Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning

Abstract Motivation In recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be tackled by conventional small-molecule drugs or antibody drugs. Plasma protein binding rate (%PPB) is a significant pharmacokinetic property of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Bioinformatics Ročník 38; číslo 4; s. 1110 - 1117
Hlavní autori: Li, Jianan, Yanagisawa, Keisuke, Yoshikawa, Yasushi, Ohue, Masahito, Akiyama, Yutaka
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Oxford University Press 27.01.2022
Predmet:
ISSN:1367-4803, 1367-4811, 1460-2059, 1367-4811
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Abstract Motivation In recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be tackled by conventional small-molecule drugs or antibody drugs. Plasma protein binding rate (%PPB) is a significant pharmacokinetic property of a compound in drug discovery and design. However, due to structural differences, previous computational prediction methods developed for small-molecule compounds cannot be successfully applied to cyclic peptides, and methods for predicting the PPB rate of cyclic peptides with high accuracy are not yet available. Results Cyclic peptides are larger than small molecules, and their local structures have a considerable impact on PPB; thus, molecular descriptors expressing residue-level local features of cyclic peptides, instead of those expressing the entire molecule, as well as the circularity of the cyclic peptides should be considered. Therefore, we developed a prediction method named CycPeptPPB using deep learning that considers both factors. First, the macrocycle ring of cyclic peptides was decomposed residue by residue. The residue-based descriptors were arranged according to the sequence information of the cyclic peptide. Furthermore, the circular data augmentation method was used, and the circular convolution method CyclicConv was devised to express the cyclic structure. CycPeptPPB exhibited excellent performance, with mean absolute error (MAE) of 4.79% and correlation coefficient (R) of 0.92 for the public drug dataset, compared to the prediction performance of the existing PPB rate prediction software (MAE=15.08%, R=0.63). Availability and implementation The data underlying this article are available in the online supplementary material. The source code of CycPeptPPB is available at https://github.com/akiyamalab/cycpeptppb. Supplementary information Supplementary data are available at Bioinformatics online.
AbstractList Abstract Motivation In recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be tackled by conventional small-molecule drugs or antibody drugs. Plasma protein binding rate (%PPB) is a significant pharmacokinetic property of a compound in drug discovery and design. However, due to structural differences, previous computational prediction methods developed for small-molecule compounds cannot be successfully applied to cyclic peptides, and methods for predicting the PPB rate of cyclic peptides with high accuracy are not yet available. Results Cyclic peptides are larger than small molecules, and their local structures have a considerable impact on PPB; thus, molecular descriptors expressing residue-level local features of cyclic peptides, instead of those expressing the entire molecule, as well as the circularity of the cyclic peptides should be considered. Therefore, we developed a prediction method named CycPeptPPB using deep learning that considers both factors. First, the macrocycle ring of cyclic peptides was decomposed residue by residue. The residue-based descriptors were arranged according to the sequence information of the cyclic peptide. Furthermore, the circular data augmentation method was used, and the circular convolution method CyclicConv was devised to express the cyclic structure. CycPeptPPB exhibited excellent performance, with mean absolute error (MAE) of 4.79% and correlation coefficient (R) of 0.92 for the public drug dataset, compared to the prediction performance of the existing PPB rate prediction software (MAE=15.08%, R=0.63). Availability and implementation The data underlying this article are available in the online supplementary material. The source code of CycPeptPPB is available at https://github.com/akiyamalab/cycpeptppb. Supplementary information Supplementary data are available at Bioinformatics online.
In recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be tackled by conventional small-molecule drugs or antibody drugs. Plasma protein binding rate (%PPB) is a significant pharmacokinetic property of a compound in drug discovery and design. However, due to structural differences, previous computational prediction methods developed for small-molecule compounds cannot be successfully applied to cyclic peptides, and methods for predicting the PPB rate of cyclic peptides with high accuracy are not yet available. Cyclic peptides are larger than small molecules, and their local structures have a considerable impact on PPB; thus, molecular descriptors expressing residue-level local features of cyclic peptides, instead of those expressing the entire molecule, as well as the circularity of the cyclic peptides should be considered. Therefore, we developed a prediction method named CycPeptPPB using deep learning that considers both factors. First, the macrocycle ring of cyclic peptides was decomposed residue by residue. The residue-based descriptors were arranged according to the sequence information of the cyclic peptide. Furthermore, the circular data augmentation method was used, and the circular convolution method CyclicConv was devised to express the cyclic structure. CycPeptPPB exhibited excellent performance, with mean absolute error (MAE) of 4.79% and correlation coefficient (R) of 0.92 for the public drug dataset, compared to the prediction performance of the existing PPB rate prediction software (MAE=15.08%, R=0.63). The data underlying this article are available in the online supplementary material. The source code of CycPeptPPB is available at https://github.com/akiyamalab/cycpeptppb. Supplementary data are available at Bioinformatics online.
In recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be tackled by conventional small-molecule drugs or antibody drugs. Plasma protein binding rate (%PPB) is a significant pharmacokinetic property of a compound in drug discovery and design. However, due to structural differences, previous computational prediction methods developed for small-molecule compounds cannot be successfully applied to cyclic peptides, and methods for predicting the PPB rate of cyclic peptides with high accuracy are not yet available.MOTIVATIONIn recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be tackled by conventional small-molecule drugs or antibody drugs. Plasma protein binding rate (%PPB) is a significant pharmacokinetic property of a compound in drug discovery and design. However, due to structural differences, previous computational prediction methods developed for small-molecule compounds cannot be successfully applied to cyclic peptides, and methods for predicting the PPB rate of cyclic peptides with high accuracy are not yet available.Cyclic peptides are larger than small molecules, and their local structures have a considerable impact on PPB; thus, molecular descriptors expressing residue-level local features of cyclic peptides, instead of those expressing the entire molecule, as well as the circularity of the cyclic peptides should be considered. Therefore, we developed a prediction method named CycPeptPPB using deep learning that considers both factors. First, the macrocycle ring of cyclic peptides was decomposed residue by residue. The residue-based descriptors were arranged according to the sequence information of the cyclic peptide. Furthermore, the circular data augmentation method was used, and the circular convolution method CyclicConv was devised to express the cyclic structure. CycPeptPPB exhibited excellent performance, with mean absolute error (MAE) of 4.79% and correlation coefficient (R) of 0.92 for the public drug dataset, compared to the prediction performance of the existing PPB rate prediction software (MAE=15.08%, R=0.63).RESULTSCyclic peptides are larger than small molecules, and their local structures have a considerable impact on PPB; thus, molecular descriptors expressing residue-level local features of cyclic peptides, instead of those expressing the entire molecule, as well as the circularity of the cyclic peptides should be considered. Therefore, we developed a prediction method named CycPeptPPB using deep learning that considers both factors. First, the macrocycle ring of cyclic peptides was decomposed residue by residue. The residue-based descriptors were arranged according to the sequence information of the cyclic peptide. Furthermore, the circular data augmentation method was used, and the circular convolution method CyclicConv was devised to express the cyclic structure. CycPeptPPB exhibited excellent performance, with mean absolute error (MAE) of 4.79% and correlation coefficient (R) of 0.92 for the public drug dataset, compared to the prediction performance of the existing PPB rate prediction software (MAE=15.08%, R=0.63).The data underlying this article are available in the online supplementary material. The source code of CycPeptPPB is available at https://github.com/akiyamalab/cycpeptppb.AVAILABILITY AND IMPLEMENTATIONThe data underlying this article are available in the online supplementary material. The source code of CycPeptPPB is available at https://github.com/akiyamalab/cycpeptppb.Supplementary data are available at Bioinformatics online.SUPPLEMENTARY INFORMATIONSupplementary data are available at Bioinformatics online.
Author Yoshikawa, Yasushi
Ohue, Masahito
Yanagisawa, Keisuke
Akiyama, Yutaka
Li, Jianan
Author_xml – sequence: 1
  givenname: Jianan
  orcidid: 0000-0002-9004-5485
  surname: Li
  fullname: Li, Jianan
– sequence: 2
  givenname: Keisuke
  orcidid: 0000-0003-0224-0035
  surname: Yanagisawa
  fullname: Yanagisawa, Keisuke
– sequence: 3
  givenname: Yasushi
  surname: Yoshikawa
  fullname: Yoshikawa, Yasushi
– sequence: 4
  givenname: Masahito
  orcidid: 0000-0002-0120-1643
  surname: Ohue
  fullname: Ohue, Masahito
– sequence: 5
  givenname: Yutaka
  orcidid: 0000-0003-2863-8703
  surname: Akiyama
  fullname: Akiyama, Yutaka
  email: akiyama@c.titech.ac.jp
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34849593$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv1DAQhS1URNuFv1D5yCU0sR0nkRASqqAgVYIDnC1nPC5GXjvYTtX993i124pygZPH4--9Gfmdk5MQAxJy0bVvunbil7OLLtiYtro4yJdz0fPA5DNy1gnZNqztp5Naczk0Ymz5KTnP-Wfb9p0Q4gU55WIUUz_xM3L_1eu81XRJsaALdHbBuHBb72gcFBcDtRHWvO_VOmF2ZsXG4x16alGXtbaoDoaCS7B6nVzZ0Wgp7MA7oAsuxZmKzDtqEBfqUadQ3V6S51b7jK-O54Z8__jh29Wn5ubL9eer9zcN9FKWBgWXAIPgbDCTANHDgHZGI7tR29kwI8U0CjPiKARrDeO2hx5G21sOvBJ8Q94dfJd13qIBDCVpr5bktjrtVNROPX0J7oe6jXdqHCbJR1ENXh8NUvy1Yi5q6zKg9zpgXLNisu0ZG1ilN-Tiz1mPQx6-uwLyAECKOSe0j0jXqn2u6mmu6phrFb79Swiu6H08dWfn_y3vDvK4Lv878jfizshV
CitedBy_id crossref_primary_10_1021_acsptsci_5c00320
crossref_primary_10_1039_D4DD00375F
crossref_primary_10_3389_fbinf_2025_1567748
crossref_primary_10_1016_j_etdah_2025_100171
crossref_primary_10_1186_s12915_025_02166_2
crossref_primary_10_3390_cimb47080634
crossref_primary_10_1093_bib_bbae417
crossref_primary_10_1208_s12249_023_02686_6
Cites_doi 10.1016/j.addr.2015.03.011
10.1371/journal.pone.0221347
10.1111/j.2517-6161.1996.tb02080.x
10.1021/jacs.8b13178
10.1021/acs.molpharmaceut.8b00785
10.1016/j.imavis.2011.11.007
10.1016/j.ejmech.2014.07.083
10.1158/1078-0432.CCR-07-2184
10.1002/cmdc.201700582
10.1093/nar/gkx1037
10.1007/s13659-014-0036-0
10.1002/bdd.762
10.1002/cmdc.201500450
10.1021/acsinfecdis.7b00015
10.1186/s12859-018-2529-z
10.1021/ci300335m
10.1093/bioinformatics/btr284
10.1016/j.str.2013.08.022
10.1016/j.talanta.2005.03.025
10.1371/journal.pone.0093323
10.1016/j.jmgm.2011.11.003
10.5059/yukigoseikyokaishi.75.1171
10.1111/j.1365-2125.1988.tb03318.x
10.1007/s11095-013-1023-6
10.1021/ct300845q
10.1016/j.cbpa.2017.02.006
10.1021/acs.jcim.6b00291
10.1109/MSP.2012.2205597
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. 2021
The Author(s) 2021. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. 2021
– notice: The Author(s) 2021. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/bioinformatics/btab726
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 1117
ExternalDocumentID PMC8796384
34849593
10_1093_bioinformatics_btab726
10.1093/bioinformatics/btab726
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Platform Project for Supporting Drug Discovery and Life Science Research (Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS))
  grantid: JP20am0101112
– fundername: Program for Building Regional Innovation Ecosystems 'Program to Industrialize an Innovative Middle Molecule Drug Discovery Flow through Fusion of Computational Drug Design and Chemical Synthesis Technology
– fundername: Ministry of Education, Culture, Sports, Science and Technology (MEXT)
– fundername: Japan Society for the Promotion of Science (JSPS)
– fundername: Japan Agency for Medical Research and Development (AMED)
– fundername: KAKENHI
  grantid: 17H01814
– fundername: KAKENHI
  grantid: 20H04280
– fundername: ;
– fundername: ;
  grantid: 17H01814; 20H04280
– fundername: ;
  grantid: JP20am0101112
GroupedDBID -~X
.2P
.I3
482
48X
53G
5GY
6.Y
AAIMJ
AAJKP
AAKPC
AAMVS
AAPQZ
AAPXW
AARHZ
AAVAP
ABEFU
ABNKS
ABPTD
ABSAR
ABSMQ
ABWST
ABXVV
ABZBJ
ACGFS
ACMRT
ACPQN
ACUFI
ACYTK
ADEYI
ADFTL
ADGZP
ADHKW
ADOCK
ADRIX
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKPW
AEKSI
AELWJ
AEPUE
AETBJ
AFFNX
AFFZL
AFOFC
AFSHK
AFXEN
AGINJ
AGKRT
AGQXC
AI.
ALMA_UNASSIGNED_HOLDINGS
ALTZX
AQDSO
ARIXL
ASAOO
ATDFG
ATTQO
AXUDD
AYOIW
AZFZN
AZVOD
BCRHZ
BHONS
CXTWN
CZ4
DFGAJ
EE~
ELUNK
F5P
F9B
FEDTE
H5~
HAR
HVGLF
HW0
IOX
KOP
KSI
KSN
MBTAY
MVM
NGC
PB-
Q1.
Q5Y
QBD
RD5
RIG
ROL
ROX
ROZ
RXO
TCN
TLC
TN5
TOX
TR2
VH1
WH7
XJT
ZGI
~91
---
-E4
.DC
0R~
23N
2WC
4.4
5WA
70D
AAIJN
AAMDB
AAOGV
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABPQP
ABQLI
ACIWK
ACPRK
ACUXJ
ADBBV
ADEZT
ADGKP
ADHZD
ADMLS
ADPDF
ADRDM
ADVEK
AEMDU
AENEX
AENZO
AEWNT
AFGWE
AFIYH
AFRAH
AGKEF
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALUQC
AMNDL
APIBT
APWMN
ASPBG
AVWKF
BAWUL
BAYMD
BQDIO
BQUQU
BSWAC
BTQHN
C45
CDBKE
CITATION
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EMOBN
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
R44
RNS
RPM
RUSNO
RW1
SV3
TEORI
TJP
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
CGR
CUY
CVF
ECM
EIF
M49
NPM
7X8
5PM
ID FETCH-LOGICAL-c566t-e436cc74327d94c45c7efbed618afbd2d64984d8e84420d23f5c5c8f5f3c3afb3
IEDL.DBID TOX
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000747962400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1367-4803
1367-4811
IngestDate Thu Aug 21 18:27:46 EDT 2025
Thu Oct 02 11:31:12 EDT 2025
Thu Apr 03 06:58:07 EDT 2025
Sat Nov 29 03:49:23 EST 2025
Tue Nov 18 21:04:23 EST 2025
Wed Aug 28 03:30:28 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2021. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-e436cc74327d94c45c7efbed618afbd2d64984d8e84420d23f5c5c8f5f3c3afb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0224-0035
0000-0003-2863-8703
0000-0002-9004-5485
0000-0002-0120-1643
OpenAccessLink https://dx.doi.org/10.1093/bioinformatics/btab726
PMID 34849593
PQID 2605227296
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8796384
proquest_miscellaneous_2605227296
pubmed_primary_34849593
crossref_primary_10_1093_bioinformatics_btab726
crossref_citationtrail_10_1093_bioinformatics_btab726
oup_primary_10_1093_bioinformatics_btab726
PublicationCentury 2000
PublicationDate 2022-01-27
PublicationDateYYYYMMDD 2022-01-27
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-27
  day: 27
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2022
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Verdine (2023020108532623600_btab726-B31) 2007; 13
Scheife (2023020108532623600_btab726-B23) 1989; 23
Schmidt (2023020108532623600_btab726-B24) 2013; 21
Tokui (2023020108532623600_btab726-B30) 2015
Chen (2023020108532623600_btab726-B9) 2012; 33
Garcia-Diaz (2023020108532623600_btab726-B12) 2012; 30
(2023020108532623600_btab726-B8) 2019
Gumede (2023020108532623600_btab726-B13) 2012; 52
Zorzi (2023020108532623600_btab726-B36) 2017; 38
Zuo (2023020108532623600_btab726-B38) 2014; 4
Lambrinidis (2023020108532623600_btab726-B19) 2015; 86
Prentis (2023020108532623600_btab726-B21) 1988; 25
Akiba (2023020108532623600_btab726-B1) 2019
Bach (2023020108532623600_btab726-B2) 2008
Ingle (2023020108532623600_btab726-B15) 2016; 56
Katrina (2023020108532623600_btab726-B17) 2014; 9
Isegawa (2023020108532623600_btab726-B16) 2013; 9
Sun (2023020108532623600_btab726-B27) 2018; 13
Zhu (2023020108532623600_btab726-B35) 2013; 30
Cardote (2023020108532623600_btab726-B6) 2016; 11
Cary (2023020108532623600_btab726-B7) 2017; 75
Galvao (2023020108532623600_btab726-B11) 2005; 67
Bhat (2023020108532623600_btab726-B5) 2015; 94
Tajimi (2023020108532623600_btab726-B28) 2018; 19
Baehrens (2023020108532623600_btab726-B3) 2010; 11
Watanabe (2023020108532623600_btab726-B33) 2018; 15
Vinogradov (2023020108532623600_btab726-B32) 2019; 141
Wishart (2023020108532623600_btab726-B34) 2018; 46
Zsila (2023020108532623600_btab726-B37) 2011; 27
Sato (2023020108532623600_btab726-B22) 2019; 14
Tibshirani (2023020108532623600_btab726-B29) 1996; 58
Eitel (2023020108532623600_btab726-B10) 2015
(2023020108532623600_btab726-B26) 2020
Li (2023020108532623600_btab726-B20) 2011; 32
Ban (2023020108532623600_btab726-B4) 2017
Kümmerer (2023020108532623600_btab726-B18) 2014
Hinton (2023020108532623600_btab726-B14) 2012; 29
Schneider (2023020108532623600_btab726-B25) 2017; 3
References_xml – volume: 86
  start-page: 27
  year: 2015
  ident: 2023020108532623600_btab726-B19
  article-title: In vitro, in silico and integrated strategies for the estimation of plasma protein binding. a review
  publication-title: Adv. Drug Deliv. Rev
  doi: 10.1016/j.addr.2015.03.011
– volume: 14
  start-page: e0221347
  year: 2019
  ident: 2023020108532623600_btab726-B22
  article-title: Protein model accuracy estimation based on local structure quality assessment using 3D convolutional neural network
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0221347
– volume: 58
  start-page: 267
  year: 1996
  ident: 2023020108532623600_btab726-B29
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 141
  start-page: 4167
  year: 2019
  ident: 2023020108532623600_btab726-B32
  article-title: Macrocyclic peptides as drug candidates: recent progress and remaining challenges
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/jacs.8b13178
– volume: 15
  start-page: 5302
  year: 2018
  ident: 2023020108532623600_btab726-B33
  article-title: Predicting fraction unbound in human plasma from chemical structure: improved accuracy in the low value ranges
  publication-title: Mol. Pharm
  doi: 10.1021/acs.molpharmaceut.8b00785
– start-page: 1
  volume-title: Proceedings of LearningSys in NIPS2015
  year: 2015
  ident: 2023020108532623600_btab726-B30
– volume: 30
  start-page: 51
  year: 2012
  ident: 2023020108532623600_btab726-B12
  article-title: Saliency from hierarchical adaptation through decorrelation and variance normalization
  publication-title: Image Vis. Comput
  doi: 10.1016/j.imavis.2011.11.007
– volume: 94
  start-page: 471
  year: 2015
  ident: 2023020108532623600_btab726-B5
  article-title: Lead discovery and optimization strategies for peptide macrocycles
  publication-title: Eur. J. Med. Chem
  doi: 10.1016/j.ejmech.2014.07.083
– volume: 13
  start-page: 7264
  year: 2007
  ident: 2023020108532623600_btab726-B31
  article-title: The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members
  publication-title: Clin. Cancer Res
  doi: 10.1158/1078-0432.CCR-07-2184
– volume: 13
  start-page: 572
  year: 2018
  ident: 2023020108532623600_btab726-B27
  article-title: In silico prediction of compounds binding to human plasma proteins by qsar models
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201700582
– start-page: 2623
  year: 2019
  ident: 2023020108532623600_btab726-B1
– start-page: 681
  year: 2015
  ident: 2023020108532623600_btab726-B10
– volume: 46
  start-page: D1074
  year: 2018
  ident: 2023020108532623600_btab726-B34
  article-title: DrugBank 5.0: a major update to the DrugBank database for 2018
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– volume: 4
  start-page: 285
  year: 2014
  ident: 2023020108532623600_btab726-B38
  article-title: Free energy of binding of coiled-coil complexes with different electrostatic environments: the influence of force field polarisation and capping
  publication-title: Nat. Prod. Bioprospect
  doi: 10.1007/s13659-014-0036-0
– volume: 32
  start-page: 333
  year: 2011
  ident: 2023020108532623600_btab726-B20
  article-title: Predicting human plasma protein binding of drugs using plasma protein interaction QSAR analysis (PPI-QSAR)
  publication-title: Biopharm. Drug Dispos
  doi: 10.1002/bdd.762
– volume: 11
  start-page: 787
  year: 2016
  ident: 2023020108532623600_btab726-B6
  article-title: Cyclic and macrocyclic peptides as chemical tools to recognise protein surfaces and probe protein–protein interactions
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201500450
– volume: 3
  start-page: 249
  year: 2017
  ident: 2023020108532623600_btab726-B25
  article-title: Plasma protein binding structure–activity relationships related to the n-terminus of daptomycin
  publication-title: ACS Infect. Dis
  doi: 10.1021/acsinfecdis.7b00015
– volume: 19
  start-page: 527
  year: 2018
  ident: 2023020108532623600_btab726-B28
  article-title: Computational prediction of plasma protein binding of cyclic peptides from small molecule experimental data using sparse modeling techniques
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-018-2529-z
– volume: 52
  start-page: 2754
  year: 2012
  ident: 2023020108532623600_btab726-B13
  article-title: Experimental-like affinity constants and enantioselectivity estimates from flexible docking
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/ci300335m
– volume: 27
  start-page: 1806
  year: 2011
  ident: 2023020108532623600_btab726-B37
  article-title: Evaluation of drug–human serum albumin binding interactions with support vector machine aided online automated docking
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr284
– volume-title: ADMET Predictor 10.0
  year: 2020
  ident: 2023020108532623600_btab726-B26
– start-page: 1
  year: 2017
  ident: 2023020108532623600_btab726-B4
– volume: 21
  start-page: 1966
  year: 2013
  ident: 2023020108532623600_btab726-B24
  article-title: Crystal structure of an hsa/fcrn complex reveals recycling by competitive mimicry of hsa ligands at a ph-dependent hydrophobic interface
  publication-title: Structure
  doi: 10.1016/j.str.2013.08.022
– volume: 67
  start-page: 736
  year: 2005
  ident: 2023020108532623600_btab726-B11
  article-title: A method for calibration and validation subset partitioning
  publication-title: Talanta
  doi: 10.1016/j.talanta.2005.03.025
– volume: 9
  start-page: e93323
  year: 2014
  ident: 2023020108532623600_btab726-B17
  article-title: A structure-based model for predicting serum albumin binding
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0093323
– volume: 33
  start-page: 35
  year: 2012
  ident: 2023020108532623600_btab726-B9
  article-title: Results of molecular docking as descriptors to predict human serum albumin binding affinity
  publication-title: J. Mol. Graph. Model
  doi: 10.1016/j.jmgm.2011.11.003
– volume: 75
  start-page: 1171
  year: 2017
  ident: 2023020108532623600_btab726-B7
  article-title: Constrained peptides in drug discovery and development
  publication-title: J. Synth. Org. Chem. Jpn
  doi: 10.5059/yukigoseikyokaishi.75.1171
– volume-title: Molecular Operating Environment (MOE), 2019.01
  year: 2019
  ident: 2023020108532623600_btab726-B8
– volume: 25
  start-page: 387
  year: 1988
  ident: 2023020108532623600_btab726-B21
  article-title: Pharmaceutical innovation by the seven uk-owned pharmaceutical companies (1964–1985)
  publication-title: Br. J. Clin. Pharmacol
  doi: 10.1111/j.1365-2125.1988.tb03318.x
– volume: 23
  start-page: S27
  year: 1989
  ident: 2023020108532623600_btab726-B23
  article-title: Protein binding: what does it mean?
  publication-title: Drug Intell. Clin. Pharm
– volume: 30
  start-page: 1790
  year: 2013
  ident: 2023020108532623600_btab726-B35
  article-title: The use of pseudo-equilibrium constant affords improved qsar models of human plasma protein binding
  publication-title: Pharm. Res
  doi: 10.1007/s11095-013-1023-6
– volume: 9
  start-page: 1381
  year: 2013
  ident: 2023020108532623600_btab726-B16
  article-title: Electrostatically embedded molecular tailoring approach and validation for peptides
  publication-title: J. Chem. Theory Comput
  doi: 10.1021/ct300845q
– start-page: 1
  volume-title: Proceedings of ICLR2015
  year: 2014
  ident: 2023020108532623600_btab726-B18
– volume: 11
  start-page: 1803
  year: 2010
  ident: 2023020108532623600_btab726-B3
  article-title: How to explain individual classification decisions
  publication-title: J. Mach. Learn. Res
– volume: 38
  start-page: 24
  year: 2017
  ident: 2023020108532623600_btab726-B36
  article-title: Cyclic peptide therapeutics: past, present and future
  publication-title: Curr. Opin. Chem. Biol
  doi: 10.1016/j.cbpa.2017.02.006
– start-page: 33
  year: 2008
  ident: 2023020108532623600_btab726-B2
– volume: 56
  start-page: 2243
  year: 2016
  ident: 2023020108532623600_btab726-B15
  article-title: Informing the human plasma protein binding of environmental chemicals by machine learning in the pharmaceutical space: applicability domain and limits of predictability
  publication-title: J. Chem. Inf. Model
  doi: 10.1021/acs.jcim.6b00291
– volume: 29
  start-page: 82
  year: 2012
  ident: 2023020108532623600_btab726-B14
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag
  doi: 10.1109/MSP.2012.2205597
SSID ssj0051444
ssj0005056
Score 2.4736934
Snippet Abstract Motivation In recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be...
In recent years, cyclic peptide drugs have been receiving increasing attention because they can target proteins that are difficult to be tackled by...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1110
SubjectTerms Blood Proteins
Deep Learning
Original Papers
Peptides, Cyclic
Protein Binding
Software
Title Plasma protein binding prediction focusing on residue-level features and circularity of cyclic peptides by deep learning
URI https://www.ncbi.nlm.nih.gov/pubmed/34849593
https://www.proquest.com/docview/2605227296
https://pubmed.ncbi.nlm.nih.gov/PMC8796384
Volume 38
WOSCitedRecordID wos000747962400029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4803
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SkEIvadNHuk0bVMgpYNaWZEs-lpLQU5pDAnsz1khKDVt72Ufo_vuMbO8mDpS2uVl4JGzNSPrEzHwDcMqVdSg1rW-uTCTJYiIjNEaxTcrMZ86VuW2LTajLSz2Z5Fc7kGxyYZ668HMxNlXTk4gG4uKxWZZG8UCynaQ6WPb1j8lDUEccqGG6BkEB2dW0DdTeOhabBOE_jjk4mwb5bo9g59PoyUfH0cWrZ_zIazjosSf72hnLIey4-g286KpRrt_C7ytC0r9K1lI3VDUzVZvxQu3gzAkKZL7BECh_y-iZ7umVXbloGsKOmHctQ-iClbVlWM3b8FZC-KzxDNc4rZDNQgCNJRGzZta5GesrVty-g5uL8-tv36O-MEOEhP6WkZMiQyTsQZrOJcoUlfPG2SzRpTeW20zmWlrttJQ8tlz4FFPUPvUCBUmI97BXN7X7AMzbPM6tNOgwlbTfGIKTNLOZKLVLyXxGkG5UUmDPWh6KZ0yLznsuiuGsFv2sjmC87TfreDv-2uOMNP7Pwl82hlHQegxOlrJ2zWpRhPsh53RlIZmjzlC2YwqpZSCCHoEamNBWIHB9D9_U1c-W81ursFPKj__zkcfwkodkjTiJuPoEe8v5yn2GfbxbVov5CeyqiT5pl889dpYlvw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma+protein+binding+prediction+focusing+on+residue-level+features+and+circularity+of+cyclic+peptides+by+deep+learning&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Li%2C+Jianan&rft.au=Yanagisawa%2C+Keisuke&rft.au=Yoshikawa%2C+Yasushi&rft.au=Ohue%2C+Masahito&rft.date=2022-01-27&rft.issn=1367-4803&rft.eissn=1367-4811&rft.volume=38&rft.issue=4&rft.spage=1110&rft.epage=1117&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtab726&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bioinformatics_btab726
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon