A Hybrid Approach for Short-Term Forecasting of Wind Speed

We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:TheScientificWorld Ročník 2013; číslo 2013; s. 1 - 8
Hlavní autoři: Tatinati, Sivanagaraja, Veluvolu, Kalyana C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cairo, Egypt Hindawi Publishing Corporation 01.01.2013
John Wiley & Sons, Inc
Wiley
Témata:
ISSN:2356-6140, 1537-744X, 1537-744X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides better forecasting compared to the existing methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Academic Editors: M. L. Ferrari and D. C. Rakopoulos
ISSN:2356-6140
1537-744X
1537-744X
DOI:10.1155/2013/548370