JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia

Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology: endocrinology and metabolism Jg. 303; H. 3; S. E410
Hauptverfasser: Bonetto, Andrea, Aydogdu, Tufan, Jin, Xiaoling, Zhang, Zongxiu, Zhan, Rui, Puzis, Leopold, Koniaris, Leonidas G, Zimmers, Teresa A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 01.08.2012
Schlagworte:
ISSN:1522-1555, 1522-1555
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.
AbstractList Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.
Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.
Author Bonetto, Andrea
Zhang, Zongxiu
Jin, Xiaoling
Zhan, Rui
Koniaris, Leonidas G
Aydogdu, Tufan
Puzis, Leopold
Zimmers, Teresa A
Author_xml – sequence: 1
  givenname: Andrea
  surname: Bonetto
  fullname: Bonetto, Andrea
  organization: Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
– sequence: 2
  givenname: Tufan
  surname: Aydogdu
  fullname: Aydogdu, Tufan
– sequence: 3
  givenname: Xiaoling
  surname: Jin
  fullname: Jin, Xiaoling
– sequence: 4
  givenname: Zongxiu
  surname: Zhang
  fullname: Zhang, Zongxiu
– sequence: 5
  givenname: Rui
  surname: Zhan
  fullname: Zhan, Rui
– sequence: 6
  givenname: Leopold
  surname: Puzis
  fullname: Puzis, Leopold
– sequence: 7
  givenname: Leonidas G
  surname: Koniaris
  fullname: Koniaris, Leonidas G
– sequence: 8
  givenname: Teresa A
  surname: Zimmers
  fullname: Zimmers, Teresa A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22669242$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtPwzAQhC1URB_wBzggH7mktZ3aSY5VxaNQiQPlHNnOhrpN7BAnavvvMaJInGal_Xa0M2M0sM4CQreUTCnlbCZ3DdjCTQkhcTZlhLILNAoLFlHO-eDfPERj73eBS_icXaEhY0JkbM5GqH1ZvM7eN4tNjBvZbQ_yhI3dGmU64yxWldN7j_0eKuhkheve6wrwQfrO2E9cuIP1XQuyxq7Eq3UksLRFMMBwbKA1NdifKy2thjaI3sLRyGt0WcrKw81ZJ-jj8WGzfI7Wb0-r5WIdaS5EF5WpljEQJoGphDBWZulc6ELpUgmeQQoipKEZlClViZyTQog41YqnhCYUCLAJuv_1bVr31YPv8tp4DVUlLbje55TEoUbBEx7QuzPaqxqKvAm_y_aU__XEvgF_Vm3k
CitedBy_id crossref_primary_10_1002_jcsm_12539
crossref_primary_10_1038_s41467_017_01645_7
crossref_primary_10_3389_fphar_2021_687491
crossref_primary_10_1002_rco2_24
crossref_primary_10_1111_febs_12338
crossref_primary_10_1016_j_clnu_2024_01_009
crossref_primary_10_1186_s40064_016_2197_2
crossref_primary_10_1093_jncimonographs_lgad006
crossref_primary_10_1155_2017_3292087
crossref_primary_10_1242_dmm_043166
crossref_primary_10_1007_s11914_020_00576_5
crossref_primary_10_1371_journal_pone_0198611
crossref_primary_10_1016_j_semcdb_2015_10_039
crossref_primary_10_1096_fj_201802799R
crossref_primary_10_1186_s12979_015_0036_x
crossref_primary_10_7759_cureus_18663
crossref_primary_10_1016_j_domaniend_2017_08_004
crossref_primary_10_3390_cancers15143588
crossref_primary_10_1111_febs_17224
crossref_primary_10_3390_cancers11121863
crossref_primary_10_3390_ijms242216343
crossref_primary_10_1007_s11914_017_0354_3
crossref_primary_10_1074_jbc_M115_638411
crossref_primary_10_1097_SHK_0000000000002613
crossref_primary_10_1097_SPC_0000000000000091
crossref_primary_10_1016_j_cbpa_2024_111725
crossref_primary_10_1016_j_cmet_2024_10_017
crossref_primary_10_2217_fon_15_195
crossref_primary_10_1053_j_seminoncol_2014_02_005
crossref_primary_10_1016_j_biopha_2023_114802
crossref_primary_10_3389_fphys_2016_00679
crossref_primary_10_1249_MSS_0000000000002772
crossref_primary_10_1016_j_mam_2024_101318
crossref_primary_10_1016_j_canlet_2020_04_017
crossref_primary_10_1038_s41467_020_20123_1
crossref_primary_10_1002_jcsm_12642
crossref_primary_10_1111_apha_12826
crossref_primary_10_3390_ijms232314833
crossref_primary_10_1097_SPC_0000000000000088
crossref_primary_10_1007_s00109_013_1080_7
crossref_primary_10_1007_s10142_024_01524_7
crossref_primary_10_1186_s13045_023_01454_0
crossref_primary_10_1016_j_jbiosc_2021_06_016
crossref_primary_10_1007_s00011_022_01586_y
crossref_primary_10_1007_s00018_015_1954_7
crossref_primary_10_1113_JP284808
crossref_primary_10_1002_jcsm_12998
crossref_primary_10_1038_s41598_017_02347_2
crossref_primary_10_3390_ijms21134759
crossref_primary_10_1371_journal_pone_0087776
crossref_primary_10_3389_fphys_2022_1032450
crossref_primary_10_1371_journal_pone_0252135
crossref_primary_10_3389_fonc_2022_1057930
crossref_primary_10_3390_cancers13081975
crossref_primary_10_3389_fphys_2020_593468
crossref_primary_10_1113_EP087429
crossref_primary_10_1155_2020_7656031
crossref_primary_10_3389_fphar_2022_1031906
crossref_primary_10_3390_ijms241713181
crossref_primary_10_1007_s11914_020_00599_y
crossref_primary_10_1002_jcsm_12077
crossref_primary_10_1186_s40035_023_00380_y
crossref_primary_10_1002_jcsm_12867
crossref_primary_10_1007_s11914_022_00739_6
crossref_primary_10_3389_fimmu_2018_01878
crossref_primary_10_1088_1478_3975_14_4_045002
crossref_primary_10_1177_15347354231168369
crossref_primary_10_26508_lsa_202402885
crossref_primary_10_1146_annurev_cancerbio_030419_033642
crossref_primary_10_1152_ajpcell_00317_2024
crossref_primary_10_1002_jcsm_13705
crossref_primary_10_1038_s41556_018_0151_y
crossref_primary_10_1096_fj_202200848R
crossref_primary_10_1093_jpp_rgaf073
crossref_primary_10_3389_fphys_2019_00500
crossref_primary_10_1038_s41598_022_17548_7
crossref_primary_10_3892_ol_2025_14969
crossref_primary_10_1002_jcp_24580
crossref_primary_10_1186_s12885_016_2121_8
crossref_primary_10_1080_15384101_2015_1010979
crossref_primary_10_1111_febs_12253
crossref_primary_10_1016_j_oraloncology_2025_107548
crossref_primary_10_1165_rcmb_2018_0022TR
crossref_primary_10_3389_fendo_2020_606947
crossref_primary_10_3390_ijms22041565
crossref_primary_10_1007_s00277_017_2958_1
crossref_primary_10_1007_s13539_014_0141_2
crossref_primary_10_1038_s44319_024_00144_3
crossref_primary_10_2119_molmed_2014_00049
crossref_primary_10_1200_JCO_2015_61_4578
crossref_primary_10_1097_MPA_0000000000001124
crossref_primary_10_3389_fcell_2021_636498
crossref_primary_10_3390_ijms19082299
crossref_primary_10_1089_jir_2023_0103
crossref_primary_10_1080_14656566_2023_2194489
crossref_primary_10_1152_japplphysiol_00622_2019
crossref_primary_10_3389_fendo_2019_00543
crossref_primary_10_1111_apha_12980
crossref_primary_10_1016_j_semcdb_2016_02_009
crossref_primary_10_1146_annurev_pharmtox_010818_021041
crossref_primary_10_3389_fphys_2018_00409
crossref_primary_10_1016_j_molmed_2017_03_001
crossref_primary_10_1155_2016_9579868
crossref_primary_10_1155_2015_843743
crossref_primary_10_3389_fphys_2016_00472
crossref_primary_10_1113_EP088501
crossref_primary_10_14814_phy2_14608
crossref_primary_10_1038_s41598_017_06581_6
crossref_primary_10_1080_17460441_2020_1724954
crossref_primary_10_1007_s11302_022_09885_z
crossref_primary_10_1002_jcsm_12710
crossref_primary_10_1038_srep24214
crossref_primary_10_1371_journal_pone_0236680
crossref_primary_10_3389_fphys_2019_01298
crossref_primary_10_1177_1559827617725283
crossref_primary_10_1038_s41598_017_10238_9
crossref_primary_10_1016_j_peptides_2022_170840
crossref_primary_10_1002_jcsm_12271
crossref_primary_10_3390_cells13191620
crossref_primary_10_1007_s11914_024_00872_4
crossref_primary_10_3389_fphys_2016_00682
crossref_primary_10_3390_cancers14174258
crossref_primary_10_1186_s13048_019_0586_1
crossref_primary_10_1002_jsp2_1091
crossref_primary_10_1016_j_bbcan_2021_188554
crossref_primary_10_1016_j_bbcan_2020_188359
crossref_primary_10_1128_MCB_00184_19
crossref_primary_10_1016_j_isci_2024_110346
crossref_primary_10_1113_EP089130
crossref_primary_10_3389_fendo_2025_1608612
crossref_primary_10_1152_japplphysiol_00897_2017
crossref_primary_10_1016_j_smhs_2020_11_004
crossref_primary_10_1371_journal_pone_0251921
crossref_primary_10_1007_s40520_016_0585_7
crossref_primary_10_1038_s41416_021_01301_4
crossref_primary_10_1016_j_ejphar_2024_176429
crossref_primary_10_1002_jcsm_12145
crossref_primary_10_1097_SHK_0000000000000849
crossref_primary_10_1097_SHK_0000000000000729
crossref_primary_10_3389_fphys_2021_729713
crossref_primary_10_1038_bonekey_2015_101
crossref_primary_10_1097_MOG_0000000000000603
crossref_primary_10_17987_jcsm_cr_v3i1_53
crossref_primary_10_1007_s11515_018_1484_4
crossref_primary_10_1159_000515307
crossref_primary_10_3390_ijms23137358
crossref_primary_10_15252_emmm_201607052
crossref_primary_10_15252_emmm_201708307
crossref_primary_10_1002_jcsm_13109
crossref_primary_10_3389_fphys_2019_00665
crossref_primary_10_1177_15353702221087962
crossref_primary_10_1113_expphysiol_2011_063321
crossref_primary_10_3389_fgene_2022_880359
crossref_primary_10_3390_ijms19082265
crossref_primary_10_1016_j_isci_2025_112030
crossref_primary_10_1038_s41598_018_26625_9
crossref_primary_10_1155_2015_791060
crossref_primary_10_3390_cancers12082312
crossref_primary_10_3390_cells10123527
crossref_primary_10_3390_ijms21218261
crossref_primary_10_1097_SHK_0000000000001498
crossref_primary_10_3390_biology10080700
crossref_primary_10_1038_onc_2016_437
crossref_primary_10_3389_fmed_2021_672370
crossref_primary_10_1002_jcsm_13466
crossref_primary_10_3892_or_2016_5165
crossref_primary_10_1002_jcsm_12376
crossref_primary_10_1042_BCJ20201009
crossref_primary_10_1152_japplphysiol_00908_2019
crossref_primary_10_1073_pnas_1905172116
crossref_primary_10_1016_j_clnu_2016_05_010
crossref_primary_10_1007_s00204_025_04056_6
crossref_primary_10_1089_hum_2017_158
crossref_primary_10_3389_fcell_2021_720096
crossref_primary_10_1016_j_hlife_2025_05_002
crossref_primary_10_1016_j_tips_2023_07_006
crossref_primary_10_4240_wjgs_v10_i9_95
crossref_primary_10_1155_2018_8260742
crossref_primary_10_1002_jcsm_12360
crossref_primary_10_1096_fj_13_240580
crossref_primary_10_3389_fphys_2020_00445
crossref_primary_10_3390_ijms23094762
crossref_primary_10_1016_j_molmed_2024_02_002
crossref_primary_10_1186_s13075_022_02858_y
crossref_primary_10_1002_jcsm_13454
crossref_primary_10_1002_jcsm_12489
crossref_primary_10_3389_fphys_2020_597675
crossref_primary_10_1016_j_bbalip_2019_04_006
crossref_primary_10_4162_nrp_2022_16_2_147
crossref_primary_10_1016_j_semcdb_2015_11_002
crossref_primary_10_1016_j_heliyon_2023_e22317
crossref_primary_10_1038_s41574_018_0123_0
crossref_primary_10_1002_jcsm_13329
crossref_primary_10_1007_s11154_025_09954_9
crossref_primary_10_1016_j_bbadis_2014_12_015
crossref_primary_10_1139_cjpp_2018_0479
crossref_primary_10_1007_s11914_020_00628_w
crossref_primary_10_1007_s40520_015_0316_5
crossref_primary_10_1371_journal_pone_0092966
crossref_primary_10_3945_jn_113_188367
crossref_primary_10_1002_rco2_91
crossref_primary_10_1016_j_canlet_2025_217444
crossref_primary_10_3389_fcell_2025_1639123
crossref_primary_10_3389_fimmu_2024_1477310
crossref_primary_10_3892_or_2015_3845
crossref_primary_10_1038_s41598_017_11978_4
crossref_primary_10_1016_j_kint_2017_02_031
crossref_primary_10_1152_japplphysiol_00196_2023
crossref_primary_10_1016_j_jdin_2024_11_009
crossref_primary_10_1016_j_jep_2020_113066
crossref_primary_10_3109_10799893_2014_956755
crossref_primary_10_1097_SPC_0000000000000705
crossref_primary_10_1113_JP283569
crossref_primary_10_1038_s41389_020_00288_6
crossref_primary_10_3390_diagnostics11010116
crossref_primary_10_1038_bjc_2013_291
crossref_primary_10_1002_jcsm_12225
crossref_primary_10_1002_jcsm_12346
crossref_primary_10_3390_ijms25158474
crossref_primary_10_1016_j_jare_2025_07_001
crossref_primary_10_4103_jcrt_jcrt_140_24
crossref_primary_10_1016_j_jneuroim_2023_578033
crossref_primary_10_3390_cancers12123787
crossref_primary_10_1517_13543784_2014_942729
crossref_primary_10_1016_j_nut_2013_07_019
crossref_primary_10_1038_s41584_023_00921_9
crossref_primary_10_3389_fphys_2020_00087
crossref_primary_10_14814_phy2_14217
crossref_primary_10_1111_apha_13425
crossref_primary_10_1002_jcsm_13422
crossref_primary_10_1038_s41388_021_02151_3
crossref_primary_10_1111_bph_15625
crossref_primary_10_1002_jpen_2287
crossref_primary_10_3390_jcm8040543
crossref_primary_10_1016_j_mam_2025_101367
crossref_primary_10_1152_japplphysiol_00416_2015
crossref_primary_10_3390_cancers14215262
crossref_primary_10_1186_1471_2407_14_997
crossref_primary_10_3390_biology14091159
crossref_primary_10_3892_or_2015_4164
crossref_primary_10_1007_s10330_018_0279_9
crossref_primary_10_1084_jem_20190450
crossref_primary_10_1007_s00395_017_0639_9
crossref_primary_10_3390_cancers14092321
crossref_primary_10_1038_s41598_025_87381_1
crossref_primary_10_1002_ana_24902
crossref_primary_10_1016_j_smhs_2024_01_006
crossref_primary_10_3390_ijms24054651
crossref_primary_10_2174_1874467214666210806163851
crossref_primary_10_1155_2019_8908457
crossref_primary_10_3390_ijms22062890
crossref_primary_10_1101_gad_276733_115
crossref_primary_10_1074_jbc_M115_641514
crossref_primary_10_1186_s42358_024_00416_5
crossref_primary_10_1007_s00432_022_03927_0
crossref_primary_10_1002_mco2_70030
crossref_primary_10_1016_j_cellsig_2023_110847
crossref_primary_10_3390_jcm7120502
crossref_primary_10_1002_mus_25966
crossref_primary_10_3390_ijms20081962
crossref_primary_10_1002_jcsm_12311
crossref_primary_10_3389_fendo_2024_1408312
crossref_primary_10_1111_obr_70005
crossref_primary_10_3389_fonc_2022_880787
crossref_primary_10_1016_j_biocel_2013_07_016
crossref_primary_10_3390_cancers12010194
crossref_primary_10_1111_asj_13145
crossref_primary_10_1146_annurev_nutr_062122_015646
crossref_primary_10_1155_2020_8672939
crossref_primary_10_1158_1078_0432_CCR_16_0495
crossref_primary_10_1002_jcsm_12303
crossref_primary_10_3390_ijms22031486
crossref_primary_10_1002_jcp_30950
crossref_primary_10_1242_dmm_049298
crossref_primary_10_1016_j_nut_2019_03_012
crossref_primary_10_1002_rco2_30
crossref_primary_10_1002_prp2_70031
crossref_primary_10_1016_j_ajpath_2025_07_005
crossref_primary_10_1016_j_biopha_2023_115517
crossref_primary_10_1016_j_exer_2014_06_012
crossref_primary_10_1177_1758834017698643
crossref_primary_10_3390_cancers12061605
crossref_primary_10_1016_j_tem_2012_10_006
crossref_primary_10_3390_biomedicines9060698
crossref_primary_10_1016_j_celrep_2025_116278
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1152/ajpendo.00039.2012
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1555
ExternalDocumentID 22669242
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM092758
– fundername: NCI NIH HHS
  grantid: R01 CA122596
– fundername: NCI NIH HHS
  grantid: R01-CA-122596
– fundername: NIGMS NIH HHS
  grantid: R01-GM-092758
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
AAFWJ
ABJNI
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKKCC
BKOMP
BTFSW
C1A
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
NPM
OK1
P2P
P6G
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
TR2
W8F
WH7
WOQ
XSW
YSK
7X8
ID FETCH-LOGICAL-c566t-f8ca3e02ae2b7022f9846cdbcfb659e8e607519ef81b7a40d6638cb580171e0e2
IEDL.DBID 7X8
ISICitedReferencesCount 344
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000307228700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1522-1555
IngestDate Sun Nov 09 13:23:06 EST 2025
Thu Jan 02 22:42:20 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-f8ca3e02ae2b7022f9846cdbcfb659e8e607519ef81b7a40d6638cb580171e0e2
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3423125
PMID 22669242
PQID 1031156575
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1031156575
pubmed_primary_22669242
PublicationCentury 2000
PublicationDate 2012-08-01
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of physiology: endocrinology and metabolism
PublicationTitleAlternate Am J Physiol Endocrinol Metab
PublicationYear 2012
References 10226565 - Anticancer Res. 1999 Jan-Feb;19(1A):341-8
15479644 - Cell. 2004 Oct 15;119(2):285-98
11556541 - J Neuropathol Exp Neurol. 2001 Sep;60(9):847-55
12029139 - Science. 2002 May 24;296(5572):1486-8
21483870 - PLoS One. 2011;6(3):e18090
20060626 - Clin Nutr. 2010 Apr;29(2):154-9
19713854 - Curr Opin Support Palliat Care. 2009 Dec;3(4):263-8
10974228 - Cardiovasc Res. 2000 Sep;47(4):797-805
18056981 - Am J Physiol Regul Integr Comp Physiol. 2008 Feb;294(2):R393-401
9716487 - Biochem J. 1998 Sep 1;334 ( Pt 2):297-314
21114420 - Expert Opin Ther Pat. 2011 Jan;21(1):65-83
18546601 - Nat Protoc. 2008;3(6):1101-8
21296615 - Lancet Oncol. 2011 May;12(5):489-95
19345327 - Cancer Cell. 2009 Apr 7;15(4):283-93
12842862 - Am J Physiol Regul Integr Comp Physiol. 2003 Nov;285(5):R1153-64
19804322 - Future Cardiol. 2008 Jul;4(4):427-37
9711940 - Circulation. 1998 Jul 28;98(4):346-52
8034686 - J Biol Chem. 1994 Jul 29;269(30):19250-5
7972041 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11236-40
19556508 - Science. 2009 Jun 26;324(5935):1713-6
12883476 - Hepatology. 2003 Aug;38(2):326-34
20623149 - Amino Acids. 2011 Feb;40(2):585-94
8227330 - J Clin Invest. 1993 Nov;92(5):2152-9
14603031 - Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):16-22
8201002 - J Clin Invest. 1994 Jun;93(6):2632-8
17530315 - Basic Res Cardiol. 2007 Jul;102(4):279-97
7628876 - Int J Cancer. 1995 Jul 28;62(3):332-6
9815931 - Clin Cancer Res. 1995 Nov;1(11):1353-8
1569207 - J Clin Invest. 1992 May;89(5):1681-4
20036643 - Biochem Biophys Res Commun. 2010 Jan 15;391(3):1548-54
7493444 - Clin Sci (Lond). 1995 Oct;89(4):431-9
21847090 - EMBO J. 2011 Oct 19;30(20):4323-35
12415256 - Nat Rev Cancer. 2002 Nov;2(11):862-71
8664130 - Br J Cancer. 1996 Jun;73(12):1560-2
12110143 - Arthritis Res. 2002;4 Suppl 3:S233-42
9263535 - Jpn J Cancer Res. 1997 Jun;88(6):578-83
1898691 - Ann Surg. 1991 Jan;213(1):26-31
21256828 - Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6
8760219 - Am J Physiol. 1996 Jul;271(1 Pt 2):R185-90
18846100 - Nat Rev Cancer. 2008 Nov;8(11):887-99
20843246 - N Engl J Med. 2010 Sep 16;363(12):1117-27
21303780 - Eur Heart J. 2011 Mar;32(6):680-5
21048967 - PLoS One. 2010;5(10):e13604
17918316 - Basic Res Cardiol. 2007 Sep;102(5):393-411
21881215 - J Clin Invest. 2011 Sep;121(9):3375-83
21798080 - Skelet Muscle. 2011 Jan 24;1(1):2
18786563 - Pharmacol Ther. 2008 Nov;120(2):172-85
12359225 - Biochem Biophys Res Commun. 2002 Oct 4;297(4):811-7
10458605 - Cell. 1999 Aug 6;98(3):295-303
15897808 - Shock. 2005 Jun;23(6):543-8
18177723 - Cell Metab. 2008 Jan;7(1):33-44
11853880 - Biochim Biophys Acta. 2002 Jan 30;1542(1-3):66-72
21799891 - PLoS One. 2011;6(7):e22538
8550842 - J Clin Invest. 1996 Jan 1;97(1):244-9
2569739 - Proc Natl Acad Sci U S A. 1989 Aug;86(15):5948-52
9510175 - J Immunol. 1998 Mar 15;160(6):2742-50
8626374 - J Biol Chem. 1996 Mar 15;271(11):5961-4
20397318 - Curr Opin Clin Nutr Metab Care. 2010 May;13(3):225-9
21408055 - PLoS One. 2011;6(3):e17392
20807764 - J Biol Chem. 2010 Nov 12;285(46):35855-65
21282204 - FASEB J. 2011 May;25(5):1653-63
12806213 - Curr Opin Clin Nutr Metab Care. 2003 Jul;6(4):401-6
21949739 - PLoS One. 2011;6(9):e24650
18718696 - Clin Nutr. 2008 Dec;27(6):793-9
20039316 - Int J Cancer. 2010 Oct 1;127(7):1706-17
20871233 - Exerc Sport Sci Rev. 2010 Oct;38(4):168-76
References_xml – reference: 20060626 - Clin Nutr. 2010 Apr;29(2):154-9
– reference: 18718696 - Clin Nutr. 2008 Dec;27(6):793-9
– reference: 21799891 - PLoS One. 2011;6(7):e22538
– reference: 9716487 - Biochem J. 1998 Sep 1;334 ( Pt 2):297-314
– reference: 21798080 - Skelet Muscle. 2011 Jan 24;1(1):2
– reference: 21303780 - Eur Heart J. 2011 Mar;32(6):680-5
– reference: 14603031 - Proc Natl Acad Sci U S A. 2004 Jan 6;101(1):16-22
– reference: 8227330 - J Clin Invest. 1993 Nov;92(5):2152-9
– reference: 7972041 - Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11236-40
– reference: 21881215 - J Clin Invest. 2011 Sep;121(9):3375-83
– reference: 21048967 - PLoS One. 2010;5(10):e13604
– reference: 10226565 - Anticancer Res. 1999 Jan-Feb;19(1A):341-8
– reference: 2569739 - Proc Natl Acad Sci U S A. 1989 Aug;86(15):5948-52
– reference: 18177723 - Cell Metab. 2008 Jan;7(1):33-44
– reference: 21296615 - Lancet Oncol. 2011 May;12(5):489-95
– reference: 19804322 - Future Cardiol. 2008 Jul;4(4):427-37
– reference: 17530315 - Basic Res Cardiol. 2007 Jul;102(4):279-97
– reference: 8626374 - J Biol Chem. 1996 Mar 15;271(11):5961-4
– reference: 9510175 - J Immunol. 1998 Mar 15;160(6):2742-50
– reference: 21114420 - Expert Opin Ther Pat. 2011 Jan;21(1):65-83
– reference: 19345327 - Cancer Cell. 2009 Apr 7;15(4):283-93
– reference: 21408055 - PLoS One. 2011;6(3):e17392
– reference: 21949739 - PLoS One. 2011;6(9):e24650
– reference: 9711940 - Circulation. 1998 Jul 28;98(4):346-52
– reference: 20807764 - J Biol Chem. 2010 Nov 12;285(46):35855-65
– reference: 10458605 - Cell. 1999 Aug 6;98(3):295-303
– reference: 20397318 - Curr Opin Clin Nutr Metab Care. 2010 May;13(3):225-9
– reference: 9815931 - Clin Cancer Res. 1995 Nov;1(11):1353-8
– reference: 12029139 - Science. 2002 May 24;296(5572):1486-8
– reference: 8550842 - J Clin Invest. 1996 Jan 1;97(1):244-9
– reference: 17918316 - Basic Res Cardiol. 2007 Sep;102(5):393-411
– reference: 8034686 - J Biol Chem. 1994 Jul 29;269(30):19250-5
– reference: 15479644 - Cell. 2004 Oct 15;119(2):285-98
– reference: 19713854 - Curr Opin Support Palliat Care. 2009 Dec;3(4):263-8
– reference: 12110143 - Arthritis Res. 2002;4 Suppl 3:S233-42
– reference: 7628876 - Int J Cancer. 1995 Jul 28;62(3):332-6
– reference: 10974228 - Cardiovasc Res. 2000 Sep;47(4):797-805
– reference: 20039316 - Int J Cancer. 2010 Oct 1;127(7):1706-17
– reference: 8760219 - Am J Physiol. 1996 Jul;271(1 Pt 2):R185-90
– reference: 12842862 - Am J Physiol Regul Integr Comp Physiol. 2003 Nov;285(5):R1153-64
– reference: 9263535 - Jpn J Cancer Res. 1997 Jun;88(6):578-83
– reference: 1898691 - Ann Surg. 1991 Jan;213(1):26-31
– reference: 20871233 - Exerc Sport Sci Rev. 2010 Oct;38(4):168-76
– reference: 7493444 - Clin Sci (Lond). 1995 Oct;89(4):431-9
– reference: 19556508 - Science. 2009 Jun 26;324(5935):1713-6
– reference: 8201002 - J Clin Invest. 1994 Jun;93(6):2632-8
– reference: 8664130 - Br J Cancer. 1996 Jun;73(12):1560-2
– reference: 11853880 - Biochim Biophys Acta. 2002 Jan 30;1542(1-3):66-72
– reference: 21256828 - Biochem Biophys Res Commun. 2011 Feb 18;405(3):491-6
– reference: 20623149 - Amino Acids. 2011 Feb;40(2):585-94
– reference: 18546601 - Nat Protoc. 2008;3(6):1101-8
– reference: 11556541 - J Neuropathol Exp Neurol. 2001 Sep;60(9):847-55
– reference: 15897808 - Shock. 2005 Jun;23(6):543-8
– reference: 21847090 - EMBO J. 2011 Oct 19;30(20):4323-35
– reference: 1569207 - J Clin Invest. 1992 May;89(5):1681-4
– reference: 18056981 - Am J Physiol Regul Integr Comp Physiol. 2008 Feb;294(2):R393-401
– reference: 21483870 - PLoS One. 2011;6(3):e18090
– reference: 12883476 - Hepatology. 2003 Aug;38(2):326-34
– reference: 12359225 - Biochem Biophys Res Commun. 2002 Oct 4;297(4):811-7
– reference: 18846100 - Nat Rev Cancer. 2008 Nov;8(11):887-99
– reference: 20036643 - Biochem Biophys Res Commun. 2010 Jan 15;391(3):1548-54
– reference: 21282204 - FASEB J. 2011 May;25(5):1653-63
– reference: 12415256 - Nat Rev Cancer. 2002 Nov;2(11):862-71
– reference: 18786563 - Pharmacol Ther. 2008 Nov;120(2):172-85
– reference: 20843246 - N Engl J Med. 2010 Sep 16;363(12):1117-27
– reference: 12806213 - Curr Opin Clin Nutr Metab Care. 2003 Jul;6(4):401-6
SSID ssj0007542
Score 2.5463915
Snippet Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage E410
SubjectTerms Animals
Cachexia - etiology
Cachexia - genetics
Cachexia - pathology
Cachexia - prevention & control
Cells, Cultured
CHO Cells
Cricetinae
Cricetulus
Disease Models, Animal
Female
Interleukin-6 - genetics
Interleukin-6 - metabolism
Interleukin-6 - physiology
Janus Kinases - antagonists & inhibitors
Janus Kinases - genetics
Janus Kinases - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Nude
Mice, Transgenic
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscle, Skeletal - pathology
Mutant Proteins - administration & dosage
Mutant Proteins - genetics
Neoplasms - complications
Neoplasms - drug therapy
Neoplasms - genetics
Neoplasms - metabolism
Protein Kinase Inhibitors - administration & dosage
Protein Kinase Inhibitors - pharmacology
Pyrazoles - administration & dosage
Pyrazoles - pharmacology
RNA, Small Interfering - administration & dosage
RNA, Small Interfering - pharmacology
Signal Transduction - drug effects
Signal Transduction - genetics
STAT3 Transcription Factor - antagonists & inhibitors
STAT3 Transcription Factor - genetics
STAT3 Transcription Factor - metabolism
Wasting Syndrome - genetics
Wasting Syndrome - metabolism
Wasting Syndrome - pathology
Wasting Syndrome - prevention & control
Title JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia
URI https://www.ncbi.nlm.nih.gov/pubmed/22669242
https://www.proquest.com/docview/1031156575
Volume 303
WOSCitedRecordID wos000307228700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58IV58tD7qixXEW2y6zfMkRSy-WgpW6K1sNrMYS5PatNb-e2eSlHoRBC_JKUvYTHa-mflmPsYubV8JLQHDEu1rwyJ-oyeAOpatuhSmLVyVi0247bbX6_mdIuGWFrTKxZmYHdRhoihHXiU5ghrV6Oyb0YdBqlFUXS0kNFbZeh2hDFm121tOCyd112xeKgZc6DftRdOMLarynSRmk-usOZUYXuJ3iJm5mubOf19yl20XIJM3cqvYYysQl1i5EWOAPZzzK57RPrN8eolttorqepmNHxtP1Zduo1vnJFQ8k3MexW9RkLG6eIBub5DydICOChE7H05TXJzPZErMaR5Smppo60OeaP7wbDhcxiEuwH-KCHBFVjbGGxrLVyT32Wvzrnt7bxSaDIZC4DcxtKdkHUwhQQQu-n_tI4BRYaB04Ng-eODgrtd80AiHXWmZISIaTwW2R3N5wARxwNbiJIYjxmueCwAKvaiQlgcI1EJToEk5oU3dt1aFXSw2uY82T4UMGUMyTfvLba6ww_xL9Uf5cI4-wkkHY0px_IenT9gWffmcz3fK1jX-8XDGNtTnJErH55kx4bXdaX0DqTHTyg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=JAK%2FSTAT3+pathway+inhibition+blocks+skeletal+muscle+wasting+downstream+of+IL-6+and+in+experimental+cancer+cachexia&rft.jtitle=American+journal+of+physiology%3A+endocrinology+and+metabolism&rft.au=Bonetto%2C+Andrea&rft.au=Aydogdu%2C+Tufan&rft.au=Jin%2C+Xiaoling&rft.au=Zhang%2C+Zongxiu&rft.date=2012-08-01&rft.issn=1522-1555&rft.eissn=1522-1555&rft.volume=303&rft.issue=3&rft.spage=E410&rft_id=info:doi/10.1152%2Fajpendo.00039.2012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-1555&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-1555&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-1555&client=summon