2_10_111_1 doi: 10.1128/AEM.52.2.225-233.1986 – ident: e_1_2_10_112_1 doi: 10.1016/j.cub.2015.11.014 – ident: e_1_2_10_157_1 doi: 10.1016/j.gca.2011.03.028 – ident: e_1_2_10_33_1 doi: 10.1111/j.1462-2920.2012.02820.x – ident: e_1_2_10_35_1 doi: 10.1002/pmic.201600041 – ident: e_1_2_10_142_1 doi: 10.1126/science.aad7154 – ident: e_1_2_10_67_1 doi: 10.1016/j.cbpa.2016.01.011 – ident: e_1_2_10_91_1 doi: 10.1128/AEM.65.8.3328-3334.1999 – ident: e_1_2_10_184_1 doi: 10.1021/es505531u – ident: e_1_2_10_104_1 doi: 10.1029/2011GL049725 – ident: e_1_2_10_105_1 doi: 10.1038/nature11656 – ident: e_1_2_10_74_1 doi: 10.1074/jbc.M005820200 – ident: e_1_2_10_106_1 doi: 10.1128/jb.172.4.2065-2070.1990 – ident: e_1_2_10_139_1 doi: 10.1016/j.syapm.2011.02.001 – ident: e_1_2_10_4_1 doi: 10.1007/BF00402310 – ident: e_1_2_10_8_1 doi: 10.1093/emboj/cdf566 – ident: e_1_2_10_133_1 doi: 10.1128/AEM.65.9.3982-3989.1999 – ident: e_1_2_10_161_1 doi: 10.1016/0016-7037(94)90446-4 – ident: e_1_2_10_59_1 doi: 10.1023/A:1002449227469 – ident: e_1_2_10_175_1 doi: 10.1016/j.margen.2012.12.001 – ident: e_1_2_10_80_1 doi: 10.1007/BF00413135 – ident: e_1_2_10_86_1 doi: 10.1038/ismej.2017.8 – ident: e_1_2_10_38_1 doi: 10.1038/nrmicro1992 – ident: e_1_2_10_90_1 doi: 10.1038/ismej.2012.66 – ident: e_1_2_10_99_1 doi: 10.1038/ismej.2014.41 – ident: e_1_2_10_12_1 doi: 10.2475/ajs.282.4.451 – ident: e_1_2_10_29_1 doi: 10.3389/fmicb.2016.00440 – ident: e_1_2_10_101_1 doi: 10.1038/ismej.2014.19 – ident: e_1_2_10_102_1 doi: 10.1038/nature15512 – ident: e_1_2_10_43_1 doi: 10.1128/AEM.64.1.119-125.1998 – ident: e_1_2_10_60_1 doi: 10.1016/j.gca.2011.03.033 – ident: e_1_2_10_66_1 doi: 10.1074/jbc.M503492200 – ident: e_1_2_10_81_1 doi: 10.1111/1462-2920.13283 – ident: e_1_2_10_40_1 doi: 10.1073/pnas.1507049112 – ident: e_1_2_10_110_1 doi: 10.1111/1758-2229.12296 – ident: e_1_2_10_37_1 doi: 10.1099/ijsem.0.000683 – ident: e_1_2_10_45_1 doi: 10.1007/978-3-319-13521-2_5 – ident: e_1_2_10_41_1 doi: 10.4319/lo.1999.44.3.0650 – ident: e_1_2_10_183_1 doi: 10.1016/0304-4203(95)00072-0 – ident: e_1_2_10_62_1 doi: 10.1126/science.1174012 – ident: e_1_2_10_137_1 doi: 10.1038/ismej.2015.157 – ident: e_1_2_10_77_1 doi: 10.1111/j.1365-2958.2011.07906.x – ident: e_1_2_10_10_1 doi: 10.1371/journal.pone.0164846 – ident: e_1_2_10_125_1 doi: 10.1007/s00203-004-0683-3 – ident: e_1_2_10_9_1 doi: 10.1099/13500872-141-11-2897 – ident: e_1_2_10_160_1 doi: 10.1128/AEM.59.1.101-108.1993 – ident: e_1_2_10_162_1 doi: 10.3389/fmicb.2014.00309 – ident: e_1_2_10_109_1 doi: 10.1038/ismej.2016.185 – ident: e_1_2_10_141_1 doi: 10.1007/BF00249025 – ident: e_1_2_10_150_1 doi: 10.1042/BST20110713 – ident: e_1_2_10_163_1 doi: 10.1128/JB.00208-10 – ident: e_1_2_10_76_1 doi: 10.1074/jbc.275.18.13202 – ident: e_1_2_10_30_1 doi: 10.1016/0378-1119(92)90702-Q – ident: e_1_2_10_15_1 doi: 10.1371/journal.pone.0101443 – ident: e_1_2_10_46_1 doi: 10.1016/0016-7037(90)90008-9 – ident: e_1_2_10_114_1 doi: 10.1080/014904502317246219 – ident: e_1_2_10_39_1 doi: 10.1038/ismej.2015.257 – ident: e_1_2_10_52_1 doi: 10.3389/fmicb.2016.01576 – ident: e_1_2_10_6_1 doi: 10.1038/326891a0 – ident: e_1_2_10_93_1 doi: 10.1038/ismej.2016.136 – ident: e_1_2_10_96_1 doi: 10.1128/JB.182.7.1864-1871.2000 – ident: e_1_2_10_174_1 doi: 10.1038/nature15733 – ident: e_1_2_10_178_1 doi: 10.1016/j.bbabio.2009.07.005 – ident: e_1_2_10_58_1 doi: 10.1046/j.1365-2958.1999.01345.x – ident: e_1_2_10_132_1 doi: 10.1128/AEM.67.1.387-395.2001 – ident: e_1_2_10_158_1 doi: 10.1126/science.1218344 – ident: e_1_2_10_156_1 doi: 10.1128/AEM.01382-15 – ident: e_1_2_10_100_1 doi: 10.3389/fmicb.2016.00950 – ident: e_1_2_10_71_1 doi: 10.1128/AEM.57.3.847-856.1991 – ident: e_1_2_10_88_1 doi: 10.1111/j.1462-2920.2008.01855.x – ident: e_1_2_10_165_1 doi: 10.1186/s40793-016-0196-0 – ident: e_1_2_10_48_1 doi: 10.1016/0038-0717(93)90178-E – ident: e_1_2_10_115_1 doi: 10.1016/j.jsb.2008.07.007 – ident: e_1_2_10_64_1 doi: 10.1128/AEM.66.8.3650-3653.2000 – ident: e_1_2_10_92_1 doi: 10.1111/mmi.12176 – ident: e_1_2_10_98_1 doi: 10.1016/j.margen.2013.08.001 – ident: e_1_2_10_107_1 doi: 10.1038/nsmb827 – ident: e_1_2_10_147_1 doi: 10.1073/pnas.1510152112 – ident: e_1_2_10_28_1 doi: 10.1126/science.1196889 – ident: e_1_2_10_89_1 doi: 10.1111/j.1462-2920.2010.02380.x – ident: e_1_2_10_144_1 doi: 10.1146/annurev-marine-120308-081000 – ident: e_1_2_10_7_1 doi: 10.1186/s40168-015-0077-6 – ident: e_1_2_10_83_1 doi: 10.1016/0076-6879(94)43018-7 – ident: e_1_2_10_151_1 doi: 10.1016/0146-6380(88)90079-4 – ident: e_1_2_10_14_1 doi: 10.3389/fmicb.2011.00253 – ident: e_1_2_10_19_1 doi: 10.1016/S0016-7037(98)00089-1 – ident: e_1_2_10_75_1 doi: 10.1016/j.jbiotec.2007.08.030 – ident: e_1_2_10_169_1 doi: 10.1038/ismej.2015.10 – ident: e_1_2_10_47_1 doi: 10.1021/bi9816709 – volume: 379 start-page: 63 year: 2004 ident: e_1_2_10_72_1 article-title: Sulfide oxidation in marine sediments: Geochemistry meets microbiology publication-title: Geol Soc Am Spec Pap – ident: e_1_2_10_69_1 doi: 10.1126/science.249.4965.152 – ident: e_1_2_10_87_1 doi: 10.1111/j.1462-2920.2006.01122.x – ident: e_1_2_10_182_1 doi: 10.1038/ismej.2007.63 – ident: e_1_2_10_23_1 doi: 10.5194/bg-2016-362 – ident: e_1_2_10_171_1 doi: 10.1038/ngeo1238 – ident: e_1_2_10_155_1 doi: 10.1021/acs.est.5b04369 – ident: e_1_2_10_167_1 doi: 10.1126/science.1219973 |
| SSID | ssj0064902 |
| Score | 2.5870724 |
| SecondaryResourceType | review_article |
| Snippet | Summary
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major... Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of... Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 323 |
| SubjectTerms | Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism Biogeochemistry Biosphere carbon Carbon cycle Cycles Cytochrome Ecological niches Ecology Ecosystem energy Energy conservation Enzymes Genetic diversity Genetic transformation Geologic Sediments - chemistry Geologic Sediments - microbiology Guilds Hydrogen sulfide iron Manganese Marine ecology Marine ecosystems Marine microorganisms Marine sediments microbial ecology Microorganisms Minireview Minireviews Molybdenum niches nitrogen Ocean floor organic sulfur compounds Organosulfur compounds Oxidation phenotype Phylogeny Physiology Proteins Redox properties Respiration Seawater - analysis Seawater - microbiology Sediments Sulfate reduction Sulfates Sulfur Sulfur - analysis Sulfur - metabolism Sulfur compounds Sulfur cycle |
| Title | The life sulfuric: microbial ecology of sulfur cycling in marine sediments |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1758-2229.12538 https://www.ncbi.nlm.nih.gov/pubmed/28419734 https://www.proquest.com/docview/3092268671 https://www.proquest.com/docview/1889782533 https://www.proquest.com/docview/2020911969 https://pubmed.ncbi.nlm.nih.gov/PMC5573963 |
| Volume | 9 |
| WOSCitedRecordID | wos000405931900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1758-2229 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064902 issn: 1758-2229 databaseCode: DRFUL dateStart: 20090101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0TuFe_NarnkcEH3zp2SbpJvFN1EVEjkM82LfSNMlZ2OvK9VbY_96Z9INbj0MEX0ohSWkmM_lN2pnfALz2KoiZcUUqKlelUmcuRZw3aeHohBuIgd3FYhPq-FgvFuZkiCakXJieH2L64EaWEfdrMvDKdleMHHEP15hzc4QYLfRt2M1zoal6A5cn42Y8k0PY4dh5YPehYJ4_HrANTNe8zetBk1ed2YhG8_v_YR4P4N7girL3ve48hFu-fQR3--KUm8fwBTWILZvgWbdeBiIfesfOm8jbhKN8ZLvesFUYmlm9oSzLM9a07LyinELWITDGDLoncDr_9P3D53SovJDWBaJXajj3mVK5y520WR3QpwuZ9ngK50q5uqqDc9Y6X3jveaalNc5kQbpCWIMLrMVT2GlXrd8HJgw6haa22johbXAVenzSmRC0DMqGPIGjUexlPdCSU3WMZTkeT0hAJQmojAJK4M004GfPyHFz14NxHcvBNLtSZDi7GdH6JfBqakajoj8lVetX667MtcbTNT5C3NyHo6ONSGFmJoFnvWpM74OYnxslZAJqS2mmDkTqvd3SNj8iuXdRKIGbYgJvo9L8bYolWquMd8__ecQL2OPkpMRwxgPYubxY-5dwp_512XQXh9GO8KoW-hB2P36bn379DT4nHO0 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VFlQuLa9CSgtG4sAlJYmdtc0N0a4KLHtArdSbFcc2RNpmUdNF2n_P2Hlol6qqkLhF8jiK7Rl_M874G4C3ljs6kiaPaWGKmInExIjzMs6Nj3CdZ2A3odgEn07FxYVcvQvT8kMMB27eMsJ-7Q3cH0ivWDkCHy5ylskjBGkq7sEWQ2VCLd86_j4-n_T78Yh1mYe9eEfw4_N5_nrFOjbdcDhv5k2u-rMBkMa7_2Moj2Cnc0fJx1Z_HsOGrZ_Ag7ZA5fIpfEEtIrPKWdIsZs4TEH0gl1XgbsJeNjBeL8ncdc2kXPqblj9IVZPLwt8rJA2CY7hF9wzOxydnn07jrvpCXOaIYLHMMptwnprUMJ2UDv06lwiLkXjGuSmL0hmjtbG5tTZLBNPSyMQxk1MtcZEF3YPNel7bF0CoRMdQllpoQ5l2pkCvjxnpnGCOa5dGcNTPuyo7anJfIWOm-hDFT5DyE6TCBEXwbujwq2XluF30oF9I1Zlno2iCoxt5ar8I3gzNaFj-b0lR2_miUakQGGHjK-jtMhk624gWciQjeN7qxvA9iPup5JRFwNe0ZhDwxN7rLXX1MxB85zmnuDFG8D5ozV1DVGixLDzt_3OP17B9evZtoiafp19fwsPMOy0hvfEANq-vFvYQ7pe_r6vm6lVnVn8A4EYf6w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7STRtyafpK4jZtVeihF6e2Ja-k3kqTpY-wlNJAbsKypNaw8YY4G9h_35H8YLchhEJvBj2wRjP6ZuzRNwBvLXd0LE0e08IUMROJiRHnZZwbH-E6z8BuQrEJPp2KszO5ehem5YcYPrh5ywjntTdwe2HcipUj8OEmZ5k8RJCm4h5sMl9KZgSbRz8mpyf9eTxmXeZh370j-PH5PH9NsY5NNxzOm3mTq_5sAKTJzv9YyiN42Lmj5GOrP49hw9ZP4EFboHL5FL6iFpFZ5SxpFjPnCYg-kPMqcDfhKBsYr5dk7rpmUi79TctfpKrJeeHvFZIGwTHconsGp5Pjn58-x131hbjMEcFimWU24Tw1qWE6KR36dS4RFiPxjHNTFqUzRmtjc2ttlgimpZGJYyanWuImC7oLo3pe230gVKJjKEsttKFMO1Og18eMdE4wx7VLIzjs5a7KjprcV8iYqT5E8QJSXkAqCCiCd8OAi5aV4_auB_1Gqs48G0UTXN3YU_tF8GZoRsPyf0uK2s4XjUqFwAgbp6C398nQ2Ua0kGMZwV6rG8P7IO6nklMWAV_TmqGDJ_Zeb6mr34HgO885xYMxgvdBa-5aokKLZeHp-T-PeA1b348m6uTL9NsL2M68zxKyGw9gdHW5sC_hfnl9VTWXrzqr-gM7Px9m |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+life+sulfuric%3A+microbial+ecology+of+sulfur+cycling+in+marine+sediments&rft.jtitle=Environmental+microbiology+reports&rft.au=Wasmund%2C+Kenneth&rft.au=Mu%C3%9Fmann%2C+Marc&rft.au=Loy%2C+Alexander&rft.date=2017-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1758-2229&rft.volume=9&rft.issue=4&rft.spage=323&rft.epage=344&rft_id=info:doi/10.1111%2F1758-2229.12538&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1011111758222912538 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2229&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2229&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2229&client=summon |