DNA topoisomerases: Advances in understanding of cellular roles and multi‐protein complexes via structure‐function analysis

DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interac...

Full description

Saved in:
Bibliographic Details
Published in:BioEssays Vol. 43; no. 4; pp. e2000286 - n/a
Main Authors: McKie, Shannon J., Neuman, Keir C., Maxwell, Anthony
Format: Journal Article
Language:English
Published: United States Wiley Subscription Services, Inc 01.04.2021
Subjects:
ISSN:0265-9247, 1521-1878, 1521-1878
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA‐associated proteins, supporting the idea that they often function as part of multi‐enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini‐A. These new findings are advancing our understanding of DNA‐related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism. DNA topoisomerases are fundamental to the life of all cells due to their numerous roles in DNA metabolic processes; this includes transcription, replication, chromosome segregation, DNA repair, neurodevelopment, tumour suppression, mitochondrial DNA maintenance, and RNA processing, with new roles still being actively elucidated 50 years after their discovery.
AbstractList DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multienzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA‐associated proteins, supporting the idea that they often function as part of multi‐enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini‐A. These new findings are advancing our understanding of DNA‐related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism. DNA topoisomerases are fundamental to the life of all cells due to their numerous roles in DNA metabolic processes; this includes transcription, replication, chromosome segregation, DNA repair, neurodevelopment, tumour suppression, mitochondrial DNA maintenance, and RNA processing, with new roles still being actively elucidated 50 years after their discovery.
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA‐topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single‐molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA‐associated proteins, supporting the idea that they often function as part of multi‐enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini‐A. These new findings are advancing our understanding of DNA‐related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA metabolism. As we review here, current structural approaches have revealed unprecedented insights into the complex DNA-topoisomerase interaction and strand passage mechanism, helping to advance our understanding of their activities in vivo. This has been complemented by single-molecule techniques, which have facilitated the detailed dissection of the various topoisomerase reactions. Recent work has also revealed the importance of topoisomerase interactions with accessory proteins and other DNA-associated proteins, supporting the idea that they often function as part of multi-enzyme assemblies in vivo. In addition, novel topoisomerases have been identified and explored, such as topo VIII and Mini-A. These new findings are advancing our understanding of DNA-related processes and the vital functions topos fulfil, demonstrating their indispensability in virtually every aspect of DNA metabolism.
Author Neuman, Keir C.
Maxwell, Anthony
McKie, Shannon J.
AuthorAffiliation 1 Department Biological Chemistry, John Innes Centre, Norwich, UK
2 Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
AuthorAffiliation_xml – name: 1 Department Biological Chemistry, John Innes Centre, Norwich, UK
– name: 2 Laboratory of Single Molecule Biophysics, NHLBI, Bethesda, Maryland, USA
Author_xml – sequence: 1
  givenname: Shannon J.
  surname: McKie
  fullname: McKie, Shannon J.
  organization: NHLBI
– sequence: 2
  givenname: Keir C.
  surname: Neuman
  fullname: Neuman, Keir C.
  organization: NHLBI
– sequence: 3
  givenname: Anthony
  orcidid: 0000-0002-5756-6430
  surname: Maxwell
  fullname: Maxwell, Anthony
  email: tony.maxwell@jic.ac.uk
  organization: John Innes Centre
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33480441$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uFSEYxYmpsbfVrUsziRs3cwUGZsCFyW2t2qTRhbomDMNUGgau_Ll6V-0j-Iw-iUxuW7WJ6YqQ73dOPg7nAOw57zQATxFcIgjxy97ouMQQw3Jh7QOwQBSjGrGO7YEFxC2tOSbdPjiI8aIwvMXkEdhvGsIgIWgBLt98WFXJr72JftJBRh1fVathI53SsTKuym7QISbpBuPOKz9WSlubrQxV8LYgZVBN2Sbz6-rnOviki0b5aW31jzLdGFnFFLJKOehCjNmpZLwrMmm30cTH4OEobdRPrs9D8OXtyefj9_XZx3enx6uzWtG2a2ukIep7pgbeSywhRZ1iY0MgQwqplg5qhAOUuOFcKangqKmUnBHe9ZRx2MvmELze-a5zP-lBaZeCtGIdzCTDVnhpxL8TZ76Kc78RXYsI4bgYvLg2CP5b1jGJycQ5C-m0z1FgiknTNLRj96MlfNw1nM6uz--gFz6Hks1sCBFrGaa8UM_-Xv5265tvLADZASr4GIMehTJJzkGXtxgrEBRzW8TcFnHbliJb3pHdOP9XwHeC78bq7T20ODo9-fRH-xuGBdeI
CitedBy_id crossref_primary_10_1002_anie_202414325
crossref_primary_10_3390_ijms241311199
crossref_primary_10_3390_ph16101456
crossref_primary_10_1042_BST20240089
crossref_primary_10_1107_S2059798323002565
crossref_primary_10_3390_ijms241512107
crossref_primary_10_3390_molecules27103274
crossref_primary_10_3390_microorganisms10122434
crossref_primary_10_1016_j_fbio_2024_103849
crossref_primary_10_31083_j_fbl2703093
crossref_primary_10_1093_molbev_msac155
crossref_primary_10_1093_nar_gkab869
crossref_primary_10_1128_aac_00669_22
crossref_primary_10_1016_j_csbj_2025_03_041
crossref_primary_10_1038_s42004_024_01129_y
crossref_primary_10_1134_S0006297923070040
crossref_primary_10_1042_BST20200454
crossref_primary_10_1128_jb_00190_25
crossref_primary_10_1038_s41467_023_44089_y
crossref_primary_10_3390_antibiotics11091156
crossref_primary_10_3390_ph18010072
crossref_primary_10_1111_mmi_14813
crossref_primary_10_1016_j_ejmech_2021_113970
crossref_primary_10_1039_D3RA06189B
crossref_primary_10_1016_j_inoche_2025_115544
crossref_primary_10_1093_nar_gkae703
crossref_primary_10_1007_s10867_025_09686_6
crossref_primary_10_1021_acsinfecdis_4c00880
crossref_primary_10_3390_cells13060553
crossref_primary_10_1016_j_arabjc_2023_105423
crossref_primary_10_1016_j_ejmech_2023_116056
crossref_primary_10_1002_ange_202414325
crossref_primary_10_1016_j_mib_2024_102559
crossref_primary_10_1038_s41467_025_60559_x
crossref_primary_10_1007_s12064_024_00427_2
crossref_primary_10_1016_j_tim_2024_11_013
crossref_primary_10_1016_j_sciaf_2025_e02658
crossref_primary_10_4155_fmc_2021_0266
crossref_primary_10_1038_s41589_022_01235_9
crossref_primary_10_7717_peerj_17864
crossref_primary_10_1093_nar_gkaf929
crossref_primary_10_1021_acs_jpcb_5c04512
crossref_primary_10_1111_mmi_14997
crossref_primary_10_1111_mmi_15328
crossref_primary_10_1093_nar_gkad190
crossref_primary_10_3390_ijms24043986
crossref_primary_10_1093_nargab_lqae085
crossref_primary_10_1038_s41598_025_93122_1
crossref_primary_10_7554_eLife_67021
crossref_primary_10_1016_j_bmc_2024_117798
crossref_primary_10_1007_s11030_024_11092_4
crossref_primary_10_1042_BSR20212847
crossref_primary_10_3390_cancers15164127
crossref_primary_10_3389_fmolb_2022_1007064
crossref_primary_10_1016_j_chemosphere_2024_143006
crossref_primary_10_3390_ijms241310740
crossref_primary_10_3390_molecules29030581
crossref_primary_10_1016_j_ijbiomac_2024_131991
crossref_primary_10_3390_ijms25115674
crossref_primary_10_3390_ijms241713080
crossref_primary_10_3390_ijms26052018
crossref_primary_10_1002_jat_4238
crossref_primary_10_1093_nar_gkad688
crossref_primary_10_3389_fmicb_2022_1032320
crossref_primary_10_1093_nar_gkae657
crossref_primary_10_3390_cells12070986
crossref_primary_10_3390_molecules28165996
crossref_primary_10_1371_journal_pgen_1010754
crossref_primary_10_1093_nar_gkab270
crossref_primary_10_1128_AAC_00676_21
crossref_primary_10_3389_fcell_2023_1214962
crossref_primary_10_1242_jcs_262004
crossref_primary_10_3390_ijms26136193
crossref_primary_10_3390_ph16010094
crossref_primary_10_1099_jmm_0_002024
crossref_primary_10_1038_s41598_022_08359_x
crossref_primary_10_1016_j_phrs_2024_107457
crossref_primary_10_1016_j_jmb_2025_169349
crossref_primary_10_1093_nar_gkab239
crossref_primary_10_1134_S000629792560019X
crossref_primary_10_3390_ijms241914806
crossref_primary_10_1016_j_jbc_2025_110495
crossref_primary_10_1093_femsre_fuac049
crossref_primary_10_3390_ph15091098
crossref_primary_10_1016_j_inoche_2022_109779
crossref_primary_10_1002_bies_202100187
crossref_primary_10_3389_fmolb_2022_871161
crossref_primary_10_1016_j_fitote_2023_105617
crossref_primary_10_1111_mmi_15014
crossref_primary_10_1038_s41467_022_32106_5
crossref_primary_10_3389_fmicb_2023_1192831
crossref_primary_10_1093_nar_gkae638
crossref_primary_10_1039_D4RA01437E
crossref_primary_10_1007_s13659_023_00392_1
crossref_primary_10_3390_ijms252212265
crossref_primary_10_1016_j_csbj_2023_07_019
crossref_primary_10_1016_j_actatropica_2022_106613
crossref_primary_10_1016_j_bpj_2024_10_002
crossref_primary_10_1038_s41598_025_93863_z
crossref_primary_10_1128_AAC_01514_21
crossref_primary_10_1016_j_parint_2024_102863
crossref_primary_10_21518_ms2025_141
crossref_primary_10_1016_j_plaphy_2022_11_019
crossref_primary_10_3390_molecules27227768
crossref_primary_10_1093_nar_gkaf452
crossref_primary_10_1093_nar_gkaf330
Cites_doi 10.7554/eLife.31724
10.1073/pnas.1921848117
10.1016/j.chembiol.2010.04.012
10.1126/science.aad5309
10.1093/nar/gkp024
10.1016/j.pbi.2003.09.009
10.1038/nsmb.1604
10.1093/nar/gky1143
10.1038/nature01097
10.1016/j.jmb.2011.03.030
10.1093/nar/gky1222
10.1093/nar/gkaa201
10.1073/pnas.1133178100
10.1016/j.sbi.2012.11.011
10.1016/j.cell.2015.05.032
10.1128/mBio.01001-13
10.3390/ijms20051238
10.1038/364735a0
10.1038/nature08974
10.1093/nar/gkq153
10.1016/j.jmb.2016.08.005
10.1111/j.1365-2958.1995.tb02264.x
10.1093/nar/11.10.2999
10.1126/science.287.5450.131
10.1093/nar/gkt560
10.1016/S0021-9258(19)83859-0
10.1073/pnas.0900574106
10.1038/s41467-019-12914-y
10.1016/S0092-8674(85)80028-3
10.1038/171964b0
10.1093/nar/gkv1073
10.1038/nsmb.2388
10.1074/jbc.M910091199
10.1073/pnas.1001855107
10.1016/S0021-9258(18)35660-6
10.1016/j.biochi.2007.02.012
10.1093/nar/gky1271
10.1073/pnas.0401595101
10.1023/B:CHRO.0000036608.91085.d1
10.1016/0092-8674(87)90518-6
10.1101/gad.838900
10.1073/pnas.111006998
10.1093/molbev/msm217
10.1074/jbc.M303403200
10.1038/171737a0
10.1242/jcs.013730
10.1038/sj.emboj.7600922
10.1016/S0021-9258(19)36714-6
10.1002/prot.340060307
10.1016/j.jmb.2019.07.008
10.3390/polym10101126
10.1073/pnas.0437998100
10.1128/JB.187.24.8531-8536.2005
10.1016/S0968-0004(99)01503-0
10.1126/science.aad5196
10.1073/pnas.101132498
10.1038/s41467-020-18456-y
10.1093/nar/gkr258
10.1158/1078-0432.CCR-13-1997
10.1128/JB.140.2.424-435.1979
10.1083/jcb.120.3.601
10.1073/pnas.1422203112
10.1007/s00018-013-1325-1
10.1016/j.jmb.2005.06.029
10.1111/j.1742-4658.2006.05518.x
10.1105/tpc.107.054361
10.1074/jbc.M211211200
10.1093/nar/gks626
10.1038/ncb3353
10.1016/j.gpb.2016.02.004
10.1016/j.molcel.2014.01.011
10.1073/pnas.73.11.3872
10.1073/pnas.111040498
10.1016/S0168-9525(02)02650-1
10.1073/pnas.0505883102
10.1074/jbc.M112.345736
10.1093/nar/22.9.1567
10.1073/pnas.84.20.7024
10.7554/eLife.26120
10.1038/sj.embor.7400101
10.1016/S0092-8674(00)81876-0
10.1128/JB.162.3.1173-1179.1985
10.1146/annurev.bi.59.070190.004441
10.1038/ncomms10466
10.1016/j.str.2007.12.020
10.1371/journal.pgen.1006754
10.1021/cb300648v
10.1002/mgg3.1145
10.1038/nature03395
10.1073/pnas.90.10.4753
10.1098/rsob.190222
10.1016/j.jmb.2007.01.065
10.1016/S0960-9822(02)01218-6
10.1016/S0006-291X(03)01169-0
10.1146/annurev.biophys.33.110502.140357
10.1016/0092-8674(90)90172-B
10.1016/S0021-9258(18)60974-3
10.1074/jbc.274.23.16654
10.1016/0022-2836(78)90061-X
10.1038/nsmb1264
10.1046/j.1365-2958.2000.01763.x
10.1093/emboj/18.21.6177
10.1016/j.cell.2016.02.036
10.1093/nar/28.7.1548
10.1038/nn.3479
10.3390/genes10110859
10.1016/0092-8674(83)90140-X
10.1016/0167-4781(92)90050-A
10.1038/s41598-018-27606-8
10.1073/pnas.95.3.1010
10.1128/mSphere.00025-15
10.1128/JB.158.2.397-403.1984
10.1002/j.1460-2075.1995.tb00098.x
10.1038/309677a0
10.1093/nar/gku589
10.1016/S0092-8674(03)01023-7
10.1016/j.cca.2017.03.022
10.1016/j.bbrc.2010.05.081
10.1016/j.jmb.2020.06.018
10.1073/pnas.0703587104
10.1016/0022-2836(71)90334-2
10.1093/hmg/ddn219
10.1021/bi034188l
10.1038/ncomms9962
10.1074/jbc.M511160200
10.1016/j.str.2005.03.013
10.1074/jbc.273.50.33660
10.1016/j.neuron.2012.04.009
10.1128/JB.00563-18
10.1038/s41467-018-05406-y
10.1093/nar/gku076
10.1016/j.cub.2003.12.043
10.1016/j.jmb.2012.07.014
10.1073/pnas.1008678107
10.1016/j.molcel.2008.04.019
10.1186/s12929-016-0255-2
10.1016/S1074-5521(03)00027-9
10.1073/pnas.90.18.8571
10.1073/pnas.1008140107
10.1371/journal.pone.0011338
10.1038/s41594-019-0201-6
10.1016/0022-2836(84)90080-9
10.1093/nar/gkw122
10.1016/j.cell.2019.09.034
10.1016/S0021-9258(18)47037-8
10.1073/pnas.0400836101
10.1073/pnas.1202041109
10.1105/tpc.107.054833
10.1371/journal.pgen.1006025
10.1093/nar/gks1017
10.1006/excr.1997.3805
10.1101/gad.1725108
10.1146/annurev.biochem.70.1.369
10.1038/srep42123
10.1073/pnas.242259599
10.1038/ng.2446
10.2741/970
10.1038/sj.emboj.7600622
10.1073/pnas.69.1.143
10.1016/j.jmb.2012.10.016
10.1038/nature02253
10.1093/nar/gku568
10.1016/j.molcel.2008.04.020
10.1016/S0960-9822(02)01198-3
10.1146/annurev.bi.65.070196.003223
10.1093/oso/9780198567097.001.0001
10.1128/EC.00357-06
10.1038/s41467-019-10180-6
10.1016/S0022-2836(02)00049-9
10.1083/jcb.201303045
10.1016/j.molcel.2017.11.033
10.1073/pnas.93.18.9477
10.1093/nar/gks1073
10.1016/j.jmb.2020.08.012
10.1093/nar/gks852
10.1038/nsmb.2775
10.1038/s41594-018-0158-x
10.1016/j.tibtech.2006.04.006
10.1073/pnas.75.4.1773
10.1093/nar/gkp032
10.1093/nar/gkz260
10.1242/jcs.058255
10.1021/bi962880t
10.1093/emboj/cdg008
10.1016/S0378-1119(01)00496-6
10.1093/nar/gkn587
10.1016/S0966-842X(96)10085-8
10.1111/mmi.14424
10.1073/pnas.70.11.3077
10.1016/S0021-9258(19)57259-3
10.1093/nar/26.18.4205
10.1074/jbc.M502838200
10.1038/nn.3484
10.1073/pnas.152337599
10.1093/nargab/lqz021
10.1016/j.abb.2017.06.021
10.1128/ecosalplus.ESP-0010-2014
10.1126/science.279.5356.1534
10.1038/emboj.2009.371
10.1073/pnas.97.17.9419
10.1007/s00253-011-3557-z
10.1073/pnas.1115704109
10.1074/jbc.REV120.008286
10.1101/gad.321836.118
10.3390/ijms19071917
10.1111/j.1574-6968.1995.tb07782.x
10.1038/nature06396
10.1111/tpj.12199
10.1073/pnas.2001760117
10.1038/386414a0
10.1074/jbc.271.35.21529
10.1016/S1097-2765(03)00013-3
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
2021 The Authors. BioEssays published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
– notice: 2021 The Authors. BioEssays published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
DOI 10.1002/bies.202000286
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
MEDLINE
AGRICOLA
MEDLINE - Academic
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID PMC7614492
33480441
10_1002_bies_202000286
BIES202000286
Genre reviewArticle
Research Support, N.I.H., Intramural
Review
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  funderid: 110072/Z/15/Z
– fundername: Biotechnology and Biological Sciences Research Council
  funderid: BB/P012523/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/P012523/1
– fundername: Wellcome Trust
  grantid: 110072/Z/15/Z
– fundername: Intramural NIH HHS
  grantid: ZIA HL001056
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/J/00000201
– fundername: Wellcome Trust
  grantid: 110072
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c5676-1e01bb8cd9ba2a0517c8f34081c1c65dcf0d0a2399ccac0fe5aa98497b5890ba3
IEDL.DBID 24P
ISICitedReferencesCount 129
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609916500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0265-9247
1521-1878
IngestDate Tue Nov 04 02:06:42 EST 2025
Fri Jul 11 18:35:37 EDT 2025
Fri Jul 11 07:59:26 EDT 2025
Fri Jul 25 10:06:32 EDT 2025
Mon Jul 21 05:35:28 EDT 2025
Tue Nov 18 21:09:26 EST 2025
Sat Nov 29 05:24:46 EST 2025
Wed Jan 22 16:31:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords DNA supercoiling
anti-cancer drugs
DNA gyrase
antibiotics
DNA topoisomerase
Language English
License Attribution
2021 The Authors. BioEssays published by Wiley Periodicals LLC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5676-1e01bb8cd9ba2a0517c8f34081c1c65dcf0d0a2399ccac0fe5aa98497b5890ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5756-6430
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202000286
PMID 33480441
PQID 2501868259
PQPubID 37030
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614492
proquest_miscellaneous_2524333578
proquest_miscellaneous_2480273952
proquest_journals_2501868259
pubmed_primary_33480441
crossref_citationtrail_10_1002_bies_202000286
crossref_primary_10_1002_bies_202000286
wiley_primary_10_1002_bies_202000286_BIES202000286
PublicationCentury 2000
PublicationDate April 2021
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: April 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2007; 104
2002; 18
2010; 107
1990; 59
2019; 10
2010; 17
1978; 75
2002; 12
2010; 465
2002; 99
2008; 36
2019; 201
2004; 5
2013; 70
2012; 19
1998; 279
2008; 30
2020; 11
2002; 318
1995; 131
1997; 5
2013; 8
2003; 278
1985; 162
1993; 120
2014; 21
1983; 11
2014; 20
1993; 364
1998; 273
2018; 7
2004; 33
2018; 9
1976; 73
2018; 8
1994; 269
2020; 295
2005; 187
1984; 158
2000; 14
2019; 20
1992; 1132
2006; 24
2010; 29
2011; 408
2005; 102
2019; 26
2006; 25
1997; 386
2007; 450
2000; 97
2007; 6
2008; 22
2006; 281
1982; 257
1998; 95
2010; 5
2003; 42
1996; 65
2009; 16
2019; 431
2016; 44
2007; 19
2019; 9
2010; 38
2005; 351
1987; 50
2019; 33
1989; 6
1992; 267
1996; 93
2016; 165
2002; 419
1972; 69
2016; 18
1953; 171
2016; 14
2007; 14
2018; 25
2012; 109
2016; 12
2014; 42
2018; 19
2017; 429
2016; 7
2001; 271
2016; 1
1984; 179
2015; 112
1997; 36
2011; 92
2013; 75
2019; 47
2019; 179
2020; 432
2018; 10
2012; 44
1979; 140
2007; 89
2003; 100
2016; 23
2012; 41
2003; 22
2005; 13
2012; 40
2009; 106
1987; 262
2017; 6
2017; 7
1997; 237
2012; 287
1997; 88
2013; 23
2013; 203
2017; 45
1994; 22
2003; 115
2017; 633
2003; 10
2005; 24
2003; 11
2020; 8
1971; 55
2014; 5
2020; 3
1987; 84
2020; 2
2013; 16
1999; 18
2003; 6
2003; 8
2015; 43
1986; 261
2010; 397
2020; 48
2000; 287
2016; 351
2007; 24
2001; 98
2014; 53
1996; 7
2004; 101
2001; 70
2007; 368
1998; 26
1991; 2
1973; 70
2015; 161
2015; 6
2000; 28
2000; 25
1995; 15
1995; 14
2005; 434
2010; 123
2008; 16
2008; 17
2013; 425
2013; 41
2007; 120
1984; 309
2006; 273
2007
2005
1993; 90
2000; 275
1985; 41
2011; 39
2012; 424
2018; 69
2012; 74
1983; 34
1990; 63
2005; 280
2003; 307
2003; 426
2020
2000; 35
2004; 14
2017; 13
2004; 12
1999; 274
1978; 120
1996; 271
2020; 117
2018
2020; 113
2009; 37
2017; 469
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_200_1
Ahmad M. (e_1_2_11_55_1) 2017; 45
e_1_2_11_186_1
e_1_2_11_32_1
e_1_2_11_78_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_102_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_211_1
e_1_2_11_81_1
e_1_2_11_197_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_113_1
e_1_2_11_208_1
e_1_2_11_174_1
e_1_2_11_151_1
e_1_2_11_201_1
e_1_2_11_92_1
e_1_2_11_187_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_54_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_141_1
e_1_2_11_164_1
Woessner R. D. (e_1_2_11_165_1) 1991; 2
e_1_2_11_190_1
e_1_2_11_212_1
e_1_2_11_80_1
e_1_2_11_198_1
e_1_2_11_88_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_209_1
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_202_1
e_1_2_11_188_1
e_1_2_11_57_1
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_11_1
e_1_2_11_104_1
e_1_2_11_127_1
e_1_2_11_2_1
e_1_2_11_142_1
e_1_2_11_191_1
e_1_2_11_60_1
e_1_2_11_213_1
e_1_2_11_45_1
e_1_2_11_199_1
e_1_2_11_68_1
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_203_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_189_1
e_1_2_11_33_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_3_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_192_1
e_1_2_11_214_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_154_1
e_1_2_11_177_1
Soren B. C. (e_1_2_11_79_1) 2020; 3
e_1_2_11_131_1
Cho J.‐E. (e_1_2_11_83_1) 2018
e_1_2_11_182_1
e_1_2_11_204_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_106_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_144_1
e_1_2_11_193_1
e_1_2_11_215_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_59_1
e_1_2_11_178_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_170_1
e_1_2_11_50_1
e_1_2_11_220_1
e_1_2_11_183_1
e_1_2_11_205_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_217_1
e_1_2_11_160_1
Anderson H. (e_1_2_11_167_1) 1996; 7
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_216_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_84_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
Kondekar S. M. (e_1_2_11_23_1) 2020
e_1_2_11_171_1
e_1_2_11_91_1
e_1_2_11_221_1
e_1_2_11_184_1
e_1_2_11_30_1
e_1_2_11_99_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_169_1
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_123_1
e_1_2_11_218_1
e_1_2_11_161_1
e_1_2_11_195_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_64_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_206_1
e_1_2_11_172_1
e_1_2_11_90_1
e_1_2_11_185_1
Gubaev A. (e_1_2_11_136_1) 2016; 44
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
Bates A. D. (e_1_2_11_5_1) 2005
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_219_1
e_1_2_11_162_1
e_1_2_11_210_1
e_1_2_11_196_1
Dyson S. (e_1_2_11_159_1) 2020
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_135_1
e_1_2_11_112_1
e_1_2_11_150_1
e_1_2_11_173_1
e_1_2_11_207_1
References_xml – volume: 426
  start-page: 870
  issue: 6968
  year: 2003
  end-page: 874
  article-title: The Bloom's syndrome helicase suppresses crossing over during homologous recombination
  publication-title: Nature
– volume: 7
  year: 2017
  article-title: Structural basis of the interaction between topoisomerase IIIbeta and the TDRD3 auxiliary factor
  publication-title: Sci. Rep.
– volume: 47
  start-page: 210
  issue: 1
  year: 2019
  end-page: 220
  article-title: Single‐molecule imaging of DNA gyrase activity in living
  publication-title: Nucleic Acids Res.
– volume: 6
  issue: 2
  year: 2015
  article-title: DNA topoisomerases
  publication-title: EcoSal Plus
– volume: 22
  start-page: 2856
  issue: 20
  year: 2008
  end-page: 2868
  article-title: BLAP18/RMI2, a novel OB‐fold‐containing protein, is an essential component of the Bloom helicase‐double Holliday junction dissolvasome
  publication-title: Genes Dev.
– volume: 16
  start-page: 360
  issue: 3
  year: 2008
  end-page: 370
  article-title: Crystal structure of an intact type II DNA topoisomerase: Insights into DNA transfer mechanisms
  publication-title: Structure
– volume: 16
  start-page: 1238
  issue: 9
  year: 2013
  end-page: 1247
  article-title: Top3beta is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation
  publication-title: Nat. Neurosci.
– volume: 9
  start-page: 3085
  issue: 1
  year: 2018
  article-title: Structural insights into the gating of DNA passage by the topoisomerase II DNA‐gate
  publication-title: Nat. Commun.
– volume: 368
  start-page: 105
  issue: 1
  year: 2007
  end-page: 118
  article-title: Structural studies of topoisomerase III‐DNA complexes reveal a novel type IA topoisomerase‐DNA conformational intermediate
  publication-title: J. Mol. Biol.
– volume: 25
  start-page: 24
  issue: 1
  year: 2000
  end-page: 28
  article-title: GHKL, an emergent ATPase/kinase superfamily
  publication-title: Trends Biochem. Sci.
– volume: 106
  start-page: 6986
  issue: 17
  year: 2009
  end-page: 6991
  article-title: Mechanisms of chiral discrimination by topoisomerase IV
  publication-title: Proc Natl Acad Sci U S A
– volume: 99
  start-page: 15387
  issue: 24
  year: 2002
  end-page: 15392
  article-title: The mechanism of topoisomerase I poisoning by a camptothecin analog
  publication-title: Proc Natl Acad Sci U S A
– volume: 17
  start-page: 3236
  issue: 20
  year: 2008
  end-page: 3246
  article-title: Tdrd3 is a novel stress granule‐associated protein interacting with the fragile‐X syndrome protein FMRP
  publication-title: Hum. Mol. Genet.
– volume: 42
  start-page: 5993
  issue: 20
  year: 2003
  end-page: 6004
  article-title: Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase
  publication-title: Biochemistry
– volume: 432
  start-page: 4762
  issue: 16
  year: 2020
  end-page: 4771
  article-title: A beta‐hairpin is a minimal latch that supports positive supercoiling by reverse gyrase
  publication-title: J. Mol. Biol.
– volume: 19
  issue: 7
  year: 2018
  article-title: The roles of DNA topoisomerase IIbeta in transcription
  publication-title: Int. J. Mol. Sci.
– volume: 273
  start-page: 33660
  issue: 50
  year: 1998
  end-page: 33666
  article-title: Essential mitotic functions of DNA topoisomerase IIalpha are not adopted by topoisomerase IIbeta in human H69 cells
  publication-title: J. Biol. Chem.
– volume: 408
  start-page: 839
  issue: 5
  year: 2011
  end-page: 849
  article-title: TopR2, the second reverse gyrase of , exhibits unusual properties
  publication-title: J. Mol. Biol.
– volume: 117
  start-page: 10856
  issue: 20
  year: 2020
  end-page: 10864
  article-title: Direct observation of helicase‐topoisomerase coupling within reverse gyrase
  publication-title: Proc Natl Acad Sci U S A
– volume: 281
  start-page: 3738
  issue: 6
  year: 2006
  end-page: 3742
  article-title: The “GyrA‐box” is required for the ability of DNA gyrase to wrap DNA and catalyze the supercoiling reaction
  publication-title: J. Biol. Chem.
– volume: 20
  issue: 5
  year: 2019
  article-title: The impact of the C‐terminal region on the interaction of topoisomerase II alpha with mitotic chromatin
  publication-title: Int. J. Mol. Sci.
– volume: 179
  issue: 3
  year: 2019
  article-title: Synergistic coordination of chromatin torsional mechanics and topoisomerase activity
  publication-title: Cell
– volume: 47
  start-page: 5231
  issue: 10
  year: 2019
  end-page: 5242
  article-title: Topoisomerase IV can functionally replace all type 1A topoisomerases in
  publication-title: Nucleic Acids Res.
– volume: 158
  start-page: 397
  year: 1984
  end-page: 403
  article-title: DNA supercoiling in gyrase mutants
  publication-title: J. Bacteriol.
– volume: 13
  issue: 5
  year: 2017
  article-title: Transcription facilitated genome‐wide recruitment of topoisomerase I and DNA gyrase
  publication-title: PLoS Genet.
– year: 2007
  article-title: MIDGET unravels functions of the arabidopsis topoisomerase VI complex in DNA endoreduplication, chromatin condensation, and transcriptional silencing
  publication-title: Plant Cell
– volume: 425
  start-page: 32
  issue: 1
  year: 2013
  end-page: 40
  article-title: Reverse gyrase transiently unwinds double‐stranded DNA in an ATP‐dependent reaction
  publication-title: J. Mol. Biol.
– volume: 109
  start-page: 16360
  issue: 40
  year: 2012
  end-page: 16365
  article-title: Integration of stress‐related and reactive oxygen species‐mediated signals by topoisomerase VI in
  publication-title: Proc Natl Acad Sci U S A
– volume: 275
  start-page: 19498
  issue: 26
  year: 2000
  end-page: 19504
  article-title: Reverse gyrase, the two domains intimately cooperate to promote positive supercoiling
  publication-title: J. Biol. Chem.
– volume: 203
  start-page: 471
  issue: 3
  year: 2013
  end-page: 486
  article-title: A novel chromatin tether domain controls topoisomerase IIalpha dynamics and mitotic chromosome formation
  publication-title: J. Cell Biol.
– volume: 10
  start-page: 4935
  issue: 1
  year: 2019
  article-title: Cryo‐EM structure of the complete DNA gyrase nucleoprotein complex
  publication-title: Nat. Commun.
– volume: 171
  start-page: 964
  issue: 4361
  year: 1953
  end-page: 967
  article-title: Genetical implications of the structure of deoxyribonucleic acid
  publication-title: Nature
– volume: 84
  start-page: 7024
  issue: 20
  year: 1987
  end-page: 7027
  article-title: Supercoiling of the DNA template during transcription
  publication-title: Proc Natl Acad Sci U S A
– volume: 48
  start-page: 4448
  issue: 8
  year: 2020
  end-page: 4462
  article-title: Mechanistic insights from structure of topoisomerase I with ssDNA bound to both N‐ and C‐terminal domains
  publication-title: Nucleic Acids Res.
– volume: 41
  start-page: 7815
  issue: 16
  year: 2013
  end-page: 7827
  article-title: Structural insight into negative DNA supercoiling by DNA gyrase, a bacterial type 2A DNA topoisomerase
  publication-title: Nucleic Acids Res.
– volume: 351
  start-page: 545
  issue: 3
  year: 2005
  end-page: 561
  article-title: The structural basis for substrate specificity in DNA topoisomerase IV
  publication-title: J. Mol. Biol.
– volume: 41
  start-page: 1058
  issue: 2
  year: 2013
  end-page: 1070
  article-title: Crystal structures of reverse gyrase: Inferences for the mechanism of positive DNA supercoiling
  publication-title: Nucleic Acids Res.
– volume: 261
  start-page: 5616
  issue: 12
  year: 1986
  end-page: 5624
  article-title: Complete enzymatic replication of plasmids containing the origin of the chromosome
  publication-title: J. Biol. Chem.
– volume: 22
  start-page: 1567
  year: 1994
  end-page: 1575
  article-title: Evidence for a conformational change in the DNA gyrase‐DNA complex from hydroxyl radical footprinting
  publication-title: Nucleic Acids Res.
– volume: 23
  start-page: 125
  issue: 1
  year: 2013
  end-page: 133
  article-title: New insights into DNA‐binding by type IIA topoisomerases
  publication-title: Curr. Opin. Struct. Biol.
– volume: 8
  start-page: d210
  year: 2003
  end-page: d221
  article-title: The problem of hypernegative supercoiling and R‐loop formation in transcription
  publication-title: Front Biosci
– volume: 12
  start-page: 1782
  issue: 20
  year: 2002
  end-page: 1786
  article-title: DNA topoisomerase VI is essential for endoreduplication in
  publication-title: Curr. Biol.
– volume: 10
  issue: 10
  year: 2018
  article-title: Chromatin loop extrusion and chromatin unknotting
  publication-title: Polymers (Basel)
– volume: 92
  start-page: 479
  issue: 3
  year: 2011
  end-page: 497
  article-title: Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 6
  start-page: 8962
  year: 2015
  article-title: PICH promotes sister chromatid disjunction and co‐operates with topoisomerase II in mitosis
  publication-title: Nat. Commun.
– volume: 36
  start-page: 5882
  issue: 18
  year: 2008
  end-page: 5895
  article-title: The reverse gyrase helicase‐like domain is a nucleotide‐dependent switch that is attenuated by the topoisomerase domain
  publication-title: Nucleic Acids Res.
– volume: 267
  start-page: 20532
  year: 1992
  end-page: 20535
  article-title: topoisomerase III‐catalyzed cleavage of RNA
  publication-title: J. Biol. Chem.
– volume: 44
  start-page: 10354
  issue: 21
  year: 2016
  end-page: 10366
  article-title: DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking‐closing mechanism
  publication-title: Nucleic Acids Res.
– volume: 8
  issue: 3
  year: 2020
  article-title: A de novo TOP2B variant associated with global developmental delay and autism spectrum disorder
  publication-title: Mol Genet Genomic Med
– volume: 65
  start-page: 635
  year: 1996
  end-page: 692
  article-title: DNA topoisomerases
  publication-title: Annu. Rev. Biochem.
– volume: 13
  start-page: 873
  issue: 6
  year: 2005
  end-page: 882
  article-title: Structural dissection of ATP turnover in the prototypical GHL ATPase TopoVI
  publication-title: Structure
– volume: 18
  start-page: 692
  issue: 6
  year: 2016
  end-page: 699
  article-title: Sister chromatid resolution is an intrinsic part of chromosome organization in prophase
  publication-title: Nat. Cell Biol.
– volume: 5
  start-page: e01001
  issue: 1
  year: 2014
  end-page: 01013
  article-title: The SMC complex MukBEF recruits topoisomerase IV to the origin of replication region in live
  publication-title: MBio
– year: 2020
  article-title: Condensin minimizes topoisomerase II‐mediated entanglements of DNA
  publication-title: EMBO J.
– volume: 24
  start-page: 245
  issue: 6
  year: 2006
  end-page: 247
  article-title: DNA topoisomerase V: A new fold of mysterious origin
  publication-title: Trends Biotechnol.
– volume: 70
  start-page: 3077
  issue: 11
  year: 1973
  end-page: 3081
  article-title: Effect of circularity and superhelicity on transcription from bacteriophagelambda DNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 278
  start-page: 30705
  issue: 33
  year: 2003
  end-page: 30710
  article-title: Direct interaction between RNA polymerase and the zinc ribbon domains of DNA topoisomerase I
  publication-title: J. Biol. Chem.
– volume: 11
  start-page: 189
  issue: 1
  year: 2003
  end-page: 201
  article-title: Temporal regulation of topoisomerase IV activity in
  publication-title: Mol. Cell
– volume: 23
  start-page: 38
  year: 2016
  article-title: Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity
  publication-title: J Biomed Sci
– volume: 465
  start-page: 641
  issue: 7298
  year: 2010
  end-page: 644
  article-title: A novel and unified two‐metal mechanism for DNA cleavage by type II and IA topoisomerases
  publication-title: Nature
– volume: 18
  start-page: 6177
  year: 1999
  end-page: 6188
  article-title: Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo 11
  publication-title: EMBO J.
– volume: 271
  start-page: 21529
  issue: 35
  year: 1996
  end-page: 21535
  article-title: Two distinct modes of strand unlinking during theta‐type DNA replication
  publication-title: J. Biol. Chem.
– volume: 12
  issue: 5
  year: 2016
  article-title: Mapping topoisomerase IV binding and activity sites on the genome
  publication-title: PLoS Genet.
– volume: 269
  start-page: 27663
  issue: 44
  year: 1994
  end-page: 27669
  article-title: Purification of a DNA topoisomerase II from the hyperthermophilic archaeon . A thermostable enzyme with both bacterial and eucaryal features
  publication-title: J. Biol. Chem.
– volume: 104
  start-page: 9242
  issue: 22
  year: 2007
  end-page: 9247
  article-title: Development of autoimmunity in mice lacking DNA topoisomerase 3beta
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 267
  issue: 4
  year: 2019
  end-page: 274
  article-title: PICH and TOP3A cooperate to induce positive DNA supercoiling
  publication-title: Nat. Struct. Mol. Biol.
– volume: 257
  start-page: 5866
  issue: 10
  year: 1982
  end-page: 5872
  article-title: Yeast DNA topoisomerase II. An ATP‐dependent type II topoisomerase that catalyzes the catenation, decatenation, unknotting, and relaxation of double‐stranded DNA rings
  publication-title: J. Biol. Chem.
– volume: 274
  start-page: 16654
  issue: 23
  year: 1999
  end-page: 16658
  article-title: Relaxation of transcription‐induced negative supercoiling is an essential function of DNA topoisomerase I
  publication-title: J. Biol. Chem.
– volume: 93
  start-page: 9477
  issue: 18
  year: 1996
  end-page: 9482
  article-title: An RNA topoisomerase
  publication-title: Proc Natl Acad Sci U S A
– volume: 633
  start-page: 78
  year: 2017
  end-page: 84
  article-title: Topoisomerase IIbeta and its role in different biological contexts
  publication-title: Arch. Biochem. Biophys.
– volume: 90
  start-page: 4753
  issue: 10
  year: 1993
  end-page: 4757
  article-title: Reverse gyrase: A helicase‐like domain and a type I topoisomerase in the same polypeptide
  publication-title: Proc Natl Acad Sci U S A
– volume: 75
  start-page: 1773
  issue: 4
  year: 1978
  end-page: 1777
  article-title: Purification of subunits of DNA gyrase and reconstitution of enzymatic activity
  publication-title: Proc Natl Acad Sci U S A
– volume: 42
  start-page: 8200
  issue: 13
  year: 2014
  end-page: 8213
  article-title: Reverse gyrase–recent advances and current mechanistic understanding of positive DNA supercoiling
  publication-title: Nucleic Acids Res.
– volume: 7
  year: 2018
  article-title: Topoisomerase VI senses and exploits both DNA crossings and bends to facilitate strand passage
  publication-title: Elife
– volume: 19
  start-page: 3655
  issue: 11
  year: 2007
  end-page: 3668
  article-title: BIN4, a novel component of the plant DNA topoisomerase VI complex, is required for endoreduplication in Arabidopsis
  publication-title: Plant Cell
– volume: 267
  start-page: 25676
  issue: 36
  year: 1992
  end-page: 25684
  article-title: Purification and characterization of DNA topoisomerase IV in
  publication-title: J. Biol. Chem.
– volume: 95
  start-page: 1010
  year: 1998
  end-page: 1013
  article-title: Mammalian DNA topoisomerase IIIa is essential in early embryogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 55
  start-page: 523
  year: 1971
  end-page: 533
  article-title: Interaction between DNA and an protein w
  publication-title: J. Mol. Biol
– volume: 34
  start-page: 105
  issue: 1
  year: 1983
  end-page: 113
  article-title: Regulation of the genes for DNA gyrase: Homeostatic control of DNA supercoiling
  publication-title: Cell
– volume: 10
  start-page: 2252
  issue: 1
  year: 2019
  article-title: The FANCM‐BLM‐TOP3A‐RMI complex suppresses alternative lengthening of telomeres (ALT)
  publication-title: Nat. Commun.
– volume: 98
  start-page: 6015
  issue: 11
  year: 2001
  end-page: 6020
  article-title: A type IB topoisomerase with DNA repair activities
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 15
  start-page: 507
  year: 1995
  end-page: 517
  article-title: Overexpression of the genes coding for DNA topoisomerase IV compensates for loss of DNA topoisomerase I: Effect on virulence gene expression
  publication-title: Molec. Microbiol.
– volume: 74
  start-page: 285
  issue: 2
  year: 2012
  end-page: 299
  article-title: De novo gene disruptions in children on the autistic spectrum
  publication-title: Neuron
– volume: 17
  start-page: 421
  issue: 5
  year: 2010
  end-page: 433
  article-title: DNA topoisomerases and their poisoning by anticancer and antibacterial drugs
  publication-title: Chem. Biol.
– volume: 351
  start-page: 939
  issue: 6276
  year: 2016
  end-page: 943
  article-title: A DNA topoisomerase VI‐like complex initiates meiotic recombination
  publication-title: Science
– volume: 140
  start-page: 424
  year: 1979
  end-page: 435
  article-title: mutants thermosensitive for deoxyribonucleic acid gyrase subunit A: Effects on deoxyribonucleic acid replication, transcription, and bacteriophage growth
  publication-title: J. Bacteriol.
– volume: 24
  start-page: 2827
  issue: 12
  year: 2007
  end-page: 2841
  article-title: Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage‐specific loss
  publication-title: Mol. Biol. Evol.
– volume: 73
  start-page: 3872
  issue: 11
  year: 1976
  end-page: 3876
  article-title: DNA gyrase: An enzyme that introduces superhelical turns into DNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 7
  start-page: 83
  issue: 1
  year: 1996
  end-page: 90
  article-title: Topoisomerase II inhibitors affect entry into mitosis and chromosome condensation in BHK cells
  publication-title: Cell Growth Differ.
– volume: 11
  start-page: 2999
  issue: 10
  year: 1983
  end-page: 3017
  article-title: Positively supercoiled plasmid DNA is produced by treatment of with DNA gyrase inhibitors
  publication-title: Nucleic Acids Res.
– volume: 41
  start-page: 553
  issue: 2
  year: 1985
  end-page: 563
  article-title: DNA topoisomerase II is required at the time of mitosis in yeast
  publication-title: Cell
– volume: 18
  start-page: 236
  issue: 5
  year: 2002
  end-page: 237
  article-title: A hot story from comparative genomics: Reverse gyrase is the only hyperthermophile‐specific protein
  publication-title: Trends Genet.
– volume: 120
  start-page: 3952
  issue: Pt 22
  year: 2007
  end-page: 3964
  article-title: Depletion of topoisomerase IIalpha leads to shortening of the metaphase interkinetochore distance and abnormal persistence of PICH‐coated anaphase threads
  publication-title: J. Cell Sci.
– volume: 98
  start-page: 5717
  issue: 10
  year: 2001
  end-page: 5721
  article-title: Mice lacking DNA topoisomerase IIIbeta develop to maturity but show a reduced mean lifespan
  publication-title: Proc Natl Acad Sci U S A
– volume: 287
  start-page: 18645
  issue: 22
  year: 2012
  end-page: 18654
  article-title: Mechanisms for defining supercoiling set point of DNA gyrase orthologs: II. The shape of the GyrA Subunit C‐terminal domain (CTD) is not a sole determinant for controlling supercoiling efficiency
  publication-title: J. Biol. Chem.
– volume: 12
  start-page: 1787
  issue: 20
  year: 2002
  end-page: 1791
  article-title: An archaebacterial topoisomerase homolog not present in other eukaryotes is indispensable for cell proliferation of plants
  publication-title: Curr. Biol.
– volume: 53
  start-page: 484
  issue: 3
  year: 2014
  end-page: 497
  article-title: Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation
  publication-title: Mol. Cell
– volume: 40
  start-page: 10893
  issue: 21
  year: 2012
  end-page: 10903
  article-title: The GyrA‐box determines the geometry of DNA bound to gyrase and couples DNA binding to the nucleotide cycle
  publication-title: Nucleic Acids Res.
– volume: 30
  start-page: 790
  issue: 6
  year: 2008
  end-page: 802
  article-title: Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast
  publication-title: Mol. Cell
– volume: 6
  year: 2017
  article-title: Metaphase chromosome structure is dynamically maintained by condensin I‐directed DNA (de)catenation
  publication-title: Elife
– volume: 309
  start-page: 677
  year: 1984
  end-page: 681
  article-title: Reverse gyrase – a topoisomerase which introduces positive superhelical turns into DNA
  publication-title: Nature
– volume: 469
  start-page: 63
  year: 2017
  end-page: 68
  article-title: Global developmental delay and intellectual disability associated with a de novo TOP2B mutation
  publication-title: Clin. Chim. Acta
– volume: 8
  start-page: 9272
  issue: 1
  year: 2018
  article-title: Post‐translational modifications in DNA topoisomerase 2alpha highlight the role of a eukaryote‐specific residue in the ATPase domain
  publication-title: Sci. Rep.
– volume: 70
  start-page: 4067
  issue: 21
  year: 2013
  end-page: 4084
  article-title: The BLM dissolvasome in DNA replication and repair
  publication-title: Cell. Mol. Life Sci.
– volume: 47
  start-page: 1416
  issue: 3
  year: 2019
  end-page: 1427
  article-title: Genome‐wide mapping of Topoisomerase I activity sites reveal its role in chromosome segregation
  publication-title: Nucleic Acids Res.
– volume: 1132
  start-page: 43
  issue: 1
  year: 1992
  end-page: 48
  article-title: Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development
  publication-title: Biochim. Biophys. Acta
– volume: 2
  issue: 1
  year: 2020
  article-title: Expanding the type IIB DNA topoisomerase family: Identification of new topoisomerase and topoisomerase‐like proteins in mobile genetic elements
  publication-title: NAR Genomics and Bioinformatics
– volume: 101
  start-page: 7293
  issue: 19
  year: 2004
  end-page: 7298
  article-title: The C‐terminal domain of DNA gyrase A adopts a DNA‐bending {beta}‐pinwheel fold
  publication-title: Proc Natl Acad Sci U S A
– volume: 161
  start-page: 1592
  issue: 7
  year: 2015
  end-page: 1605
  article-title: Activity‐induced DNA breaks govern the expression of neuronal early‐response genes
  publication-title: Cell
– volume: 102
  start-page: 18736
  issue: 51
  year: 2005
  end-page: 18741
  article-title: RHL1 is an essential component of the plant DNA topoisomerase VI complex and is required for ploidy‐dependent cell growth
  publication-title: Proc Natl Acad Sci U S A
– volume: 429
  start-page: 3156
  issue: 21
  year: 2017
  end-page: 3167
  article-title: Ribonucleotides and transcription‐associated mutagenesis in yeast
  publication-title: J. Mol. Biol.
– volume: 271
  start-page: 81
  issue: 1
  year: 2001
  end-page: 86
  article-title: Molecular characterization of homologues of both subunits A (SPO11) and B of the archaebacterial topoisomerase 6 in plants
  publication-title: Gene
– volume: 26
  start-page: 4205
  year: 1998
  end-page: 4213
  article-title: Toprim – a conserved catalytic domain in type IA and II topoisomerases, DnaG‐type primases, OLD family nucleases and RecR proteins
  publication-title: Nucleic Acids Res.
– volume: 295
  start-page: 7138
  issue: 20
  year: 2020
  end-page: 7153
  article-title: The many lives of type IA topoisomerases
  publication-title: J. Biol. Chem.
– volume: 434
  start-page: 671
  issue: 7033
  year: 2005
  end-page: 674
  article-title: Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB
  publication-title: Nature
– year: 2005
– volume: 101
  start-page: 7821
  issue: 20
  year: 2004
  end-page: 7826
  article-title: Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria
  publication-title: Proc Natl Acad Sci U S A
– volume: 262
  start-page: 10419
  year: 1987
  end-page: 10421
  article-title: Intrinsic DNA‐dependent ATPase activity of reverse gyrase
  publication-title: J. Biol. Chem.
– volume: 10
  start-page: 107
  issue: 2
  year: 2003
  end-page: 111
  article-title: Emerging roles for plant topoisomerase VI
  publication-title: Chem. Biol.
– volume: 9
  issue: 12
  year: 2019
  article-title: Loss of TOP3B leads to increased R‐loop formation and genome instability
  publication-title: Open Biol
– volume: 131
  start-page: 235
  issue: 3
  year: 1995
  end-page: 242
  article-title: Structure and partitioning of bacterial DNA: Determined by a balance of compaction and expansion forces?
  publication-title: FEMS Microbiol. Lett.
– volume: 14
  start-page: R56
  issue: 2
  year: 2004
  end-page: R58
  article-title: Recombination: Holliday junction resolution and crossover formation
  publication-title: Curr. Biol.
– volume: 107
  start-page: 18826
  issue: 44
  year: 2010
  end-page: 18831
  article-title: Physical and functional interaction between the condensin MukB and the decatenase topoisomerase IV in
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 21
  start-page: 261
  issue: 3
  year: 2014
  end-page: 268
  article-title: Structural and mechanistic insight into Holliday‐junction dissolution by topoisomerase IIIalpha and RMI1
  publication-title: Nat. Struct. Mol. Biol.
– volume: 112
  start-page: 7495
  issue: 24
  year: 2015
  end-page: 7500
  article-title: Direct observation of DNA overwinding by reverse gyrase
  publication-title: Proc Natl Acad Sci U S A
– volume: 431
  start-page: 3427
  issue: 18
  year: 2019
  end-page: 3449
  article-title: DNA topoisomerase inhibitors: Trapping a DNA‐cleaving machine in motion
  publication-title: J. Mol. Biol.
– volume: 6
  start-page: 544
  issue: 6
  year: 2003
  end-page: 553
  article-title: Big it up”: Endoreduplication and cell‐size control in plants
  publication-title: Curr. Opin. Plant Biol.
– volume: 171
  start-page: 737
  year: 1953
  end-page: 738
  article-title: A structure for deoxyribose nucleic acid
  publication-title: Nature
– volume: 35
  start-page: 888
  issue: 4
  year: 2000
  end-page: 895
  article-title: Identification of a unique domain essential for DNA topoisomerase III‐catalysed decatenation of replication intermediates
  publication-title: Mol. Microbiol.
– volume: 279
  start-page: 1534
  year: 1998
  end-page: 1540
  article-title: A model for the mechanism of human topoisomerase I
  publication-title: Science
– volume: 44
  start-page: 3464
  issue: 7
  year: 2016
  end-page: 3474
  article-title: topoisomerase V contains three distinct AP lyase active sites in addition to the topoisomerase active site
  publication-title: Nucleic Acids Res.
– volume: 419
  start-page: 498
  issue: 6906
  year: 2002
  article-title: Genome sequence of the human malaria parasite
  publication-title: Nature
– volume: 47
  start-page: 1373
  issue: 3
  year: 2019
  end-page: 1388
  article-title: Single‐nucleotide‐resolution mapping of DNA gyrase cleavage sites across the genome
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 151
  issue: 1
  year: 2003
  end-page: 163
  article-title: Structure of the topoisomerase VI‐B subunit: Implications for type II topoisomerase mechanism and evolution
  publication-title: EMBO J.
– volume: 5
  start-page: 256
  issue: 3
  year: 2004
  end-page: 261
  article-title: A topological view of the replicon
  publication-title: EMBO Rep.
– volume: 6
  start-page: 249
  year: 1989
  end-page: 258
  article-title: The carboxyl terminal domain of DNA topoisomerase I confers higher affinity to DNA
  publication-title: Proteins: Struct. Funct. Genet.
– volume: 69
  issue: 1
  year: 2018
  article-title: Topoisomerase 3alpha is required for decatenation and segregation of human mtDNA
  publication-title: Mol. Cell
– volume: 19
  start-page: 1147
  issue: 11
  year: 2012
  end-page: 1154
  article-title: Structure of a topoisomerase II‐DNA‐nucleotide complex reveals a new control mechanism for ATPase activity
  publication-title: Nat. Struct. Mol. Biol.
– volume: 100
  start-page: 8654
  issue: 15
  year: 2003
  end-page: 8659
  article-title: Chirality sensing by topoisomerase IV and the mechanism of type II topoisomerases
  publication-title: Proc Natl Acad Sci U S A
– volume: 69
  start-page: 143
  issue: 1
  year: 1972
  end-page: 146
  article-title: An activity from mammalian cells that untwists superhelical DNA–a possible swivel for DNA replication (polyoma‐ethidium bromide‐mouse‐embryo cells‐dye binding assay)
  publication-title: Proc Natl Acad Sci U S A
– volume: 307
  start-page: 301
  issue: 2
  year: 2003
  end-page: 307
  article-title: Induction of apoptosis by depletion of DNA topoisomerase IIalpha in mammalian cells
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 364
  start-page: 735
  year: 1993
  end-page: 737
  article-title: DNA topoisomerase V is a relative of eukaryotic topoisomerase I from a hyperthermophilic prokaryote
  publication-title: Nature
– volume: 59
  start-page: 933
  year: 1990
  end-page: 969
  article-title: DNA recognition by proteins with the helix‐turn‐helix motif
  publication-title: Annu. Rev. Biochem.
– volume: 28
  start-page: 1548
  issue: 7
  year: 2000
  end-page: 1554
  article-title: Molecular characterisation of two paralogous SPO11 homologues in
  publication-title: Nucleic Acids Res.
– volume: 162
  start-page: 1173
  year: 1985
  end-page: 1179
  article-title: Genetic analysis of mutations that compensate for loss of DNA topoisomerase I
  publication-title: J. Bacteriol.
– volume: 89
  start-page: 490
  issue: 4
  year: 2007
  end-page: 499
  article-title: Thirty years of DNA gyrase: From in vivo function to single‐molecule mechanism
  publication-title: Biochimie
– volume: 37
  start-page: 702
  issue: 3
  year: 2009
  end-page: 711
  article-title: Effects of magnesium and related divalent metal ions in topoisomerase structure and function
  publication-title: Nucleic Acids Res.
– volume: 120
  start-page: 145
  year: 1978
  end-page: 154
  article-title: Superhelical DNA: Relaxation by coumermycin
  publication-title: J. Mol. Biol.
– volume: 7
  issue: 1
  year: 2016
  article-title: MatP regulates the coordinated action of topoisomerase IV and MukBEF in chromosome segregation
  publication-title: Nat. Commun.
– volume: 42
  start-page: 8578
  issue: 13
  year: 2014
  end-page: 8591
  article-title: DNA topoisomerase VIII: A novel subfamily of type IIB topoisomerases encoded by free or integrated plasmids in Archaea and Bacteria
  publication-title: Nucleic Acids Res.
– volume: 11
  start-page: 4714
  issue: 1
  year: 2020
  article-title: Multiplex flow magnetic tweezers reveal rare enzymatic events with single molecule precision
  publication-title: Nat. Commun.
– volume: 5
  start-page: 102
  issue: 3
  year: 1997
  end-page: 109
  article-title: DNA gyrase as a drug target
  publication-title: Trends Microbiol.
– volume: 99
  start-page: 10191
  issue: 15
  year: 2002
  end-page: 10196
  article-title: A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development
  publication-title: Proc Natl Acad Sci U S A
– volume: 424
  start-page: 109
  issue: 3‐4
  year: 2012
  end-page: 124
  article-title: The structure of DNA‐bound human topoisomerase II alpha: Conformational mechanisms for coordinating inter‐subunit interactions with DNA cleavage
  publication-title: J. Mol. Biol.
– volume: 33
  start-page: 276
  issue: 5‐6
  year: 2019
  end-page: 281
  article-title: Resolution of human ribosomal DNA occurs in anaphase, dependent on tankyrase 1, condensin II, and topoisomerase IIalpha
  publication-title: Genes Dev.
– volume: 39
  start-page: 6327
  issue: 15
  year: 2011
  end-page: 6339
  article-title: The ancestral role of ATP hydrolysis in type II topoisomerases: Prevention of DNA double‐strand breaks
  publication-title: Nucleic Acids Res.
– volume: 16
  start-page: 667
  issue: 6
  year: 2009
  end-page: 669
  article-title: Structural insight into the quinolone‐DNA cleavage complex of type IIA topoisomerases
  publication-title: Nat. Struct. Mol. Biol.
– volume: 5
  issue: 6
  year: 2010
  article-title: Structural basis of gate‐DNA breakage and resealing by type II topoisomerases
  publication-title: PLoS One
– volume: 37
  start-page: 679
  issue: 3
  year: 2009
  end-page: 692
  article-title: Phylogenomics of DNA topoisomerases: Their origin and putative roles in the emergence of modern organisms
  publication-title: Nucleic Acids Res.
– volume: 50
  start-page: 917
  issue: 6
  year: 1987
  end-page: 925
  article-title: DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in
  publication-title: Cell
– volume: 179
  start-page: 559
  year: 1984
  end-page: 563
  article-title: ATP‐dependent DNA topoisomerase from the Archaebacterium
  publication-title: J. Mol. Biol.
– volume: 287
  start-page: 131
  issue: 5450
  year: 2000
  end-page: 134
  article-title: DNA topoisomerase IIbeta and neural development
  publication-title: Science
– volume: 70
  start-page: 369
  year: 2001
  end-page: 413
  article-title: DNA topoisomerases: Structure, function, and mechanism
  publication-title: Annu. Rev. Biochem.
– volume: 14
  start-page: 2881
  issue: 22
  year: 2000
  end-page: 2892
  article-title: Preferential relaxation of positively supercoiled DNA by topoisomerase IV in single‐molecule and ensemble measurements
  publication-title: Genes Dev.
– volume: 36
  start-page: 5212
  year: 1997
  end-page: 5222
  article-title: DNA topoisomerase I: Evidence supporting a free rotation mechanism for DNA supercoil relaxation
  publication-title: Biochemistry
– volume: 100
  start-page: 2526
  issue: 5
  year: 2003
  end-page: 2531
  article-title: Infertility and aneuploidy in mice lacking a type IA DNA topoisomerase III beta
  publication-title: Proc Natl Acad Sci U S A
– volume: 115
  start-page: 771
  issue: 7
  year: 2003
  end-page: 785
  article-title: Plasmodium biology: Genomic gleanings
  publication-title: Cell
– volume: 43
  start-page: 11031
  issue: 22
  year: 2015
  end-page: 11046
  article-title: Structural basis for suppression of hypernegative DNA supercoiling by topoisomerase I
  publication-title: Nucleic Acids Res.
– volume: 351
  start-page: 943
  issue: 6276
  year: 2016
  end-page: 949
  article-title: The TopoVIB‐Like protein family is required for meiotic DNA double‐strand break formation
  publication-title: Science
– volume: 120
  start-page: 601
  issue: 3
  year: 1993
  end-page: 612
  article-title: Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts
  publication-title: J. Cell Biol.
– volume: 397
  start-page: 117
  issue: 1
  year: 2010
  end-page: 119
  article-title: The phosphoCTD‐interacting domain of topoisomerase I
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 24
  start-page: 1465
  issue: 7
  year: 2005
  end-page: 1476
  article-title: BLAP75, an essential component of Bloom's syndrome protein complexes that maintain genome integrity
  publication-title: EMBO J.
– volume: 278
  start-page: 8653
  issue: 10
  year: 2003
  end-page: 8660
  article-title: Topoisomerase III can serve as the cellular decatenase in
  publication-title: J. Biol. Chem.
– volume: 63
  start-page: 393
  year: 1990
  end-page: 404
  article-title: New topoisomerase essential for chromosome segregation in
  publication-title: Cell
– volume: 113
  start-page: 356
  issue: 2
  year: 2020
  end-page: 368
  article-title: The reverse gyrase TopR1 is responsible for the homeostatic control of DNA supercoiling in the hyperthermophilic archaeon
  publication-title: Mol. Microbiol.
– volume: 14
  start-page: 166
  issue: 3
  year: 2016
  end-page: 171
  article-title: Topoisomerase I in human disease pathogenesis and treatments
  publication-title: Genomics Proteomics Bioinformatics
– year: 2020
  article-title: A Type IA DNA/RNA topoisomerase with RNA hydrolysis activity participates in ribosomal RNA processing
  publication-title: J. Mol. Biol.
– volume: 109
  start-page: 2925
  issue: 8
  year: 2012
  end-page: 2930
  article-title: DNA cleavage and opening reactions of human topoisomerase IIalpha are regulated via Mg2+‐mediated dynamic bending of gate‐DNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  start-page: 1111
  issue: 12
  year: 2018
  end-page: 1118
  article-title: Direct observation of topoisomerase IA gate dynamics
  publication-title: Nat. Struct. Mol. Biol.
– volume: 12
  start-page: 569
  issue: 6
  year: 2004
  end-page: 583
  article-title: Topoisomerase II: Untangling its contribution at the centromere
  publication-title: Chromosome Res.
– volume: 165
  start-page: 357
  issue: 2
  year: 2016
  end-page: 371
  article-title: RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription
  publication-title: Cell
– volume: 1
  issue: 1
  year: 2016
  article-title: Radicicol‐mediated inhibition of topoisomerase VIB‐VIA activity of the human malaria parasite
  publication-title: mSphere
– volume: 187
  start-page: 8531
  issue: 24
  year: 2005
  end-page: 8536
  article-title: Characterization of the DNA gyrase from the thermoacidophilic archaeon
  publication-title: J. Bacteriol.
– volume: 2
  start-page: 209
  issue: 4
  year: 1991
  end-page: 214
  article-title: Proliferation‐ and cell cycle‐dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH‐3T3 cells
  publication-title: Cell Growth Differ.
– start-page: 91
  year: 2020
  end-page: 92
  article-title: Molecular dissection of Helicobacter pylori topoisomerase I reveals an additional active site in the carboxyl terminus of the enzyme
  publication-title: DNA Repair
– volume: 386
  start-page: 414
  issue: 6623
  year: 1997
  end-page: 417
  article-title: An atypical topoisomerase II from Archaea with implications for meiotic recombination
  publication-title: Nature
– volume: 3
  start-page: 18
  issue: 1
  year: 2020
  end-page: 25
  article-title: Topoisomerase IB: A relaxing enzyme for stressed DNA
  publication-title: Cancer Drug Resistance
– volume: 14
  start-page: 611
  issue: 7
  year: 2007
  end-page: 619
  article-title: Holoenzyme assembly and ATP‐mediated conformational dynamics of topoisomerase VI
  publication-title: Nat. Struct. Mol. Biol.
– volume: 88
  start-page: 375
  issue: 3
  year: 1997
  end-page: 384
  article-title: Meiosis‐specific DNA double‐strand breaks are catalyzed by Spo11, a member of a widely conserved protein family
  publication-title: Cell
– volume: 20
  start-page: 1489
  issue: 6
  year: 2014
  end-page: 1501
  article-title: DNA topoisomerase III alpha regulates p53‐mediated tumor suppression
  publication-title: Clin. Cancer Res.
– volume: 8
  start-page: 82
  issue: 1
  year: 2013
  end-page: 95
  article-title: Drugging topoisomerases: Lessons and challenges
  publication-title: ACS Chem. Biol.
– start-page: 21
  year: 2018
  end-page: 45
– volume: 450
  start-page: 1201
  issue: 7173
  year: 2007
  end-page: 1205
  article-title: Structural basis for gate‐DNA recognition and bending by type IIA topoisomerases
  publication-title: Nature
– volume: 97
  start-page: 9419
  year: 2000
  end-page: 9424
  article-title: Analysis of topoisomerase function in bacterial replication fork movement: Use of DNA microarrays
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 25
  start-page: 398
  issue: 2
  year: 2006
  end-page: 408
  article-title: Structure of the N‐terminal fragment of topoisomerase V reveals a new family of topoisomerases
  publication-title: EMBO J.
– volume: 30
  start-page: 779
  issue: 6
  year: 2008
  end-page: 789
  article-title: Resolution of converging replication forks by RecQ and topoisomerase III
  publication-title: Mol. Cell
– volume: 6
  start-page: 398
  issue: 3
  year: 2007
  end-page: 412
  article-title: Molecular cloning of apicoplast‐targeted DNA gyrase genes: Unique intrinsic ATPase activity and ATP‐independent dimerization of PfGyrB subunit
  publication-title: Eukaryot Cell
– volume: 273
  start-page: 5245
  issue: 23
  year: 2006
  end-page: 5260
  article-title: Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants
  publication-title: FEBS J.
– volume: 107
  start-page: 18832
  issue: 44
  year: 2010
  end-page: 18837
  article-title: condensin MukB stimulates topoisomerase IV activity by a direct physical interaction
  publication-title: Proc Natl Acad Sci U S A
– volume: 107
  start-page: 6228
  issue: 14
  year: 2010
  end-page: 6233
  article-title: Drosophila topo IIIalpha is required for the maintenance of mitochondrial genome and male germ‐line stem cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 42
  start-page: 4414
  issue: 7
  year: 2014
  end-page: 4426
  article-title: The alpha isoform of topoisomerase II is required for hypercompaction of mitotic chromosomes in human cells
  publication-title: Nucleic Acids Res.
– volume: 29
  start-page: 795
  issue: 4
  year: 2010
  end-page: 805
  article-title: FANCM regulates DNA chain elongation and is stabilized by S‐phase checkpoint signalling
  publication-title: EMBO J.
– volume: 40
  start-page: 7907
  issue: 16
  year: 2012
  end-page: 7915
  article-title: Topoisomerase II is required for the production of long Pol II gene transcripts in yeast
  publication-title: Nucleic Acids Res.
– volume: 318
  start-page: 361
  issue: 2
  year: 2002
  end-page: 371
  article-title: The role of GyrB in the DNA cleavage‐religation reaction of DNA gyrase: A proposed two metal‐ion mechanism
  publication-title: J. Mol. Biol.
– volume: 98
  start-page: 8219
  issue: 15
  year: 2001
  end-page: 8226
  article-title: Topological challenges to DNA replication: Conformations at the fork
  publication-title: Proc Natl Acad Sci U S A
– volume: 38
  start-page: 4173
  issue: 12
  year: 2010
  end-page: 4181
  article-title: Twisting of the DNA‐binding surface by a beta‐strand‐bearing proline modulates DNA gyrase activity
  publication-title: Nucleic Acids Res.
– volume: 44
  start-page: 1365
  issue: 12
  year: 2012
  end-page: 1369
  article-title: De novo gene mutations highlight patterns of genetic and neural complexity in schizophrenia
  publication-title: Nat. Genet.
– volume: 280
  start-page: 26177
  issue: 28
  year: 2005
  end-page: 26184
  article-title: A superhelical spiral in the DNA gyrase A C‐terminal domain imparts unidirectional supercoiling bias
  publication-title: J. Biol. Chem.
– volume: 45
  start-page: 2704
  issue: 5
  year: 2017
  end-page: 2713
  article-title: Topoisomerase 3beta is the major topoisomerase for mRNAs and linked to neurodevelopment and mental dysfunction
  publication-title: Nucleic Acids Res.
– volume: 237
  start-page: 452
  issue: 2
  year: 1997
  end-page: 455
  article-title: Bipartite nuclear localization signals in the C terminus of human topoisomerase II alpha
  publication-title: Exp. Cell Res.
– volume: 75
  start-page: 67
  issue: 1
  year: 2013
  end-page: 79
  article-title: MIDGET connects COP1‐dependent development with endoreduplication in
  publication-title: Plant J.
– volume: 123
  start-page: 806
  issue: Pt 5
  year: 2010
  end-page: 813
  article-title: Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division
  publication-title: J. Cell Sci.
– volume: 90
  start-page: 8571
  issue: 18
  year: 1993
  end-page: 8575
  article-title: Decatenation activity of topoisomerase IV during oriC and pBR322 DNA replication in vitro
  publication-title: Proc Natl Acad Sci U S A
– volume: 117
  start-page: 12131
  issue: 22
  year: 2020
  end-page: 12142
  article-title: Topoisomerase IIalpha is essential for maintenance of mitotic chromosome structure
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  issue: 11
  year: 2019
  article-title: cell cycle‐dependent control and roles of DNA topoisomerase II
  publication-title: Genes
– volume: 16
  start-page: 1228
  issue: 9
  year: 2013
  end-page: 1237
  article-title: Deletion of TOP3beta, a component of FMRP‐containing mRNPs, contributes to neurodevelopmental disorders
  publication-title: Nat. Neurosci.
– volume: 14
  start-page: 4240
  issue: 17
  year: 1995
  end-page: 4248
  article-title: Telomere elongation in immortal human cells without detectable telomerase activity
  publication-title: EMBO J.
– volume: 41
  start-page: 657
  issue: 1
  year: 2012
  end-page: 666
  article-title: Identification of one of the apurinic/apyrimidinic lyase active sites of topoisomerase V by structural and functional studies
  publication-title: Nucleic Acids Res.
– volume: 33
  start-page: 95
  year: 2004
  end-page: 118
  article-title: Structure, molecular mechanisms, and evolutionary relationships in DNA topoisomerases
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
– volume: 201
  issue: 7
  year: 2019
  article-title: Topoisomerase III acts at the replication fork to remove precatenanes
  publication-title: J. Bacteriol.
– ident: e_1_2_11_199_1
  doi: 10.7554/eLife.31724
– ident: e_1_2_11_77_1
  doi: 10.1073/pnas.1921848117
– ident: e_1_2_11_95_1
  doi: 10.1016/j.chembiol.2010.04.012
– ident: e_1_2_11_214_1
  doi: 10.1126/science.aad5309
– ident: e_1_2_11_102_1
  doi: 10.1093/nar/gkp024
– ident: e_1_2_11_203_1
  doi: 10.1016/j.pbi.2003.09.009
– ident: e_1_2_11_104_1
  doi: 10.1038/nsmb.1604
– ident: e_1_2_11_126_1
  doi: 10.1093/nar/gky1143
– volume: 44
  start-page: 10354
  issue: 21
  year: 2016
  ident: e_1_2_11_136_1
  article-title: DNA gyrase with a single catalytic tyrosine can catalyze DNA supercoiling by a nicking‐closing mechanism
  publication-title: Nucleic Acids Res.
– ident: e_1_2_11_191_1
  doi: 10.1038/nature01097
– ident: e_1_2_11_76_1
  doi: 10.1016/j.jmb.2011.03.030
– ident: e_1_2_11_125_1
  doi: 10.1093/nar/gky1222
– ident: e_1_2_11_25_1
  doi: 10.1093/nar/gkaa201
– ident: e_1_2_11_149_1
  doi: 10.1073/pnas.1133178100
– ident: e_1_2_11_103_1
  doi: 10.1016/j.sbi.2012.11.011
– ident: e_1_2_11_186_1
  doi: 10.1016/j.cell.2015.05.032
– ident: e_1_2_11_143_1
  doi: 10.1128/mBio.01001-13
– ident: e_1_2_11_181_1
  doi: 10.3390/ijms20051238
– ident: e_1_2_11_88_1
  doi: 10.1038/364735a0
– ident: e_1_2_11_105_1
  doi: 10.1038/nature08974
– ident: e_1_2_11_129_1
  doi: 10.1093/nar/gkq153
– ident: e_1_2_11_86_1
  doi: 10.1016/j.jmb.2016.08.005
– ident: e_1_2_11_151_1
  doi: 10.1111/j.1365-2958.1995.tb02264.x
– ident: e_1_2_11_119_1
  doi: 10.1093/nar/11.10.2999
– ident: e_1_2_11_183_1
  doi: 10.1126/science.287.5450.131
– ident: e_1_2_11_137_1
  doi: 10.1093/nar/gkt560
– ident: e_1_2_11_156_1
  doi: 10.1016/S0021-9258(19)83859-0
– ident: e_1_2_11_150_1
  doi: 10.1073/pnas.0900574106
– ident: e_1_2_11_138_1
  doi: 10.1038/s41467-019-12914-y
– ident: e_1_2_11_157_1
  doi: 10.1016/S0092-8674(85)80028-3
– ident: e_1_2_11_2_1
  doi: 10.1038/171964b0
– ident: e_1_2_11_21_1
  doi: 10.1093/nar/gkv1073
– ident: e_1_2_11_163_1
  doi: 10.1038/nsmb.2388
– ident: e_1_2_11_71_1
  doi: 10.1074/jbc.M910091199
– ident: e_1_2_11_48_1
  doi: 10.1073/pnas.1001855107
– ident: e_1_2_11_139_1
  doi: 10.1016/S0021-9258(18)35660-6
– ident: e_1_2_11_134_1
  doi: 10.1016/j.biochi.2007.02.012
– ident: e_1_2_11_18_1
  doi: 10.1093/nar/gky1271
– ident: e_1_2_11_128_1
  doi: 10.1073/pnas.0401595101
– volume: 45
  start-page: 2704
  issue: 5
  year: 2017
  ident: e_1_2_11_55_1
  article-title: Topoisomerase 3beta is the major topoisomerase for mRNAs and linked to neurodevelopment and mental dysfunction
  publication-title: Nucleic Acids Res.
– ident: e_1_2_11_173_1
  doi: 10.1023/B:CHRO.0000036608.91085.d1
– ident: e_1_2_11_158_1
  doi: 10.1016/0092-8674(87)90518-6
– ident: e_1_2_11_148_1
  doi: 10.1101/gad.838900
– ident: e_1_2_11_4_1
  doi: 10.1073/pnas.111006998
– ident: e_1_2_11_217_1
  doi: 10.1093/molbev/msm217
– ident: e_1_2_11_19_1
  doi: 10.1074/jbc.M303403200
– ident: e_1_2_11_3_1
  doi: 10.1038/171737a0
– ident: e_1_2_11_171_1
  doi: 10.1242/jcs.013730
– ident: e_1_2_11_89_1
  doi: 10.1038/sj.emboj.7600922
– ident: e_1_2_11_32_1
  doi: 10.1016/S0021-9258(19)36714-6
– ident: e_1_2_11_22_1
  doi: 10.1002/prot.340060307
– ident: e_1_2_11_13_1
  doi: 10.1016/j.jmb.2019.07.008
– ident: e_1_2_11_6_1
  doi: 10.3390/polym10101126
– ident: e_1_2_11_52_1
  doi: 10.1073/pnas.0437998100
– ident: e_1_2_11_113_1
  doi: 10.1128/JB.187.24.8531-8536.2005
– ident: e_1_2_11_108_1
  doi: 10.1016/S0968-0004(99)01503-0
– ident: e_1_2_11_215_1
  doi: 10.1126/science.aad5196
– ident: e_1_2_11_50_1
  doi: 10.1073/pnas.101132498
– ident: e_1_2_11_127_1
  doi: 10.1038/s41467-020-18456-y
– ident: e_1_2_11_94_1
  doi: 10.1093/nar/gkr258
– ident: e_1_2_11_45_1
  doi: 10.1158/1078-0432.CCR-13-1997
– ident: e_1_2_11_123_1
  doi: 10.1128/JB.140.2.424-435.1979
– ident: e_1_2_11_172_1
  doi: 10.1083/jcb.120.3.601
– ident: e_1_2_11_66_1
  doi: 10.1073/pnas.1422203112
– ident: e_1_2_11_38_1
  doi: 10.1007/s00018-013-1325-1
– ident: e_1_2_11_147_1
  doi: 10.1016/j.jmb.2005.06.029
– ident: e_1_2_11_210_1
  doi: 10.1111/j.1742-4658.2006.05518.x
– ident: e_1_2_11_208_1
  doi: 10.1105/tpc.107.054361
– ident: e_1_2_11_29_1
  doi: 10.1074/jbc.M211211200
– ident: e_1_2_11_162_1
  doi: 10.1093/nar/gks626
– ident: e_1_2_11_174_1
  doi: 10.1038/ncb3353
– ident: e_1_2_11_87_1
  doi: 10.1016/j.gpb.2016.02.004
– ident: e_1_2_11_57_1
  doi: 10.1016/j.molcel.2014.01.011
– ident: e_1_2_11_109_1
  doi: 10.1073/pnas.73.11.3872
– ident: e_1_2_11_91_1
  doi: 10.1073/pnas.111040498
– ident: e_1_2_11_64_1
  doi: 10.1016/S0168-9525(02)02650-1
– ident: e_1_2_11_205_1
  doi: 10.1073/pnas.0505883102
– ident: e_1_2_11_131_1
  doi: 10.1074/jbc.M112.345736
– ident: e_1_2_11_135_1
  doi: 10.1093/nar/22.9.1567
– ident: e_1_2_11_7_1
  doi: 10.1073/pnas.84.20.7024
– ident: e_1_2_11_168_1
  doi: 10.7554/eLife.26120
– ident: e_1_2_11_8_1
  doi: 10.1038/sj.embor.7400101
– ident: e_1_2_11_213_1
  doi: 10.1016/S0092-8674(00)81876-0
– ident: e_1_2_11_152_1
  doi: 10.1128/JB.162.3.1173-1179.1985
– ident: e_1_2_11_97_1
  doi: 10.1146/annurev.bi.59.070190.004441
– ident: e_1_2_11_144_1
  doi: 10.1038/ncomms10466
– ident: e_1_2_11_198_1
  doi: 10.1016/j.str.2007.12.020
– ident: e_1_2_11_17_1
  doi: 10.1371/journal.pgen.1006754
– ident: e_1_2_11_14_1
  doi: 10.1021/cb300648v
– ident: e_1_2_11_188_1
  doi: 10.1002/mgg3.1145
– ident: e_1_2_11_82_1
  doi: 10.1038/nature03395
– ident: e_1_2_11_68_1
  doi: 10.1073/pnas.90.10.4753
– ident: e_1_2_11_53_1
  doi: 10.1098/rsob.190222
– ident: e_1_2_11_27_1
  doi: 10.1016/j.jmb.2007.01.065
– ident: e_1_2_11_202_1
  doi: 10.1016/S0960-9822(02)01218-6
– ident: e_1_2_11_184_1
  doi: 10.1016/S0006-291X(03)01169-0
– ident: e_1_2_11_96_1
  doi: 10.1146/annurev.biophys.33.110502.140357
– ident: e_1_2_11_140_1
  doi: 10.1016/0092-8674(90)90172-B
– ident: e_1_2_11_75_1
  doi: 10.1016/S0021-9258(18)60974-3
– ident: e_1_2_11_15_1
  doi: 10.1074/jbc.274.23.16654
– ident: e_1_2_11_117_1
  doi: 10.1016/0022-2836(78)90061-X
– ident: e_1_2_11_197_1
  doi: 10.1038/nsmb1264
– ident: e_1_2_11_28_1
  doi: 10.1046/j.1365-2958.2000.01763.x
– ident: e_1_2_11_194_1
  doi: 10.1093/emboj/18.21.6177
– ident: e_1_2_11_84_1
  doi: 10.1016/j.cell.2016.02.036
– ident: e_1_2_11_201_1
  doi: 10.1093/nar/28.7.1548
– ident: e_1_2_11_56_1
  doi: 10.1038/nn.3479
– ident: e_1_2_11_164_1
  doi: 10.3390/genes10110859
– ident: e_1_2_11_120_1
  doi: 10.1016/0092-8674(83)90140-X
– ident: e_1_2_11_185_1
  doi: 10.1016/0167-4781(92)90050-A
– ident: e_1_2_11_180_1
  doi: 10.1038/s41598-018-27606-8
– ident: e_1_2_11_34_1
  doi: 10.1073/pnas.95.3.1010
– ident: e_1_2_11_218_1
  doi: 10.1128/mSphere.00025-15
– ident: e_1_2_11_118_1
  doi: 10.1128/JB.158.2.397-403.1984
– ident: e_1_2_11_43_1
  doi: 10.1002/j.1460-2075.1995.tb00098.x
– ident: e_1_2_11_62_1
  doi: 10.1038/309677a0
– ident: e_1_2_11_65_1
  doi: 10.1093/nar/gku589
– ident: e_1_2_11_216_1
  doi: 10.1016/S0092-8674(03)01023-7
– ident: e_1_2_11_187_1
  doi: 10.1016/j.cca.2017.03.022
– ident: e_1_2_11_85_1
  doi: 10.1016/j.bbrc.2010.05.081
– ident: e_1_2_11_73_1
  doi: 10.1016/j.jmb.2020.06.018
– ident: e_1_2_11_51_1
  doi: 10.1073/pnas.0703587104
– ident: e_1_2_11_12_1
  doi: 10.1016/0022-2836(71)90334-2
– ident: e_1_2_11_60_1
  doi: 10.1093/hmg/ddn219
– ident: e_1_2_11_67_1
  doi: 10.1021/bi034188l
– ident: e_1_2_11_176_1
  doi: 10.1038/ncomms9962
– ident: e_1_2_11_132_1
  doi: 10.1074/jbc.M511160200
– ident: e_1_2_11_196_1
  doi: 10.1016/j.str.2005.03.013
– ident: e_1_2_11_166_1
  doi: 10.1074/jbc.273.50.33660
– ident: e_1_2_11_58_1
  doi: 10.1016/j.neuron.2012.04.009
– ident: e_1_2_11_30_1
  doi: 10.1128/JB.00563-18
– ident: e_1_2_11_190_1
  doi: 10.1038/s41467-018-05406-y
– ident: e_1_2_11_170_1
  doi: 10.1093/nar/gku076
– ident: e_1_2_11_39_1
  doi: 10.1016/j.cub.2003.12.043
– ident: e_1_2_11_44_1
  doi: 10.1016/j.jmb.2012.07.014
– ident: e_1_2_11_146_1
  doi: 10.1073/pnas.1008678107
– ident: e_1_2_11_160_1
  doi: 10.1016/j.molcel.2008.04.019
– ident: e_1_2_11_47_1
  doi: 10.1186/s12929-016-0255-2
– ident: e_1_2_11_204_1
  doi: 10.1016/S1074-5521(03)00027-9
– ident: e_1_2_11_141_1
  doi: 10.1073/pnas.90.18.8571
– ident: e_1_2_11_145_1
  doi: 10.1073/pnas.1008140107
– ident: e_1_2_11_107_1
  doi: 10.1371/journal.pone.0011338
– ident: e_1_2_11_46_1
  doi: 10.1038/s41594-019-0201-6
– ident: e_1_2_11_63_1
  doi: 10.1016/0022-2836(84)90080-9
– ident: e_1_2_11_90_1
  doi: 10.1093/nar/gkw122
– ident: e_1_2_11_161_1
  doi: 10.1016/j.cell.2019.09.034
– ident: e_1_2_11_193_1
  doi: 10.1016/S0021-9258(18)47037-8
– ident: e_1_2_11_110_1
  doi: 10.1073/pnas.0400836101
– ident: e_1_2_11_211_1
  doi: 10.1073/pnas.1202041109
– ident: e_1_2_11_206_1
  doi: 10.1105/tpc.107.054833
– ident: e_1_2_11_142_1
  doi: 10.1371/journal.pgen.1006025
– ident: e_1_2_11_92_1
  doi: 10.1093/nar/gks1017
– ident: e_1_2_11_178_1
  doi: 10.1006/excr.1997.3805
– ident: e_1_2_11_37_1
  doi: 10.1101/gad.1725108
– ident: e_1_2_11_10_1
  doi: 10.1146/annurev.biochem.70.1.369
– ident: e_1_2_11_61_1
  doi: 10.1038/srep42123
– start-page: 21
  volume-title: Topoisomerase I and genome stability: The good and the bad DNA Topoisomerases
  year: 2018
  ident: e_1_2_11_83_1
– ident: e_1_2_11_221_1
  doi: 10.1073/pnas.242259599
– ident: e_1_2_11_59_1
  doi: 10.1038/ng.2446
– ident: e_1_2_11_16_1
  doi: 10.2741/970
– ident: e_1_2_11_36_1
  doi: 10.1038/sj.emboj.7600622
– volume: 2
  start-page: 209
  issue: 4
  year: 1991
  ident: e_1_2_11_165_1
  article-title: Proliferation‐ and cell cycle‐dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH‐3T3 cells
  publication-title: Cell Growth Differ.
– start-page: 91
  year: 2020
  ident: e_1_2_11_23_1
  article-title: Molecular dissection of Helicobacter pylori topoisomerase I reveals an additional active site in the carboxyl terminus of the enzyme
  publication-title: DNA Repair
– ident: e_1_2_11_78_1
  doi: 10.1073/pnas.69.1.143
– ident: e_1_2_11_70_1
  doi: 10.1016/j.jmb.2012.10.016
– ident: e_1_2_11_35_1
  doi: 10.1038/nature02253
– ident: e_1_2_11_219_1
  doi: 10.1093/nar/gku568
– year: 2020
  ident: e_1_2_11_159_1
  article-title: Condensin minimizes topoisomerase II‐mediated entanglements of DNA in vivo
  publication-title: EMBO J.
– volume: 3
  start-page: 18
  issue: 1
  year: 2020
  ident: e_1_2_11_79_1
  article-title: Topoisomerase IB: A relaxing enzyme for stressed DNA
  publication-title: Cancer Drug Resistance
– ident: e_1_2_11_31_1
  doi: 10.1016/j.molcel.2008.04.020
– ident: e_1_2_11_192_1
  doi: 10.1016/S0960-9822(02)01198-3
– ident: e_1_2_11_98_1
  doi: 10.1146/annurev.bi.65.070196.003223
– volume-title: DNA Topology
  year: 2005
  ident: e_1_2_11_5_1
  doi: 10.1093/oso/9780198567097.001.0001
– ident: e_1_2_11_111_1
  doi: 10.1128/EC.00357-06
– ident: e_1_2_11_42_1
  doi: 10.1038/s41467-019-10180-6
– ident: e_1_2_11_106_1
  doi: 10.1016/S0022-2836(02)00049-9
– ident: e_1_2_11_179_1
  doi: 10.1083/jcb.201303045
– ident: e_1_2_11_49_1
  doi: 10.1016/j.molcel.2017.11.033
– ident: e_1_2_11_33_1
  doi: 10.1073/pnas.93.18.9477
– ident: e_1_2_11_72_1
  doi: 10.1093/nar/gks1073
– ident: e_1_2_11_20_1
  doi: 10.1016/j.jmb.2020.08.012
– ident: e_1_2_11_133_1
  doi: 10.1093/nar/gks852
– ident: e_1_2_11_40_1
  doi: 10.1038/nsmb.2775
– ident: e_1_2_11_24_1
  doi: 10.1038/s41594-018-0158-x
– ident: e_1_2_11_93_1
  doi: 10.1016/j.tibtech.2006.04.006
– ident: e_1_2_11_114_1
  doi: 10.1073/pnas.75.4.1773
– ident: e_1_2_11_112_1
  doi: 10.1093/nar/gkp032
– ident: e_1_2_11_153_1
  doi: 10.1093/nar/gkz260
– ident: e_1_2_11_175_1
  doi: 10.1242/jcs.058255
– ident: e_1_2_11_80_1
  doi: 10.1021/bi962880t
– ident: e_1_2_11_195_1
  doi: 10.1093/emboj/cdg008
– ident: e_1_2_11_200_1
  doi: 10.1016/S0378-1119(01)00496-6
– ident: e_1_2_11_69_1
  doi: 10.1093/nar/gkn587
– ident: e_1_2_11_115_1
  doi: 10.1016/S0966-842X(96)10085-8
– ident: e_1_2_11_74_1
  doi: 10.1111/mmi.14424
– ident: e_1_2_11_121_1
  doi: 10.1073/pnas.70.11.3077
– ident: e_1_2_11_122_1
  doi: 10.1016/S0021-9258(19)57259-3
– ident: e_1_2_11_101_1
  doi: 10.1093/nar/26.18.4205
– ident: e_1_2_11_130_1
  doi: 10.1074/jbc.M502838200
– ident: e_1_2_11_54_1
  doi: 10.1038/nn.3484
– ident: e_1_2_11_207_1
  doi: 10.1073/pnas.152337599
– ident: e_1_2_11_220_1
  doi: 10.1093/nargab/lqz021
– ident: e_1_2_11_189_1
  doi: 10.1016/j.abb.2017.06.021
– ident: e_1_2_11_11_1
  doi: 10.1128/ecosalplus.ESP-0010-2014
– ident: e_1_2_11_81_1
  doi: 10.1126/science.279.5356.1534
– ident: e_1_2_11_41_1
  doi: 10.1038/emboj.2009.371
– ident: e_1_2_11_154_1
  doi: 10.1073/pnas.97.17.9419
– ident: e_1_2_11_116_1
  doi: 10.1007/s00253-011-3557-z
– ident: e_1_2_11_100_1
  doi: 10.1073/pnas.1115704109
– ident: e_1_2_11_26_1
  doi: 10.1074/jbc.REV120.008286
– ident: e_1_2_11_177_1
  doi: 10.1101/gad.321836.118
– ident: e_1_2_11_182_1
  doi: 10.3390/ijms19071917
– ident: e_1_2_11_9_1
  doi: 10.1111/j.1574-6968.1995.tb07782.x
– ident: e_1_2_11_99_1
  doi: 10.1038/nature06396
– ident: e_1_2_11_209_1
  doi: 10.1111/tpj.12199
– ident: e_1_2_11_169_1
  doi: 10.1073/pnas.2001760117
– volume: 7
  start-page: 83
  issue: 1
  year: 1996
  ident: e_1_2_11_167_1
  article-title: Topoisomerase II inhibitors affect entry into mitosis and chromosome condensation in BHK cells
  publication-title: Cell Growth Differ.
– ident: e_1_2_11_212_1
  doi: 10.1038/386414a0
– ident: e_1_2_11_124_1
  doi: 10.1074/jbc.271.35.21529
– ident: e_1_2_11_155_1
  doi: 10.1016/S1097-2765(03)00013-3
SSID ssj0009624
Score 2.6472003
SecondaryResourceType review_article
Snippet DNA topoisomerases, capable of manipulating DNA topology, are ubiquitous and indispensable for cellular survival due to the numerous roles they play during DNA...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2000286
SubjectTerms antibiotics
anti‐cancer drugs
Cellular structure
Deoxyribonucleic acid
dissection
DNA
DNA gyrase
DNA structure
DNA supercoiling
DNA topoisomerase
DNA Topoisomerases
DNA Topoisomerases, Type I - metabolism
DNA Topoisomerases, Type II - metabolism
Function analysis
In vivo methods and tests
Metabolism
Protein structure
Proteins
Structure-function relationships
Topology
Title DNA topoisomerases: Advances in understanding of cellular roles and multi‐protein complexes via structure‐function analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.202000286
https://www.ncbi.nlm.nih.gov/pubmed/33480441
https://www.proquest.com/docview/2501868259
https://www.proquest.com/docview/2480273952
https://www.proquest.com/docview/2524333578
https://pubmed.ncbi.nlm.nih.gov/PMC7614492
Volume 43
WOSCitedRecordID wos000609916500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1521-1878
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009624
  issn: 0265-9247
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB5BCxIX_qGBUhkJiVPUxEkcm9tCWXGoVhWiaG-R7ThqJJRUTbcqJ3gEnpEnYcbeTXdVARJcIkUzVmJ7Jp7PGX8D8EojMmmyksdaOYEARYtYi6aJVZ44TUt84UuyfD4sZzM5n6ujtVP8gR9i3HAjz_Dfa3JwbYb9K9JQQ0gSobvfIBI3YTtNM0nFG3h-dEW7K3xZWwQaRYxIo1zRNiZ8f7P95rJ0Lda8njK5Hsr6tWh67_97cR_uLuNQNgmG8wBuuO4h3A6VKb8-gm8Hswk770_7duhp22pwwxs2CfkCA2s7tlg_FMP6htEfAEppZZSvODAUMJ-s-PP7D88FgW18-rq7ROlFq1lgrl2cOdSg1ZUsBJsFjpTHcDx9_-ndh3hZqyG2hShFnLokNUbaWhnNNRF_WbSBHAMOm1pR1LZJ6kTTQVo0GZs0rtBayVyVppAqMTp7Altd37kdYKYuVVo3tcTgDsO7zFDtdtJPZVPz2kUQr6aqsksic6qn8aUKFMy8okGtxkGN4PWofxooPH6rubua-WrpyiglykOBQFpF8HIUoxPSuOrO9QvUySXxAqmC_0Gn4HmWEblQBE-DMY2vQ8ehEwxMIyg3zGxUIBLwTUnXnngy8JIQvcLncm9mf-lh9RZBxnj37F8aPYc7nPJ6fPbSLmyhsbgXcMtenLfD2Z53P7yWc7kH2wcfp8eHvwAhWzfK
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1BT9VAEJ4ISvSCKKgVhDUx8dTQbttt19sDJRAeLxzQcGu2221oQlpCeURP-hP8jf4SZ3b7Ci9ETYjHZmbTdnemM9929huAdwqRSRWl3FfSCAQoSvhKVJUv48AoCvGJbcnyZZxOJtnpqTzuqwnpLIzjhxg23Mgz7PeaHJw2pLdvWEMLgpKI3e0OkViAhzGGGjJ1Hh_f8O4K29cWkUbiI9RIZ7yNAd-eHz8fl-4km3drJm_nsjYY7T39D6-xAst9JspGznSewQPTPIcl15vy2yp8_zgZsav2oq27ljauOtN9YCNXMdCxumHT28diWFsx-gdARa2MKhY7hgJmyxV__fhp2SBwjC1gN19Rel0r5rhrp5cGNSi-ko3gMMeSsgaf9z6d7O77fbcGXyciFX5ogrAoMl3KQnFF1F8arSDGlEOHWiSlroIyUHSUFo1GB5VJlJJZLNMiyWRQqOgFLDZtY14BK8pUhmVVZpjeYYIXFdS9nfTDrCp5aTzwZ2uV657KnDpqnOeOhJnnNKn5MKkevB_0LxyJxx81N2ZLn_fOjFIiPRQIpaUHbwcxuiHNq2pMO0WdOCNmIJnwv-gkPI4iohfy4KWzpuFx6EB0gKmpB-mcnQ0KRAM-L2nqM0sHnhKml3hfbu3sH2-Y7yDMGK5e32fQFjzePzka5-ODyeE6POFU5WNrmTZgEQ3HvIFH-vqq7i43rS_-BoLoOS0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3bitRAEC10VsUX75foqi0IPoVNOtf2bXQcFIdhEVf2LXT6ggFJhs3Ook_6CX6jX2JVdya7w6KC-DhU9WTSqUrX6Tl9CuCZRGRik4KHUpgcAYrMQ5lbG4o0MpKW-My1ZPm4KJbL8vBQ7A9sQjoL4_Uhxg03ygz3vqYENytt905VQ2uCkojd3Q5RfhF2UuokM4Gd2fv5weJUeTd3nW0Ra2Qhgo1io9wY8b3tb9hemc6Vm-dZk2erWbccza__hxu5AdeGWpRNffDchAumvQWXfXfKr7fh22w5Zcfdqmv6jrauetO_YFPPGehZ07L12YMxrLOM_gUgWisjzmLP0MAcYfHn9x9ODwLHOAq7-YLWk0Yyr167PjLoQSssRQkO8zopd-Bg_vrDqzfh0K8hVFle5GFsoriuS6VFLbkk8S-FcZBi0aFilWda2UhHkg7TYtioyJpMSlGmoqizUkS1TO7CpO1acx9YrQsRa6tLLPCwxEtq6t9O_nFpNdcmgHDzrCo1iJlTT43PlZdh5hVNajVOagDPR_-Vl_H4refu5tFXQzqjlWQPcwTTIoCnoxkTkeZVtqZbo09akjaQyPgffDKeJgkJDAVwz0fT-HPoSHSExWkAxVacjQ4kBL5taZtPThC8IFQv8Lrcxdlf7rB6iUBj_PTgXwY9gSv7s3m1eLt89xCucqL5ODLTLkwwbswjuKROjpv-6PGQjL8AYZA6Qw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNA+topoisomerases%3A+Advances+in+understanding+of+cellular+roles+and+multi-protein+complexes+via+structure-function+analysis&rft.jtitle=BioEssays&rft.au=McKie%2C+Shannon+J&rft.au=Neuman%2C+Keir+C&rft.au=Maxwell%2C+Anthony&rft.date=2021-04-01&rft.eissn=1521-1878&rft.volume=43&rft.issue=4&rft.spage=e2000286&rft_id=info:doi/10.1002%2Fbies.202000286&rft_id=info%3Apmid%2F33480441&rft.externalDocID=33480441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon