A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods
We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specificati...
Uloženo v:
| Vydáno v: | Management science Ročník 62; číslo 10; s. 3059 - 3084 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Linthicum
INFORMS
01.10.2016
Institute for Operations Research and the Management Sciences |
| Témata: | |
| ISSN: | 0025-1909, 1526-5501 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation.
This paper was accepted by Yinyu Ye, optimization
. |
|---|---|
| AbstractList | We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation. We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation. This paper was accepted by Yinyu Ye, optimization. We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation. Keywords: short-term open-pit mine production scheduling; hybrid optimisation; nonlinear programming History: Received June 18, 2014; accepted June 7, 2015, by Yinyu Ye, optimization. Published online in Articles in Advance January 8, 2016. We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation. This paper was accepted by Yinyu Ye, optimization . |
| Audience | Trade Academic |
| Author | Pearce, Adrian R. Stuckey, Peter J. Blom, Michelle L. |
| Author_xml | – sequence: 1 givenname: Michelle L. surname: Blom fullname: Blom, Michelle L. – sequence: 2 givenname: Adrian R. surname: Pearce fullname: Pearce, Adrian R. – sequence: 3 givenname: Peter J. surname: Stuckey fullname: Stuckey, Peter J. |
| BookMark | eNqFkt2L1DAUxYOs4Ozqq29CQPDJjkmapO3juH7C6iy4Poc0ve1kbJPZJHXX_96WkR0HRkwggfA7515uzjk6c94BQs8pWVJWFm8GF82SESqWjJX8EVpQwWQmBKFnaEEIExmtSPUEnce4JYQUZSEXqF7hd2D8sPPRJutd9lZHaPCq73ywaTPg1gecNoC_mQ00Y29dh32L1ztw2bVN-CukOx9-RLz-CQF_Gftkdz3gGzsAvoZgfROfoset7iM8-3NfoO8f3t9cfsqu1h8_X66uMiOkTFk1rZo1kjdE5poZYaqailJXxpSaaFZCIaisZEXztuAN17nhjNeVkE3DOeT5BXq5990FfztCTGrrx-CmkorJoqSkIJQfqE73oKxrfQraDDYateKTPSdVOVPZCaoDB0H309hbOz0f8csT_LQbGKw5KXh1JJiYBPep02OM6hh8_RdYj9E6iNMRbbdJcc8f4XyPm-BjDNAqY5Oef3ZqyPaKEjWHRc1hUXNY1ByWQ_8Psl2wgw6__i14sRdsY_LhgeacUMZychjgPIswxP_5_QYPMdiw |
| CitedBy_id | crossref_primary_10_1007_s11081_021_09646_8 crossref_primary_10_1007_s42524_025_4205_0 crossref_primary_10_1080_0305215X_2016_1218002 crossref_primary_10_1080_17480930_2025_2559668 crossref_primary_10_1287_ijoc_2021_1140 crossref_primary_10_1016_j_asoc_2023_110180 crossref_primary_10_1016_j_resourpol_2021_102274 crossref_primary_10_1016_j_resourpol_2023_103340 crossref_primary_10_1016_j_ejor_2018_09_047 crossref_primary_10_1007_s42461_024_01082_3 crossref_primary_10_1007_s11081_020_09495_x crossref_primary_10_1080_17480930_2018_1448248 crossref_primary_10_1016_j_omega_2020_102373 crossref_primary_10_1080_0305215X_2018_1429601 crossref_primary_10_1080_0305215X_2021_2004135 crossref_primary_10_1016_j_cie_2024_110168 crossref_primary_10_1080_17480930_2024_2323325 crossref_primary_10_1007_s00291_021_00618_z crossref_primary_10_1007_s11081_022_09741_4 crossref_primary_10_1007_s10898_020_00882_3 crossref_primary_10_3390_su141710766 crossref_primary_10_1007_s42461_024_00970_y crossref_primary_10_1007_s42461_021_00523_7 crossref_primary_10_1016_j_eswa_2025_129544 crossref_primary_10_1080_23311916_2023_2168172 |
| Cites_doi | 10.1016/j.ejor.2013.10.006 10.1007/s10479-012-1258-3 10.1590/S0104-66322006000100008 10.1016/j.ejor.2005.09.008 10.1080/00207543.2012.737955 10.1021/ie9906619 10.1080/17480930601118947 10.1287/inte.2013.0731 10.1016/0098-1354(96)00210-4 10.1111/j.1540-5915.1977.tb01066.x 10.1287/opre.1110.1003 10.1016/j.endm.2008.01.051 10.1016/j.ces.2004.01.009 10.1021/ie8016048 10.1145/1111237.1111238 10.1007/BF01580665 10.1021/ie0600588 10.1057/jors.2012.86 10.1007/s11590-011-0306-2 10.1287/inte.1090.0492 10.1002/aic.690421209 10.1287/inte.26.6.82 10.1287/ijoc.2013.0590 10.1016/j.cor.2007.12.006 10.1016/0360-8352(94)00221-8 10.1080/03052159708941137 10.1016/j.ejor.2005.12.035 10.1023/A:1021808313306 10.1016/0098-1354(96)00212-8 10.1179/1743286311Y.0000000009 10.1016/j.compchemeng.2009.06.007 10.1021/ie020130b 10.1287/mnsc.1030.0207 10.1287/opre.39.4.553 10.1016/S0098-1354(97)87643-0 10.1021/ie970532x |
| ContentType | Journal Article |
| Copyright | 2016 INFORMS COPYRIGHT 2016 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Oct 2016 |
| Copyright_xml | – notice: 2016 INFORMS – notice: COPYRIGHT 2016 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Oct 2016 |
| DBID | AAYXX CITATION N95 8BJ FQK JBE |
| DOI | 10.1287/mnsc.2015.2284 |
| DatabaseName | CrossRef Gale Business: Insights International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
| DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) |
| DatabaseTitleList | International Bibliography of the Social Sciences (IBSS) CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Business |
| EISSN | 1526-5501 |
| EndPage | 3084 |
| ExternalDocumentID | A469640984 10_1287_mnsc_2015_2284 44012230 mnsc.2015.2284 |
| Genre | Research Article |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 08R 0R1 1AW 1OL 29M 2AX 3EH 3R3 3V. 4 4.4 41 5GY 6XO 7WY 7X5 85S 8AO 8FI 8FJ 8FL 8VB AABCJ AAIKC AAPBV AAYJJ ABBHK ABEFU ABIVO ABNOP ABPPZ ABSIS ABTRL ABUFD ABUWG ABZEH ACDCL ACHQT ACNCT ACTDY ACVYA ACYGS ADBBV ADDCT ADGDI ADNFJ AEILP AENEX AETEA AEUPB AFDAS AFFDN AFFNX AFKRA AJPNJ AKVCP ALMA_UNASSIGNED_HOLDINGS AQNXB AQSKT AQUVI AZQEC B-7 BBAFP BENPR BEZIV BPHCQ BVXVI CBXGM CCKSF CS3 CWXUR CYVLN DU5 DWQXO EBA EBE EBO EBR EBS EBU ECR EHE EJD EMK EPL F20 F5P FH7 FRNLG FYUFA G8K GENNL GNUQQ GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUPYA HGD HVGLF H~9 IAO IEA IGG IOF IPO ISM ITC JAV JBC JPL JSODD JST K6 K60 L8O LI M0C M0T M2M MV1 N95 NEJ NIEAY P-O P2P PQEST PQQKQ PQUKI PRINS PROAC QWB REX RNS RPU SA0 SJN TH9 TN5 U5U UKR VOH VQA WH7 X XFK XHC XI7 XXP XZL Y99 YCJ YNT YZZ ZCG ZL0 -~X 18M AAAZS AAMNW AAWTO AAXLS ABAWQ ABDNZ ABKVW ABLWH ABXSQ ABYYQ ACGFO ACHJO ACXJH ADEPB ADMHG ADNWM ADULT AEGXH AEMOZ AFAIT AFTQD AGKTX AHAJD AHQJS AIAGR ALIPV APTMU ASMEE BAAKF IPC IPSME IPY ISL JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ OFU XSW .-4 41~ AADHG AAYXX ABDPE AFFHD CCPQU CITATION LPU PHGZM PHGZT PJZUB PPXIY PQBIZ PQBZA PSYQQ UKHRP YYP 8BJ FQK JBE |
| ID | FETCH-LOGICAL-c566t-9999b2d64d063a2c5c9b158a9cc8a0a28e751696913f74d4a3c424b956dd44e33 |
| ISICitedReferencesCount | 27 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388441900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-1909 |
| IngestDate | Wed Nov 19 11:11:27 EST 2025 Mon Oct 20 22:06:48 EDT 2025 Mon Nov 24 15:51:53 EST 2025 Mon Oct 20 16:37:34 EDT 2025 Thu Oct 16 15:50:47 EDT 2025 Sat Nov 29 08:30:50 EST 2025 Tue Nov 18 22:48:40 EST 2025 Sat Nov 29 04:10:07 EST 2025 Thu May 29 13:25:58 EDT 2025 Tue Jan 05 23:25:53 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c566t-9999b2d64d063a2c5c9b158a9cc8a0a28e751696913f74d4a3c424b956dd44e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2678107014 |
| PQPubID | 40737 |
| PageCount | 26 |
| ParticipantIDs | gale_infotracacademiconefile_A469640984 gale_businessinsightsgauss_A469640984 proquest_journals_2678107014 crossref_citationtrail_10_1287_mnsc_2015_2284 crossref_primary_10_1287_mnsc_2015_2284 gale_infotracgeneralonefile_A469640984 gale_incontextgauss__A469640984 jstor_primary_44012230 informs_primary_10_1287_mnsc_2015_2284 gale_infotracmisc_A469640984 |
| ProviderPackageCode | Y99 RPU NIEAY |
| PublicationCentury | 2000 |
| PublicationDate | 2016-10-01 |
| PublicationDateYYYYMMDD | 2016-10-01 |
| PublicationDate_xml | – month: 10 year: 2016 text: 2016-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Linthicum |
| PublicationPlace_xml | – name: Linthicum |
| PublicationTitle | Management science |
| PublicationYear | 2016 |
| Publisher | INFORMS Institute for Operations Research and the Management Sciences |
| Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
| References | B20 B42 B21 B43 B22 B44 B23 B45 B24 B46 B25 B47 B26 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 B40 B41 Méndez CA (B28) 2006; 30 Goodwin GC (B16) 2006; 8 Müller KP (B31) 2010 Kumral M (B22) 2006; 106 Minnitt RCA (B29) 2008; 108 Everett JE (B15) 2002 Misener R (B30) 2009; 8 Singh G (B40) 2013; 4 Lambert WB (B23) 2013; 222 |
| References_xml | – ident: B12 – ident: B9 – ident: B35 – ident: B14 – ident: B10 – ident: B3 – ident: B43 – ident: B20 – ident: B41 – ident: B45 – ident: B1 – ident: B27 – ident: B7 – ident: B5 – ident: B29 – ident: B47 – ident: B25 – ident: B23 – ident: B21 – ident: B18 – ident: B16 – ident: B31 – ident: B33 – ident: B37 – ident: B39 – ident: B8 – ident: B36 – ident: B11 – ident: B13 – ident: B2 – ident: B42 – ident: B40 – ident: B26 – ident: B4 – ident: B28 – ident: B44 – ident: B6 – ident: B46 – ident: B24 – ident: B22 – ident: B17 – ident: B32 – ident: B15 – ident: B30 – ident: B34 – ident: B19 – ident: B38 – ident: B44 doi: 10.1016/j.ejor.2013.10.006 – ident: B13 doi: 10.1007/s10479-012-1258-3 – ident: B8 doi: 10.1590/S0104-66322006000100008 – ident: B32 doi: 10.1016/j.ejor.2005.09.008 – ident: B43 doi: 10.1080/00207543.2012.737955 – volume: 108 start-page: 109 issue: 2 year: 2008 ident: B29 publication-title: J. Southern African Inst. Mining and Metallurgy – ident: B45 doi: 10.1021/ie9906619 – start-page: 14 year: 2010 ident: B31 publication-title: Mechanical Tech. – ident: B34 doi: 10.1080/17480930601118947 – ident: B24 doi: 10.1287/inte.2013.0731 – volume: 106 start-page: 229 issue: 3 year: 2006 ident: B22 publication-title: J. South African Inst. Mining and Metallurgy – ident: B37 doi: 10.1016/0098-1354(96)00210-4 – start-page: 427 volume-title: Proc. Informing Sci. IT Ed. Conf. year: 2002 ident: B15 – ident: B4 doi: 10.1111/j.1540-5915.1977.tb01066.x – ident: B12 doi: 10.1287/opre.1110.1003 – volume: 8 start-page: 1337 issue: 8 year: 2006 ident: B16 publication-title: Optimal Control Appl. Management Sci. – ident: B46 doi: 10.1016/j.endm.2008.01.051 – ident: B36 doi: 10.1016/j.ces.2004.01.009 – ident: B17 doi: 10.1021/ie8016048 – ident: B18 doi: 10.1145/1111237.1111238 – ident: B27 doi: 10.1007/BF01580665 – ident: B21 doi: 10.1021/ie0600588 – ident: B3 doi: 10.1057/jors.2012.86 – ident: B9 doi: 10.1007/s11590-011-0306-2 – ident: B33 doi: 10.1287/inte.1090.0492 – ident: B2 doi: 10.1002/aic.690421209 – ident: B14 doi: 10.1287/inte.26.6.82 – ident: B6 doi: 10.1287/ijoc.2013.0590 – ident: B7 doi: 10.1016/j.cor.2007.12.006 – ident: B41 doi: 10.1016/0360-8352(94)00221-8 – volume: 8 start-page: 3 issue: 1 year: 2009 ident: B30 publication-title: Appl. Comput. Math. – ident: B11 doi: 10.1080/03052159708941137 – volume: 222 start-page: 1 issue: 1 year: 2013 ident: B23 publication-title: Ann. Oper. Res. – ident: B35 doi: 10.1016/j.ejor.2005.12.035 – volume: 4 start-page: 222 issue: 2 year: 2013 ident: B40 publication-title: Interfaces – ident: B26 doi: 10.1023/A:1021808313306 – ident: B39 doi: 10.1016/0098-1354(96)00212-8 – ident: B42 doi: 10.1179/1743286311Y.0000000009 – ident: B25 doi: 10.1016/j.compchemeng.2009.06.007 – ident: B47 doi: 10.1021/ie020130b – ident: B1 doi: 10.1287/mnsc.1030.0207 – ident: B38 doi: 10.1287/opre.39.4.553 – volume: 30 start-page: 931 issue: 1 year: 2006 ident: B28 publication-title: Comput. Chemical Engrg. – ident: B10 doi: 10.1016/S0098-1354(97)87643-0 – ident: B20 doi: 10.1021/ie970532x |
| SSID | ssj0007876 |
| Score | 2.343042 |
| Snippet | We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine,... |
| SourceID | proquest gale crossref jstor informs |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3059 |
| SubjectTerms | Algorithms Analysis Consumers Customers Data mining hybrid optimisation Methods Mineral industry Mines Mining Mining industry Nonlinear programming Ports Production management Production scheduling Satisfaction Scheduling (Management) Short term short-term open-pit mine production scheduling Specification Time periods Uncertainty |
| Title | A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods |
| URI | https://www.jstor.org/stable/44012230 https://www.proquest.com/docview/2678107014 |
| Volume | 62 |
| WOSCitedRecordID | wos000388441900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1526-5501 dateEnd: 20201213 omitProxy: false ssIdentifier: ssj0007876 issn: 0025-1909 databaseCode: M0C dateStart: 19870101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest ABI/INFORM Collection customDbUrl: eissn: 1526-5501 dateEnd: 20201213 omitProxy: false ssIdentifier: ssj0007876 issn: 0025-1909 databaseCode: 7WY dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1526-5501 dateEnd: 20201213 omitProxy: false ssIdentifier: ssj0007876 issn: 0025-1909 databaseCode: BENPR dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1526-5501 dateEnd: 20201213 omitProxy: false ssIdentifier: ssj0007876 issn: 0025-1909 databaseCode: M2M dateStart: 19870101 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKBogL4muiMIYPwA5RRuM4Hz6WaROHrUwwxDhFjuOUSm1SJdk0_gr-Zd5rnDSBosGBS9RGT05s__I-7J_fI-SVVDKMwbTasSMSG-xxbEvNUjsNEuEr4ULIsMozexJMJuHFhTgbDH40Z2Gu5kGWhdfXYvlfpxruwWTj0dl_mO62UbgBv2HS4QrTDte_mvixlWgkihs2lo12KrHkfJoXs-rbouUVQlgLZmZuWM9YRcteziorq3nhpYXczjXfEGvQY47jWV6fDG4c2jV9xjLGtA3w5_miIebj7oB10lHDRb12P04KVDDtbtOnCmke31visNm0MqsSjt_y20yk2jIdsFMflrowxL6GT9jyQzuvabRZd5ESi-2CyyK6-tpnXVyOOtoXdJfYaBYYLqwcL7ISk1Y63gFjdV26X1Jtj7kvfAh4Q36LbLPAE6jpgy9fW9MO2s1vagDja5ksoND8237jPS_H2Po7dSrcsmG-_mb9Vy7N-QNy38QidFxj6CEZ6OwRudschXhM4jHdACXaQonCgyiMLl1DieYpbaBEGyhRhBJtoEQRStRA6Qn5fHx0fvjeNjU5bAWOf2VDPCFilvg8Ad9WMuUpETteKIVSoRxJFuoAd1594bhpwBMuXcUZjyEKTxLOtevukK0sz_RTQpkC31Un2hvJkKcuj5X0XQUOu8u8WGtnSOxmDCNlEtZj3ZR5hIErjHmEYx7hmEc45kOy38ov61Qtf5R8jVMSmTqvcClxJaycysuyjNYoGJKXKznMk5IhEasW6EnsG4k0h3dT0hxqgR5iXrWe5Jue5LTOKr9JcLcnCOpe9dsxOLqxkzsrmLVinOM2ujuCBzS4i4zeKiMGTqsD5t_hz27s9HNyb_3J75KtqrjUL8htdVXNymJv9cXske13R5Ozj_DvdHSIV3b6E35j7m4 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decomposition-based+algorithm+for+the+scheduling+of+open-pit+networks+over+multiple+time+periods&rft.jtitle=Management+science&rft.au=Blom%2C+Michelle+L&rft.au=Pearce%2C+Adrian+R&rft.au=Stuckey%2C+Peter+J&rft.date=2016-10-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0025-1909&rft.volume=62&rft.issue=10&rft.spage=3059&rft_id=info:doi/10.1287%2Fmnsc.2015.2284&rft.externalDocID=A469640984 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon |