JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia
Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by w...
Gespeichert in:
| Veröffentlicht in: | American journal of physiology: endocrinology and metabolism Jg. 303; H. 3; S. E410 |
|---|---|
| Hauptverfasser: | , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
01.08.2012
|
| Schlagworte: | |
| ISSN: | 1522-1555, 1522-1555 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia. |
|---|---|
| AbstractList | Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia. Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia. |
| Author | Bonetto, Andrea Zhang, Zongxiu Jin, Xiaoling Zhan, Rui Koniaris, Leonidas G Aydogdu, Tufan Puzis, Leopold Zimmers, Teresa A |
| Author_xml | – sequence: 1 givenname: Andrea surname: Bonetto fullname: Bonetto, Andrea organization: Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA – sequence: 2 givenname: Tufan surname: Aydogdu fullname: Aydogdu, Tufan – sequence: 3 givenname: Xiaoling surname: Jin fullname: Jin, Xiaoling – sequence: 4 givenname: Zongxiu surname: Zhang fullname: Zhang, Zongxiu – sequence: 5 givenname: Rui surname: Zhan fullname: Zhan, Rui – sequence: 6 givenname: Leopold surname: Puzis fullname: Puzis, Leopold – sequence: 7 givenname: Leonidas G surname: Koniaris fullname: Koniaris, Leonidas G – sequence: 8 givenname: Teresa A surname: Zimmers fullname: Zimmers, Teresa A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22669242$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtPwzAQhC1URB_wBzggH7mktZ3aSY5VxaNQiQPlHNnOhrpN7BAnavvvMaJInGal_Xa0M2M0sM4CQreUTCnlbCZ3DdjCTQkhcTZlhLILNAoLFlHO-eDfPERj73eBS_icXaEhY0JkbM5GqH1ZvM7eN4tNjBvZbQ_yhI3dGmU64yxWldN7j_0eKuhkheve6wrwQfrO2E9cuIP1XQuyxq7Eq3UksLRFMMBwbKA1NdifKy2thjaI3sLRyGt0WcrKw81ZJ-jj8WGzfI7Wb0-r5WIdaS5EF5WpljEQJoGphDBWZulc6ELpUgmeQQoipKEZlClViZyTQog41YqnhCYUCLAJuv_1bVr31YPv8tp4DVUlLbje55TEoUbBEx7QuzPaqxqKvAm_y_aU__XEvgF_Vm3k |
| CitedBy_id | crossref_primary_10_1002_jcsm_12539 crossref_primary_10_1038_s41467_017_01645_7 crossref_primary_10_3389_fphar_2021_687491 crossref_primary_10_1002_rco2_24 crossref_primary_10_1111_febs_12338 crossref_primary_10_1016_j_clnu_2024_01_009 crossref_primary_10_1186_s40064_016_2197_2 crossref_primary_10_1093_jncimonographs_lgad006 crossref_primary_10_1155_2017_3292087 crossref_primary_10_1242_dmm_043166 crossref_primary_10_1007_s11914_020_00576_5 crossref_primary_10_1371_journal_pone_0198611 crossref_primary_10_1016_j_semcdb_2015_10_039 crossref_primary_10_1096_fj_201802799R crossref_primary_10_1186_s12979_015_0036_x crossref_primary_10_7759_cureus_18663 crossref_primary_10_1016_j_domaniend_2017_08_004 crossref_primary_10_3390_cancers15143588 crossref_primary_10_1111_febs_17224 crossref_primary_10_3390_cancers11121863 crossref_primary_10_3390_ijms242216343 crossref_primary_10_1007_s11914_017_0354_3 crossref_primary_10_1074_jbc_M115_638411 crossref_primary_10_1097_SHK_0000000000002613 crossref_primary_10_1097_SPC_0000000000000091 crossref_primary_10_1016_j_cbpa_2024_111725 crossref_primary_10_1016_j_cmet_2024_10_017 crossref_primary_10_2217_fon_15_195 crossref_primary_10_1053_j_seminoncol_2014_02_005 crossref_primary_10_1016_j_biopha_2023_114802 crossref_primary_10_3389_fphys_2016_00679 crossref_primary_10_1249_MSS_0000000000002772 crossref_primary_10_1016_j_mam_2024_101318 crossref_primary_10_1016_j_canlet_2020_04_017 crossref_primary_10_1038_s41467_020_20123_1 crossref_primary_10_1002_jcsm_12642 crossref_primary_10_1111_apha_12826 crossref_primary_10_3390_ijms232314833 crossref_primary_10_1097_SPC_0000000000000088 crossref_primary_10_1007_s00109_013_1080_7 crossref_primary_10_1007_s10142_024_01524_7 crossref_primary_10_1186_s13045_023_01454_0 crossref_primary_10_1016_j_jbiosc_2021_06_016 crossref_primary_10_1007_s00011_022_01586_y crossref_primary_10_1007_s00018_015_1954_7 crossref_primary_10_1113_JP284808 crossref_primary_10_1002_jcsm_12998 crossref_primary_10_1038_s41598_017_02347_2 crossref_primary_10_3390_ijms21134759 crossref_primary_10_1371_journal_pone_0087776 crossref_primary_10_3389_fphys_2022_1032450 crossref_primary_10_1371_journal_pone_0252135 crossref_primary_10_3389_fonc_2022_1057930 crossref_primary_10_3390_cancers13081975 crossref_primary_10_3389_fphys_2020_593468 crossref_primary_10_1113_EP087429 crossref_primary_10_1155_2020_7656031 crossref_primary_10_3389_fphar_2022_1031906 crossref_primary_10_3390_ijms241713181 crossref_primary_10_1007_s11914_020_00599_y crossref_primary_10_1002_jcsm_12077 crossref_primary_10_1186_s40035_023_00380_y crossref_primary_10_1002_jcsm_12867 crossref_primary_10_1007_s11914_022_00739_6 crossref_primary_10_3389_fimmu_2018_01878 crossref_primary_10_1088_1478_3975_14_4_045002 crossref_primary_10_1177_15347354231168369 crossref_primary_10_26508_lsa_202402885 crossref_primary_10_1146_annurev_cancerbio_030419_033642 crossref_primary_10_1152_ajpcell_00317_2024 crossref_primary_10_1002_jcsm_13705 crossref_primary_10_1038_s41556_018_0151_y crossref_primary_10_1096_fj_202200848R crossref_primary_10_1093_jpp_rgaf073 crossref_primary_10_3389_fphys_2019_00500 crossref_primary_10_1038_s41598_022_17548_7 crossref_primary_10_3892_ol_2025_14969 crossref_primary_10_1002_jcp_24580 crossref_primary_10_1186_s12885_016_2121_8 crossref_primary_10_1080_15384101_2015_1010979 crossref_primary_10_1111_febs_12253 crossref_primary_10_1016_j_oraloncology_2025_107548 crossref_primary_10_1165_rcmb_2018_0022TR crossref_primary_10_3389_fendo_2020_606947 crossref_primary_10_3390_ijms22041565 crossref_primary_10_1007_s00277_017_2958_1 crossref_primary_10_1007_s13539_014_0141_2 crossref_primary_10_1038_s44319_024_00144_3 crossref_primary_10_2119_molmed_2014_00049 crossref_primary_10_1200_JCO_2015_61_4578 crossref_primary_10_1097_MPA_0000000000001124 crossref_primary_10_3389_fcell_2021_636498 crossref_primary_10_3390_ijms19082299 crossref_primary_10_1089_jir_2023_0103 crossref_primary_10_1080_14656566_2023_2194489 crossref_primary_10_1152_japplphysiol_00622_2019 crossref_primary_10_3389_fendo_2019_00543 crossref_primary_10_1111_apha_12980 crossref_primary_10_1016_j_semcdb_2016_02_009 crossref_primary_10_1146_annurev_pharmtox_010818_021041 crossref_primary_10_3389_fphys_2018_00409 crossref_primary_10_1016_j_molmed_2017_03_001 crossref_primary_10_1155_2016_9579868 crossref_primary_10_1155_2015_843743 crossref_primary_10_3389_fphys_2016_00472 crossref_primary_10_1113_EP088501 crossref_primary_10_14814_phy2_14608 crossref_primary_10_1038_s41598_017_06581_6 crossref_primary_10_1080_17460441_2020_1724954 crossref_primary_10_1007_s11302_022_09885_z crossref_primary_10_1002_jcsm_12710 crossref_primary_10_1038_srep24214 crossref_primary_10_1371_journal_pone_0236680 crossref_primary_10_3389_fphys_2019_01298 crossref_primary_10_1177_1559827617725283 crossref_primary_10_1038_s41598_017_10238_9 crossref_primary_10_1016_j_peptides_2022_170840 crossref_primary_10_1002_jcsm_12271 crossref_primary_10_3390_cells13191620 crossref_primary_10_1007_s11914_024_00872_4 crossref_primary_10_3389_fphys_2016_00682 crossref_primary_10_3390_cancers14174258 crossref_primary_10_1186_s13048_019_0586_1 crossref_primary_10_1002_jsp2_1091 crossref_primary_10_1016_j_bbcan_2021_188554 crossref_primary_10_1016_j_bbcan_2020_188359 crossref_primary_10_1128_MCB_00184_19 crossref_primary_10_1016_j_isci_2024_110346 crossref_primary_10_1113_EP089130 crossref_primary_10_3389_fendo_2025_1608612 crossref_primary_10_1152_japplphysiol_00897_2017 crossref_primary_10_1016_j_smhs_2020_11_004 crossref_primary_10_1371_journal_pone_0251921 crossref_primary_10_1007_s40520_016_0585_7 crossref_primary_10_1038_s41416_021_01301_4 crossref_primary_10_1016_j_ejphar_2024_176429 crossref_primary_10_1002_jcsm_12145 crossref_primary_10_1097_SHK_0000000000000849 crossref_primary_10_1097_SHK_0000000000000729 crossref_primary_10_3389_fphys_2021_729713 crossref_primary_10_1038_bonekey_2015_101 crossref_primary_10_1097_MOG_0000000000000603 crossref_primary_10_17987_jcsm_cr_v3i1_53 crossref_primary_10_1007_s11515_018_1484_4 crossref_primary_10_1159_000515307 crossref_primary_10_3390_ijms23137358 crossref_primary_10_15252_emmm_201607052 crossref_primary_10_15252_emmm_201708307 crossref_primary_10_1002_jcsm_13109 crossref_primary_10_3389_fphys_2019_00665 crossref_primary_10_1177_15353702221087962 crossref_primary_10_1113_expphysiol_2011_063321 crossref_primary_10_3389_fgene_2022_880359 crossref_primary_10_3390_ijms19082265 crossref_primary_10_1016_j_isci_2025_112030 crossref_primary_10_1038_s41598_018_26625_9 crossref_primary_10_1155_2015_791060 crossref_primary_10_3390_cancers12082312 crossref_primary_10_3390_cells10123527 crossref_primary_10_3390_ijms21218261 crossref_primary_10_1097_SHK_0000000000001498 crossref_primary_10_3390_biology10080700 crossref_primary_10_1038_onc_2016_437 crossref_primary_10_3389_fmed_2021_672370 crossref_primary_10_1002_jcsm_13466 crossref_primary_10_3892_or_2016_5165 crossref_primary_10_1002_jcsm_12376 crossref_primary_10_1042_BCJ20201009 crossref_primary_10_1152_japplphysiol_00908_2019 crossref_primary_10_1073_pnas_1905172116 crossref_primary_10_1016_j_clnu_2016_05_010 crossref_primary_10_1007_s00204_025_04056_6 crossref_primary_10_1089_hum_2017_158 crossref_primary_10_3389_fcell_2021_720096 crossref_primary_10_1016_j_hlife_2025_05_002 crossref_primary_10_1016_j_tips_2023_07_006 crossref_primary_10_4240_wjgs_v10_i9_95 crossref_primary_10_1155_2018_8260742 crossref_primary_10_1002_jcsm_12360 crossref_primary_10_1096_fj_13_240580 crossref_primary_10_3389_fphys_2020_00445 crossref_primary_10_3390_ijms23094762 crossref_primary_10_1016_j_molmed_2024_02_002 crossref_primary_10_1186_s13075_022_02858_y crossref_primary_10_1002_jcsm_13454 crossref_primary_10_1002_jcsm_12489 crossref_primary_10_3389_fphys_2020_597675 crossref_primary_10_1016_j_bbalip_2019_04_006 crossref_primary_10_4162_nrp_2022_16_2_147 crossref_primary_10_1016_j_semcdb_2015_11_002 crossref_primary_10_1016_j_heliyon_2023_e22317 crossref_primary_10_1038_s41574_018_0123_0 crossref_primary_10_1002_jcsm_13329 crossref_primary_10_1007_s11154_025_09954_9 crossref_primary_10_1016_j_bbadis_2014_12_015 crossref_primary_10_1139_cjpp_2018_0479 crossref_primary_10_1007_s11914_020_00628_w crossref_primary_10_1007_s40520_015_0316_5 crossref_primary_10_1371_journal_pone_0092966 crossref_primary_10_3945_jn_113_188367 crossref_primary_10_1002_rco2_91 crossref_primary_10_1016_j_canlet_2025_217444 crossref_primary_10_3389_fcell_2025_1639123 crossref_primary_10_3389_fimmu_2024_1477310 crossref_primary_10_3892_or_2015_3845 crossref_primary_10_1038_s41598_017_11978_4 crossref_primary_10_1016_j_kint_2017_02_031 crossref_primary_10_1152_japplphysiol_00196_2023 crossref_primary_10_1016_j_jdin_2024_11_009 crossref_primary_10_1016_j_jep_2020_113066 crossref_primary_10_3109_10799893_2014_956755 crossref_primary_10_1097_SPC_0000000000000705 crossref_primary_10_1113_JP283569 crossref_primary_10_1038_s41389_020_00288_6 crossref_primary_10_3390_diagnostics11010116 crossref_primary_10_1038_bjc_2013_291 crossref_primary_10_1002_jcsm_12225 crossref_primary_10_1002_jcsm_12346 crossref_primary_10_3390_ijms25158474 crossref_primary_10_1016_j_jare_2025_07_001 crossref_primary_10_4103_jcrt_jcrt_140_24 crossref_primary_10_1016_j_jneuroim_2023_578033 crossref_primary_10_3390_cancers12123787 crossref_primary_10_1517_13543784_2014_942729 crossref_primary_10_1016_j_nut_2013_07_019 crossref_primary_10_1038_s41584_023_00921_9 crossref_primary_10_3389_fphys_2020_00087 crossref_primary_10_14814_phy2_14217 crossref_primary_10_1111_apha_13425 crossref_primary_10_1002_jcsm_13422 crossref_primary_10_1038_s41388_021_02151_3 crossref_primary_10_1111_bph_15625 crossref_primary_10_1002_jpen_2287 crossref_primary_10_3390_jcm8040543 crossref_primary_10_1016_j_mam_2025_101367 crossref_primary_10_1152_japplphysiol_00416_2015 crossref_primary_10_3390_cancers14215262 crossref_primary_10_1186_1471_2407_14_997 crossref_primary_10_3390_biology14091159 crossref_primary_10_3892_or_2015_4164 crossref_primary_10_1007_s10330_018_0279_9 crossref_primary_10_1084_jem_20190450 crossref_primary_10_1007_s00395_017_0639_9 crossref_primary_10_3390_cancers14092321 crossref_primary_10_1038_s41598_025_87381_1 crossref_primary_10_1002_ana_24902 crossref_primary_10_1016_j_smhs_2024_01_006 crossref_primary_10_3390_ijms24054651 crossref_primary_10_2174_1874467214666210806163851 crossref_primary_10_1155_2019_8908457 crossref_primary_10_3390_ijms22062890 crossref_primary_10_1101_gad_276733_115 crossref_primary_10_1074_jbc_M115_641514 crossref_primary_10_1186_s42358_024_00416_5 crossref_primary_10_1007_s00432_022_03927_0 crossref_primary_10_1002_mco2_70030 crossref_primary_10_1016_j_cellsig_2023_110847 crossref_primary_10_3390_jcm7120502 crossref_primary_10_1002_mus_25966 crossref_primary_10_3390_ijms20081962 crossref_primary_10_1002_jcsm_12311 crossref_primary_10_3389_fendo_2024_1408312 crossref_primary_10_1111_obr_70005 crossref_primary_10_3389_fonc_2022_880787 crossref_primary_10_1016_j_biocel_2013_07_016 crossref_primary_10_3390_cancers12010194 crossref_primary_10_1111_asj_13145 crossref_primary_10_1146_annurev_nutr_062122_015646 crossref_primary_10_1155_2020_8672939 crossref_primary_10_1158_1078_0432_CCR_16_0495 crossref_primary_10_1002_jcsm_12303 crossref_primary_10_3390_ijms22031486 crossref_primary_10_1002_jcp_30950 crossref_primary_10_1242_dmm_049298 crossref_primary_10_1016_j_nut_2019_03_012 crossref_primary_10_1002_rco2_30 crossref_primary_10_1002_prp2_70031 crossref_primary_10_1016_j_ajpath_2025_07_005 crossref_primary_10_1016_j_biopha_2023_115517 crossref_primary_10_1016_j_exer_2014_06_012 crossref_primary_10_1177_1758834017698643 crossref_primary_10_3390_cancers12061605 crossref_primary_10_1016_j_tem_2012_10_006 crossref_primary_10_3390_biomedicines9060698 crossref_primary_10_1016_j_celrep_2025_116278 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1152/ajpendo.00039.2012 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine Anatomy & Physiology |
| EISSN | 1522-1555 |
| ExternalDocumentID | 22669242 |
| Genre | Evaluation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM092758 – fundername: NCI NIH HHS grantid: R01 CA122596 – fundername: NCI NIH HHS grantid: R01-CA-122596 – fundername: NIGMS NIH HHS grantid: R01-GM-092758 |
| GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 AAFWJ ABJNI ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKKCC BKOMP BTFSW C1A CGR CUY CVF DIK E3Z EBS ECM EIF EJD EMOBN F5P GX1 H13 ITBOX KQ8 NPM OK1 P2P P6G PQQKQ RAP RHF RHI RPL RPRKH TR2 W8F WH7 WOQ XSW YSK 7X8 |
| ID | FETCH-LOGICAL-c566t-f8ca3e02ae2b7022f9846cdbcfb659e8e607519ef81b7a40d6638cb580171e0e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 344 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307228700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1522-1555 |
| IngestDate | Sun Nov 09 13:23:06 EST 2025 Thu Jan 02 22:42:20 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c566t-f8ca3e02ae2b7022f9846cdbcfb659e8e607519ef81b7a40d6638cb580171e0e2 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/3423125 |
| PMID | 22669242 |
| PQID | 1031156575 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1031156575 pubmed_primary_22669242 |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-01 |
| PublicationDateYYYYMMDD | 2012-08-01 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | American journal of physiology: endocrinology and metabolism |
| PublicationTitleAlternate | Am J Physiol Endocrinol Metab |
| PublicationYear | 2012 |
| References | 10226565 - Anticancer Res. 1999 Jan-Feb;19(1A):341-8 15479644 - Cell. 2004 Oct 15;119(2):285-98 11556541 - J Neuropathol Exp Neurol. 2001 Sep;60(9):847-55 12029139 - Science. 2002 May 24;296(5572):1486-8 21483870 - PLoS One. 2011;6(3):e18090 20060626 - Clin Nutr. 2010 Apr;29(2):154-9 19713854 - Curr Opin Support Palliat Care. 2009 Dec;3(4):263-8 10974228 - Cardiovasc Res. 2000 Sep;47(4):797-805 18056981 - Am J Physiol Regul Integr Comp Physiol. 2008 Feb;294(2):R393-401 9716487 - Biochem J. 1998 Sep 1;334 ( Pt 2):297-314 21114420 - Expert Opin Ther Pat. 2011 Jan;21(1):65-83 18546601 - Nat Protoc. 2008;3(6):1101-8 21296615 - Lancet Oncol. 2011 May;12(5):489-95 19345327 - Cancer Cell. 2009 Apr 7;15(4):283-93 12842862 - Am J Physiol Regul Integr Comp Physiol. 2003 Nov;285(5):R1153-64 19804322 - Future Cardiol. 2008 Jul;4(4):427-37 9711940 - Circulation. 1998 Jul 28;98(4):346-52 8034686 - J Biol Chem. 1994 Jul 29;269(30):19250-5 7972041 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11236-40 19556508 - Science. 2009 Jun 26;324(5935):1713-6 12883476 - Hepatology. 2003 Aug;38(2):326-34 20623149 - Amino Acids. 2011 Feb;40(2):585-94 8227330 - J Clin Invest. 1993 Nov;92(5):2152-9 14603031 - Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):16-22 8201002 - J Clin Invest. 1994 Jun;93(6):2632-8 17530315 - Basic Res Cardiol. 2007 Jul;102(4):279-97 7628876 - Int J Cancer. 1995 Jul 28;62(3):332-6 9815931 - Clin Cancer Res. 1995 Nov;1(11):1353-8 1569207 - J Clin Invest. 1992 May;89(5):1681-4 20036643 - Biochem Biophys Res Commun. 2010 Jan 15;391(3):1548-54 7493444 - Clin Sci (Lond). 1995 Oct;89(4):431-9 21847090 - EMBO J. 2011 Oct 19;30(20):4323-35 12415256 - Nat Rev Cancer. 2002 Nov;2(11):862-71 8664130 - Br J Cancer. 1996 Jun;73(12):1560-2 12110143 - Arthritis Res. 2002;4 Suppl 3:S233-42 9263535 - Jpn J Cancer Res. 1997 Jun;88(6):578-83 1898691 - Ann Surg. 1991 Jan;213(1):26-31 21256828 - Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6 8760219 - Am J Physiol. 1996 Jul;271(1 Pt 2):R185-90 18846100 - Nat Rev Cancer. 2008 Nov;8(11):887-99 20843246 - N Engl J Med. 2010 Sep 16;363(12):1117-27 21303780 - Eur Heart J. 2011 Mar;32(6):680-5 21048967 - PLoS One. 2010;5(10):e13604 17918316 - Basic Res Cardiol. 2007 Sep;102(5):393-411 21881215 - J Clin Invest. 2011 Sep;121(9):3375-83 21798080 - Skelet Muscle. 2011 Jan 24;1(1):2 18786563 - Pharmacol Ther. 2008 Nov;120(2):172-85 12359225 - Biochem Biophys Res Commun. 2002 Oct 4;297(4):811-7 10458605 - Cell. 1999 Aug 6;98(3):295-303 15897808 - Shock. 2005 Jun;23(6):543-8 18177723 - Cell Metab. 2008 Jan;7(1):33-44 11853880 - Biochim Biophys Acta. 2002 Jan 30;1542(1-3):66-72 21799891 - PLoS One. 2011;6(7):e22538 8550842 - J Clin Invest. 1996 Jan 1;97(1):244-9 2569739 - Proc Natl Acad Sci U S A. 1989 Aug;86(15):5948-52 9510175 - J Immunol. 1998 Mar 15;160(6):2742-50 8626374 - J Biol Chem. 1996 Mar 15;271(11):5961-4 20397318 - Curr Opin Clin Nutr Metab Care. 2010 May;13(3):225-9 21408055 - PLoS One. 2011;6(3):e17392 20807764 - J Biol Chem. 2010 Nov 12;285(46):35855-65 21282204 - FASEB J. 2011 May;25(5):1653-63 12806213 - Curr Opin Clin Nutr Metab Care. 2003 Jul;6(4):401-6 21949739 - PLoS One. 2011;6(9):e24650 18718696 - Clin Nutr. 2008 Dec;27(6):793-9 20039316 - Int J Cancer. 2010 Oct 1;127(7):1706-17 20871233 - Exerc Sport Sci Rev. 2010 Oct;38(4):168-76 |
| References_xml | – reference: 20060626 - Clin Nutr. 2010 Apr;29(2):154-9 – reference: 18718696 - Clin Nutr. 2008 Dec;27(6):793-9 – reference: 21799891 - PLoS One. 2011;6(7):e22538 – reference: 9716487 - Biochem J. 1998 Sep 1;334 ( Pt 2):297-314 – reference: 21798080 - Skelet Muscle. 2011 Jan 24;1(1):2 – reference: 21303780 - Eur Heart J. 2011 Mar;32(6):680-5 – reference: 14603031 - Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):16-22 – reference: 8227330 - J Clin Invest. 1993 Nov;92(5):2152-9 – reference: 7972041 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11236-40 – reference: 21881215 - J Clin Invest. 2011 Sep;121(9):3375-83 – reference: 21048967 - PLoS One. 2010;5(10):e13604 – reference: 10226565 - Anticancer Res. 1999 Jan-Feb;19(1A):341-8 – reference: 2569739 - Proc Natl Acad Sci U S A. 1989 Aug;86(15):5948-52 – reference: 18177723 - Cell Metab. 2008 Jan;7(1):33-44 – reference: 21296615 - Lancet Oncol. 2011 May;12(5):489-95 – reference: 19804322 - Future Cardiol. 2008 Jul;4(4):427-37 – reference: 17530315 - Basic Res Cardiol. 2007 Jul;102(4):279-97 – reference: 8626374 - J Biol Chem. 1996 Mar 15;271(11):5961-4 – reference: 9510175 - J Immunol. 1998 Mar 15;160(6):2742-50 – reference: 21114420 - Expert Opin Ther Pat. 2011 Jan;21(1):65-83 – reference: 19345327 - Cancer Cell. 2009 Apr 7;15(4):283-93 – reference: 21408055 - PLoS One. 2011;6(3):e17392 – reference: 21949739 - PLoS One. 2011;6(9):e24650 – reference: 9711940 - Circulation. 1998 Jul 28;98(4):346-52 – reference: 20807764 - J Biol Chem. 2010 Nov 12;285(46):35855-65 – reference: 10458605 - Cell. 1999 Aug 6;98(3):295-303 – reference: 20397318 - Curr Opin Clin Nutr Metab Care. 2010 May;13(3):225-9 – reference: 9815931 - Clin Cancer Res. 1995 Nov;1(11):1353-8 – reference: 12029139 - Science. 2002 May 24;296(5572):1486-8 – reference: 8550842 - J Clin Invest. 1996 Jan 1;97(1):244-9 – reference: 17918316 - Basic Res Cardiol. 2007 Sep;102(5):393-411 – reference: 8034686 - J Biol Chem. 1994 Jul 29;269(30):19250-5 – reference: 15479644 - Cell. 2004 Oct 15;119(2):285-98 – reference: 19713854 - Curr Opin Support Palliat Care. 2009 Dec;3(4):263-8 – reference: 12110143 - Arthritis Res. 2002;4 Suppl 3:S233-42 – reference: 7628876 - Int J Cancer. 1995 Jul 28;62(3):332-6 – reference: 10974228 - Cardiovasc Res. 2000 Sep;47(4):797-805 – reference: 20039316 - Int J Cancer. 2010 Oct 1;127(7):1706-17 – reference: 8760219 - Am J Physiol. 1996 Jul;271(1 Pt 2):R185-90 – reference: 12842862 - Am J Physiol Regul Integr Comp Physiol. 2003 Nov;285(5):R1153-64 – reference: 9263535 - Jpn J Cancer Res. 1997 Jun;88(6):578-83 – reference: 1898691 - Ann Surg. 1991 Jan;213(1):26-31 – reference: 20871233 - Exerc Sport Sci Rev. 2010 Oct;38(4):168-76 – reference: 7493444 - Clin Sci (Lond). 1995 Oct;89(4):431-9 – reference: 19556508 - Science. 2009 Jun 26;324(5935):1713-6 – reference: 8201002 - J Clin Invest. 1994 Jun;93(6):2632-8 – reference: 8664130 - Br J Cancer. 1996 Jun;73(12):1560-2 – reference: 11853880 - Biochim Biophys Acta. 2002 Jan 30;1542(1-3):66-72 – reference: 21256828 - Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6 – reference: 20623149 - Amino Acids. 2011 Feb;40(2):585-94 – reference: 18546601 - Nat Protoc. 2008;3(6):1101-8 – reference: 11556541 - J Neuropathol Exp Neurol. 2001 Sep;60(9):847-55 – reference: 15897808 - Shock. 2005 Jun;23(6):543-8 – reference: 21847090 - EMBO J. 2011 Oct 19;30(20):4323-35 – reference: 1569207 - J Clin Invest. 1992 May;89(5):1681-4 – reference: 18056981 - Am J Physiol Regul Integr Comp Physiol. 2008 Feb;294(2):R393-401 – reference: 21483870 - PLoS One. 2011;6(3):e18090 – reference: 12883476 - Hepatology. 2003 Aug;38(2):326-34 – reference: 12359225 - Biochem Biophys Res Commun. 2002 Oct 4;297(4):811-7 – reference: 18846100 - Nat Rev Cancer. 2008 Nov;8(11):887-99 – reference: 20036643 - Biochem Biophys Res Commun. 2010 Jan 15;391(3):1548-54 – reference: 21282204 - FASEB J. 2011 May;25(5):1653-63 – reference: 12415256 - Nat Rev Cancer. 2002 Nov;2(11):862-71 – reference: 18786563 - Pharmacol Ther. 2008 Nov;120(2):172-85 – reference: 20843246 - N Engl J Med. 2010 Sep 16;363(12):1117-27 – reference: 12806213 - Curr Opin Clin Nutr Metab Care. 2003 Jul;6(4):401-6 |
| SSID | ssj0007542 |
| Score | 2.5463915 |
| Snippet | Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | E410 |
| SubjectTerms | Animals Cachexia - etiology Cachexia - genetics Cachexia - pathology Cachexia - prevention & control Cells, Cultured CHO Cells Cricetinae Cricetulus Disease Models, Animal Female Interleukin-6 - genetics Interleukin-6 - metabolism Interleukin-6 - physiology Janus Kinases - antagonists & inhibitors Janus Kinases - genetics Janus Kinases - metabolism Male Mice Mice, Inbred C57BL Mice, Nude Mice, Transgenic Muscle, Skeletal - drug effects Muscle, Skeletal - metabolism Muscle, Skeletal - pathology Mutant Proteins - administration & dosage Mutant Proteins - genetics Neoplasms - complications Neoplasms - drug therapy Neoplasms - genetics Neoplasms - metabolism Protein Kinase Inhibitors - administration & dosage Protein Kinase Inhibitors - pharmacology Pyrazoles - administration & dosage Pyrazoles - pharmacology RNA, Small Interfering - administration & dosage RNA, Small Interfering - pharmacology Signal Transduction - drug effects Signal Transduction - genetics STAT3 Transcription Factor - antagonists & inhibitors STAT3 Transcription Factor - genetics STAT3 Transcription Factor - metabolism Wasting Syndrome - genetics Wasting Syndrome - metabolism Wasting Syndrome - pathology Wasting Syndrome - prevention & control |
| Title | JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22669242 https://www.proquest.com/docview/1031156575 |
| Volume | 303 |
| WOSCitedRecordID | wos000307228700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58IV58tD7qixXEW2y6zfMkRSy-WgpW6K1sNrMYS5PatNb-e2eSlHoRBC_JKUvYTHa-mflmPsYubV8JLQHDEu1rwyJ-oyeAOpatuhSmLVyVi0247bbX6_mdIuGWFrTKxZmYHdRhoihHXiU5ghrV6Oyb0YdBqlFUXS0kNFbZeh2hDFm121tOCyd112xeKgZc6DftRdOMLarynSRmk-usOZUYXuJ3iJm5mubOf19yl20XIJM3cqvYYysQl1i5EWOAPZzzK57RPrN8eolttorqepmNHxtP1Zduo1vnJFQ8k3MexW9RkLG6eIBub5DydICOChE7H05TXJzPZErMaR5Smppo60OeaP7wbDhcxiEuwH-KCHBFVjbGGxrLVyT32Wvzrnt7bxSaDIZC4DcxtKdkHUwhQQQu-n_tI4BRYaB04Ng-eODgrtd80AiHXWmZISIaTwW2R3N5wARxwNbiJIYjxmueCwAKvaiQlgcI1EJToEk5oU3dt1aFXSw2uY82T4UMGUMyTfvLba6ww_xL9Uf5cI4-wkkHY0px_IenT9gWffmcz3fK1jX-8XDGNtTnJErH55kx4bXdaX0DqTHTyg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JAK%2FSTAT3+pathway+inhibition+blocks+skeletal+muscle+wasting+downstream+of+IL-6+and+in+experimental+cancer+cachexia&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Bonetto%2C+Andrea&rft.au=Aydogdu%2C+Tufan&rft.au=Jin%2C+Xiaoling&rft.au=Zhang%2C+Zongxiu&rft.date=2012-08-01&rft.issn=1522-1555&rft.eissn=1522-1555&rft.volume=303&rft.issue=3&rft.spage=E410&rft_id=info:doi/10.1152%2Fajpendo.00039.2012&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1555&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1555&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1555&client=summon |