The life sulfuric: microbial ecology of sulfur cycling in marine sediments

Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental microbiology reports Ročník 9; číslo 4; s. 323 - 344
Hlavní autoři: Wasmund, Kenneth, Mußmann, Marc, Loy, Alexander
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States John Wiley & Sons, Inc 01.08.2017
John Wiley and Sons Inc
Témata:
ISSN:1758-2229, 1758-2229
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
AbstractList Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular‐ and ecosystem‐level processes. Sulfur‐transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate‐rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep‐subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of Earth's element and energy cycles. Notably, a significant proportion of microbial life in marine sediments can exploit energy conserved during transformations of sulfur compounds among different redox states. Sulfur cycling, which is primarily driven by sulfate reduction, is tightly interwoven with other important element cycles (carbon, nitrogen, iron, manganese) and therefore has profound implications for both cellular- and ecosystem-level processes. Sulfur-transforming microorganisms have evolved diverse genetic, metabolic, and in some cases, peculiar phenotypic features to fill an array of ecological niches in marine sediments. Here, we review recent and selected findings on the microbial guilds that are involved in the transformation of different sulfur compounds in marine sediments and emphasise how these are interlinked and have a major influence on ecology and biogeochemistry in the seafloor. Extraordinary discoveries have increased our knowledge on microbial sulfur cycling, mainly in sulfate-rich surface sediments, yet many questions remain regarding how sulfur redox processes may sustain the deep-subsurface biosphere and the impact of organic sulfur compounds on the marine sulfur cycle.
Author Loy, Alexander
Wasmund, Kenneth
Mußmann, Marc
AuthorAffiliation 1 Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology” University of Vienna Althanstrasse 14 Vienna A‐1090 Austria
2 Austrian Polar Research Institute Vienna Austria
AuthorAffiliation_xml – name: 1 Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network “Chemistry meets Microbiology” University of Vienna Althanstrasse 14 Vienna A‐1090 Austria
– name: 2 Austrian Polar Research Institute Vienna Austria
Author_xml – sequence: 1
  givenname: Kenneth
  surname: Wasmund
  fullname: Wasmund, Kenneth
  organization: Austrian Polar Research Institute
– sequence: 2
  givenname: Marc
  surname: Mußmann
  fullname: Mußmann, Marc
  organization: University of Vienna
– sequence: 3
  givenname: Alexander
  orcidid: 0000-0001-8923-5882
  surname: Loy
  fullname: Loy, Alexander
  email: loy@microbial-ecology.net
  organization: Austrian Polar Research Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28419734$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vGyEURFWqJk577q1aKZdenAC7LNBDpMhyPipHvaRntAsPm4iFdPG28r8vGztWkkPCBcSbmTfvzQQdhBgAoa8En5J8zghnYkoplaeEslJ8QEf7n4Nn70M0Seke47qSmH5Ch1RURPKyOkI_71ZQeGehSIO3Q-_0j6Jzuo-ta3wBOvq43BTR7sqF3mjvwrJwoeia3oXMA-M6COv0GX20jU_wZXcfo9-X87vZ9XTx6-pmdrGYalZzMZWUAuacGGKqFmvLOLNYALSUcm50o60xbWuAAQDFomqlkdhWhpWt5JaK8hidb3UfhrYDo3PvvvHqoXfZ0UbFxqmXleBWahn_KsZ4KesyC3zfCfTxzwBprTqXNHjfBIhDUhRTLAmRtXwXSoSQXOTVj6onr6D3cehD3oQqcR66FjUnGfXtufm966dEMuBsC8gZpNSD3UMIVmPmakxVjamqx8wzg71iaLdu1i6O0zv_Bq_e8v45D5v32qj57U21Jf4Ha3y-xg
CitedBy_id crossref_primary_10_1002_pro_5222
crossref_primary_10_1016_j_scitotenv_2021_146085
crossref_primary_10_1093_femsec_fiaa223
crossref_primary_10_1093_femsec_fiz006
crossref_primary_10_1016_j_envres_2023_117144
crossref_primary_10_1016_j_scitotenv_2021_146526
crossref_primary_10_1016_j_aquaculture_2019_03_038
crossref_primary_10_1016_j_envres_2024_118196
crossref_primary_10_3389_fmicb_2025_1614055
crossref_primary_10_1038_s41598_023_39415_9
crossref_primary_10_1186_s40168_023_01628_5
crossref_primary_10_3390_ijms24076491
crossref_primary_10_1016_j_biortech_2025_133246
crossref_primary_10_1038_s41467_018_07839_x
crossref_primary_10_1007_s11104_024_06658_y
crossref_primary_10_1016_j_gca_2022_07_018
crossref_primary_10_1016_j_watres_2018_10_070
crossref_primary_10_3389_fmicb_2021_581124
crossref_primary_10_1038_s41467_025_59241_z
crossref_primary_10_1128_mra_00030_24
crossref_primary_10_1016_j_scitotenv_2022_154537
crossref_primary_10_3390_antiox12030627
crossref_primary_10_1016_j_biortech_2023_129664
crossref_primary_10_1080_10610278_2023_2300832
crossref_primary_10_3389_fmicb_2019_02558
crossref_primary_10_1038_s41598_025_05178_8
crossref_primary_10_1007_s00253_023_12572_7
crossref_primary_10_1111_gbi_70013
crossref_primary_10_1016_j_eti_2023_103450
crossref_primary_10_1038_s41579_018_0046_8
crossref_primary_10_1016_j_margen_2020_100800
crossref_primary_10_3389_fmicb_2019_00024
crossref_primary_10_1007_s11427_021_1996_x
crossref_primary_10_1093_ismeco_ycaf033
crossref_primary_10_1093_femsec_fiae140
crossref_primary_10_1038_s41396_018_0078_0
crossref_primary_10_1016_j_syapm_2025_126600
crossref_primary_10_3390_app14041538
crossref_primary_10_1111_1758_2229_12933
crossref_primary_10_1007_s00248_023_02239_1
crossref_primary_10_1016_j_ecss_2025_109130
crossref_primary_10_1073_pnas_1913413116
crossref_primary_10_1016_j_micres_2019_126345
crossref_primary_10_1016_j_scitotenv_2019_135790
crossref_primary_10_3389_fmars_2021_715335
crossref_primary_10_1016_j_apgeochem_2021_104895
crossref_primary_10_7717_peerj_5583
crossref_primary_10_1016_j_ecolind_2020_106785
crossref_primary_10_1016_j_scitotenv_2018_12_031
crossref_primary_10_1002_lno_11759
crossref_primary_10_3390_microorganisms8081132
crossref_primary_10_1111_1462_2920_16369
crossref_primary_10_1007_s13399_021_02026_3
crossref_primary_10_1016_j_jhazmat_2021_126964
crossref_primary_10_3389_fmicb_2020_618373
crossref_primary_10_1128_AEM_03009_20
crossref_primary_10_1016_j_geoderma_2025_117295
crossref_primary_10_3389_fmicb_2022_1034401
crossref_primary_10_1155_2023_9963635
crossref_primary_10_1016_j_jclepro_2024_142156
crossref_primary_10_1038_s41564_020_0776_z
crossref_primary_10_1016_j_marenvres_2025_107541
crossref_primary_10_7717_peerj_9017
crossref_primary_10_3390_w15010147
crossref_primary_10_1007_s12040_024_02330_2
crossref_primary_10_1038_s41586_025_09467_0
crossref_primary_10_1099_ijsem_0_006782
crossref_primary_10_1016_j_scitotenv_2023_164042
crossref_primary_10_1007_s00284_018_1587_9
crossref_primary_10_1111_1462_2920_16255
crossref_primary_10_3389_fmicb_2018_02792
crossref_primary_10_1128_aem_02165_24
crossref_primary_10_3389_fmicb_2019_00849
crossref_primary_10_1093_femsec_fiaa026
crossref_primary_10_1016_j_jhazmat_2022_129703
crossref_primary_10_1016_j_scitotenv_2024_176491
crossref_primary_10_3390_microorganisms13102224
crossref_primary_10_1016_j_cej_2022_137845
crossref_primary_10_1128_jmbe_00044_24
crossref_primary_10_1371_journal_pone_0242339
crossref_primary_10_1016_j_catena_2021_106002
crossref_primary_10_1016_j_trac_2023_117331
crossref_primary_10_1016_j_orggeochem_2020_104164
crossref_primary_10_1016_j_biotechadv_2025_108580
crossref_primary_10_1016_j_watres_2024_122018
crossref_primary_10_1002_ldr_3803
crossref_primary_10_1128_mSystems_00442_19
crossref_primary_10_1002_lno_12087
crossref_primary_10_1016_j_scitotenv_2024_176142
crossref_primary_10_1002_lno_11551
crossref_primary_10_1186_s40793_025_00699_1
crossref_primary_10_1007_s00300_021_02997_z
crossref_primary_10_1128_MRA_00862_21
crossref_primary_10_1016_j_jenvman_2019_01_078
crossref_primary_10_5194_bg_20_4875_2023
crossref_primary_10_18016_ksutarimdoga_vi_1212062
crossref_primary_10_1007_s11157_022_09632_1
crossref_primary_10_1016_j_marpolbul_2024_116420
crossref_primary_10_1038_s41579_024_01044_y
crossref_primary_10_3389_fmars_2024_1445441
crossref_primary_10_1029_2019GB006298
crossref_primary_10_1016_j_catena_2021_105847
crossref_primary_10_1038_s41396_021_01057_y
crossref_primary_10_1016_j_scitotenv_2021_149213
crossref_primary_10_1016_j_marpolbul_2023_115608
crossref_primary_10_1089_ast_2023_0076
crossref_primary_10_1016_j_scitotenv_2019_135591
crossref_primary_10_7717_peerj_14288
crossref_primary_10_1038_s41396_021_00992_0
crossref_primary_10_1155_2019_1039487
crossref_primary_10_3389_fmicb_2024_1369263
crossref_primary_10_1016_j_gca_2020_05_024
crossref_primary_10_1038_s43247_022_00426_5
crossref_primary_10_1016_j_jhazmat_2023_131738
crossref_primary_10_3389_fmars_2020_00206
crossref_primary_10_1186_s40168_021_00999_x
crossref_primary_10_3389_fmicb_2017_02137
crossref_primary_10_1128_msystems_00954_22
crossref_primary_10_1007_s42995_020_00086_4
crossref_primary_10_1038_s41598_020_62411_2
crossref_primary_10_3390_microorganisms11061436
crossref_primary_10_1016_j_biortech_2023_130191
crossref_primary_10_1016_j_scitotenv_2024_175272
crossref_primary_10_1016_j_jhazmat_2025_139383
crossref_primary_10_1038_s41598_023_34995_y
crossref_primary_10_1016_j_earscirev_2021_103799
crossref_primary_10_1016_j_scitotenv_2022_159794
crossref_primary_10_1128_aem_00988_23
crossref_primary_10_1186_s40793_024_00585_2
crossref_primary_10_1007_s12237_025_01578_1
crossref_primary_10_3390_ijerph19074163
crossref_primary_10_3390_microorganisms8060920
crossref_primary_10_1186_s12915_019_0688_7
crossref_primary_10_1016_j_jsb_2019_01_001
crossref_primary_10_3390_microorganisms7100419
crossref_primary_10_3389_fmicb_2019_00160
crossref_primary_10_1016_j_revpalbo_2019_04_004
crossref_primary_10_1016_j_scitotenv_2021_151035
crossref_primary_10_1111_are_15014
crossref_primary_10_3389_fmicb_2024_1358222
crossref_primary_10_1007_s00343_021_1173_z
crossref_primary_10_1016_j_marpolbul_2019_110635
crossref_primary_10_1016_j_heliyon_2024_e39055
crossref_primary_10_1016_j_marenvres_2025_106963
crossref_primary_10_33073_pjm_2024_022
crossref_primary_10_1371_journal_pone_0256305
crossref_primary_10_1128_msystems_00667_23
crossref_primary_10_1128_aem_00216_22
crossref_primary_10_3390_min14040425
crossref_primary_10_1038_s41396_020_00817_6
crossref_primary_10_1093_ismeco_ycad005
crossref_primary_10_1099_mgen_0_000865
crossref_primary_10_1038_s41396_020_0684_5
crossref_primary_10_1093_femsle_fnaa061
crossref_primary_10_3389_fmicb_2019_00898
crossref_primary_10_3389_fmicb_2019_00658
crossref_primary_10_1016_j_jhazmat_2025_138594
crossref_primary_10_1016_j_marenvres_2025_107365
crossref_primary_10_7717_peerj_12474
crossref_primary_10_1016_j_jhazmat_2023_133343
crossref_primary_10_1073_pnas_2118880119
crossref_primary_10_1073_pnas_2313650121
crossref_primary_10_1016_j_jes_2023_12_010
crossref_primary_10_1016_j_scitotenv_2022_156468
crossref_primary_10_3389_fmicb_2020_580024
crossref_primary_10_1016_j_envres_2023_117886
crossref_primary_10_1038_s41396_023_01477_y
crossref_primary_10_1128_AEM_01547_17
crossref_primary_10_3389_fmars_2021_762292
crossref_primary_10_1093_femsre_fuad058
crossref_primary_10_1038_s41396_019_0373_4
crossref_primary_10_3390_genes12060886
crossref_primary_10_3390_w13213053
crossref_primary_10_1038_s41561_023_01217_z
crossref_primary_10_1128_AEM_01610_17
crossref_primary_10_1093_ismeco_ycae112
crossref_primary_10_3389_fmicb_2023_1204102
crossref_primary_10_1007_s12275_024_00191_4
crossref_primary_10_3390_microorganisms10040729
crossref_primary_10_5194_bg_17_4611_2020
crossref_primary_10_1007_s10230_024_01016_x
crossref_primary_10_1186_s40168_023_01601_2
crossref_primary_10_1180_gbi_2024_8
crossref_primary_10_1093_ismejo_wrae167
crossref_primary_10_3389_fmicb_2018_02038
crossref_primary_10_1071_EN22057
crossref_primary_10_1016_j_catena_2024_108233
crossref_primary_10_1016_j_psep_2024_04_142
crossref_primary_10_1111_1462_2920_15205
crossref_primary_10_1038_s41598_024_72191_8
crossref_primary_10_1134_S0026261719050138
crossref_primary_10_1038_s41396_018_0077_1
crossref_primary_10_1186_s40793_019_0348_0
crossref_primary_10_1016_j_ecss_2024_108615
crossref_primary_10_1016_j_seares_2024_102469
crossref_primary_10_1186_s40168_018_0454_z
crossref_primary_10_1186_s40168_020_00876_z
crossref_primary_10_3389_fmars_2023_1256393
crossref_primary_10_1016_j_envres_2025_121685
crossref_primary_10_1093_ismejo_wraf124
crossref_primary_10_1128_mbio_01722_25
crossref_primary_10_1093_ismejo_wraf126
crossref_primary_10_1007_s13131_023_2263_x
crossref_primary_10_1111_1462_2920_15389
crossref_primary_10_1128_mSystems_01025_20
crossref_primary_10_1111_1462_2920_14297
crossref_primary_10_1111_1462_2920_15265
crossref_primary_10_1002_lom3_10568
crossref_primary_10_1016_j_scitotenv_2022_160919
crossref_primary_10_1016_j_nbt_2019_12_004
crossref_primary_10_1016_j_chemosphere_2020_128597
crossref_primary_10_1099_mgen_0_001351
crossref_primary_10_1111_gbi_12591
crossref_primary_10_1128_spectrum_04210_22
crossref_primary_10_1371_journal_pone_0287914
crossref_primary_10_1021_acs_est_5c02107
crossref_primary_10_1016_j_copbio_2024_103164
crossref_primary_10_1128_Spectrum_00955_21
crossref_primary_10_1128_msystems_01135_23
crossref_primary_10_3389_fmicb_2025_1590477
crossref_primary_10_1128_AEM_02224_17
crossref_primary_10_1128_MRA_00072_21
crossref_primary_10_3390_life14050591
crossref_primary_10_1016_j_chemosphere_2024_141366
crossref_primary_10_3390_microorganisms9020429
crossref_primary_10_1093_femsec_fiy171
crossref_primary_10_3390_microorganisms10010060
crossref_primary_10_1016_j_ecss_2025_109456
crossref_primary_10_1099_ijsem_0_004213
crossref_primary_10_1016_j_wasman_2022_09_033
crossref_primary_10_1016_j_scitotenv_2020_143233
crossref_primary_10_1016_j_chemosphere_2022_136899
crossref_primary_10_1016_j_jes_2024_08_005
crossref_primary_10_3389_fmicb_2024_1461252
crossref_primary_10_1016_j_scitotenv_2021_148097
crossref_primary_10_1016_j_watres_2024_122433
crossref_primary_10_1128_msystems_00473_25
crossref_primary_10_3389_fmars_2020_00068
crossref_primary_10_3389_fmicb_2020_615221
crossref_primary_10_1128_spectrum_03338_22
crossref_primary_10_1016_j_watres_2020_116270
crossref_primary_10_1007_s10123_023_00358_w
crossref_primary_10_3389_fmicb_2020_578209
crossref_primary_10_1016_j_gexplo_2022_107052
crossref_primary_10_1016_j_envres_2025_122320
crossref_primary_10_1007_s11430_017_9234_x
crossref_primary_10_1016_j_scitotenv_2023_167757
crossref_primary_10_1016_j_marenvres_2020_104968
crossref_primary_10_1111_1462_2920_15807
crossref_primary_10_1111_1758_2229_70022
crossref_primary_10_3389_fmicb_2018_03049
crossref_primary_10_1002_mlf2_12038
crossref_primary_10_1186_s40168_025_02153_3
crossref_primary_10_1111_1462_2920_15006
Cites_doi 10.1128/AEM.68.1.316-325.2002
10.1128/JB.00849-10
10.1016/0016-7037(89)90005-7
10.1130/0-8137-2379-5.97
10.1023/A:1009676107330
10.1080/01490458609385944
10.1038/ismej.2014.51
10.1093/femsec/fiv084
10.1016/j.gca.2007.11.031
10.1111/1462-2920.12930
10.1016/j.syapm.2016.05.006
10.1128/JB.00569-09
10.1016/B978-0-12-410515-7.00002-0
10.1038/ismej.2011.66
10.1016/j.bbabio.2014.03.007
10.1016/S0014-5793(01)02727-2
10.1016/j.gca.2014.05.038
10.1007/3-540-32144-6_8
10.1074/jbc.M113.536425
10.1111/1462-2920.12410
10.1074/jbc.272.15.9890
10.1038/nature12947
10.3389/fmicb.2012.00137
10.1186/s12864-016-3236-7
10.1016/bs.ampbs.2015.05.002
10.1073/pnas.1431443100
10.1038/ismej.2016.84
10.1016/0016-7037(94)90200-3
10.1021/bi101232y
10.1038/296643a0
10.1038/ismej.2014.208
10.1038/ismej.2010.113
10.1111/j.1574-6968.2006.00343.x
10.1038/ismej.2015.233
10.1128/mBio.00266-16
10.1021/bi047334b
10.1016/0016-7037(96)00087-7
10.3389/fmicb.2011.00062
10.1038/nature11586
10.1016/j.gca.2004.03.012
10.1128/jb.172.7.4100-4102.1990
10.1002/anie.200300632
10.1128/AEM.69.5.2463-2483.2003
10.1016/j.gca.2012.05.036
10.1007/978-3-662-04242-7_5
10.1126/science.1249213
10.1073/pnas.1322132111
10.1111/1758-2229.12387
10.1016/j.gca.2017.03.005
10.1016/j.resmic.2005.05.009
10.1038/nature08790
10.1016/j.bbrc.2003.11.021
10.1016/j.chemgeo.2006.05.011
10.4056/sigs.3777412
10.1128/AEM.04182-13
10.1111/1462-2920.12316
10.3389/fmicb.2016.00964
10.3389/fmicb.2013.00362
10.1016/0038-0717(93)90131-T
10.1264/jsme2.ME15023
10.1080/17415990802105770
10.1038/nature07588
10.1016/S0021-9258(19)85257-2
10.1128/AEM.00888-09
10.1111/j.1432-1033.1992.tb16953.x
10.1126/science.1145861
10.1007/s00248-004-0070-2
10.1111/j.1574-6941.2007.00373.x
10.1074/jbc.M116.753863
10.1099/mic.0.27548-0
10.1038/nature20152
10.1111/j.1462-2920.2010.02279.x
10.1038/nature12365
10.1038/nmicrobiol.2016.195
10.1371/journal.pone.0040785
10.1016/j.febslet.2009.03.020
10.1007/978-3-642-38922-1_290
10.3389/fmicb.2015.00846
10.1099/mic.0.2008/018580-0
10.3389/fmicb.2011.00081
10.1128/jb.178.18.5438-5446.1996
10.1111/j.1472-4669.2009.00214.x
10.1093/femsec/fiw187
10.1126/science.aad3558
10.1073/pnas.90.11.5341
10.3389/feart.2016.00075
10.1007/s00253-010-2597-0
10.1128/AEM.52.2.225-233.1986
10.1016/j.cub.2015.11.014
10.1016/j.gca.2011.03.028
10.1111/j.1462-2920.2012.02820.x
10.1002/pmic.201600041
10.1126/science.aad7154
10.1016/j.cbpa.2016.01.011
10.1128/AEM.65.8.3328-3334.1999
10.1021/es505531u
10.1029/2011GL049725
10.1038/nature11656
10.1074/jbc.M005820200
10.1128/jb.172.4.2065-2070.1990
10.1016/j.syapm.2011.02.001
10.1007/BF00402310
10.1093/emboj/cdf566
10.1128/AEM.65.9.3982-3989.1999
10.1016/0016-7037(94)90446-4
10.1023/A:1002449227469
10.1016/j.margen.2012.12.001
10.1007/BF00413135
10.1038/ismej.2017.8
10.1038/nrmicro1992
10.1038/ismej.2012.66
10.1038/ismej.2014.41
10.2475/ajs.282.4.451
10.3389/fmicb.2016.00440
10.1038/ismej.2014.19
10.1038/nature15512
10.1128/AEM.64.1.119-125.1998
10.1016/j.gca.2011.03.033
10.1074/jbc.M503492200
10.1111/1462-2920.13283
10.1073/pnas.1507049112
10.1111/1758-2229.12296
10.1099/ijsem.0.000683
10.1007/978-3-319-13521-2_5
10.4319/lo.1999.44.3.0650
10.1016/0304-4203(95)00072-0
10.1126/science.1174012
10.1038/ismej.2015.157
10.1111/j.1365-2958.2011.07906.x
10.1371/journal.pone.0164846
10.1007/s00203-004-0683-3
10.1099/13500872-141-11-2897
10.1128/AEM.59.1.101-108.1993
10.3389/fmicb.2014.00309
10.1038/ismej.2016.185
10.1007/BF00249025
10.1042/BST20110713
10.1128/JB.00208-10
10.1074/jbc.275.18.13202
10.1016/0378-1119(92)90702-Q
10.1371/journal.pone.0101443
10.1016/0016-7037(90)90008-9
10.1080/014904502317246219
10.1038/ismej.2015.257
10.3389/fmicb.2016.01576
10.1038/326891a0
10.1038/ismej.2016.136
10.1128/JB.182.7.1864-1871.2000
10.1038/nature15733
10.1016/j.bbabio.2009.07.005
10.1046/j.1365-2958.1999.01345.x
10.1128/AEM.67.1.387-395.2001
10.1126/science.1218344
10.1128/AEM.01382-15
10.3389/fmicb.2016.00950
10.1128/AEM.57.3.847-856.1991
10.1111/j.1462-2920.2008.01855.x
10.1186/s40793-016-0196-0
10.1016/0038-0717(93)90178-E
10.1016/j.jsb.2008.07.007
10.1128/AEM.66.8.3650-3653.2000
10.1111/mmi.12176
10.1016/j.margen.2013.08.001
10.1038/nsmb827
10.1073/pnas.1510152112
10.1126/science.1196889
10.1111/j.1462-2920.2010.02380.x
10.1146/annurev-marine-120308-081000
10.1186/s40168-015-0077-6
10.1016/0076-6879(94)43018-7
10.1016/0146-6380(88)90079-4
10.3389/fmicb.2011.00253
10.1016/S0016-7037(98)00089-1
10.1016/j.jbiotec.2007.08.030
10.1038/ismej.2015.10
10.1021/bi9816709
10.1126/science.249.4965.152
10.1111/j.1462-2920.2006.01122.x
10.1038/ismej.2007.63
10.5194/bg-2016-362
10.1038/ngeo1238
10.1021/acs.est.5b04369
10.1126/science.1219973
ContentType Journal Article
Copyright 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd
2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
Copyright John Wiley & Sons, Inc. 2017
Copyright_xml – notice: 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd
– notice: 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: Copyright John Wiley & Sons, Inc. 2017
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1111/1758-2229.12538
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
CrossRef

AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
DocumentTitleAlternate Microbial sulfur cycling in marine sediments
EISSN 1758-2229
EndPage 344
ExternalDocumentID PMC5573963
1011111758222912538
28419734
10_1111_1758_2229_12538
EMI412538
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: Austrian Science Fund
  funderid: P25111‐B22 ; P29426‐B22
– fundername: Austrian Science Fund FWF
  grantid: P 29426
– fundername: Austrian Science Fund FWF
  grantid: P 25111
– fundername: Austrian Science Fund
  grantid: P25111‐B22 ; P29426‐B22
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OC
24P
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADPDF
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFZJQ
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVUZU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
H.T
H.X
HVGLF
HZ~
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM.
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
OVEED
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RPM
RWI
RX1
SUPJJ
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5678-922e0771d1d4b0cf575f08eeb2277dcacfddbbde5eee2084b9d90f4d53b97f283
IEDL.DBID 24P
ISICitedReferencesCount 285
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000405931900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1758-2229
IngestDate Tue Nov 04 01:55:26 EST 2025
Fri Jul 11 18:27:55 EDT 2025
Sun Nov 09 12:44:44 EST 2025
Sun Jul 13 04:26:39 EDT 2025
Mon Jul 21 06:02:43 EDT 2025
Sat Nov 29 07:00:20 EST 2025
Tue Nov 18 21:47:12 EST 2025
Wed Jan 22 16:35:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5678-922e0771d1d4b0cf575f08eeb2277dcacfddbbde5eee2084b9d90f4d53b97f283
Notes All authors contributed equally to this review.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-8923-5882
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1758-2229.12538
PMID 28419734
PQID 3092268671
PQPubID 866375
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5573963
proquest_miscellaneous_2020911969
proquest_miscellaneous_1889782533
proquest_journals_3092268671
pubmed_primary_28419734
crossref_primary_10_1111_1758_2229_12538
crossref_citationtrail_10_1111_1758_2229_12538
wiley_primary_10_1111_1758_2229_12538_EMI412538
PublicationCentury 2000
PublicationDate August 2017
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: August 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
– name: Hoboken
PublicationTitle Environmental microbiology reports
PublicationTitleAlternate Environ Microbiol Rep
PublicationYear 2017
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2010; 12
1990; 54
2013; 4
2002; 19
1997; 272
2013; 62
2016; 31
2010; 463
1999; 44
2016; 2016
2012; 14
2013; 8
2003; 312
2016; 39
2013; 9
2012; 491
2009; 11
2014; 1837
2015; 81
2008; 29
1986; 4
1992; 114
2014; 16
1996; 60
2007; 9
2010; 192
2007; 62
2015; 91
2016a; 16
2010; 2
2007; 1
1990; 172
2004; 43
1990; 249
2011; 2
2013; 88
1987; 326
2011; 82
2000; 66
2013; 500
2016; 10
2011; 75
1988; 13
1994
2015; 526
2016; 92
2016; 18
2011; 4
1998; 62
2011; 5
1998; 64
2006; 235
2009; 457
2016; 11
1982; 282
2016; 4
2015; 350
1993; 59
2016; 7
2007; 317
1989; 53
2016; 2
2009; 75
2009; 191
2015; 112
2000; 77
2002; 68
2015; 66
2010; 330
2000; 182
2009; 583
1999; 32
2014; 140
2016; 291
1995; 141
2016; 26
2003; 100
2016; 8
1991; 57
2015; 30
2004; 68
1992; 206
2011; 13
2008; 6
2008; 72
2001; 503
2014; 5
2004; 379
2015; 49
2013; 11
2000
2007; 132
1993b; 25
1982; 296
1989; 151
2014; 9
2014; 8
2008; 154
2012; 336
1996; 178
2016; 351
2009; 325
2014; 289
2009; 1787
2015; 6
2005; 151
2015; 3
2016b; 17
1986; 52
2005; 156
2004; 182
1996; 52
2006
1999; 65
2016; 50
2000; 275
1993; 90
2011; 34
2004
1978; 117
2005; 48
1993; 268
2011; 39
2005; 49
2014; 111
2011; 38
2015; 9
2001; 67
2015; 7
2008; 164
1999; 5
2005; 44
1993a; 25
1998; 37
2004; 11
2005; 280
2010; 87
2012; 92
2014; 507
2012; 3
2014; 80
2016; 539
2017; 11
2002; 21
2011; 50
2003; 69
2006; 261
1994; 58
2017
2009; 7
2016
2014
2012; 6
2012; 7
1993; 159
2014; 344
2016; 66
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_109_1
e_1_2_10_131_1
e_1_2_10_177_1
e_1_2_10_158_1
e_1_2_10_70_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_139_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_116_1
e_1_2_10_150_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_135_1
e_1_2_10_173_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_78_1
e_1_2_10_112_1
e_1_2_10_154_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_120_1
e_1_2_10_166_1
e_1_2_10_147_1
e_1_2_10_82_1
e_1_2_10_128_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_105_1
e_1_2_10_181_1
e_1_2_10_124_1
e_1_2_10_162_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_143_1
e_1_2_10_185_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
e_1_2_10_132_1
e_1_2_10_155_1
e_1_2_10_178_1
e_1_2_10_159_1
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_117_1
e_1_2_10_170_1
e_1_2_10_94_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_113_1
e_1_2_10_136_1
e_1_2_10_151_1
e_1_2_10_174_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_121_1
e_1_2_10_144_1
e_1_2_10_167_1
e_1_2_10_148_1
e_1_2_10_60_1
e_1_2_10_106_1
e_1_2_10_129_1
e_1_2_10_182_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_102_1
e_1_2_10_125_1
e_1_2_10_140_1
e_1_2_10_163_1
e_1_2_10_186_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_42_1
e_1_2_10_110_1
e_1_2_10_156_1
e_1_2_10_179_1
e_1_2_10_91_1
e_1_2_10_95_1
e_1_2_10_118_1
e_1_2_10_4_1
e_1_2_10_53_1
e_1_2_10_137_1
e_1_2_10_171_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_99_1
e_1_2_10_114_1
e_1_2_10_152_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_133_1
e_1_2_10_175_1
e_1_2_10_58_1
e_1_2_10_11_1
Dolata M.M. (e_1_2_10_34_1) 1993; 268
e_1_2_10_30_1
e_1_2_10_119_1
e_1_2_10_145_1
e_1_2_10_168_1
e_1_2_10_80_1
e_1_2_10_149_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_107_1
e_1_2_10_183_1
e_1_2_10_126_1
e_1_2_10_160_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
e_1_2_10_141_1
e_1_2_10_122_1
e_1_2_10_164_1
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_108_1
e_1_2_10_130_1
e_1_2_10_157_1
Canfield D.E. (e_1_2_10_27_1) 2005; 48
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_115_1
e_1_2_10_138_1
e_1_2_10_172_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_111_1
e_1_2_10_134_1
e_1_2_10_153_1
e_1_2_10_176_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
Jørgensen B.B. (e_1_2_10_72_1) 2004; 379
e_1_2_10_50_1
e_1_2_10_146_1
e_1_2_10_169_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_104_1
e_1_2_10_127_1
e_1_2_10_161_1
e_1_2_10_180_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_123_1
e_1_2_10_142_1
e_1_2_10_165_1
e_1_2_10_184_1
e_1_2_10_47_1
e_1_2_10_89_1
References_xml – volume: 379
  start-page: 63
  year: 2004
  end-page: 81
  article-title: Sulfide oxidation in marine sediments: Geochemistry meets microbiology
  publication-title: Geol Soc Am Spec Pap
– volume: 500
  start-page: 194
  year: 2013
  end-page: 198
  article-title: Nitrogen losses in anoxic marine sediments driven by Thioploca‐anammox bacterial consortia
  publication-title: Nature
– start-page: 173
  year: 2000
  end-page: 208
– volume: 2
  start-page: 279
  year: 2010
  end-page: 304
  article-title: Microbial provinces in the subseafloor
  publication-title: Ann Rev Mar Sci
– volume: 12
  start-page: 3022
  year: 2010
  end-page: 3034
  article-title: Bioturbation and the role of microniches for sulfate reduction in coastal marine sediments
  publication-title: Environ Microbiol
– volume: 8
  start-page: 2029
  year: 2014
  end-page: 2044
  article-title: Diverse sulfate‐reducing bacteria of the / clade are the key alkane degraders at marine seeps
  publication-title: ISME J
– volume: 7
  start-page: 614
  year: 2015
  end-page: 622
  article-title: Uncultured Desulfobacteraceae and Crenarchaeotal group C3 incorporate C‐acetate in coastal marine sediment
  publication-title: Environ Microbiol Rep
– volume: 82
  start-page: 1515
  year: 2011
  end-page: 1530
  article-title: The gene cluster encodes an unconventional respiratory sulphite reduction system
  publication-title: Mol Microbiol
– volume: 11
  start-page: 53
  year: 2013
  end-page: 65
  article-title: Sulfide oxidation, nitrate respiration, carbon acquisition, and electron transport pathways suggested by the draft genome of a single orange Guaymas Basin Beggiatoa (Cand. Maribeggiatoa) sp. filament
  publication-title: Mar Genomics
– volume: 112
  start-page: 13278
  year: 2015
  end-page: 13283
  article-title: Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins
  publication-title: Proc Natl Acad Sci USA
– volume: 325
  start-page: 1541
  year: 2009
  end-page: 1544
  article-title: A constant flux of diverse thermophilic bacteria into the Cold Arctic Seabed
  publication-title: Science
– volume: 54
  start-page: 2731
  year: 1990
  end-page: 2742
  article-title: Oxidation and reduction of radiolabeled inorganic sulfur‐compounds in an estuarine sediment, Kysing Fjord, Denmark
  publication-title: Geochim Cosmochim Acta
– volume: 317
  start-page: 1534
  year: 2007
  end-page: 1537
  article-title: Early Archaean microorganisms preferred elemental sulfur, not sulfate
  publication-title: Science
– volume: 178
  start-page: 5438
  year: 1996
  end-page: 5446
  article-title: Identification of sulfate starvation‐regulated genes in : a gene cluster involved in the utilization of taurine as a sulfur source
  publication-title: J Bacteriol
– volume: 275
  start-page: 31661
  year: 2000
  end-page: 31667
  article-title: Characterization of a sulfur‐regulated oxygenative alkylsulfatase from S‐313
  publication-title: J Biol Chem
– volume: 140
  start-page: 418
  year: 2014
  end-page: 434
  article-title: Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank
  publication-title: Geochim Cosmochim Acta
– volume: 11
  start-page: 1023
  year: 2004
  end-page: 1024
  article-title: Octaheme tetrathionate reductase is a respiratory enzyme with novel heme ligation
  publication-title: Nat Struct Mol Biol
– volume: 235
  start-page: 12
  year: 2006
  end-page: 20
  article-title: Oxidation and incorporation of hydrogen sulfide by dissolved organic matter
  publication-title: Chem Geol
– volume: 29
  start-page: 281
  year: 2008
  end-page: 292
  article-title: Microbiological disproportionation of inorganic sulfur compounds
  publication-title: J Sulfur Chem
– volume: 90
  start-page: 5341
  year: 1993
  end-page: 5344
  article-title: Hydrogenase of the Hyperthermophile Is an Elemental Sulfur Reductase or Sulfhydrogenase ‐ Evidence for a Sulfur‐Reducing Hydrogenase Ancestor
  publication-title: Proc Natl Acad Sci USA
– volume: 491
  start-page: 541
  year: 2012
  end-page: 546
  article-title: Zero‐valent sulphur is a key intermediate in marine methane oxidation
  publication-title: Nature
– volume: 10
  start-page: 1939
  year: 2016
  end-page: 1953
  article-title: Ubiquitous dominate dark carbon fixation in coastal sediments
  publication-title: ISME J
– volume: 13
  start-page: 593
  year: 1988
  end-page: 606
  article-title: Origin of organic sulphur compounds and sulphur‐containing high molecular weight substances in sediments and immature crude oils
  publication-title: Org Geochem
– volume: 9
  start-page: e101443
  year: 2014
  article-title: Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments
  publication-title: PLoS One
– volume: 66
  start-page: 55
  year: 2015
  end-page: 321
  article-title: A Post‐Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate‐Reducing Prokaryotes
  publication-title: Adv Microb Physiol
– volume: 351
  start-page: 703
  year: 2016
  end-page: 707
  article-title: Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction
  publication-title: Science
– volume: 13
  start-page: 758
  year: 2011
  end-page: 774
  article-title: Novel groups of catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment
  publication-title: Environ Microbiol
– volume: 296
  start-page: 643
  year: 1982
  end-page: 645
  article-title: Mineralization of organic matter in the sea bed ‐ the role of sulphate reduction
  publication-title: Nature
– volume: 62
  start-page: 108
  year: 2007
  end-page: 117
  article-title: Different bacterial communities associated with the roots and bulk sediment of the seagrass
  publication-title: FEMS Microbiol Ecol
– volume: 5
  start-page: 285
  year: 2011
  end-page: 304
  article-title: Comparative metagenomics of bathypelagic plankton and bottom sediment from the Sea of Marmara
  publication-title: ISME J
– volume: 164
  start-page: 236
  year: 2008
  end-page: 239
  article-title: Purification, crystallization and preliminary crystallographic analysis of a dissimilatory DsrAB sulfite reductase in complex with DsrC
  publication-title: J Struct Biol
– volume: 39
  start-page: 1864
  year: 2011
  end-page: 1870
  article-title: Physiological function and catalytic versatility of bacterial multihaem cytochromes c involved in nitrogen and sulfur cycling
  publication-title: Biochem Soc Trans
– volume: 172
  start-page: 2065
  year: 1990
  end-page: 2070
  article-title: Catabolic thiosulfate disproportionation and carbon dioxide reduction in strain DCB‐1, a reductively dechlorinating anaerobe
  publication-title: J Bacteriol
– volume: 291
  start-page: 24804
  year: 2016
  end-page: 24818
  article-title: Electron accepting units of the diheme cytochrome c TsdA, a bifunctional thiosulfate dehydrogenase/tetrathionate reductase
  publication-title: J Biol Chem
– volume: 92
  start-page: 1
  year: 2012
  end-page: 13
  article-title: Sulfur, iron‐, and calcium cycling associated with natural electric currents running through marine sediment
  publication-title: Geochim Cosmochim Acta
– volume: 58
  start-page: 67
  year: 1994
  end-page: 73
  article-title: Thiosulfate and sulfite distributions in porewater of marine‐sediments related to manganese, iron, and sulfur geochemistry
  publication-title: Geochim Cosmochim Acta
– volume: 350
  start-page: 1541
  year: 2015
  end-page: 1545
  article-title: A protein trisulfide couples dissimilatory sulfate reduction to energy conservation
  publication-title: Science
– year: 2017
  article-title: Unraveling signatures of biogeochemical processes and the depositional setting in the molecular composition of pore water DOM across different marine environments
  publication-title: Geochim Cosmochim Acta.
– volume: 31
  start-page: 58
  year: 2016
  end-page: 65
  article-title: Enzymatic breakage of dimethylsulfoniopropionate‐a signature molecule for life at sea
  publication-title: Curr Opin Chem Biol
– volume: 77
  start-page: 271
  year: 2000
  end-page: 280
  article-title: Overexpression, purification and immunodetection of DsrD from Hildenborough
  publication-title: A Van Leeuw J Microb
– volume: 38
  start-page: 1
  year: 2011
  end-page: 4
  article-title: Chemoautotrophy in the ocean
  publication-title: Geophys Res Lett
– volume: 280
  start-page: 38776
  year: 2005
  end-page: 38786
  article-title: A new type of sulfite reductase, a novel coenzyme F420‐dependent enzyme, from the methanarchaeon
  publication-title: J Biol Chem
– volume: 330
  start-page: 1375
  year: 2010
  end-page: 1378
  article-title: A Cryptic Sulfur Cycle in Oxygen‐Minimum‐Zone Waters off the Chilean Coast
  publication-title: Science
– volume: 192
  start-page: 2938
  year: 2010
  end-page: 2939
  article-title: Genome sequence of HTCC2155T, the type species of the order in the phylum
  publication-title: J Bacteriol
– volume: 81
  start-page: 6901
  year: 2015
  end-page: 6914
  article-title: Seagrass ( ) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling
  publication-title: Appl Environ Microbiol
– volume: 457
  start-page: 581
  year: 2009
  end-page: 584
  article-title: Detoxification of sulphidic African shelf waters by blooming chemolithotrophs
  publication-title: Nature
– volume: 7
  start-page: 385
  year: 2009
  end-page: 392
  article-title: Towards a consistent classification scheme for geochemical environments, or, why we wish the term 'suboxic' would go away
  publication-title: Geobiology
– volume: 9
  start-page: 1152
  year: 2015
  end-page: 1165
  article-title: Phylogenetic and environmental diversity of DsrAB‐type dissimilatory (bi) sulfite reductases
  publication-title: ISME J
– volume: 67
  start-page: 387
  year: 2001
  end-page: 395
  article-title: Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard)
  publication-title: Appl Environ Microbiol
– volume: 7
  start-page: e00266
  year: 2016
  end-page: e00216
  article-title: Single‐cell genome and group‐specific dsrAB sequencing implicate marine members of the class (Phylum ) in sulfur cycling
  publication-title: MBio
– volume: 3
  start-page: 137
  year: 2012
  article-title: The membrane QmoABC complex interacts directly with the dissimilatory adenosine 5 ′‐phosphosulfate reductase sulfate reducing bacteria
  publication-title: Front Microbiol
– volume: 9
  start-page: 51
  year: 2013
  end-page: 61
  article-title: Expression of sulfatases in and the diversity of sulfatases in the genus
  publication-title: Mar Genomics
– volume: 5
  start-page: 1926
  year: 2011
  end-page: 1935
  article-title: Dimorphism in methane seep‐dwelling ecotypes of the largest known bacteria
  publication-title: ISME J
– volume: 44
  start-page: 7024
  year: 2005
  end-page: 7034
  article-title: Sulfur dehydrogenase of : the heme‐2 domain of the molybdoprotein cytochrome c complex is dispensable for catalytic activity
  publication-title: Biochemistry
– volume: 182
  start-page: 165
  year: 2004
  end-page: 174
  article-title: The role of the sulfur globule proteins of : mutagenesis of the sulfur globule protein genes and expression studies by real‐time RT‐PCR
  publication-title: Arch Microbiol
– volume: 1787
  start-page: 1516
  year: 2009
  end-page: 1525
  article-title: Sulfite oxidation in
  publication-title: Biochim Biophys Acta
– volume: 52
  start-page: 225
  year: 1986
  end-page: 233
  article-title: Growth Pattern and Yield of a Chemoautotrophic Beggiatoa sp. in Oxygen‐Sulfide Microgradients
  publication-title: Appl Environ Microbiol
– volume: 80
  start-page: 2279
  year: 2014
  end-page: 2292
  article-title: A comparative quantitative proteomic study identifies new proteins relevant for sulfur oxidation in the purple sulfur bacterium
  publication-title: Appl Environ Microbiol
– year: 2016
– volume: 19
  start-page: 121
  year: 2002
  end-page: 132
  article-title: Sulfur disproportionation by the facultative anaerobe SP1 as a mechanism for chromium(VI) reduction
  publication-title: Geomicrobiol J
– volume: 65
  start-page: 3328
  year: 1999
  end-page: 3334
  article-title: Sulfidogenesis from 2‐aminoethanesulfonate (taurine) fermentation by a morphologically unusual sulfate‐reducing bacterium, sp. nov
  publication-title: Appl Environ Microbiol
– volume: 463
  start-page: 1071
  year: 2010
  end-page: 1074
  article-title: Electric currents couple spatially separated biogeochemical processes in marine sediment
  publication-title: Nature
– volume: 75
  start-page: 2997
  year: 2011
  end-page: 3010
  article-title: Concurrent low‐ and high‐affinity sulfate reduction kinetics in marine sediment
  publication-title: Geochim Cosmochim Acta
– volume: 7
  start-page: 440
  year: 2016
  article-title: Rhizosphere microbiomes of European + seagrasses are selected by the plant, but are not species specific
  publication-title: Front Microbiol
– volume: 11
  start-page: 1278
  year: 2009
  end-page: 1291
  article-title: Sulfate‐reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation
  publication-title: Environ Microbiol
– volume: 8
  start-page: 1843
  year: 2014
  end-page: 1854
  article-title: Natural occurrence of microbial sulphur oxidation by long‐range electron transport in the seafloor
  publication-title: ISME J
– volume: 491
  start-page: 218
  year: 2012
  end-page: 221
  article-title: Filamentous bacteria transport electrons over centimetre distances
  publication-title: Nature
– volume: 5
  start-page: 309
  year: 2014
  article-title: Rhizosphere heterogeneity shapes abundance and activity of sulfur‐oxidizing bacteria in vegetated salt marsh sediments
  publication-title: Front Microbiol
– volume: 16
  start-page: 3416
  year: 2014
  end-page: 3430
  article-title: Microbial consumption of zero‐valence sulfur in marine benthic habitats
  publication-title: Environ Microbiol
– volume: 182
  start-page: 1864
  year: 2000
  end-page: 1871
  article-title: Characterization of hydrogenase II from the hyperthermophilic archaeon and assessment of its role in sulfur reduction
  publication-title: J Bacteriol
– volume: 7
  start-page: 950
  year: 2016
  article-title: Genome Analysis of , the first thermophilic sulfur‐disproportionating bacterium of the phylum
  publication-title: Front Microbiol
– volume: 87
  start-page: 1499
  year: 2010
  end-page: 1506
  article-title: Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment
  publication-title: Appl Microbiol Biotechnol
– volume: 111
  start-page: 11395
  year: 2014
  end-page: 11400
  article-title: Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 1682
  year: 2014
  end-page: 1690
  article-title: Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment
  publication-title: ISME J
– volume: 268
  start-page: 14426
  year: 1993
  end-page: 14431
  article-title: Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, . A 2.6‐kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin
  publication-title: J Biol Chem
– volume: 49
  start-page: 5441
  year: 2015
  end-page: 5449
  article-title: Electron transfer budgets and kinetics of abiotic oxidation and incorporation of aqueous sulfide by dissolved organic matter
  publication-title: Environ Sci Technol
– volume: 326
  start-page: 891
  year: 1987
  end-page: 892
  article-title: A novel type of energy‐metabolism involving fermentation of inorganic sulfur‐compounds
  publication-title: Nature
– volume: 50
  start-page: 1227
  year: 2016
  end-page: 1233
  article-title: Cable Bacteria Control Iron‐Phosphorus Dynamics in Sediments of a Coastal Hypoxic Basin
  publication-title: Environ Sci Technol
– volume: 49
  start-page: 451
  year: 2005
  end-page: 460
  article-title: Biogeographic and quantitative analyses of abundant uncultivated gamma‐proteobacterial clades from marine sediment
  publication-title: Microb Ecol
– volume: 151
  start-page: 232
  year: 1989
  end-page: 237
  article-title: Sulfate formation via ATP sulfurylase in thiosulfate‐ and sulfite‐disproportionating bacteria
  publication-title: Arch Microbiol
– volume: 62
  start-page: 567
  year: 1998
  end-page: 1586
  article-title: Early diagenesis of sulfur in estuarine sediments: The role of sedimentary humic and fulvic acids
  publication-title: Geochim Cosmochim Acta
– volume: 2
  start-page: 62
  year: 2011
  article-title: Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment
  publication-title: Front Microbiol
– volume: 66
  start-page: 3650
  year: 2000
  end-page: 3653
  article-title: Thiosulfate disproportionation by
  publication-title: Appl Environ Microbiol
– volume: 206
  start-page: 503
  year: 1992
  end-page: 510
  article-title: Cloning and nucleotide sequence of the gene of polysulphide reductase
  publication-title: Eur J Biochem
– volume: 4
  start-page: 362
  year: 2013
  article-title: spp. and related Gram‐positive sulfate‐reducing bacteria in deep subsurface environments
  publication-title: Front Microbiol
– volume: 112
  start-page: E4298
  year: 2015
  end-page: E4305
  article-title: Entner‐Doudoroff pathway for sulfoquinovose degradation in SQ1
  publication-title: Proc Natl Acad Sci USA
– volume: 156
  start-page: 1031
  year: 2005
  end-page: 1038
  article-title: rdlA, a new gene encoding a rhodanese‐like protein in and other thiosulfate‐reducing anaerobes
  publication-title: Res Microbiol
– volume: 2
  start-page: 16195
  year: 2016
  article-title: Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation
  publication-title: Nat Microbiol
– volume: 191
  start-page: 5648
  year: 2009
  end-page: 5656
  article-title: Bifurcated degradative pathway of 3‐sulfolactate in ISM via sulfoacetaldehyde acetyltransferase and (S)‐cysteate sulfolyase
  publication-title: J Bacteriol
– volume: 34
  start-page: 243
  year: 2011
  end-page: 259
  article-title: A single‐cell sequencing approach to the classification of large, vacuolated sulfur bacteria
  publication-title: Syst Appl Microbiol
– volume: 151
  start-page: 737
  year: 2005
  end-page: 747
  article-title: Dissimilation of cysteate via 3‐sulfolactate sulfo‐lyase and a sulfate exporter in NKNCYSA
  publication-title: Microbiology
– volume: 30
  start-page: 276
  year: 2015
  end-page: 280
  article-title: Phylogenetic Diversity of Genes in Subseafloor Sediments on the Northwestern Pacific Margin off Japan
  publication-title: Microbes Environ
– volume: 11
  start-page: e0164846
  year: 2016
  article-title: Matching the Diversity of Sulfated Biomolecules: Creation of a Classification Database for Sulfatases Reflecting Their Substrate Specificity
  publication-title: PLoS One
– volume: 88
  start-page: 173
  year: 2013
  end-page: 188
  article-title: Tetrathionate stimulated growth of identifies a new type of bi‐functional tetrathionate reductase (TsdA) that is widely distributed in bacteria
  publication-title: Mol Microbiol
– start-page: 93
  year: 2014
  end-page: 134
– volume: 6
  start-page: 846
  year: 2015
  article-title: Formate, acetate, and propionate as substrates for sulfate reduction in sub‐arctic sediments of Southwest Greenland
  publication-title: Front Microbiol
– volume: 172
  start-page: 4100
  year: 1990
  end-page: 4102
  article-title: Identification and cloning of genes involved in anaerobic sulfite reduction by
  publication-title: J Bacteriol
– volume: 17
  start-page: 918
  year: 2016b
  article-title: Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate‐reducing bacterium DSM 2059
  publication-title: BMC Genomics
– volume: 4
  start-page: 698
  year: 2011
  end-page: 702
  article-title: Microfossils of sulphur‐metabolizing cells in 3.4‐billion‐year‐old rocks of Western Australia
  publication-title: Nat Geosci
– volume: 5
  start-page: 99
  year: 1999
  end-page: 118
  article-title: Sulphur enrichment in organic matter of eastern Mediterranean sapropels: A study of sulphur isotope partitioning
  publication-title: Aquat Geochem
– volume: 62
  start-page: 45
  year: 2013
  end-page: 117
  article-title: Microbial sulfite respiration
  publication-title: Adv Microb Physiol
– volume: 8
  start-page: 452
  year: 2016
  end-page: 460
  article-title: Transcriptional analysis of sulfate reducing and chemolithoautotrophic sulfur oxidizing bacteria in the deep subseafloor
  publication-title: Environ Microbiol Rep
– volume: 503
  start-page: 168
  year: 2001
  end-page: 172
  article-title: The cysteine residue of the SoxY protein as the active site of protein‐bound sulfur oxidation of GB17
  publication-title: FEBS Lett
– volume: 272
  start-page: 9890
  year: 1997
  end-page: 9894
  article-title: Sulfide‐quinone reductase from . Purification, cloning, and expression
  publication-title: J Biol Chem
– volume: 3
  start-page: 1
  year: 2015
  end-page: 12
  article-title: Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria
  publication-title: Microbiome
– volume: 289
  start-page: 12390
  year: 2014
  end-page: 12403
  article-title: New proteins involved in sulfur trafficking in the cytoplasm of
  publication-title: J Biol Chem
– volume: 141
  start-page: 2897
  year: 1995
  end-page: 2904
  article-title: Arylsulphatase from
  publication-title: Microbiology
– volume: 37
  start-page: 16225
  year: 1998
  end-page: 16232
  article-title: ATP sulfurylases from sulfate‐reducing bacteria of the genus . A novel metalloprotein containing cobalt and zinc
  publication-title: Biochemistry
– volume: 14
  start-page: 2673
  year: 2012
  end-page: 2688
  article-title: Thiosulfate dehydrogenase: a widespread unusual acidophilic c‐type cytochrome
  publication-title: Environ Microbiol
– volume: 60
  start-page: 2325
  year: 1996
  end-page: 2332
  article-title: Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St Andrew Bay, Florida, USA
  publication-title: Geochim Cosmochim Acta
– volume: 43
  start-page: 5736
  year: 2004
  end-page: 5763
  article-title: Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility
  publication-title: Angew Chem Int Ed Engl
– volume: 18
  start-page: 3073
  year: 2016
  end-page: 3091
  article-title: Candidatus , a hydrogenotrophic sulfate‐reducing bacterium involved in the thermophilic anaerobic oxidation of methane
  publication-title: Environ Microbiol
– volume: 11
  start-page: 327
  year: 2016
  end-page: 336
  article-title: Happy together: microbial communities that hook up to swap electrons
  publication-title: ISME J
– volume: 68
  start-page: 316
  year: 2002
  end-page: 325
  article-title: Characterization of an autotrophic sulfide‐oxidizing marine sp. that produces filamentous sulfur
  publication-title: Appl Environ Microbiol
– volume: 57
  start-page: 847
  year: 1991
  end-page: 856
  article-title: Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark)
  publication-title: Appl Environ Microbiol
– volume: 7
  start-page: 964
  year: 2016
  article-title: Single‐cell sequencing of reveals genomic flexibility for adaptation to dynamic redox conditions
  publication-title: Front Microbiol
– volume: 75
  start-page: 3581
  year: 2011
  end-page: 3599
  article-title: A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark)
  publication-title: Geochim Cosmochim Acta
– volume: 25
  start-page: 1739
  year: 1993a
  end-page: 1744
  article-title: Mobilization of Recently‐Formed Soil Organic Sulfur
  publication-title: Soil Biol Biochem
– volume: 92
  start-page: fiw187
  year: 2016
  publication-title: FEMS Microbiol Ecol
– volume: 16
  start-page: 1612
  year: 2014
  end-page: 1626
  article-title: Close association of active nitrifiers with mats covering deep‐sea hydrothermal sediments
  publication-title: Environ Microbiol
– volume: 114
  start-page: 19
  year: 1992
  end-page: 24
  article-title: Cloning and sequencing of genes determining sodium dodecyl sulfate biodegradation
  publication-title: Gene
– volume: 8
  start-page: 58
  year: 2013
  end-page: 68
  article-title: Complete genome sequence of , a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds
  publication-title: Stand Genomic Sci
– volume: 526
  start-page: 531
  year: 2015
  end-page: 535
  article-title: Single cell activity reveals direct electron transfer in methanotrophic consortia
  publication-title: Nature
– volume: 10
  start-page: 2801
  year: 2016
  end-page: 2816
  article-title: Characterization of the first cultured representative of subdivision 5 indicates the proposal of a novel phylum
  publication-title: ISME J
– volume: 9
  start-page: 131
  year: 2007
  end-page: 142
  article-title: Diversity and abundance of sulfate‐reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea
  publication-title: Environ Microbiol
– volume: 75
  start-page: 5209
  year: 2009
  end-page: 5217
  article-title: Anaerobic respiration of elemental sulfur and thiosulfate by MR‐1 requires , a homolog of the gene of serovar typhimurium LT2
  publication-title: Appl Environ Microbiol
– volume: 58
  start-page: 4681
  year: 1994
  end-page: 4687
  article-title: Sulfonates ‐ a Novel Class of Organic Sulfur‐Compounds in Marine‐Sediments
  publication-title: Geochim Cosmochim Acta
– volume: 1
  start-page: 419
  year: 2007
  end-page: 435
  article-title: Fosmids of novel marine from the Namibian and Oregon coast upwelling systems and their cross‐comparison with planctomycete genomes
  publication-title: ISME J
– volume: 6
  start-page: 2178
  year: 2012
  end-page: 2187
  article-title: Roseobacter clade bacteria are abundant in coastal sediments and encode a novel combination of sulfur oxidation genes
  publication-title: ISME J
– volume: 7
  start-page: 1576
  year: 2016
  article-title: Microbial sulfate reduction potential in coal‐bearing sediments down to ∼2.5 km below the Seafloor off Shimokita Peninsula, Japan
  publication-title: Front Microbiol
– start-page: 97
  year: 2004
  end-page: 116
– volume: 159
  start-page: 491
  year: 1993
  end-page: 497
  article-title: Bacterial sulfur respiration
  publication-title: Archiv Microbiol
– volume: 336
  start-page: 1432
  year: 2012
  end-page: 1434
  article-title: A three‐stage symbiosis forms the foundation of seagrass ecosystems
  publication-title: Science
– volume: 64
  start-page: 119
  year: 1998
  end-page: 125
  article-title: Elemental sulfur and thiosulfate disproportionation by sp. nov., a new anaerobic bacterium isolated from marine surface sediment
  publication-title: Appl Environ Microbiol
– volume: 261
  start-page: 194
  year: 2006
  end-page: 202
  article-title: Siro(haem)amide in and relevance of DsrL and DsrN, a homolog of cobyrinic acid a,c‐diamide synthase, for sulphur oxidation
  publication-title: FEMS Microbiol Lett
– volume: 18
  start-page: 159
  year: 2016
  end-page: 173
  article-title: Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages
  publication-title: Environ Microbiol
– volume: 100
  start-page: 8298
  year: 2003
  end-page: 8303
  article-title: Complete genome sequence of the marine planctomycete sp. strain 1
  publication-title: Proc Natl Acad Sci USA
– volume: 507
  start-page: 114
  year: 2014
  end-page: 117
  article-title: Sulphoglycolysis in K‐12 closes a gap in the biogeochemical sulphur cycle
  publication-title: Nature
– volume: 32
  start-page: 275
  year: 1999
  end-page: 287
  article-title: The genetic basis of tetrathionate respiration in
  publication-title: Mol Microbiol
– volume: 50
  start-page: 194
  year: 2011
  end-page: 206
  article-title: Characterization of an NADH‐dependent persulfide reductase from PV‐4: implications for the mechanism of sulfur respiration via FAD‐dependent enzymes
  publication-title: Biochemistry
– volume: 2
  start-page: 253
  year: 2011
  article-title: Real‐time PCR quantification and diversity analysis of the functional genes and of sulfate‐reducing prokaryotes in marine sediments of the Peru continental margin and the Black Sea
  publication-title: Front Microbiol
– volume: 4
  start-page: 361
  year: 1986
  end-page: 387
  article-title: Chemical and microbiological studies of sulfide‐mediated manganese reduction
  publication-title: Geomicrobiol J
– volume: 526
  start-page: 587
  year: 2015
  end-page: 590
  article-title: Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria
  publication-title: Nature
– volume: 69
  start-page: 2463
  year: 2003
  end-page: 2483
  article-title: Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment
  publication-title: Appl Environ Microbiol
– volume: 117
  start-page: 209
  year: 1978
  end-page: 214
  article-title: Growth yields and growth rates of (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources
  publication-title: Arch Microbiol
– volume: 10
  start-page: 796
  year: 2016
  end-page: 809
  article-title: Activity and community structures of sulfate‐reducing microorganisms in polar, temperate and tropical marine sediments
  publication-title: ISME J
– volume: 4
  year: 2016
  article-title: Off limits: Sulfate below the sulfate‐methane transition
  publication-title: Front Earth Sci
– volume: 539
  start-page: 396
  year: 2016
  end-page: 401
  article-title: Thermophilic archaea activate butane via alkyl‐coenzyme M formation
  publication-title: Nature
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 35
  article-title: Long‐distance electron transport occurs globally in marine sediments
  publication-title: Biogeosciences Discuss
– volume: 16
  start-page: 2878
  year: 2016a
  end-page: 2893
  article-title: Differential proteomic analysis of the metabolic network of the marine sulfate‐reducer HRM2
  publication-title: Proteomics
– volume: 192
  start-page: 6369
  year: 2010
  end-page: 6377
  article-title: Biochemical characterization of individual components of the DsrMKJOP transmembrane complex aids understanding of complex function
  publication-title: J Bacteriol
– volume: 11
  start-page: 1058
  year: 2017
  end-page: 1058
  article-title: Genomic reconstruction of multiple lineages of uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches
  publication-title: ISME J.
– start-page: 271
  year: 2006
  end-page: 309
– volume: 6
  start-page: 725
  year: 2008
  end-page: 740
  article-title: Symbiotic diversity in marine animals: the art of harnessing chemosynthesis
  publication-title: Nat Rev Microbiol
– volume: 312
  start-page: 1011
  year: 2003
  end-page: 1018
  article-title: Sulfur oxidation in : interaction of the sulfur‐binding protein SoxYZ with the dimanganese SoxB protein
  publication-title: Biochem Biophys Res Commun
– volume: 91
  start-page: fiv084
  year: 2015
  article-title: Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes
  publication-title: FEMS Microbiol Ecol
– volume: 66
  start-page: 107
  year: 2016
  end-page: 112
  article-title: gen. nov., sp. nov., a chemoheterotrophic member of the order , and proposal of fam. nov
  publication-title: Int J Syst Evol Microbiol
– volume: 154
  start-page: 3112
  year: 2008
  end-page: 3121
  article-title: Molecular analysis of the diversity of the sulfide:quinone reductase ( ) gene in sediment environments
  publication-title: Microbiology
– volume: 39
  start-page: 297
  year: 2016
  end-page: 306
  article-title: A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema
  publication-title: Syst Appl Microbiol
– volume: 44
  start-page: 650
  year: 1999
  end-page: 661
  article-title: Sulfate reduction in surface sediments of the southeast Atlantic continental margin between 15 degrees 38'S and 27 degrees 57'S (Angola and Namibia)
  publication-title: Limnol Oceanogr
– volume: 583
  start-page: 1281
  year: 2009
  end-page: 1286
  article-title: Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation
  publication-title: FEBS Lett
– volume: 48
  start-page: 1
  year: 2005
  end-page: 640
  article-title: Aquatic Geomicrobiology
  publication-title: Aquat Geomicrobiol
– volume: 11
  start-page: 71
  year: 2016
  article-title: The complete genome sequences of sulfur‐oxidizing Gammaproteobacteria skN76(T) and HA5(T)
  publication-title: Stand Genomic Sci
– volume: 132
  start-page: 16
  year: 2007
  end-page: 22
  article-title: Identification of a gene encoding a tetrathionate hydrolase in
  publication-title: J Biotechnol
– volume: 249
  start-page: 152
  year: 1990
  end-page: 154
  article-title: A thiosulfate shunt in the sulfur cycle of marine‐sediments
  publication-title: Science
– volume: 21
  start-page: 5599
  year: 2002
  end-page: 5610
  article-title: Structural basis for the oxidation of thiosulfate by a sulfur cycle enzyme
  publication-title: EMBO J
– volume: 282
  start-page: 451
  year: 1982
  end-page: 473
  article-title: Burial of organic‐carbon and pyrite sulfur in the modern ocean ‐ its geochemical and environmental significance
  publication-title: Am J Sci
– volume: 2
  start-page: 81
  year: 2011
  article-title: Metabolic flexibility of sulfate‐reducing bacteria
  publication-title: Front Microbiol
– start-page: 241
  year: 1994
  end-page: 260
– volume: 9
  start-page: 1966
  year: 2015
  end-page: 1978
  article-title: Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments
  publication-title: ISME J
– volume: 53
  start-page: 619
  year: 1989
  end-page: 632
  article-title: Reactive iron in marine sediments
  publication-title: Geochim Cosmochim Acta
– volume: 68
  start-page: 3703
  year: 2004
  end-page: 3715
  article-title: A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide
  publication-title: Geochim Cosmochim Acta
– volume: 1837
  start-page: 1148
  year: 2014
  end-page: 1164
  article-title: The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism
  publication-title: Biochim Biophys Acta Bioenerg
– volume: 26
  start-page: R32
  year: 2016
  end-page: R33
  article-title: Ecology: Electrical cable bacteria save marine life
  publication-title: Curr Biol
– volume: 344
  start-page: 889
  year: 2014
  end-page: 891
  article-title: Global rates of marine sulfate reduction and implications for sub‐sea‐floor metabolic activities
  publication-title: Science
– volume: 25
  start-page: 327
  year: 1993b
  end-page: 335
  article-title: The incorporation and transformations of sulfur‐35 in soil: Effects of soil conditioning and glucose or sulphate additions
  publication-title: Soil Biol Biochem
– volume: 65
  start-page: 3982
  year: 1999
  end-page: 3989
  article-title: High bacterial diversity in permanently cold marine sediments
  publication-title: Appl Environ Microbiol
– volume: 10
  start-page: 1696
  year: 2016
  end-page: 1705
  article-title: Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction
  publication-title: ISME J
– volume: 7
  start-page: e40785
  year: 2012
  article-title: Cytoplasmic sulfur transferases in the purple sulfur bacterium : evidence for sulfur transfer from DsrEFH to DsrC
  publication-title: PLoS One
– volume: 336
  start-page: 608
  year: 2012
  end-page: 611
  article-title: Substrate‐controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom
  publication-title: Science
– volume: 52
  start-page: 1
  year: 1996
  end-page: 16
  article-title: Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater
  publication-title: Mar Chem
– volume: 11
  start-page: 1276
  year: 2017
  end-page: 1281
  article-title: Genomic repertoire of the /JTB255, cosmopolitan and abundant core members of microbial communities in marine sediments
  publication-title: ISME J.
– volume: 59
  start-page: 101
  year: 1993
  end-page: 108
  article-title: Bacterial disproportionation of elemental sulfur coupled to chemical reduction of iron or manganese
  publication-title: Appl Environ Microbiol
– volume: 275
  start-page: 13202
  year: 2000
  end-page: 13212
  article-title: Sulfite:Cytochrome c oxidoreductase from . Purification, characterization, and molecular biology of a heterodimeric member of the sulfite oxidase family
  publication-title: J Biol Chem
– volume: 72
  start-page: 827
  year: 2008
  end-page: 843
  article-title: Biogeochemistry of sulfur and iron in ‐colonized surface sediments in the upwelling area off central Chile
  publication-title: Geochim Cosmochim Acta
– ident: e_1_2_10_181_1
  doi: 10.1128/AEM.68.1.316-325.2002
– ident: e_1_2_10_53_1
  doi: 10.1128/JB.00849-10
– ident: e_1_2_10_25_1
  doi: 10.1016/0016-7037(89)90005-7
– ident: e_1_2_10_185_1
  doi: 10.1130/0-8137-2379-5.97
– ident: e_1_2_10_117_1
  doi: 10.1023/A:1009676107330
– ident: e_1_2_10_22_1
  doi: 10.1080/01490458609385944
– ident: e_1_2_10_78_1
  doi: 10.1038/ismej.2014.51
– ident: e_1_2_10_138_1
  doi: 10.1093/femsec/fiv084
– ident: e_1_2_10_186_1
  doi: 10.1016/j.gca.2007.11.031
– ident: e_1_2_10_63_1
  doi: 10.1111/1462-2920.12930
– ident: e_1_2_10_164_1
  doi: 10.1016/j.syapm.2016.05.006
– ident: e_1_2_10_31_1
  doi: 10.1128/JB.00569-09
– ident: e_1_2_10_149_1
  doi: 10.1016/B978-0-12-410515-7.00002-0
– ident: e_1_2_10_5_1
  doi: 10.1038/ismej.2011.66
– ident: e_1_2_10_170_1
  doi: 10.1016/j.bbabio.2014.03.007
– ident: e_1_2_10_128_1
  doi: 10.1016/S0014-5793(01)02727-2
– ident: e_1_2_10_146_1
  doi: 10.1016/j.gca.2014.05.038
– ident: e_1_2_10_73_1
  doi: 10.1007/3-540-32144-6_8
– ident: e_1_2_10_154_1
  doi: 10.1074/jbc.M113.536425
– ident: e_1_2_10_122_1
  doi: 10.1111/1462-2920.12410
– ident: e_1_2_10_145_1
  doi: 10.1074/jbc.272.15.9890
– ident: e_1_2_10_32_1
  doi: 10.1038/nature12947
– ident: e_1_2_10_131_1
  doi: 10.3389/fmicb.2012.00137
– ident: e_1_2_10_36_1
  doi: 10.1186/s12864-016-3236-7
– ident: e_1_2_10_130_1
  doi: 10.1016/bs.ampbs.2015.05.002
– ident: e_1_2_10_50_1
  doi: 10.1073/pnas.1431443100
– ident: e_1_2_10_152_1
  doi: 10.1038/ismej.2016.84
– ident: e_1_2_10_166_1
  doi: 10.1016/0016-7037(94)90200-3
– ident: e_1_2_10_172_1
  doi: 10.1021/bi101232y
– ident: e_1_2_10_68_1
  doi: 10.1038/296643a0
– ident: e_1_2_10_108_1
  doi: 10.1038/ismej.2014.208
– ident: e_1_2_10_127_1
  doi: 10.1038/ismej.2010.113
– ident: e_1_2_10_94_1
  doi: 10.1111/j.1574-6968.2006.00343.x
– ident: e_1_2_10_148_1
  doi: 10.1038/ismej.2015.233
– ident: e_1_2_10_173_1
  doi: 10.1128/mBio.00266-16
– ident: e_1_2_10_11_1
  doi: 10.1021/bi047334b
– ident: e_1_2_10_20_1
  doi: 10.1016/0016-7037(96)00087-7
– ident: e_1_2_10_95_1
  doi: 10.3389/fmicb.2011.00062
– ident: e_1_2_10_119_1
  doi: 10.1038/nature11586
– ident: e_1_2_10_124_1
  doi: 10.1016/j.gca.2004.03.012
– ident: e_1_2_10_61_1
  doi: 10.1128/jb.172.7.4100-4102.1990
– ident: e_1_2_10_54_1
  doi: 10.1002/anie.200300632
– ident: e_1_2_10_17_1
  doi: 10.1128/AEM.69.5.2463-2483.2003
– ident: e_1_2_10_136_1
  doi: 10.1016/j.gca.2012.05.036
– ident: e_1_2_10_70_1
  doi: 10.1007/978-3-662-04242-7_5
– ident: e_1_2_10_16_1
  doi: 10.1126/science.1249213
– ident: e_1_2_10_56_1
  doi: 10.1073/pnas.1322132111
– ident: e_1_2_10_116_1
  doi: 10.1111/1758-2229.12387
– ident: e_1_2_10_143_1
  doi: 10.1016/j.gca.2017.03.005
– ident: e_1_2_10_134_1
  doi: 10.1016/j.resmic.2005.05.009
– ident: e_1_2_10_113_1
  doi: 10.1038/nature08790
– ident: e_1_2_10_129_1
  doi: 10.1016/j.bbrc.2003.11.021
– ident: e_1_2_10_57_1
  doi: 10.1016/j.chemgeo.2006.05.011
– ident: e_1_2_10_44_1
  doi: 10.4056/sigs.3777412
– ident: e_1_2_10_176_1
  doi: 10.1128/AEM.04182-13
– ident: e_1_2_10_179_1
  doi: 10.1111/1462-2920.12316
– ident: e_1_2_10_180_1
  doi: 10.3389/fmicb.2016.00964
– ident: e_1_2_10_3_1
  doi: 10.3389/fmicb.2013.00362
– ident: e_1_2_10_49_1
  doi: 10.1016/0038-0717(93)90131-T
– ident: e_1_2_10_2_1
  doi: 10.1264/jsme2.ME15023
– ident: e_1_2_10_42_1
  doi: 10.1080/17415990802105770
– ident: e_1_2_10_85_1
  doi: 10.1038/nature07588
– volume: 268
  start-page: 14426
  year: 1993
  ident: e_1_2_10_34_1
  article-title: Nucleotide sequence of the heme subunit of flavocytochrome c from the purple phototrophic bacterium, Chromatium vinosum. A 2.6‐kilobase pair DNA fragment contains two multiheme cytochromes, a flavoprotein, and a homolog of human ankyrin
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)85257-2
– ident: e_1_2_10_24_1
  doi: 10.1128/AEM.00888-09
– ident: e_1_2_10_79_1
  doi: 10.1111/j.1432-1033.1992.tb16953.x
– ident: e_1_2_10_121_1
  doi: 10.1126/science.1145861
– ident: e_1_2_10_18_1
  doi: 10.1007/s00248-004-0070-2
– ident: e_1_2_10_65_1
  doi: 10.1111/j.1574-6941.2007.00373.x
– volume: 48
  start-page: 1
  year: 2005
  ident: e_1_2_10_27_1
  article-title: Aquatic Geomicrobiology
  publication-title: Aquat Geomicrobiol
– ident: e_1_2_10_82_1
  doi: 10.1074/jbc.M116.753863
– ident: e_1_2_10_135_1
  doi: 10.1099/mic.0.27548-0
– ident: e_1_2_10_84_1
  doi: 10.1038/nature20152
– ident: e_1_2_10_13_1
  doi: 10.1111/j.1462-2920.2010.02279.x
– ident: e_1_2_10_126_1
  doi: 10.1038/nature12365
– ident: e_1_2_10_118_1
  doi: 10.1038/nmicrobiol.2016.195
– ident: e_1_2_10_153_1
  doi: 10.1371/journal.pone.0040785
– ident: e_1_2_10_177_1
  doi: 10.1016/j.febslet.2009.03.020
– ident: e_1_2_10_159_1
  doi: 10.1007/978-3-642-38922-1_290
– ident: e_1_2_10_51_1
  doi: 10.3389/fmicb.2015.00846
– ident: e_1_2_10_120_1
  doi: 10.1099/mic.0.2008/018580-0
– ident: e_1_2_10_123_1
  doi: 10.3389/fmicb.2011.00081
– ident: e_1_2_10_168_1
  doi: 10.1128/jb.178.18.5438-5446.1996
– ident: e_1_2_10_26_1
  doi: 10.1111/j.1472-4669.2009.00214.x
– ident: e_1_2_10_55_1
  doi: 10.1093/femsec/fiw187
– ident: e_1_2_10_140_1
  doi: 10.1126/science.aad3558
– ident: e_1_2_10_97_1
  doi: 10.1073/pnas.90.11.5341
– ident: e_1_2_10_21_1
  doi: 10.3389/feart.2016.00075
– ident: e_1_2_10_103_1
  doi: 10.1007/s00253-010-2597-0
– ident: e_1_2_10_111_1
  doi: 10.1128/AEM.52.2.225-233.1986
– ident: e_1_2_10_112_1
  doi: 10.1016/j.cub.2015.11.014
– ident: e_1_2_10_157_1
  doi: 10.1016/j.gca.2011.03.028
– ident: e_1_2_10_33_1
  doi: 10.1111/j.1462-2920.2012.02820.x
– ident: e_1_2_10_35_1
  doi: 10.1002/pmic.201600041
– ident: e_1_2_10_142_1
  doi: 10.1126/science.aad7154
– ident: e_1_2_10_67_1
  doi: 10.1016/j.cbpa.2016.01.011
– ident: e_1_2_10_91_1
  doi: 10.1128/AEM.65.8.3328-3334.1999
– ident: e_1_2_10_184_1
  doi: 10.1021/es505531u
– ident: e_1_2_10_104_1
  doi: 10.1029/2011GL049725
– ident: e_1_2_10_105_1
  doi: 10.1038/nature11656
– ident: e_1_2_10_74_1
  doi: 10.1074/jbc.M005820200
– ident: e_1_2_10_106_1
  doi: 10.1128/jb.172.4.2065-2070.1990
– ident: e_1_2_10_139_1
  doi: 10.1016/j.syapm.2011.02.001
– ident: e_1_2_10_4_1
  doi: 10.1007/BF00402310
– ident: e_1_2_10_8_1
  doi: 10.1093/emboj/cdf566
– ident: e_1_2_10_133_1
  doi: 10.1128/AEM.65.9.3982-3989.1999
– ident: e_1_2_10_161_1
  doi: 10.1016/0016-7037(94)90446-4
– ident: e_1_2_10_59_1
  doi: 10.1023/A:1002449227469
– ident: e_1_2_10_175_1
  doi: 10.1016/j.margen.2012.12.001
– ident: e_1_2_10_80_1
  doi: 10.1007/BF00413135
– ident: e_1_2_10_86_1
  doi: 10.1038/ismej.2017.8
– ident: e_1_2_10_38_1
  doi: 10.1038/nrmicro1992
– ident: e_1_2_10_90_1
  doi: 10.1038/ismej.2012.66
– ident: e_1_2_10_99_1
  doi: 10.1038/ismej.2014.41
– ident: e_1_2_10_12_1
  doi: 10.2475/ajs.282.4.451
– ident: e_1_2_10_29_1
  doi: 10.3389/fmicb.2016.00440
– ident: e_1_2_10_101_1
  doi: 10.1038/ismej.2014.19
– ident: e_1_2_10_102_1
  doi: 10.1038/nature15512
– ident: e_1_2_10_43_1
  doi: 10.1128/AEM.64.1.119-125.1998
– ident: e_1_2_10_60_1
  doi: 10.1016/j.gca.2011.03.033
– ident: e_1_2_10_66_1
  doi: 10.1074/jbc.M503492200
– ident: e_1_2_10_81_1
  doi: 10.1111/1462-2920.13283
– ident: e_1_2_10_40_1
  doi: 10.1073/pnas.1507049112
– ident: e_1_2_10_110_1
  doi: 10.1111/1758-2229.12296
– ident: e_1_2_10_37_1
  doi: 10.1099/ijsem.0.000683
– ident: e_1_2_10_45_1
  doi: 10.1007/978-3-319-13521-2_5
– ident: e_1_2_10_41_1
  doi: 10.4319/lo.1999.44.3.0650
– ident: e_1_2_10_183_1
  doi: 10.1016/0304-4203(95)00072-0
– ident: e_1_2_10_62_1
  doi: 10.1126/science.1174012
– ident: e_1_2_10_137_1
  doi: 10.1038/ismej.2015.157
– ident: e_1_2_10_77_1
  doi: 10.1111/j.1365-2958.2011.07906.x
– ident: e_1_2_10_10_1
  doi: 10.1371/journal.pone.0164846
– ident: e_1_2_10_125_1
  doi: 10.1007/s00203-004-0683-3
– ident: e_1_2_10_9_1
  doi: 10.1099/13500872-141-11-2897
– ident: e_1_2_10_160_1
  doi: 10.1128/AEM.59.1.101-108.1993
– ident: e_1_2_10_162_1
  doi: 10.3389/fmicb.2014.00309
– ident: e_1_2_10_109_1
  doi: 10.1038/ismej.2016.185
– ident: e_1_2_10_141_1
  doi: 10.1007/BF00249025
– ident: e_1_2_10_150_1
  doi: 10.1042/BST20110713
– ident: e_1_2_10_163_1
  doi: 10.1128/JB.00208-10
– ident: e_1_2_10_76_1
  doi: 10.1074/jbc.275.18.13202
– ident: e_1_2_10_30_1
  doi: 10.1016/0378-1119(92)90702-Q
– ident: e_1_2_10_15_1
  doi: 10.1371/journal.pone.0101443
– ident: e_1_2_10_46_1
  doi: 10.1016/0016-7037(90)90008-9
– ident: e_1_2_10_114_1
  doi: 10.1080/014904502317246219
– ident: e_1_2_10_39_1
  doi: 10.1038/ismej.2015.257
– ident: e_1_2_10_52_1
  doi: 10.3389/fmicb.2016.01576
– ident: e_1_2_10_6_1
  doi: 10.1038/326891a0
– ident: e_1_2_10_93_1
  doi: 10.1038/ismej.2016.136
– ident: e_1_2_10_96_1
  doi: 10.1128/JB.182.7.1864-1871.2000
– ident: e_1_2_10_174_1
  doi: 10.1038/nature15733
– ident: e_1_2_10_178_1
  doi: 10.1016/j.bbabio.2009.07.005
– ident: e_1_2_10_58_1
  doi: 10.1046/j.1365-2958.1999.01345.x
– ident: e_1_2_10_132_1
  doi: 10.1128/AEM.67.1.387-395.2001
– ident: e_1_2_10_158_1
  doi: 10.1126/science.1218344
– ident: e_1_2_10_156_1
  doi: 10.1128/AEM.01382-15
– ident: e_1_2_10_100_1
  doi: 10.3389/fmicb.2016.00950
– ident: e_1_2_10_71_1
  doi: 10.1128/AEM.57.3.847-856.1991
– ident: e_1_2_10_88_1
  doi: 10.1111/j.1462-2920.2008.01855.x
– ident: e_1_2_10_165_1
  doi: 10.1186/s40793-016-0196-0
– ident: e_1_2_10_48_1
  doi: 10.1016/0038-0717(93)90178-E
– ident: e_1_2_10_115_1
  doi: 10.1016/j.jsb.2008.07.007
– ident: e_1_2_10_64_1
  doi: 10.1128/AEM.66.8.3650-3653.2000
– ident: e_1_2_10_92_1
  doi: 10.1111/mmi.12176
– ident: e_1_2_10_98_1
  doi: 10.1016/j.margen.2013.08.001
– ident: e_1_2_10_107_1
  doi: 10.1038/nsmb827
– ident: e_1_2_10_147_1
  doi: 10.1073/pnas.1510152112
– ident: e_1_2_10_28_1
  doi: 10.1126/science.1196889
– ident: e_1_2_10_89_1
  doi: 10.1111/j.1462-2920.2010.02380.x
– ident: e_1_2_10_144_1
  doi: 10.1146/annurev-marine-120308-081000
– ident: e_1_2_10_7_1
  doi: 10.1186/s40168-015-0077-6
– ident: e_1_2_10_83_1
  doi: 10.1016/0076-6879(94)43018-7
– ident: e_1_2_10_151_1
  doi: 10.1016/0146-6380(88)90079-4
– ident: e_1_2_10_14_1
  doi: 10.3389/fmicb.2011.00253
– ident: e_1_2_10_19_1
  doi: 10.1016/S0016-7037(98)00089-1
– ident: e_1_2_10_75_1
  doi: 10.1016/j.jbiotec.2007.08.030
– ident: e_1_2_10_169_1
  doi: 10.1038/ismej.2015.10
– ident: e_1_2_10_47_1
  doi: 10.1021/bi9816709
– volume: 379
  start-page: 63
  year: 2004
  ident: e_1_2_10_72_1
  article-title: Sulfide oxidation in marine sediments: Geochemistry meets microbiology
  publication-title: Geol Soc Am Spec Pap
– ident: e_1_2_10_69_1
  doi: 10.1126/science.249.4965.152
– ident: e_1_2_10_87_1
  doi: 10.1111/j.1462-2920.2006.01122.x
– ident: e_1_2_10_182_1
  doi: 10.1038/ismej.2007.63
– ident: e_1_2_10_23_1
  doi: 10.5194/bg-2016-362
– ident: e_1_2_10_171_1
  doi: 10.1038/ngeo1238
– ident: e_1_2_10_155_1
  doi: 10.1021/acs.est.5b04369
– ident: e_1_2_10_167_1
  doi: 10.1126/science.1219973
SSID ssj0064902
Score 2.5870724
SecondaryResourceType review_article
Snippet Summary Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major...
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of...
Almost the entire seafloor is covered with sediments that can be more than 10 000 m thick and represent a vast microbial ecosystem that is a major component of...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 323
SubjectTerms Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Bacteria - metabolism
Biogeochemistry
Biosphere
carbon
Carbon cycle
Cycles
Cytochrome
Ecological niches
Ecology
Ecosystem
energy
Energy conservation
Enzymes
Genetic diversity
Genetic transformation
Geologic Sediments - chemistry
Geologic Sediments - microbiology
Guilds
Hydrogen sulfide
iron
Manganese
Marine ecology
Marine ecosystems
Marine microorganisms
Marine sediments
microbial ecology
Microorganisms
Minireview
Minireviews
Molybdenum
niches
nitrogen
Ocean floor
organic sulfur compounds
Organosulfur compounds
Oxidation
phenotype
Phylogeny
Physiology
Proteins
Redox properties
Respiration
Seawater - analysis
Seawater - microbiology
Sediments
Sulfate reduction
Sulfates
Sulfur
Sulfur - analysis
Sulfur - metabolism
Sulfur compounds
Sulfur cycle
Title The life sulfuric: microbial ecology of sulfur cycling in marine sediments
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1758-2229.12538
https://www.ncbi.nlm.nih.gov/pubmed/28419734
https://www.proquest.com/docview/3092268671
https://www.proquest.com/docview/1889782533
https://www.proquest.com/docview/2020911969
https://pubmed.ncbi.nlm.nih.gov/PMC5573963
Volume 9
WOSCitedRecordID wos000405931900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1758-2229
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064902
  issn: 1758-2229
  databaseCode: DRFUL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB_0TuFe_NarnkcEH3zp2SbpJvFN1EVEjkM82LfSNMlZ2OvK9VbY_96Z9INbj0MEX0ohSWkmM_lN2pnfALz2KoiZcUUqKlelUmcuRZw3aeHohBuIgd3FYhPq-FgvFuZkiCakXJieH2L64EaWEfdrMvDKdleMHHEP15hzc4QYLfRt2M1zoal6A5cn42Y8k0PY4dh5YPehYJ4_HrANTNe8zetBk1ed2YhG8_v_YR4P4N7girL3ve48hFu-fQR3--KUm8fwBTWILZvgWbdeBiIfesfOm8jbhKN8ZLvesFUYmlm9oSzLM9a07LyinELWITDGDLoncDr_9P3D53SovJDWBaJXajj3mVK5y520WR3QpwuZ9ngK50q5uqqDc9Y6X3jveaalNc5kQbpCWIMLrMVT2GlXrd8HJgw6haa22johbXAVenzSmRC0DMqGPIGjUexlPdCSU3WMZTkeT0hAJQmojAJK4M004GfPyHFz14NxHcvBNLtSZDi7GdH6JfBqakajoj8lVetX667MtcbTNT5C3NyHo6ONSGFmJoFnvWpM74OYnxslZAJqS2mmDkTqvd3SNj8iuXdRKIGbYgJvo9L8bYolWquMd8__ecQL2OPkpMRwxgPYubxY-5dwp_512XQXh9GO8KoW-hB2P36bn379DT4nHO0
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6VFlQuLa9CSgtG4sAlJYmdtc0N0a4KLHtArdSbFcc2RNpmUdNF2n_P2Hlol6qqkLhF8jiK7Rl_M874G4C3ljs6kiaPaWGKmInExIjzMs6Nj3CdZ2A3odgEn07FxYVcvQvT8kMMB27eMsJ-7Q3cH0ivWDkCHy5ylskjBGkq7sEWQ2VCLd86_j4-n_T78Yh1mYe9eEfw4_N5_nrFOjbdcDhv5k2u-rMBkMa7_2Moj2Cnc0fJx1Z_HsOGrZ_Ag7ZA5fIpfEEtIrPKWdIsZs4TEH0gl1XgbsJeNjBeL8ncdc2kXPqblj9IVZPLwt8rJA2CY7hF9wzOxydnn07jrvpCXOaIYLHMMptwnprUMJ2UDv06lwiLkXjGuSmL0hmjtbG5tTZLBNPSyMQxk1MtcZEF3YPNel7bF0CoRMdQllpoQ5l2pkCvjxnpnGCOa5dGcNTPuyo7anJfIWOm-hDFT5DyE6TCBEXwbujwq2XluF30oF9I1Zlno2iCoxt5ar8I3gzNaFj-b0lR2_miUakQGGHjK-jtMhk624gWciQjeN7qxvA9iPup5JRFwNe0ZhDwxN7rLXX1MxB85zmnuDFG8D5ozV1DVGixLDzt_3OP17B9evZtoiafp19fwsPMOy0hvfEANq-vFvYQ7pe_r6vm6lVnVn8A4EYf6w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7STRtyafpK4jZtVeihF6e2Ja-k3kqTpY-wlNJAbsKypNaw8YY4G9h_35H8YLchhEJvBj2wRjP6ZuzRNwBvLXd0LE0e08IUMROJiRHnZZwbH-E6z8BuQrEJPp2KszO5ehem5YcYPrh5ywjntTdwe2HcipUj8OEmZ5k8RJCm4h5sMl9KZgSbRz8mpyf9eTxmXeZh370j-PH5PH9NsY5NNxzOm3mTq_5sAKTJzv9YyiN42Lmj5GOrP49hw9ZP4EFboHL5FL6iFpFZ5SxpFjPnCYg-kPMqcDfhKBsYr5dk7rpmUi79TctfpKrJeeHvFZIGwTHconsGp5Pjn58-x131hbjMEcFimWU24Tw1qWE6KR36dS4RFiPxjHNTFqUzRmtjc2ttlgimpZGJYyanWuImC7oLo3pe230gVKJjKEsttKFMO1Og18eMdE4wx7VLIzjs5a7KjprcV8iYqT5E8QJSXkAqCCiCd8OAi5aV4_auB_1Gqs48G0UTXN3YU_tF8GZoRsPyf0uK2s4XjUqFwAgbp6C398nQ2Ua0kGMZwV6rG8P7IO6nklMWAV_TmqGDJ_Zeb6mr34HgO885xYMxgvdBa-5aokKLZeHp-T-PeA1b348m6uTL9NsL2M68zxKyGw9gdHW5sC_hfnl9VTWXrzqr-gM7Px9m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+life+sulfuric%3A+microbial+ecology+of+sulfur+cycling+in+marine+sediments&rft.jtitle=Environmental+microbiology+reports&rft.au=Wasmund%2C+Kenneth&rft.au=Mu%C3%9Fmann%2C+Marc&rft.au=Loy%2C+Alexander&rft.date=2017-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1758-2229&rft.volume=9&rft.issue=4&rft.spage=323&rft.epage=344&rft_id=info:doi/10.1111%2F1758-2229.12538&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=1011111758222912538
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1758-2229&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1758-2229&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1758-2229&client=summon