DNA topoisomerases: Advances in understanding of cellular roles and multi‐protein complexes via structure‐function analysis
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interac...
Uložené v:
| Vydané v: | BioEssays Ročník 43; číslo 4; s. e2000286 - n/a |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
Wiley Subscription Services, Inc
01.04.2021
|
| Predmet: | |
| ISSN: | 0265-9247, 1521-1878, 1521-1878 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA‐associated proteins, supporting the idea that they often function as part of multi‐enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini‐A. These new findings are advancing our understanding of DNA‐related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
DNA topoisomerases are fundamental to the life of all cells due to their numerous roles in DNA metabolic processes; this includes transcription, replication, chromosome segregation, DNA repair, neurodevelopment, tumour suppression, mitochondrial DNA maintenance, and RNA processing, with new roles still being actively elucidated 50 years after their discovery. |
|---|---|
| AbstractList | DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multienzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism. DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA‐associated proteins, supporting the idea that they often function as part of multi‐enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini‐A. These new findings are advancing our understanding of DNA‐related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism. DNA topoisomerases are fundamental to the life of all cells due to their numerous roles in DNA metabolic processes; this includes transcription, replication, chromosome segregation, DNA repair, neurodevelopment, tumour suppression, mitochondrial DNA maintenance, and RNA processing, with new roles still being actively elucidated 50 years after their discovery. DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA‐associated proteins, supporting the idea that they often function as part of multi‐enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini‐A. These new findings are advancing our understanding of DNA‐related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism. DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism. |
| Author | Neuman, Keir C. Maxwell, Anthony McKie, Shannon J. |
| AuthorAffiliation | 1 Department Biological Chemistry, John Innes Centre, Norwich, UK 2 Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA |
| AuthorAffiliation_xml | – name: 1 Department Biological Chemistry, John Innes Centre, Norwich, UK – name: 2 Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA |
| Author_xml | – sequence: 1 givenname: Shannon J. surname: McKie fullname: McKie, Shannon J. organization: NHLBI – sequence: 2 givenname: Keir C. surname: Neuman fullname: Neuman, Keir C. organization: NHLBI – sequence: 3 givenname: Anthony orcidid: 0000-0002-5756-6430 surname: Maxwell fullname: Maxwell, Anthony email: tony.maxwell@jic.ac.uk organization: John Innes Centre |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33480441$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFks9uFSEYxYmpsbfVrUsziRs3cwUGZsCFyW2t2qTRhbomDMNUGgau_Ll6V-0j-Iw-iUxuW7WJ6YqQ73dOPg7nAOw57zQATxFcIgjxy97ouMQQw3Jh7QOwQBSjGrGO7YEFxC2tOSbdPjiI8aIwvMXkEdhvGsIgIWgBLt98WFXJr72JftJBRh1fVathI53SsTKuym7QISbpBuPOKz9WSlubrQxV8LYgZVBN2Sbz6-rnOviki0b5aW31jzLdGFnFFLJKOehCjNmpZLwrMmm30cTH4OEobdRPrs9D8OXtyefj9_XZx3enx6uzWtG2a2ukIep7pgbeSywhRZ1iY0MgQwqplg5qhAOUuOFcKangqKmUnBHe9ZRx2MvmELze-a5zP-lBaZeCtGIdzCTDVnhpxL8TZ76Kc78RXYsI4bgYvLg2CP5b1jGJycQ5C-m0z1FgiknTNLRj96MlfNw1nM6uz--gFz6Hks1sCBFrGaa8UM_-Xv5265tvLADZASr4GIMehTJJzkGXtxgrEBRzW8TcFnHbliJb3pHdOP9XwHeC78bq7T20ODo9-fRH-xuGBdeI |
| CitedBy_id | crossref_primary_10_1002_anie_202414325 crossref_primary_10_3390_ijms241311199 crossref_primary_10_3390_ph16101456 crossref_primary_10_1042_BST20240089 crossref_primary_10_1107_S2059798323002565 crossref_primary_10_3390_ijms241512107 crossref_primary_10_3390_molecules27103274 crossref_primary_10_3390_microorganisms10122434 crossref_primary_10_1016_j_fbio_2024_103849 crossref_primary_10_31083_j_fbl2703093 crossref_primary_10_1093_molbev_msac155 crossref_primary_10_1093_nar_gkab869 crossref_primary_10_1128_aac_00669_22 crossref_primary_10_1016_j_csbj_2025_03_041 crossref_primary_10_1038_s42004_024_01129_y crossref_primary_10_1134_S0006297923070040 crossref_primary_10_1042_BST20200454 crossref_primary_10_1128_jb_00190_25 crossref_primary_10_1038_s41467_023_44089_y crossref_primary_10_3390_antibiotics11091156 crossref_primary_10_3390_ph18010072 crossref_primary_10_1111_mmi_14813 crossref_primary_10_1016_j_ejmech_2021_113970 crossref_primary_10_1039_D3RA06189B crossref_primary_10_1016_j_inoche_2025_115544 crossref_primary_10_1093_nar_gkae703 crossref_primary_10_1007_s10867_025_09686_6 crossref_primary_10_1021_acsinfecdis_4c00880 crossref_primary_10_3390_cells13060553 crossref_primary_10_1016_j_arabjc_2023_105423 crossref_primary_10_1016_j_ejmech_2023_116056 crossref_primary_10_1002_ange_202414325 crossref_primary_10_1016_j_mib_2024_102559 crossref_primary_10_1038_s41467_025_60559_x crossref_primary_10_1007_s12064_024_00427_2 crossref_primary_10_1016_j_tim_2024_11_013 crossref_primary_10_1016_j_sciaf_2025_e02658 crossref_primary_10_4155_fmc_2021_0266 crossref_primary_10_1038_s41589_022_01235_9 crossref_primary_10_7717_peerj_17864 crossref_primary_10_1093_nar_gkaf929 crossref_primary_10_1021_acs_jpcb_5c04512 crossref_primary_10_1111_mmi_14997 crossref_primary_10_1111_mmi_15328 crossref_primary_10_1093_nar_gkad190 crossref_primary_10_3390_ijms24043986 crossref_primary_10_1093_nargab_lqae085 crossref_primary_10_1038_s41598_025_93122_1 crossref_primary_10_7554_eLife_67021 crossref_primary_10_1016_j_bmc_2024_117798 crossref_primary_10_1007_s11030_024_11092_4 crossref_primary_10_1042_BSR20212847 crossref_primary_10_3390_cancers15164127 crossref_primary_10_3389_fmolb_2022_1007064 crossref_primary_10_1016_j_chemosphere_2024_143006 crossref_primary_10_3390_ijms241310740 crossref_primary_10_3390_molecules29030581 crossref_primary_10_1016_j_ijbiomac_2024_131991 crossref_primary_10_3390_ijms25115674 crossref_primary_10_3390_ijms241713080 crossref_primary_10_3390_ijms26052018 crossref_primary_10_1002_jat_4238 crossref_primary_10_1093_nar_gkad688 crossref_primary_10_3389_fmicb_2022_1032320 crossref_primary_10_1093_nar_gkae657 crossref_primary_10_3390_cells12070986 crossref_primary_10_3390_molecules28165996 crossref_primary_10_1371_journal_pgen_1010754 crossref_primary_10_1093_nar_gkab270 crossref_primary_10_1128_AAC_00676_21 crossref_primary_10_3389_fcell_2023_1214962 crossref_primary_10_1242_jcs_262004 crossref_primary_10_3390_ijms26136193 crossref_primary_10_3390_ph16010094 crossref_primary_10_1099_jmm_0_002024 crossref_primary_10_1038_s41598_022_08359_x crossref_primary_10_1016_j_phrs_2024_107457 crossref_primary_10_1016_j_jmb_2025_169349 crossref_primary_10_1093_nar_gkab239 crossref_primary_10_1134_S000629792560019X crossref_primary_10_3390_ijms241914806 crossref_primary_10_1016_j_jbc_2025_110495 crossref_primary_10_1093_femsre_fuac049 crossref_primary_10_3390_ph15091098 crossref_primary_10_1016_j_inoche_2022_109779 crossref_primary_10_1002_bies_202100187 crossref_primary_10_3389_fmolb_2022_871161 crossref_primary_10_1016_j_fitote_2023_105617 crossref_primary_10_1111_mmi_15014 crossref_primary_10_1038_s41467_022_32106_5 crossref_primary_10_3389_fmicb_2023_1192831 crossref_primary_10_1093_nar_gkae638 crossref_primary_10_1039_D4RA01437E crossref_primary_10_1007_s13659_023_00392_1 crossref_primary_10_3390_ijms252212265 crossref_primary_10_1016_j_csbj_2023_07_019 crossref_primary_10_1016_j_actatropica_2022_106613 crossref_primary_10_1016_j_bpj_2024_10_002 crossref_primary_10_1038_s41598_025_93863_z crossref_primary_10_1128_AAC_01514_21 crossref_primary_10_1016_j_parint_2024_102863 crossref_primary_10_21518_ms2025_141 crossref_primary_10_1016_j_plaphy_2022_11_019 crossref_primary_10_3390_molecules27227768 crossref_primary_10_1093_nar_gkaf452 crossref_primary_10_1093_nar_gkaf330 |
| Cites_doi | 10.7554/eLife.31724 10.1073/pnas.1921848117 10.1016/j.chembiol.2010.04.012 10.1126/science.aad5309 10.1093/nar/gkp024 10.1016/j.pbi.2003.09.009 10.1038/nsmb.1604 10.1093/nar/gky1143 10.1038/nature01097 10.1016/j.jmb.2011.03.030 10.1093/nar/gky1222 10.1093/nar/gkaa201 10.1073/pnas.1133178100 10.1016/j.sbi.2012.11.011 10.1016/j.cell.2015.05.032 10.1128/mBio.01001-13 10.3390/ijms20051238 10.1038/364735a0 10.1038/nature08974 10.1093/nar/gkq153 10.1016/j.jmb.2016.08.005 10.1111/j.1365-2958.1995.tb02264.x 10.1093/nar/11.10.2999 10.1126/science.287.5450.131 10.1093/nar/gkt560 10.1016/S0021-9258(19)83859-0 10.1073/pnas.0900574106 10.1038/s41467-019-12914-y 10.1016/S0092-8674(85)80028-3 10.1038/171964b0 10.1093/nar/gkv1073 10.1038/nsmb.2388 10.1074/jbc.M910091199 10.1073/pnas.1001855107 10.1016/S0021-9258(18)35660-6 10.1016/j.biochi.2007.02.012 10.1093/nar/gky1271 10.1073/pnas.0401595101 10.1023/B:CHRO.0000036608.91085.d1 10.1016/0092-8674(87)90518-6 10.1101/gad.838900 10.1073/pnas.111006998 10.1093/molbev/msm217 10.1074/jbc.M303403200 10.1038/171737a0 10.1242/jcs.013730 10.1038/sj.emboj.7600922 10.1016/S0021-9258(19)36714-6 10.1002/prot.340060307 10.1016/j.jmb.2019.07.008 10.3390/polym10101126 10.1073/pnas.0437998100 10.1128/JB.187.24.8531-8536.2005 10.1016/S0968-0004(99)01503-0 10.1126/science.aad5196 10.1073/pnas.101132498 10.1038/s41467-020-18456-y 10.1093/nar/gkr258 10.1158/1078-0432.CCR-13-1997 10.1128/JB.140.2.424-435.1979 10.1083/jcb.120.3.601 10.1073/pnas.1422203112 10.1007/s00018-013-1325-1 10.1016/j.jmb.2005.06.029 10.1111/j.1742-4658.2006.05518.x 10.1105/tpc.107.054361 10.1074/jbc.M211211200 10.1093/nar/gks626 10.1038/ncb3353 10.1016/j.gpb.2016.02.004 10.1016/j.molcel.2014.01.011 10.1073/pnas.73.11.3872 10.1073/pnas.111040498 10.1016/S0168-9525(02)02650-1 10.1073/pnas.0505883102 10.1074/jbc.M112.345736 10.1093/nar/22.9.1567 10.1073/pnas.84.20.7024 10.7554/eLife.26120 10.1038/sj.embor.7400101 10.1016/S0092-8674(00)81876-0 10.1128/JB.162.3.1173-1179.1985 10.1146/annurev.bi.59.070190.004441 10.1038/ncomms10466 10.1016/j.str.2007.12.020 10.1371/journal.pgen.1006754 10.1021/cb300648v 10.1002/mgg3.1145 10.1038/nature03395 10.1073/pnas.90.10.4753 10.1098/rsob.190222 10.1016/j.jmb.2007.01.065 10.1016/S0960-9822(02)01218-6 10.1016/S0006-291X(03)01169-0 10.1146/annurev.biophys.33.110502.140357 10.1016/0092-8674(90)90172-B 10.1016/S0021-9258(18)60974-3 10.1074/jbc.274.23.16654 10.1016/0022-2836(78)90061-X 10.1038/nsmb1264 10.1046/j.1365-2958.2000.01763.x 10.1093/emboj/18.21.6177 10.1016/j.cell.2016.02.036 10.1093/nar/28.7.1548 10.1038/nn.3479 10.3390/genes10110859 10.1016/0092-8674(83)90140-X 10.1016/0167-4781(92)90050-A 10.1038/s41598-018-27606-8 10.1073/pnas.95.3.1010 10.1128/mSphere.00025-15 10.1128/JB.158.2.397-403.1984 10.1002/j.1460-2075.1995.tb00098.x 10.1038/309677a0 10.1093/nar/gku589 10.1016/S0092-8674(03)01023-7 10.1016/j.cca.2017.03.022 10.1016/j.bbrc.2010.05.081 10.1016/j.jmb.2020.06.018 10.1073/pnas.0703587104 10.1016/0022-2836(71)90334-2 10.1093/hmg/ddn219 10.1021/bi034188l 10.1038/ncomms9962 10.1074/jbc.M511160200 10.1016/j.str.2005.03.013 10.1074/jbc.273.50.33660 10.1016/j.neuron.2012.04.009 10.1128/JB.00563-18 10.1038/s41467-018-05406-y 10.1093/nar/gku076 10.1016/j.cub.2003.12.043 10.1016/j.jmb.2012.07.014 10.1073/pnas.1008678107 10.1016/j.molcel.2008.04.019 10.1186/s12929-016-0255-2 10.1016/S1074-5521(03)00027-9 10.1073/pnas.90.18.8571 10.1073/pnas.1008140107 10.1371/journal.pone.0011338 10.1038/s41594-019-0201-6 10.1016/0022-2836(84)90080-9 10.1093/nar/gkw122 10.1016/j.cell.2019.09.034 10.1016/S0021-9258(18)47037-8 10.1073/pnas.0400836101 10.1073/pnas.1202041109 10.1105/tpc.107.054833 10.1371/journal.pgen.1006025 10.1093/nar/gks1017 10.1006/excr.1997.3805 10.1101/gad.1725108 10.1146/annurev.biochem.70.1.369 10.1038/srep42123 10.1073/pnas.242259599 10.1038/ng.2446 10.2741/970 10.1038/sj.emboj.7600622 10.1073/pnas.69.1.143 10.1016/j.jmb.2012.10.016 10.1038/nature02253 10.1093/nar/gku568 10.1016/j.molcel.2008.04.020 10.1016/S0960-9822(02)01198-3 10.1146/annurev.bi.65.070196.003223 10.1093/oso/9780198567097.001.0001 10.1128/EC.00357-06 10.1038/s41467-019-10180-6 10.1016/S0022-2836(02)00049-9 10.1083/jcb.201303045 10.1016/j.molcel.2017.11.033 10.1073/pnas.93.18.9477 10.1093/nar/gks1073 10.1016/j.jmb.2020.08.012 10.1093/nar/gks852 10.1038/nsmb.2775 10.1038/s41594-018-0158-x 10.1016/j.tibtech.2006.04.006 10.1073/pnas.75.4.1773 10.1093/nar/gkp032 10.1093/nar/gkz260 10.1242/jcs.058255 10.1021/bi962880t 10.1093/emboj/cdg008 10.1016/S0378-1119(01)00496-6 10.1093/nar/gkn587 10.1016/S0966-842X(96)10085-8 10.1111/mmi.14424 10.1073/pnas.70.11.3077 10.1016/S0021-9258(19)57259-3 10.1093/nar/26.18.4205 10.1074/jbc.M502838200 10.1038/nn.3484 10.1073/pnas.152337599 10.1093/nargab/lqz021 10.1016/j.abb.2017.06.021 10.1128/ecosalplus.ESP-0010-2014 10.1126/science.279.5356.1534 10.1038/emboj.2009.371 10.1073/pnas.97.17.9419 10.1007/s00253-011-3557-z 10.1073/pnas.1115704109 10.1074/jbc.REV120.008286 10.1101/gad.321836.118 10.3390/ijms19071917 10.1111/j.1574-6968.1995.tb07782.x 10.1038/nature06396 10.1111/tpj.12199 10.1073/pnas.2001760117 10.1038/386414a0 10.1074/jbc.271.35.21529 10.1016/S1097-2765(03)00013-3 |
| ContentType | Journal Article |
| Copyright | 2021 The Authors. published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. 2021 The Authors. BioEssays published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 The Authors. published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. – notice: 2021 The Authors. BioEssays published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. – notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
| DOI | 10.1002/bies.202000286 |
| DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef MEDLINE AGRICOLA MEDLINE - Academic Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1521-1878 |
| EndPage | n/a |
| ExternalDocumentID | PMC7614492 33480441 10_1002_bies_202000286 BIES202000286 |
| Genre | reviewArticle Research Support, N.I.H., Intramural Review Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Wellcome Trust funderid: 110072/Z/15/Z – fundername: Biotechnology and Biological Sciences Research Council funderid: BB/P012523/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/P012523/1 – fundername: Wellcome Trust grantid: 110072/Z/15/Z – fundername: Intramural NIH HHS grantid: ZIA HL001056 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/J/00000201 – fundername: Wellcome Trust grantid: 110072 |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABJNI ABLJU ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACKIV ACKOT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 C45 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KD1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWR RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UDS V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ XG1 XV2 Y6R YYQ YZZ ZGI ZUP ZXP ZY4 ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 7S9 L.6 5PM |
| ID | FETCH-LOGICAL-c5676-1e01bb8cd9ba2a0517c8f34081c1c65dcf0d0a2399ccac0fe5aa98497b5890ba3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 129 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609916500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0265-9247 1521-1878 |
| IngestDate | Tue Nov 04 02:06:42 EST 2025 Fri Jul 11 18:35:37 EDT 2025 Fri Jul 11 07:59:26 EDT 2025 Fri Jul 25 10:06:32 EDT 2025 Mon Jul 21 05:35:28 EDT 2025 Tue Nov 18 21:09:26 EST 2025 Sat Nov 29 05:24:46 EST 2025 Wed Jan 22 16:31:17 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | DNA supercoiling anti-cancer drugs DNA gyrase antibiotics DNA topoisomerase |
| Language | English |
| License | Attribution 2021 The Authors. BioEssays published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c5676-1e01bb8cd9ba2a0517c8f34081c1c65dcf0d0a2399ccac0fe5aa98497b5890ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-5756-6430 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202000286 |
| PMID | 33480441 |
| PQID | 2501868259 |
| PQPubID | 37030 |
| PageCount | 19 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614492 proquest_miscellaneous_2524333578 proquest_miscellaneous_2480273952 proquest_journals_2501868259 pubmed_primary_33480441 crossref_citationtrail_10_1002_bies_202000286 crossref_primary_10_1002_bies_202000286 wiley_primary_10_1002_bies_202000286_BIES202000286 |
| PublicationCentury | 2000 |
| PublicationDate | April 2021 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: April 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Cambridge |
| PublicationTitle | BioEssays |
| PublicationTitleAlternate | Bioessays |
| PublicationYear | 2021 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2007; 104 2002; 18 2010; 107 1990; 59 2019; 10 2010; 17 1978; 75 2002; 12 2010; 465 2002; 99 2008; 36 2019; 201 2004; 5 2013; 70 2012; 19 1998; 279 2008; 30 2020; 11 2002; 318 1995; 131 1997; 5 2013; 8 2003; 278 1985; 162 1993; 120 2014; 21 1983; 11 2014; 20 1993; 364 1998; 273 2018; 7 2004; 33 2018; 9 1976; 73 2018; 8 1994; 269 2020; 295 2005; 187 1984; 158 2000; 14 2019; 20 1992; 1132 2006; 24 2010; 29 2011; 408 2005; 102 2019; 26 2006; 25 1997; 386 2007; 450 2000; 97 2007; 6 2008; 22 2006; 281 1982; 257 1998; 95 2010; 5 2003; 42 1996; 65 2009; 16 2019; 431 2016; 44 2007; 19 2019; 9 2010; 38 2005; 351 1987; 50 2019; 33 1989; 6 1992; 267 1996; 93 2016; 165 2002; 419 1972; 69 2016; 18 1953; 171 2016; 14 2007; 14 2018; 25 2012; 109 2016; 12 2014; 42 2018; 19 2017; 429 2016; 7 2001; 271 2016; 1 1984; 179 2015; 112 1997; 36 2011; 92 2013; 75 2019; 47 2019; 179 2020; 432 2018; 10 2012; 44 1979; 140 2007; 89 2003; 100 2016; 23 2012; 41 2003; 22 2005; 13 2012; 40 2009; 106 1987; 262 2017; 6 2017; 7 1997; 237 2012; 287 1997; 88 2013; 23 2013; 203 2017; 45 1994; 22 2003; 115 2017; 633 2003; 10 2005; 24 2003; 11 2020; 8 1971; 55 2014; 5 2020; 3 1987; 84 2020; 2 2013; 16 1999; 18 2003; 6 2003; 8 2015; 43 1986; 261 2010; 397 2020; 48 2000; 287 2016; 351 2007; 24 2001; 98 2014; 53 1996; 7 2004; 101 2001; 70 2007; 368 1998; 26 1991; 2 1973; 70 2015; 161 2015; 6 2000; 28 2000; 25 1995; 15 1995; 14 2005; 434 2010; 123 2008; 16 2008; 17 2013; 425 2013; 41 2007; 120 1984; 309 2006; 273 2007 2005 1993; 90 2000; 275 1985; 41 2011; 39 2012; 424 2018; 69 2012; 74 1983; 34 1990; 63 2005; 280 2003; 307 2003; 426 2020 2000; 35 2004; 14 2017; 13 2004; 12 1999; 274 1978; 120 1996; 271 2020; 117 2018 2020; 113 2009; 37 2017; 469 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_200_1 Ahmad M. (e_1_2_11_55_1) 2017; 45 e_1_2_11_186_1 e_1_2_11_32_1 e_1_2_11_78_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_148_1 e_1_2_11_102_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_211_1 e_1_2_11_81_1 e_1_2_11_197_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_89_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_113_1 e_1_2_11_208_1 e_1_2_11_174_1 e_1_2_11_151_1 e_1_2_11_201_1 e_1_2_11_92_1 e_1_2_11_187_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_54_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_141_1 e_1_2_11_164_1 Woessner R. D. (e_1_2_11_165_1) 1991; 2 e_1_2_11_190_1 e_1_2_11_212_1 e_1_2_11_80_1 e_1_2_11_198_1 e_1_2_11_88_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_39_1 e_1_2_11_152_1 e_1_2_11_175_1 e_1_2_11_209_1 e_1_2_11_180_1 e_1_2_11_72_1 e_1_2_11_202_1 e_1_2_11_188_1 e_1_2_11_57_1 e_1_2_11_34_1 e_1_2_11_95_1 e_1_2_11_11_1 e_1_2_11_104_1 e_1_2_11_127_1 e_1_2_11_2_1 e_1_2_11_142_1 e_1_2_11_191_1 e_1_2_11_60_1 e_1_2_11_213_1 e_1_2_11_45_1 e_1_2_11_199_1 e_1_2_11_68_1 e_1_2_11_22_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_19_1 e_1_2_11_176_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_181_1 e_1_2_11_71_1 e_1_2_11_203_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_189_1 e_1_2_11_33_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_3_1 e_1_2_11_143_1 e_1_2_11_166_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_192_1 e_1_2_11_214_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_154_1 e_1_2_11_177_1 Soren B. C. (e_1_2_11_79_1) 2020; 3 e_1_2_11_131_1 Cho J.‐E. (e_1_2_11_83_1) 2018 e_1_2_11_182_1 e_1_2_11_204_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_106_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_144_1 e_1_2_11_193_1 e_1_2_11_215_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_85_1 e_1_2_11_117_1 e_1_2_11_59_1 e_1_2_11_178_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_170_1 e_1_2_11_50_1 e_1_2_11_220_1 e_1_2_11_183_1 e_1_2_11_205_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_96_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_217_1 e_1_2_11_160_1 Anderson H. (e_1_2_11_167_1) 1996; 7 e_1_2_11_61_1 e_1_2_11_194_1 e_1_2_11_216_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_84_1 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_133_1 Kondekar S. M. (e_1_2_11_23_1) 2020 e_1_2_11_171_1 e_1_2_11_91_1 e_1_2_11_221_1 e_1_2_11_184_1 e_1_2_11_30_1 e_1_2_11_99_1 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_169_1 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_123_1 e_1_2_11_218_1 e_1_2_11_161_1 e_1_2_11_195_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_64_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_206_1 e_1_2_11_172_1 e_1_2_11_90_1 e_1_2_11_185_1 Gubaev A. (e_1_2_11_136_1) 2016; 44 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 Bates A. D. (e_1_2_11_5_1) 2005 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_219_1 e_1_2_11_162_1 e_1_2_11_210_1 e_1_2_11_196_1 Dyson S. (e_1_2_11_159_1) 2020 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_158_1 e_1_2_11_37_1 e_1_2_11_135_1 e_1_2_11_112_1 e_1_2_11_150_1 e_1_2_11_173_1 e_1_2_11_207_1 |
| References_xml | – volume: 426 start-page: 870 issue: 6968 year: 2003 end-page: 874 article-title: The Bloom's syndrome helicase suppresses crossing over during homologous recombination publication-title: Nature – volume: 7 year: 2017 article-title: Structural basis of the interaction between topoisomerase IIIbeta and the TDRD3 auxiliary factor publication-title: Sci. Rep. – volume: 47 start-page: 210 issue: 1 year: 2019 end-page: 220 article-title: Single‐molecule imaging of DNA gyrase activity in living publication-title: Nucleic Acids Res. – volume: 6 issue: 2 year: 2015 article-title: DNA topoisomerases publication-title: EcoSal Plus – volume: 22 start-page: 2856 issue: 20 year: 2008 end-page: 2868 article-title: BLAP18/RMI2, a novel OB‐fold‐containing protein, is an essential component of the Bloom helicase‐double Holliday junction dissolvasome publication-title: Genes Dev. – volume: 16 start-page: 360 issue: 3 year: 2008 end-page: 370 article-title: Crystal structure of an intact type II DNA topoisomerase: Insights into DNA transfer mechanisms publication-title: Structure – volume: 16 start-page: 1238 issue: 9 year: 2013 end-page: 1247 article-title: Top3beta is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation publication-title: Nat. Neurosci. – volume: 9 start-page: 3085 issue: 1 year: 2018 article-title: Structural insights into the gating of DNA passage by the topoisomerase II DNA‐gate publication-title: Nat. Commun. – volume: 368 start-page: 105 issue: 1 year: 2007 end-page: 118 article-title: Structural studies of topoisomerase III‐DNA complexes reveal a novel type IA topoisomerase‐DNA conformational intermediate publication-title: J. Mol. Biol. – volume: 25 start-page: 24 issue: 1 year: 2000 end-page: 28 article-title: GHKL, an emergent ATPase/kinase superfamily publication-title: Trends Biochem. Sci. – volume: 106 start-page: 6986 issue: 17 year: 2009 end-page: 6991 article-title: Mechanisms of chiral discrimination by topoisomerase IV publication-title: Proc Natl Acad Sci U S A – volume: 99 start-page: 15387 issue: 24 year: 2002 end-page: 15392 article-title: The mechanism of topoisomerase I poisoning by a camptothecin analog publication-title: Proc Natl Acad Sci U S A – volume: 17 start-page: 3236 issue: 20 year: 2008 end-page: 3246 article-title: Tdrd3 is a novel stress granule‐associated protein interacting with the fragile‐X syndrome protein FMRP publication-title: Hum. Mol. Genet. – volume: 42 start-page: 5993 issue: 20 year: 2003 end-page: 6004 article-title: Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase publication-title: Biochemistry – volume: 432 start-page: 4762 issue: 16 year: 2020 end-page: 4771 article-title: A beta‐hairpin is a minimal latch that supports positive supercoiling by reverse gyrase publication-title: J. Mol. Biol. – volume: 19 issue: 7 year: 2018 article-title: The roles of DNA topoisomerase IIbeta in transcription publication-title: Int. J. Mol. Sci. – volume: 273 start-page: 33660 issue: 50 year: 1998 end-page: 33666 article-title: Essential mitotic functions of DNA topoisomerase IIalpha are not adopted by topoisomerase IIbeta in human H69 cells publication-title: J. Biol. Chem. – volume: 408 start-page: 839 issue: 5 year: 2011 end-page: 849 article-title: TopR2, the second reverse gyrase of , exhibits unusual properties publication-title: J. Mol. Biol. – volume: 117 start-page: 10856 issue: 20 year: 2020 end-page: 10864 article-title: Direct observation of helicase‐topoisomerase coupling within reverse gyrase publication-title: Proc Natl Acad Sci U S A – volume: 281 start-page: 3738 issue: 6 year: 2006 end-page: 3742 article-title: The “GyrA‐box” is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction publication-title: J. Biol. Chem. – volume: 20 issue: 5 year: 2019 article-title: The impact of the C‐terminal region on the interaction of topoisomerase II alpha with mitotic chromatin publication-title: Int. J. Mol. Sci. – volume: 179 issue: 3 year: 2019 article-title: Synergistic coordination of chromatin torsional mechanics and topoisomerase activity publication-title: Cell – volume: 47 start-page: 5231 issue: 10 year: 2019 end-page: 5242 article-title: Topoisomerase IV can functionally replace all type 1A topoisomerases in publication-title: Nucleic Acids Res. – volume: 158 start-page: 397 year: 1984 end-page: 403 article-title: DNA supercoiling in gyrase mutants publication-title: J. Bacteriol. – volume: 13 issue: 5 year: 2017 article-title: Transcription facilitated genome‐wide recruitment of topoisomerase I and DNA gyrase publication-title: PLoS Genet. – year: 2007 article-title: MIDGET unravels functions of the arabidopsis topoisomerase VI complex in DNA endoreduplication, chromatin condensation, and transcriptional silencing publication-title: Plant Cell – volume: 425 start-page: 32 issue: 1 year: 2013 end-page: 40 article-title: Reverse gyrase transiently unwinds double‐stranded DNA in an ATP‐dependent reaction publication-title: J. Mol. Biol. – volume: 109 start-page: 16360 issue: 40 year: 2012 end-page: 16365 article-title: Integration of stress‐related and reactive oxygen species‐mediated signals by topoisomerase VI in publication-title: Proc Natl Acad Sci U S A – volume: 275 start-page: 19498 issue: 26 year: 2000 end-page: 19504 article-title: Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling publication-title: J. Biol. Chem. – volume: 203 start-page: 471 issue: 3 year: 2013 end-page: 486 article-title: A novel chromatin tether domain controls topoisomerase IIalpha dynamics and mitotic chromosome formation publication-title: J. Cell Biol. – volume: 10 start-page: 4935 issue: 1 year: 2019 article-title: Cryo‐EM structure of the complete DNA gyrase nucleoprotein complex publication-title: Nat. Commun. – volume: 171 start-page: 964 issue: 4361 year: 1953 end-page: 967 article-title: Genetical implications of the structure of deoxyribonucleic acid publication-title: Nature – volume: 84 start-page: 7024 issue: 20 year: 1987 end-page: 7027 article-title: Supercoiling of the DNA template during transcription publication-title: Proc Natl Acad Sci U S A – volume: 48 start-page: 4448 issue: 8 year: 2020 end-page: 4462 article-title: Mechanistic insights from structure of topoisomerase I with ssDNA bound to both N‐ and C‐terminal domains publication-title: Nucleic Acids Res. – volume: 41 start-page: 7815 issue: 16 year: 2013 end-page: 7827 article-title: Structural insight into negative DNA supercoiling by DNA gyrase, a bacterial type 2A DNA topoisomerase publication-title: Nucleic Acids Res. – volume: 351 start-page: 545 issue: 3 year: 2005 end-page: 561 article-title: The structural basis for substrate specificity in DNA topoisomerase IV publication-title: J. Mol. Biol. – volume: 41 start-page: 1058 issue: 2 year: 2013 end-page: 1070 article-title: Crystal structures of reverse gyrase: Inferences for the mechanism of positive DNA supercoiling publication-title: Nucleic Acids Res. – volume: 261 start-page: 5616 issue: 12 year: 1986 end-page: 5624 article-title: Complete enzymatic replication of plasmids containing the origin of the chromosome publication-title: J. Biol. Chem. – volume: 22 start-page: 1567 year: 1994 end-page: 1575 article-title: Evidence for a conformational change in the DNA gyrase‐DNA complex from hydroxyl radical footprinting publication-title: Nucleic Acids Res. – volume: 23 start-page: 125 issue: 1 year: 2013 end-page: 133 article-title: New insights into DNA‐binding by type IIA topoisomerases publication-title: Curr. Opin. Struct. Biol. – volume: 8 start-page: d210 year: 2003 end-page: d221 article-title: The problem of hypernegative supercoiling and R‐loop formation in transcription publication-title: Front Biosci – volume: 12 start-page: 1782 issue: 20 year: 2002 end-page: 1786 article-title: DNA topoisomerase VI is essential for endoreduplication in publication-title: Curr. Biol. – volume: 10 issue: 10 year: 2018 article-title: Chromatin loop extrusion and chromatin unknotting publication-title: Polymers (Basel) – volume: 92 start-page: 479 issue: 3 year: 2011 end-page: 497 article-title: Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives publication-title: Appl. Microbiol. Biotechnol. – volume: 6 start-page: 8962 year: 2015 article-title: PICH promotes sister chromatid disjunction and co‐operates with topoisomerase II in mitosis publication-title: Nat. Commun. – volume: 36 start-page: 5882 issue: 18 year: 2008 end-page: 5895 article-title: The reverse gyrase helicase‐like domain is a nucleotide‐dependent switch that is attenuated by the topoisomerase domain publication-title: Nucleic Acids Res. – volume: 267 start-page: 20532 year: 1992 end-page: 20535 article-title: topoisomerase III‐catalyzed cleavage of RNA publication-title: J. Biol. Chem. – volume: 44 start-page: 10354 issue: 21 year: 2016 end-page: 10366 article-title: DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking‐closing mechanism publication-title: Nucleic Acids Res. – volume: 8 issue: 3 year: 2020 article-title: A de novo TOP2B variant associated with global developmental delay and autism spectrum disorder publication-title: Mol Genet Genomic Med – volume: 65 start-page: 635 year: 1996 end-page: 692 article-title: DNA topoisomerases publication-title: Annu. Rev. Biochem. – volume: 13 start-page: 873 issue: 6 year: 2005 end-page: 882 article-title: Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI publication-title: Structure – volume: 18 start-page: 692 issue: 6 year: 2016 end-page: 699 article-title: Sister chromatid resolution is an intrinsic part of chromosome organization in prophase publication-title: Nat. Cell Biol. – volume: 5 start-page: e01001 issue: 1 year: 2014 end-page: 01013 article-title: The SMC complex MukBEF recruits topoisomerase IV to the origin of replication region in live publication-title: MBio – year: 2020 article-title: Condensin minimizes topoisomerase II‐mediated entanglements of DNA publication-title: EMBO J. – volume: 24 start-page: 245 issue: 6 year: 2006 end-page: 247 article-title: DNA topoisomerase V: A new fold of mysterious origin publication-title: Trends Biotechnol. – volume: 70 start-page: 3077 issue: 11 year: 1973 end-page: 3081 article-title: Effect of circularity and superhelicity on transcription from bacteriophagelambda DNA publication-title: Proc Natl Acad Sci U S A – volume: 278 start-page: 30705 issue: 33 year: 2003 end-page: 30710 article-title: Direct interaction between RNA polymerase and the zinc ribbon domains of DNA topoisomerase I publication-title: J. Biol. Chem. – volume: 11 start-page: 189 issue: 1 year: 2003 end-page: 201 article-title: Temporal regulation of topoisomerase IV activity in publication-title: Mol. Cell – volume: 23 start-page: 38 year: 2016 article-title: Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity publication-title: J Biomed Sci – volume: 465 start-page: 641 issue: 7298 year: 2010 end-page: 644 article-title: A novel and unified two‐metal mechanism for DNA cleavage by type II and IA topoisomerases publication-title: Nature – volume: 18 start-page: 6177 year: 1999 end-page: 6188 article-title: Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo 11 publication-title: EMBO J. – volume: 271 start-page: 21529 issue: 35 year: 1996 end-page: 21535 article-title: Two distinct modes of strand unlinking during theta‐type DNA replication publication-title: J. Biol. Chem. – volume: 12 issue: 5 year: 2016 article-title: Mapping topoisomerase IV binding and activity sites on the genome publication-title: PLoS Genet. – volume: 269 start-page: 27663 issue: 44 year: 1994 end-page: 27669 article-title: Purification of a DNA topoisomerase II from the hyperthermophilic archaeon . A thermostable enzyme with both bacterial and eucaryal features publication-title: J. Biol. Chem. – volume: 104 start-page: 9242 issue: 22 year: 2007 end-page: 9247 article-title: Development of autoimmunity in mice lacking DNA topoisomerase 3beta publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 267 issue: 4 year: 2019 end-page: 274 article-title: PICH and TOP3A cooperate to induce positive DNA supercoiling publication-title: Nat. Struct. Mol. Biol. – volume: 257 start-page: 5866 issue: 10 year: 1982 end-page: 5872 article-title: Yeast DNA topoisomerase II. An ATP‐dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double‐stranded DNA rings publication-title: J. Biol. Chem. – volume: 274 start-page: 16654 issue: 23 year: 1999 end-page: 16658 article-title: Relaxation of transcription‐induced negative supercoiling is an essential function of DNA topoisomerase I publication-title: J. Biol. Chem. – volume: 93 start-page: 9477 issue: 18 year: 1996 end-page: 9482 article-title: An RNA topoisomerase publication-title: Proc Natl Acad Sci U S A – volume: 633 start-page: 78 year: 2017 end-page: 84 article-title: Topoisomerase IIbeta and its role in different biological contexts publication-title: Arch. Biochem. Biophys. – volume: 90 start-page: 4753 issue: 10 year: 1993 end-page: 4757 article-title: Reverse gyrase: A helicase‐like domain and a type I topoisomerase in the same polypeptide publication-title: Proc Natl Acad Sci U S A – volume: 75 start-page: 1773 issue: 4 year: 1978 end-page: 1777 article-title: Purification of subunits of DNA gyrase and reconstitution of enzymatic activity publication-title: Proc Natl Acad Sci U S A – volume: 42 start-page: 8200 issue: 13 year: 2014 end-page: 8213 article-title: Reverse gyrase–recent advances and current mechanistic understanding of positive DNA supercoiling publication-title: Nucleic Acids Res. – volume: 7 year: 2018 article-title: Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage publication-title: Elife – volume: 19 start-page: 3655 issue: 11 year: 2007 end-page: 3668 article-title: BIN4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis publication-title: Plant Cell – volume: 267 start-page: 25676 issue: 36 year: 1992 end-page: 25684 article-title: Purification and characterization of DNA topoisomerase IV in publication-title: J. Biol. Chem. – volume: 95 start-page: 1010 year: 1998 end-page: 1013 article-title: Mammalian DNA topoisomerase IIIa is essential in early embryogenesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 55 start-page: 523 year: 1971 end-page: 533 article-title: Interaction between DNA and an protein w publication-title: J. Mol. Biol – volume: 34 start-page: 105 issue: 1 year: 1983 end-page: 113 article-title: Regulation of the genes for DNA gyrase: Homeostatic control of DNA supercoiling publication-title: Cell – volume: 10 start-page: 2252 issue: 1 year: 2019 article-title: The FANCM‐BLM‐TOP3A‐RMI complex suppresses alternative lengthening of telomeres (ALT) publication-title: Nat. Commun. – volume: 98 start-page: 6015 issue: 11 year: 2001 end-page: 6020 article-title: A type IB topoisomerase with DNA repair activities publication-title: Proc. Natl. Acad. Sci. USA – volume: 15 start-page: 507 year: 1995 end-page: 517 article-title: Overexpression of the genes coding for DNA topoisomerase IV compensates for loss of DNA topoisomerase I: Effect on virulence gene expression publication-title: Molec. Microbiol. – volume: 74 start-page: 285 issue: 2 year: 2012 end-page: 299 article-title: De novo gene disruptions in children on the autistic spectrum publication-title: Neuron – volume: 17 start-page: 421 issue: 5 year: 2010 end-page: 433 article-title: DNA topoisomerases and their poisoning by anticancer and antibacterial drugs publication-title: Chem. Biol. – volume: 351 start-page: 939 issue: 6276 year: 2016 end-page: 943 article-title: A DNA topoisomerase VI‐like complex initiates meiotic recombination publication-title: Science – volume: 140 start-page: 424 year: 1979 end-page: 435 article-title: mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: Effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth publication-title: J. Bacteriol. – volume: 24 start-page: 2827 issue: 12 year: 2007 end-page: 2841 article-title: Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage‐specific loss publication-title: Mol. Biol. Evol. – volume: 73 start-page: 3872 issue: 11 year: 1976 end-page: 3876 article-title: DNA gyrase: An enzyme that introduces superhelical turns into DNA publication-title: Proc Natl Acad Sci U S A – volume: 7 start-page: 83 issue: 1 year: 1996 end-page: 90 article-title: Topoisomerase II inhibitors affect entry into mitosis and chromosome condensation in BHK cells publication-title: Cell Growth Differ. – volume: 11 start-page: 2999 issue: 10 year: 1983 end-page: 3017 article-title: Positively supercoiled plasmid DNA is produced by treatment of with DNA gyrase inhibitors publication-title: Nucleic Acids Res. – volume: 41 start-page: 553 issue: 2 year: 1985 end-page: 563 article-title: DNA topoisomerase II is required at the time of mitosis in yeast publication-title: Cell – volume: 18 start-page: 236 issue: 5 year: 2002 end-page: 237 article-title: A hot story from comparative genomics: Reverse gyrase is the only hyperthermophile‐specific protein publication-title: Trends Genet. – volume: 120 start-page: 3952 issue: Pt 22 year: 2007 end-page: 3964 article-title: Depletion of topoisomerase IIalpha leads to shortening of the metaphase interkinetochore distance and abnormal persistence of PICH‐coated anaphase threads publication-title: J. Cell Sci. – volume: 98 start-page: 5717 issue: 10 year: 2001 end-page: 5721 article-title: Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan publication-title: Proc Natl Acad Sci U S A – volume: 287 start-page: 18645 issue: 22 year: 2012 end-page: 18654 article-title: Mechanisms for defining supercoiling set point of DNA gyrase orthologs: II. The shape of the GyrA Subunit C‐terminal domain (CTD) is not a sole determinant for controlling supercoiling efficiency publication-title: J. Biol. Chem. – volume: 12 start-page: 1787 issue: 20 year: 2002 end-page: 1791 article-title: An archaebacterial topoisomerase homolog not present in other eukaryotes is indispensable for cell proliferation of plants publication-title: Curr. Biol. – volume: 53 start-page: 484 issue: 3 year: 2014 end-page: 497 article-title: Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation publication-title: Mol. Cell – volume: 40 start-page: 10893 issue: 21 year: 2012 end-page: 10903 article-title: The GyrA‐box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle publication-title: Nucleic Acids Res. – volume: 30 start-page: 790 issue: 6 year: 2008 end-page: 802 article-title: Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast publication-title: Mol. Cell – volume: 6 year: 2017 article-title: Metaphase chromosome structure is dynamically maintained by condensin I‐directed DNA (de)catenation publication-title: Elife – volume: 309 start-page: 677 year: 1984 end-page: 681 article-title: Reverse gyrase – a topoisomerase which introduces positive superhelical turns into DNA publication-title: Nature – volume: 469 start-page: 63 year: 2017 end-page: 68 article-title: Global developmental delay and intellectual disability associated with a de novo TOP2B mutation publication-title: Clin. Chim. Acta – volume: 8 start-page: 9272 issue: 1 year: 2018 article-title: Post‐translational modifications in DNA topoisomerase 2alpha highlight the role of a eukaryote‐specific residue in the ATPase domain publication-title: Sci. Rep. – volume: 70 start-page: 4067 issue: 21 year: 2013 end-page: 4084 article-title: The BLM dissolvasome in DNA replication and repair publication-title: Cell. Mol. Life Sci. – volume: 47 start-page: 1416 issue: 3 year: 2019 end-page: 1427 article-title: Genome‐wide mapping of Topoisomerase I activity sites reveal its role in chromosome segregation publication-title: Nucleic Acids Res. – volume: 1132 start-page: 43 issue: 1 year: 1992 end-page: 48 article-title: Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development publication-title: Biochim. Biophys. Acta – volume: 2 issue: 1 year: 2020 article-title: Expanding the type IIB DNA topoisomerase family: Identification of new topoisomerase and topoisomerase‐like proteins in mobile genetic elements publication-title: NAR Genomics and Bioinformatics – volume: 101 start-page: 7293 issue: 19 year: 2004 end-page: 7298 article-title: The C‐terminal domain of DNA gyrase A adopts a DNA‐bending {beta}‐pinwheel fold publication-title: Proc Natl Acad Sci U S A – volume: 161 start-page: 1592 issue: 7 year: 2015 end-page: 1605 article-title: Activity‐induced DNA breaks govern the expression of neuronal early‐response genes publication-title: Cell – volume: 102 start-page: 18736 issue: 51 year: 2005 end-page: 18741 article-title: RHL1 is an essential component of the plant DNA topoisomerase VI complex and is required for ploidy‐dependent cell growth publication-title: Proc Natl Acad Sci U S A – volume: 429 start-page: 3156 issue: 21 year: 2017 end-page: 3167 article-title: Ribonucleotides and transcription‐associated mutagenesis in yeast publication-title: J. Mol. Biol. – volume: 271 start-page: 81 issue: 1 year: 2001 end-page: 86 article-title: Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants publication-title: Gene – volume: 26 start-page: 4205 year: 1998 end-page: 4213 article-title: Toprim – a conserved catalytic domain in type IA and II topoisomerases, DnaG‐type primases, OLD family nucleases and RecR proteins publication-title: Nucleic Acids Res. – volume: 295 start-page: 7138 issue: 20 year: 2020 end-page: 7153 article-title: The many lives of type IA topoisomerases publication-title: J. Biol. Chem. – volume: 434 start-page: 671 issue: 7033 year: 2005 end-page: 674 article-title: Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB publication-title: Nature – year: 2005 – volume: 101 start-page: 7821 issue: 20 year: 2004 end-page: 7826 article-title: Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria publication-title: Proc Natl Acad Sci U S A – volume: 262 start-page: 10419 year: 1987 end-page: 10421 article-title: Intrinsic DNA‐dependent ATPase activity of reverse gyrase publication-title: J. Biol. Chem. – volume: 10 start-page: 107 issue: 2 year: 2003 end-page: 111 article-title: Emerging roles for plant topoisomerase VI publication-title: Chem. Biol. – volume: 9 issue: 12 year: 2019 article-title: Loss of TOP3B leads to increased R‐loop formation and genome instability publication-title: Open Biol – volume: 131 start-page: 235 issue: 3 year: 1995 end-page: 242 article-title: Structure and partitioning of bacterial DNA: Determined by a balance of compaction and expansion forces? publication-title: FEMS Microbiol. Lett. – volume: 14 start-page: R56 issue: 2 year: 2004 end-page: R58 article-title: Recombination: Holliday junction resolution and crossover formation publication-title: Curr. Biol. – volume: 107 start-page: 18826 issue: 44 year: 2010 end-page: 18831 article-title: Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in publication-title: Proc. Natl. Acad. Sci. USA – volume: 21 start-page: 261 issue: 3 year: 2014 end-page: 268 article-title: Structural and mechanistic insight into Holliday‐junction dissolution by topoisomerase IIIalpha and RMI1 publication-title: Nat. Struct. Mol. Biol. – volume: 112 start-page: 7495 issue: 24 year: 2015 end-page: 7500 article-title: Direct observation of DNA overwinding by reverse gyrase publication-title: Proc Natl Acad Sci U S A – volume: 431 start-page: 3427 issue: 18 year: 2019 end-page: 3449 article-title: DNA topoisomerase inhibitors: Trapping a DNA‐cleaving machine in motion publication-title: J. Mol. Biol. – volume: 6 start-page: 544 issue: 6 year: 2003 end-page: 553 article-title: Big it up”: Endoreduplication and cell‐size control in plants publication-title: Curr. Opin. Plant Biol. – volume: 171 start-page: 737 year: 1953 end-page: 738 article-title: A structure for deoxyribose nucleic acid publication-title: Nature – volume: 35 start-page: 888 issue: 4 year: 2000 end-page: 895 article-title: Identification of a unique domain essential for DNA topoisomerase III‐catalysed decatenation of replication intermediates publication-title: Mol. Microbiol. – volume: 279 start-page: 1534 year: 1998 end-page: 1540 article-title: A model for the mechanism of human topoisomerase I publication-title: Science – volume: 44 start-page: 3464 issue: 7 year: 2016 end-page: 3474 article-title: topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site publication-title: Nucleic Acids Res. – volume: 419 start-page: 498 issue: 6906 year: 2002 article-title: Genome sequence of the human malaria parasite publication-title: Nature – volume: 47 start-page: 1373 issue: 3 year: 2019 end-page: 1388 article-title: Single‐nucleotide‐resolution mapping of DNA gyrase cleavage sites across the genome publication-title: Nucleic Acids Res. – volume: 22 start-page: 151 issue: 1 year: 2003 end-page: 163 article-title: Structure of the topoisomerase VI‐B subunit: Implications for type II topoisomerase mechanism and evolution publication-title: EMBO J. – volume: 5 start-page: 256 issue: 3 year: 2004 end-page: 261 article-title: A topological view of the replicon publication-title: EMBO Rep. – volume: 6 start-page: 249 year: 1989 end-page: 258 article-title: The carboxyl terminal domain of DNA topoisomerase I confers higher affinity to DNA publication-title: Proteins: Struct. Funct. Genet. – volume: 69 issue: 1 year: 2018 article-title: Topoisomerase 3alpha is required for decatenation and segregation of human mtDNA publication-title: Mol. Cell – volume: 19 start-page: 1147 issue: 11 year: 2012 end-page: 1154 article-title: Structure of a topoisomerase II‐DNA‐nucleotide complex reveals a new control mechanism for ATPase activity publication-title: Nat. Struct. Mol. Biol. – volume: 100 start-page: 8654 issue: 15 year: 2003 end-page: 8659 article-title: Chirality sensing by topoisomerase IV and the mechanism of type II topoisomerases publication-title: Proc Natl Acad Sci U S A – volume: 69 start-page: 143 issue: 1 year: 1972 end-page: 146 article-title: An activity from mammalian cells that untwists superhelical DNA–a possible swivel for DNA replication (polyoma‐ethidium bromide‐mouse‐embryo cells‐dye binding assay) publication-title: Proc Natl Acad Sci U S A – volume: 307 start-page: 301 issue: 2 year: 2003 end-page: 307 article-title: Induction of apoptosis by depletion of DNA topoisomerase IIalpha in mammalian cells publication-title: Biochem. Biophys. Res. Commun. – volume: 364 start-page: 735 year: 1993 end-page: 737 article-title: DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a hyperthermophilic prokaryote publication-title: Nature – volume: 59 start-page: 933 year: 1990 end-page: 969 article-title: DNA recognition by proteins with the helix‐turn‐helix motif publication-title: Annu. Rev. Biochem. – volume: 28 start-page: 1548 issue: 7 year: 2000 end-page: 1554 article-title: Molecular characterisation of two paralogous SPO11 homologues in publication-title: Nucleic Acids Res. – volume: 162 start-page: 1173 year: 1985 end-page: 1179 article-title: Genetic analysis of mutations that compensate for loss of DNA topoisomerase I publication-title: J. Bacteriol. – volume: 89 start-page: 490 issue: 4 year: 2007 end-page: 499 article-title: Thirty years of DNA gyrase: From in vivo function to single‐molecule mechanism publication-title: Biochimie – volume: 37 start-page: 702 issue: 3 year: 2009 end-page: 711 article-title: Effects of magnesium and related divalent metal ions in topoisomerase structure and function publication-title: Nucleic Acids Res. – volume: 120 start-page: 145 year: 1978 end-page: 154 article-title: Superhelical DNA: Relaxation by coumermycin publication-title: J. Mol. Biol. – volume: 7 issue: 1 year: 2016 article-title: MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation publication-title: Nat. Commun. – volume: 42 start-page: 8578 issue: 13 year: 2014 end-page: 8591 article-title: DNA topoisomerase VIII: A novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria publication-title: Nucleic Acids Res. – volume: 11 start-page: 4714 issue: 1 year: 2020 article-title: Multiplex flow magnetic tweezers reveal rare enzymatic events with single molecule precision publication-title: Nat. Commun. – volume: 5 start-page: 102 issue: 3 year: 1997 end-page: 109 article-title: DNA gyrase as a drug target publication-title: Trends Microbiol. – volume: 99 start-page: 10191 issue: 15 year: 2002 end-page: 10196 article-title: A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development publication-title: Proc Natl Acad Sci U S A – volume: 424 start-page: 109 issue: 3‐4 year: 2012 end-page: 124 article-title: The structure of DNA‐bound human topoisomerase II alpha: Conformational mechanisms for coordinating inter‐subunit interactions with DNA cleavage publication-title: J. Mol. Biol. – volume: 33 start-page: 276 issue: 5‐6 year: 2019 end-page: 281 article-title: Resolution of human ribosomal DNA occurs in anaphase, dependent on tankyrase 1, condensin II, and topoisomerase IIalpha publication-title: Genes Dev. – volume: 39 start-page: 6327 issue: 15 year: 2011 end-page: 6339 article-title: The ancestral role of ATP hydrolysis in type II topoisomerases: Prevention of DNA double‐strand breaks publication-title: Nucleic Acids Res. – volume: 16 start-page: 667 issue: 6 year: 2009 end-page: 669 article-title: Structural insight into the quinolone‐DNA cleavage complex of type IIA topoisomerases publication-title: Nat. Struct. Mol. Biol. – volume: 5 issue: 6 year: 2010 article-title: Structural basis of gate‐DNA breakage and resealing by type II topoisomerases publication-title: PLoS One – volume: 37 start-page: 679 issue: 3 year: 2009 end-page: 692 article-title: Phylogenomics of DNA topoisomerases: Their origin and putative roles in the emergence of modern organisms publication-title: Nucleic Acids Res. – volume: 50 start-page: 917 issue: 6 year: 1987 end-page: 925 article-title: DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in publication-title: Cell – volume: 179 start-page: 559 year: 1984 end-page: 563 article-title: ATP‐dependent DNA topoisomerase from the Archaebacterium publication-title: J. Mol. Biol. – volume: 287 start-page: 131 issue: 5450 year: 2000 end-page: 134 article-title: DNA topoisomerase IIbeta and neural development publication-title: Science – volume: 70 start-page: 369 year: 2001 end-page: 413 article-title: DNA topoisomerases: Structure, function, and mechanism publication-title: Annu. Rev. Biochem. – volume: 14 start-page: 2881 issue: 22 year: 2000 end-page: 2892 article-title: Preferential relaxation of positively supercoiled DNA by topoisomerase IV in single‐molecule and ensemble measurements publication-title: Genes Dev. – volume: 36 start-page: 5212 year: 1997 end-page: 5222 article-title: DNA topoisomerase I: Evidence supporting a free rotation mechanism for DNA supercoil relaxation publication-title: Biochemistry – volume: 100 start-page: 2526 issue: 5 year: 2003 end-page: 2531 article-title: Infertility and aneuploidy in mice lacking a type IA DNA topoisomerase III beta publication-title: Proc Natl Acad Sci U S A – volume: 115 start-page: 771 issue: 7 year: 2003 end-page: 785 article-title: Plasmodium biology: Genomic gleanings publication-title: Cell – volume: 43 start-page: 11031 issue: 22 year: 2015 end-page: 11046 article-title: Structural basis for suppression of hypernegative DNA supercoiling by topoisomerase I publication-title: Nucleic Acids Res. – volume: 351 start-page: 943 issue: 6276 year: 2016 end-page: 949 article-title: The TopoVIB‐Like protein family is required for meiotic DNA double‐strand break formation publication-title: Science – volume: 120 start-page: 601 issue: 3 year: 1993 end-page: 612 article-title: Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts publication-title: J. Cell Biol. – volume: 397 start-page: 117 issue: 1 year: 2010 end-page: 119 article-title: The phosphoCTD‐interacting domain of topoisomerase I publication-title: Biochem. Biophys. Res. Commun. – volume: 24 start-page: 1465 issue: 7 year: 2005 end-page: 1476 article-title: BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity publication-title: EMBO J. – volume: 278 start-page: 8653 issue: 10 year: 2003 end-page: 8660 article-title: Topoisomerase III can serve as the cellular decatenase in publication-title: J. Biol. Chem. – volume: 63 start-page: 393 year: 1990 end-page: 404 article-title: New topoisomerase essential for chromosome segregation in publication-title: Cell – volume: 113 start-page: 356 issue: 2 year: 2020 end-page: 368 article-title: The reverse gyrase TopR1 is responsible for the homeostatic control of DNA supercoiling in the hyperthermophilic archaeon publication-title: Mol. Microbiol. – volume: 14 start-page: 166 issue: 3 year: 2016 end-page: 171 article-title: Topoisomerase I in human disease pathogenesis and treatments publication-title: Genomics Proteomics Bioinformatics – year: 2020 article-title: A Type IA DNA/RNA topoisomerase with RNA hydrolysis activity participates in ribosomal RNA processing publication-title: J. Mol. Biol. – volume: 109 start-page: 2925 issue: 8 year: 2012 end-page: 2930 article-title: DNA cleavage and opening reactions of human topoisomerase IIalpha are regulated via Mg2+‐mediated dynamic bending of gate‐DNA publication-title: Proc Natl Acad Sci U S A – volume: 25 start-page: 1111 issue: 12 year: 2018 end-page: 1118 article-title: Direct observation of topoisomerase IA gate dynamics publication-title: Nat. Struct. Mol. Biol. – volume: 12 start-page: 569 issue: 6 year: 2004 end-page: 583 article-title: Topoisomerase II: Untangling its contribution at the centromere publication-title: Chromosome Res. – volume: 165 start-page: 357 issue: 2 year: 2016 end-page: 371 article-title: RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription publication-title: Cell – volume: 1 issue: 1 year: 2016 article-title: Radicicol‐mediated inhibition of topoisomerase VIB‐VIA activity of the human malaria parasite publication-title: mSphere – volume: 187 start-page: 8531 issue: 24 year: 2005 end-page: 8536 article-title: Characterization of the DNA gyrase from the thermoacidophilic archaeon publication-title: J. Bacteriol. – volume: 2 start-page: 209 issue: 4 year: 1991 end-page: 214 article-title: Proliferation‐ and cell cycle‐dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH‐3T3 cells publication-title: Cell Growth Differ. – start-page: 91 year: 2020 end-page: 92 article-title: Molecular dissection of Helicobacter pylori topoisomerase I reveals an additional active site in the carboxyl terminus of the enzyme publication-title: DNA Repair – volume: 386 start-page: 414 issue: 6623 year: 1997 end-page: 417 article-title: An atypical topoisomerase II from Archaea with implications for meiotic recombination publication-title: Nature – volume: 3 start-page: 18 issue: 1 year: 2020 end-page: 25 article-title: Topoisomerase IB: A relaxing enzyme for stressed DNA publication-title: Cancer Drug Resistance – volume: 14 start-page: 611 issue: 7 year: 2007 end-page: 619 article-title: Holoenzyme assembly and ATP‐mediated conformational dynamics of topoisomerase VI publication-title: Nat. Struct. Mol. Biol. – volume: 88 start-page: 375 issue: 3 year: 1997 end-page: 384 article-title: Meiosis‐specific DNA double‐strand breaks are catalyzed by Spo11, a member of a widely conserved protein family publication-title: Cell – volume: 20 start-page: 1489 issue: 6 year: 2014 end-page: 1501 article-title: DNA topoisomerase III alpha regulates p53‐mediated tumor suppression publication-title: Clin. Cancer Res. – volume: 8 start-page: 82 issue: 1 year: 2013 end-page: 95 article-title: Drugging topoisomerases: Lessons and challenges publication-title: ACS Chem. Biol. – start-page: 21 year: 2018 end-page: 45 – volume: 450 start-page: 1201 issue: 7173 year: 2007 end-page: 1205 article-title: Structural basis for gate‐DNA recognition and bending by type IIA topoisomerases publication-title: Nature – volume: 97 start-page: 9419 year: 2000 end-page: 9424 article-title: Analysis of topoisomerase function in bacterial replication fork movement: Use of DNA microarrays publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 398 issue: 2 year: 2006 end-page: 408 article-title: Structure of the N‐terminal fragment of topoisomerase V reveals a new family of topoisomerases publication-title: EMBO J. – volume: 30 start-page: 779 issue: 6 year: 2008 end-page: 789 article-title: Resolution of converging replication forks by RecQ and topoisomerase III publication-title: Mol. Cell – volume: 6 start-page: 398 issue: 3 year: 2007 end-page: 412 article-title: Molecular cloning of apicoplast‐targeted DNA gyrase genes: Unique intrinsic ATPase activity and ATP‐independent dimerization of PfGyrB subunit publication-title: Eukaryot Cell – volume: 273 start-page: 5245 issue: 23 year: 2006 end-page: 5260 article-title: Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants publication-title: FEBS J. – volume: 107 start-page: 18832 issue: 44 year: 2010 end-page: 18837 article-title: condensin MukB stimulates topoisomerase IV activity by a direct physical interaction publication-title: Proc Natl Acad Sci U S A – volume: 107 start-page: 6228 issue: 14 year: 2010 end-page: 6233 article-title: Drosophila topo IIIalpha is required for the maintenance of mitochondrial genome and male germ‐line stem cells publication-title: Proc Natl Acad Sci U S A – volume: 42 start-page: 4414 issue: 7 year: 2014 end-page: 4426 article-title: The alpha isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells publication-title: Nucleic Acids Res. – volume: 29 start-page: 795 issue: 4 year: 2010 end-page: 805 article-title: FANCM regulates DNA chain elongation and is stabilized by S‐phase checkpoint signalling publication-title: EMBO J. – volume: 40 start-page: 7907 issue: 16 year: 2012 end-page: 7915 article-title: Topoisomerase II is required for the production of long Pol II gene transcripts in yeast publication-title: Nucleic Acids Res. – volume: 318 start-page: 361 issue: 2 year: 2002 end-page: 371 article-title: The role of GyrB in the DNA cleavage‐religation reaction of DNA gyrase: A proposed two metal‐ion mechanism publication-title: J. Mol. Biol. – volume: 98 start-page: 8219 issue: 15 year: 2001 end-page: 8226 article-title: Topological challenges to DNA replication: Conformations at the fork publication-title: Proc Natl Acad Sci U S A – volume: 38 start-page: 4173 issue: 12 year: 2010 end-page: 4181 article-title: Twisting of the DNA‐binding surface by a beta‐strand‐bearing proline modulates DNA gyrase activity publication-title: Nucleic Acids Res. – volume: 44 start-page: 1365 issue: 12 year: 2012 end-page: 1369 article-title: De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia publication-title: Nat. Genet. – volume: 280 start-page: 26177 issue: 28 year: 2005 end-page: 26184 article-title: A superhelical spiral in the DNA gyrase A C‐terminal domain imparts unidirectional supercoiling bias publication-title: J. Biol. Chem. – volume: 45 start-page: 2704 issue: 5 year: 2017 end-page: 2713 article-title: Topoisomerase 3beta is the major topoisomerase for mRNAs and linked to neurodevelopment and mental dysfunction publication-title: Nucleic Acids Res. – volume: 237 start-page: 452 issue: 2 year: 1997 end-page: 455 article-title: Bipartite nuclear localization signals in the C terminus of human topoisomerase II alpha publication-title: Exp. Cell Res. – volume: 75 start-page: 67 issue: 1 year: 2013 end-page: 79 article-title: MIDGET connects COP1‐dependent development with endoreduplication in publication-title: Plant J. – volume: 123 start-page: 806 issue: Pt 5 year: 2010 end-page: 813 article-title: Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division publication-title: J. Cell Sci. – volume: 90 start-page: 8571 issue: 18 year: 1993 end-page: 8575 article-title: Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro publication-title: Proc Natl Acad Sci U S A – volume: 117 start-page: 12131 issue: 22 year: 2020 end-page: 12142 article-title: Topoisomerase IIalpha is essential for maintenance of mitotic chromosome structure publication-title: Proc Natl Acad Sci U S A – volume: 10 issue: 11 year: 2019 article-title: cell cycle‐dependent control and roles of DNA topoisomerase II publication-title: Genes – volume: 16 start-page: 1228 issue: 9 year: 2013 end-page: 1237 article-title: Deletion of TOP3beta, a component of FMRP‐containing mRNPs, contributes to neurodevelopmental disorders publication-title: Nat. Neurosci. – volume: 14 start-page: 4240 issue: 17 year: 1995 end-page: 4248 article-title: Telomere elongation in immortal human cells without detectable telomerase activity publication-title: EMBO J. – volume: 41 start-page: 657 issue: 1 year: 2012 end-page: 666 article-title: Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies publication-title: Nucleic Acids Res. – volume: 33 start-page: 95 year: 2004 end-page: 118 article-title: Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases publication-title: Annu. Rev. Biophys. Biomol. Struct. – volume: 201 issue: 7 year: 2019 article-title: Topoisomerase III acts at the replication fork to remove precatenanes publication-title: J. Bacteriol. – ident: e_1_2_11_199_1 doi: 10.7554/eLife.31724 – ident: e_1_2_11_77_1 doi: 10.1073/pnas.1921848117 – ident: e_1_2_11_95_1 doi: 10.1016/j.chembiol.2010.04.012 – ident: e_1_2_11_214_1 doi: 10.1126/science.aad5309 – ident: e_1_2_11_102_1 doi: 10.1093/nar/gkp024 – ident: e_1_2_11_203_1 doi: 10.1016/j.pbi.2003.09.009 – ident: e_1_2_11_104_1 doi: 10.1038/nsmb.1604 – ident: e_1_2_11_126_1 doi: 10.1093/nar/gky1143 – volume: 44 start-page: 10354 issue: 21 year: 2016 ident: e_1_2_11_136_1 article-title: DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking‐closing mechanism publication-title: Nucleic Acids Res. – ident: e_1_2_11_191_1 doi: 10.1038/nature01097 – ident: e_1_2_11_76_1 doi: 10.1016/j.jmb.2011.03.030 – ident: e_1_2_11_125_1 doi: 10.1093/nar/gky1222 – ident: e_1_2_11_25_1 doi: 10.1093/nar/gkaa201 – ident: e_1_2_11_149_1 doi: 10.1073/pnas.1133178100 – ident: e_1_2_11_103_1 doi: 10.1016/j.sbi.2012.11.011 – ident: e_1_2_11_186_1 doi: 10.1016/j.cell.2015.05.032 – ident: e_1_2_11_143_1 doi: 10.1128/mBio.01001-13 – ident: e_1_2_11_181_1 doi: 10.3390/ijms20051238 – ident: e_1_2_11_88_1 doi: 10.1038/364735a0 – ident: e_1_2_11_105_1 doi: 10.1038/nature08974 – ident: e_1_2_11_129_1 doi: 10.1093/nar/gkq153 – ident: e_1_2_11_86_1 doi: 10.1016/j.jmb.2016.08.005 – ident: e_1_2_11_151_1 doi: 10.1111/j.1365-2958.1995.tb02264.x – ident: e_1_2_11_119_1 doi: 10.1093/nar/11.10.2999 – ident: e_1_2_11_183_1 doi: 10.1126/science.287.5450.131 – ident: e_1_2_11_137_1 doi: 10.1093/nar/gkt560 – ident: e_1_2_11_156_1 doi: 10.1016/S0021-9258(19)83859-0 – ident: e_1_2_11_150_1 doi: 10.1073/pnas.0900574106 – ident: e_1_2_11_138_1 doi: 10.1038/s41467-019-12914-y – ident: e_1_2_11_157_1 doi: 10.1016/S0092-8674(85)80028-3 – ident: e_1_2_11_2_1 doi: 10.1038/171964b0 – ident: e_1_2_11_21_1 doi: 10.1093/nar/gkv1073 – ident: e_1_2_11_163_1 doi: 10.1038/nsmb.2388 – ident: e_1_2_11_71_1 doi: 10.1074/jbc.M910091199 – ident: e_1_2_11_48_1 doi: 10.1073/pnas.1001855107 – ident: e_1_2_11_139_1 doi: 10.1016/S0021-9258(18)35660-6 – ident: e_1_2_11_134_1 doi: 10.1016/j.biochi.2007.02.012 – ident: e_1_2_11_18_1 doi: 10.1093/nar/gky1271 – ident: e_1_2_11_128_1 doi: 10.1073/pnas.0401595101 – volume: 45 start-page: 2704 issue: 5 year: 2017 ident: e_1_2_11_55_1 article-title: Topoisomerase 3beta is the major topoisomerase for mRNAs and linked to neurodevelopment and mental dysfunction publication-title: Nucleic Acids Res. – ident: e_1_2_11_173_1 doi: 10.1023/B:CHRO.0000036608.91085.d1 – ident: e_1_2_11_158_1 doi: 10.1016/0092-8674(87)90518-6 – ident: e_1_2_11_148_1 doi: 10.1101/gad.838900 – ident: e_1_2_11_4_1 doi: 10.1073/pnas.111006998 – ident: e_1_2_11_217_1 doi: 10.1093/molbev/msm217 – ident: e_1_2_11_19_1 doi: 10.1074/jbc.M303403200 – ident: e_1_2_11_3_1 doi: 10.1038/171737a0 – ident: e_1_2_11_171_1 doi: 10.1242/jcs.013730 – ident: e_1_2_11_89_1 doi: 10.1038/sj.emboj.7600922 – ident: e_1_2_11_32_1 doi: 10.1016/S0021-9258(19)36714-6 – ident: e_1_2_11_22_1 doi: 10.1002/prot.340060307 – ident: e_1_2_11_13_1 doi: 10.1016/j.jmb.2019.07.008 – ident: e_1_2_11_6_1 doi: 10.3390/polym10101126 – ident: e_1_2_11_52_1 doi: 10.1073/pnas.0437998100 – ident: e_1_2_11_113_1 doi: 10.1128/JB.187.24.8531-8536.2005 – ident: e_1_2_11_108_1 doi: 10.1016/S0968-0004(99)01503-0 – ident: e_1_2_11_215_1 doi: 10.1126/science.aad5196 – ident: e_1_2_11_50_1 doi: 10.1073/pnas.101132498 – ident: e_1_2_11_127_1 doi: 10.1038/s41467-020-18456-y – ident: e_1_2_11_94_1 doi: 10.1093/nar/gkr258 – ident: e_1_2_11_45_1 doi: 10.1158/1078-0432.CCR-13-1997 – ident: e_1_2_11_123_1 doi: 10.1128/JB.140.2.424-435.1979 – ident: e_1_2_11_172_1 doi: 10.1083/jcb.120.3.601 – ident: e_1_2_11_66_1 doi: 10.1073/pnas.1422203112 – ident: e_1_2_11_38_1 doi: 10.1007/s00018-013-1325-1 – ident: e_1_2_11_147_1 doi: 10.1016/j.jmb.2005.06.029 – ident: e_1_2_11_210_1 doi: 10.1111/j.1742-4658.2006.05518.x – ident: e_1_2_11_208_1 doi: 10.1105/tpc.107.054361 – ident: e_1_2_11_29_1 doi: 10.1074/jbc.M211211200 – ident: e_1_2_11_162_1 doi: 10.1093/nar/gks626 – ident: e_1_2_11_174_1 doi: 10.1038/ncb3353 – ident: e_1_2_11_87_1 doi: 10.1016/j.gpb.2016.02.004 – ident: e_1_2_11_57_1 doi: 10.1016/j.molcel.2014.01.011 – ident: e_1_2_11_109_1 doi: 10.1073/pnas.73.11.3872 – ident: e_1_2_11_91_1 doi: 10.1073/pnas.111040498 – ident: e_1_2_11_64_1 doi: 10.1016/S0168-9525(02)02650-1 – ident: e_1_2_11_205_1 doi: 10.1073/pnas.0505883102 – ident: e_1_2_11_131_1 doi: 10.1074/jbc.M112.345736 – ident: e_1_2_11_135_1 doi: 10.1093/nar/22.9.1567 – ident: e_1_2_11_7_1 doi: 10.1073/pnas.84.20.7024 – ident: e_1_2_11_168_1 doi: 10.7554/eLife.26120 – ident: e_1_2_11_8_1 doi: 10.1038/sj.embor.7400101 – ident: e_1_2_11_213_1 doi: 10.1016/S0092-8674(00)81876-0 – ident: e_1_2_11_152_1 doi: 10.1128/JB.162.3.1173-1179.1985 – ident: e_1_2_11_97_1 doi: 10.1146/annurev.bi.59.070190.004441 – ident: e_1_2_11_144_1 doi: 10.1038/ncomms10466 – ident: e_1_2_11_198_1 doi: 10.1016/j.str.2007.12.020 – ident: e_1_2_11_17_1 doi: 10.1371/journal.pgen.1006754 – ident: e_1_2_11_14_1 doi: 10.1021/cb300648v – ident: e_1_2_11_188_1 doi: 10.1002/mgg3.1145 – ident: e_1_2_11_82_1 doi: 10.1038/nature03395 – ident: e_1_2_11_68_1 doi: 10.1073/pnas.90.10.4753 – ident: e_1_2_11_53_1 doi: 10.1098/rsob.190222 – ident: e_1_2_11_27_1 doi: 10.1016/j.jmb.2007.01.065 – ident: e_1_2_11_202_1 doi: 10.1016/S0960-9822(02)01218-6 – ident: e_1_2_11_184_1 doi: 10.1016/S0006-291X(03)01169-0 – ident: e_1_2_11_96_1 doi: 10.1146/annurev.biophys.33.110502.140357 – ident: e_1_2_11_140_1 doi: 10.1016/0092-8674(90)90172-B – ident: e_1_2_11_75_1 doi: 10.1016/S0021-9258(18)60974-3 – ident: e_1_2_11_15_1 doi: 10.1074/jbc.274.23.16654 – ident: e_1_2_11_117_1 doi: 10.1016/0022-2836(78)90061-X – ident: e_1_2_11_197_1 doi: 10.1038/nsmb1264 – ident: e_1_2_11_28_1 doi: 10.1046/j.1365-2958.2000.01763.x – ident: e_1_2_11_194_1 doi: 10.1093/emboj/18.21.6177 – ident: e_1_2_11_84_1 doi: 10.1016/j.cell.2016.02.036 – ident: e_1_2_11_201_1 doi: 10.1093/nar/28.7.1548 – ident: e_1_2_11_56_1 doi: 10.1038/nn.3479 – ident: e_1_2_11_164_1 doi: 10.3390/genes10110859 – ident: e_1_2_11_120_1 doi: 10.1016/0092-8674(83)90140-X – ident: e_1_2_11_185_1 doi: 10.1016/0167-4781(92)90050-A – ident: e_1_2_11_180_1 doi: 10.1038/s41598-018-27606-8 – ident: e_1_2_11_34_1 doi: 10.1073/pnas.95.3.1010 – ident: e_1_2_11_218_1 doi: 10.1128/mSphere.00025-15 – ident: e_1_2_11_118_1 doi: 10.1128/JB.158.2.397-403.1984 – ident: e_1_2_11_43_1 doi: 10.1002/j.1460-2075.1995.tb00098.x – ident: e_1_2_11_62_1 doi: 10.1038/309677a0 – ident: e_1_2_11_65_1 doi: 10.1093/nar/gku589 – ident: e_1_2_11_216_1 doi: 10.1016/S0092-8674(03)01023-7 – ident: e_1_2_11_187_1 doi: 10.1016/j.cca.2017.03.022 – ident: e_1_2_11_85_1 doi: 10.1016/j.bbrc.2010.05.081 – ident: e_1_2_11_73_1 doi: 10.1016/j.jmb.2020.06.018 – ident: e_1_2_11_51_1 doi: 10.1073/pnas.0703587104 – ident: e_1_2_11_12_1 doi: 10.1016/0022-2836(71)90334-2 – ident: e_1_2_11_60_1 doi: 10.1093/hmg/ddn219 – ident: e_1_2_11_67_1 doi: 10.1021/bi034188l – ident: e_1_2_11_176_1 doi: 10.1038/ncomms9962 – ident: e_1_2_11_132_1 doi: 10.1074/jbc.M511160200 – ident: e_1_2_11_196_1 doi: 10.1016/j.str.2005.03.013 – ident: e_1_2_11_166_1 doi: 10.1074/jbc.273.50.33660 – ident: e_1_2_11_58_1 doi: 10.1016/j.neuron.2012.04.009 – ident: e_1_2_11_30_1 doi: 10.1128/JB.00563-18 – ident: e_1_2_11_190_1 doi: 10.1038/s41467-018-05406-y – ident: e_1_2_11_170_1 doi: 10.1093/nar/gku076 – ident: e_1_2_11_39_1 doi: 10.1016/j.cub.2003.12.043 – ident: e_1_2_11_44_1 doi: 10.1016/j.jmb.2012.07.014 – ident: e_1_2_11_146_1 doi: 10.1073/pnas.1008678107 – ident: e_1_2_11_160_1 doi: 10.1016/j.molcel.2008.04.019 – ident: e_1_2_11_47_1 doi: 10.1186/s12929-016-0255-2 – ident: e_1_2_11_204_1 doi: 10.1016/S1074-5521(03)00027-9 – ident: e_1_2_11_141_1 doi: 10.1073/pnas.90.18.8571 – ident: e_1_2_11_145_1 doi: 10.1073/pnas.1008140107 – ident: e_1_2_11_107_1 doi: 10.1371/journal.pone.0011338 – ident: e_1_2_11_46_1 doi: 10.1038/s41594-019-0201-6 – ident: e_1_2_11_63_1 doi: 10.1016/0022-2836(84)90080-9 – ident: e_1_2_11_90_1 doi: 10.1093/nar/gkw122 – ident: e_1_2_11_161_1 doi: 10.1016/j.cell.2019.09.034 – ident: e_1_2_11_193_1 doi: 10.1016/S0021-9258(18)47037-8 – ident: e_1_2_11_110_1 doi: 10.1073/pnas.0400836101 – ident: e_1_2_11_211_1 doi: 10.1073/pnas.1202041109 – ident: e_1_2_11_206_1 doi: 10.1105/tpc.107.054833 – ident: e_1_2_11_142_1 doi: 10.1371/journal.pgen.1006025 – ident: e_1_2_11_92_1 doi: 10.1093/nar/gks1017 – ident: e_1_2_11_178_1 doi: 10.1006/excr.1997.3805 – ident: e_1_2_11_37_1 doi: 10.1101/gad.1725108 – ident: e_1_2_11_10_1 doi: 10.1146/annurev.biochem.70.1.369 – ident: e_1_2_11_61_1 doi: 10.1038/srep42123 – start-page: 21 volume-title: Topoisomerase I and genome stability: The good and the bad DNA Topoisomerases year: 2018 ident: e_1_2_11_83_1 – ident: e_1_2_11_221_1 doi: 10.1073/pnas.242259599 – ident: e_1_2_11_59_1 doi: 10.1038/ng.2446 – ident: e_1_2_11_16_1 doi: 10.2741/970 – ident: e_1_2_11_36_1 doi: 10.1038/sj.emboj.7600622 – volume: 2 start-page: 209 issue: 4 year: 1991 ident: e_1_2_11_165_1 article-title: Proliferation‐ and cell cycle‐dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH‐3T3 cells publication-title: Cell Growth Differ. – start-page: 91 year: 2020 ident: e_1_2_11_23_1 article-title: Molecular dissection of Helicobacter pylori topoisomerase I reveals an additional active site in the carboxyl terminus of the enzyme publication-title: DNA Repair – ident: e_1_2_11_78_1 doi: 10.1073/pnas.69.1.143 – ident: e_1_2_11_70_1 doi: 10.1016/j.jmb.2012.10.016 – ident: e_1_2_11_35_1 doi: 10.1038/nature02253 – ident: e_1_2_11_219_1 doi: 10.1093/nar/gku568 – year: 2020 ident: e_1_2_11_159_1 article-title: Condensin minimizes topoisomerase II‐mediated entanglements of DNA in vivo publication-title: EMBO J. – volume: 3 start-page: 18 issue: 1 year: 2020 ident: e_1_2_11_79_1 article-title: Topoisomerase IB: A relaxing enzyme for stressed DNA publication-title: Cancer Drug Resistance – ident: e_1_2_11_31_1 doi: 10.1016/j.molcel.2008.04.020 – ident: e_1_2_11_192_1 doi: 10.1016/S0960-9822(02)01198-3 – ident: e_1_2_11_98_1 doi: 10.1146/annurev.bi.65.070196.003223 – volume-title: DNA Topology year: 2005 ident: e_1_2_11_5_1 doi: 10.1093/oso/9780198567097.001.0001 – ident: e_1_2_11_111_1 doi: 10.1128/EC.00357-06 – ident: e_1_2_11_42_1 doi: 10.1038/s41467-019-10180-6 – ident: e_1_2_11_106_1 doi: 10.1016/S0022-2836(02)00049-9 – ident: e_1_2_11_179_1 doi: 10.1083/jcb.201303045 – ident: e_1_2_11_49_1 doi: 10.1016/j.molcel.2017.11.033 – ident: e_1_2_11_33_1 doi: 10.1073/pnas.93.18.9477 – ident: e_1_2_11_72_1 doi: 10.1093/nar/gks1073 – ident: e_1_2_11_20_1 doi: 10.1016/j.jmb.2020.08.012 – ident: e_1_2_11_133_1 doi: 10.1093/nar/gks852 – ident: e_1_2_11_40_1 doi: 10.1038/nsmb.2775 – ident: e_1_2_11_24_1 doi: 10.1038/s41594-018-0158-x – ident: e_1_2_11_93_1 doi: 10.1016/j.tibtech.2006.04.006 – ident: e_1_2_11_114_1 doi: 10.1073/pnas.75.4.1773 – ident: e_1_2_11_112_1 doi: 10.1093/nar/gkp032 – ident: e_1_2_11_153_1 doi: 10.1093/nar/gkz260 – ident: e_1_2_11_175_1 doi: 10.1242/jcs.058255 – ident: e_1_2_11_80_1 doi: 10.1021/bi962880t – ident: e_1_2_11_195_1 doi: 10.1093/emboj/cdg008 – ident: e_1_2_11_200_1 doi: 10.1016/S0378-1119(01)00496-6 – ident: e_1_2_11_69_1 doi: 10.1093/nar/gkn587 – ident: e_1_2_11_115_1 doi: 10.1016/S0966-842X(96)10085-8 – ident: e_1_2_11_74_1 doi: 10.1111/mmi.14424 – ident: e_1_2_11_121_1 doi: 10.1073/pnas.70.11.3077 – ident: e_1_2_11_122_1 doi: 10.1016/S0021-9258(19)57259-3 – ident: e_1_2_11_101_1 doi: 10.1093/nar/26.18.4205 – ident: e_1_2_11_130_1 doi: 10.1074/jbc.M502838200 – ident: e_1_2_11_54_1 doi: 10.1038/nn.3484 – ident: e_1_2_11_207_1 doi: 10.1073/pnas.152337599 – ident: e_1_2_11_220_1 doi: 10.1093/nargab/lqz021 – ident: e_1_2_11_189_1 doi: 10.1016/j.abb.2017.06.021 – ident: e_1_2_11_11_1 doi: 10.1128/ecosalplus.ESP-0010-2014 – ident: e_1_2_11_81_1 doi: 10.1126/science.279.5356.1534 – ident: e_1_2_11_41_1 doi: 10.1038/emboj.2009.371 – ident: e_1_2_11_154_1 doi: 10.1073/pnas.97.17.9419 – ident: e_1_2_11_116_1 doi: 10.1007/s00253-011-3557-z – ident: e_1_2_11_100_1 doi: 10.1073/pnas.1115704109 – ident: e_1_2_11_26_1 doi: 10.1074/jbc.REV120.008286 – ident: e_1_2_11_177_1 doi: 10.1101/gad.321836.118 – ident: e_1_2_11_182_1 doi: 10.3390/ijms19071917 – ident: e_1_2_11_9_1 doi: 10.1111/j.1574-6968.1995.tb07782.x – ident: e_1_2_11_99_1 doi: 10.1038/nature06396 – ident: e_1_2_11_209_1 doi: 10.1111/tpj.12199 – ident: e_1_2_11_169_1 doi: 10.1073/pnas.2001760117 – volume: 7 start-page: 83 issue: 1 year: 1996 ident: e_1_2_11_167_1 article-title: Topoisomerase II inhibitors affect entry into mitosis and chromosome condensation in BHK cells publication-title: Cell Growth Differ. – ident: e_1_2_11_212_1 doi: 10.1038/386414a0 – ident: e_1_2_11_124_1 doi: 10.1074/jbc.271.35.21529 – ident: e_1_2_11_155_1 doi: 10.1016/S1097-2765(03)00013-3 |
| SSID | ssj0009624 |
| Score | 2.6472003 |
| SecondaryResourceType | review_article |
| Snippet | DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA... |
| SourceID | pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2000286 |
| SubjectTerms | antibiotics anti‐cancer drugs Cellular structure Deoxyribonucleic acid dissection DNA DNA gyrase DNA structure DNA supercoiling DNA topoisomerase DNA Topoisomerases DNA Topoisomerases, Type I - metabolism DNA Topoisomerases, Type II - metabolism Function analysis In vivo methods and tests Metabolism Protein structure Proteins Structure-function relationships Topology |
| Title | DNA topoisomerases: Advances in understanding of cellular roles and multi‐protein complexes via structure‐function analysis |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202000286 https://www.ncbi.nlm.nih.gov/pubmed/33480441 https://www.proquest.com/docview/2501868259 https://www.proquest.com/docview/2480273952 https://www.proquest.com/docview/2524333578 https://pubmed.ncbi.nlm.nih.gov/PMC7614492 |
| Volume | 43 |
| WOSCitedRecordID | wos000609916500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1521-1878 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009624 issn: 0265-9247 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1fb9MwEMBPsIHEy_gPhTEZCYmnaI6TODZvhVHxgKoJMalvkePaItKUTMs6wdP2EfiMfJLd2W3WagIkeIlU3VlpnLv6zj3_DuCNkI42FnwifUkJCl6ULE0ia4PBNQHUPA_NJsrpVM1m-nDtFH_kQwwbbuQZ4feaHNzU_f41NLSmTBJT97BBJG_Ddppmipo3iPzwGrsrQ1tbTDSKBDONcoVt5GJ_c_zmsnQj1rxZMrkeyoa1aHL__5_iAews41A2jobzEG659hHcjZ0pfzyGi4PpmJ11J13Td7Rt1bv-HRvHeoGeNS1brB-KYZ1n9A8AlbQyqlfsGQpYKFb8dfkzsCBwTChfd99Ret4YFsm1i1OHGrS6koXgsMhIeQJHk49fP3xKlr0aElvIUiap42ldKzvXtRGGwF9W-SzHgMOmVhZz6_mcGzpIiyZjuXeFMVrluqwLpXltsqew1Xatew4MAxbhveWWE7wwc1rm2mbaZx6jWWH0CJLVq6rsEmRO_TSOq4hgFhVNajVM6gjeDvonEeHxW83d1Zuvlq6MUkIeSkyk8cavBzE6Ic2raV23QJ1cERdIF-IPOoXIs4zgQiN4Fo1p-Dp0HJpjYDqCcsPMBgWCgG9K2uZbgIGXlNFrvK8IZvaXJ6zeY5IxfHrxL4Newj1BdT2hemkXttBY3Cu4Y8_Pmv50L7gfXsuZ2oPtgy-To89Xog82gQ |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fT9RAEJ8oavBFRRBPQdeEhKeGvW277fp2_iEQ4cIDJrw1273d0MS0hHIEnvQj-Bn9JM7s9goXIiaElybNzKbtdqY7M_3tbwA2hLRUWHCRdBklKHjIZaYjWWoMrolAzXHfbCIbj_OjI3XQoQlpL0zgh-gLbuQZ_ntNDk4F6a0r1tCSUknM3X2FSD6ERwkuNWTqIjm44t2Vvq8tZhpphKlGNuNt5GJrfvz8unQj2LyJmbwey_rFaPv5PTzGC3jWRaJsFExnCR7Y-iU8Cb0pL5fh55fxiJ01J03VNlS4am37kY0CYqBlVc2m17fFsMYx-gdAoFZGiMWWoYB5uOKfX789GwSO8QB2e4HS80qzwF07PbWoQesr2QgOCywpK_B9--vh552o69YQmVRmMhpaPizL3ExUqYUm6i-TuzjBkMMMjUwnxvEJ17SVFo3GcGdTrVWeqKxMc8VLHb-Chbqp7WtgGLII5ww3nOgLY6tkokysXOwwnhVaDSCavavCdFTm1FHjRxFImEVBk1r0kzqAzV7_JJB4_FNzbfbqi86ZUUqkhxJTabzwh16MbkjzqmvbTFEnyYkZSKXiFp1UJHFM9EIDWA3W1N8ObYjmGJoOIJuzs16BaMDnJXV17OnAM8rpFV5XeDv7zxMWnzDN6M_e3GXQe1jcOdzfK_Z2x9_ewlNBKB-PZVqDBTQcuw6PzflZ1Z6-8774FwUjN-Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1fb9MwEMBP0AHiZfwfHQOMhMRTNNdJnHhvHaUCMVUTYtLeIse1tUgoqZZ1Gk_wEfiMfBLu7DRbNQES4qVSdeemce7qO_f8O4DXQlraWHCRdBklKPiSy0xHstQYXBNAzXHfbCKbzfLjY3XYVRPSWZjAh-g33Mgz_O81ObhdzN3uJTW0pFQSc3e_QyRvwkZCnWQGsDH5ND06uCTvSt_ZFnONNMJkI1uRG7nYXf-E9ZXpWrh5vWryajTrl6Ppvf9wI_dhs4tF2TgYzwO4YeuHcDt0p_z6CL5NZmN21iyaqm1o66q17R4bh5qBllU1W149GMMax-hfACprZVSz2DIUMF-w-PP7D8-DwDG-hN1eoPS80izQa5enFjVohSUrwWGBk_IYjqbvPr99H3X9GiKTykxGI8tHZZmbuSq10AT_MrmLEww6zMjIdG4cn3NNh2nRbAx3NtVa5YnKyjRXvNTxExjUTW2fAsOgRThnuOEEMIytkokysXKxw4hWaDWEaPWsCtPBzKmnxpciYJhFQZNa9JM6hDe9_iJgPH6rubN69EXnzigl7KHEZBov_KoXoyPSvOraNkvUSXJiA6lU_EEnFUkcE2BoCFvBmvqvQ0eiOQanQ8jW7KxXIBD4uqSuTjwQPKOsXuF1hbezv9xhsY-JRv9u-18GvYQ7h5NpcfBh9vEZ3BVU5uOLmXZggHZjn8Mtc35WtacvOmf8BeFZOPo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+topoisomerases%3A+Advances+in+understanding+of+cellular+roles+and+multi%E2%80%90protein+complexes+via+structure%E2%80%90function+analysis&rft.jtitle=BioEssays&rft.au=McKie%2C+Shannon+J.&rft.au=Neuman%2C+Keir+C.&rft.au=Maxwell%2C+Anthony&rft.date=2021-04-01&rft.issn=0265-9247&rft.eissn=1521-1878&rft.volume=43&rft.issue=4&rft_id=info:doi/10.1002%2Fbies.202000286&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_bies_202000286 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon |