A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods

We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specificati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Management science Ročník 62; číslo 10; s. 3059 - 3084
Hlavní autoři: Blom, Michelle L., Pearce, Adrian R., Stuckey, Peter J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Linthicum INFORMS 01.10.2016
Institute for Operations Research and the Management Sciences
Témata:
ISSN:0025-1909, 1526-5501
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation. This paper was accepted by Yinyu Ye, optimization .
AbstractList We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation.
We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation. This paper was accepted by Yinyu Ye, optimization.
We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation. Keywords: short-term open-pit mine production scheduling; hybrid optimisation; nonlinear programming History: Received June 18, 2014; accepted June 7, 2015, by Yinyu Ye, optimization. Published online in Articles in Advance January 8, 2016.
We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine, in each period, is transported by rail to a set of ports and blended into products for shipping. Each port forms these blends to a specification, as stipulated in contracts with downstream customers. This problem belongs to a class of multiple producer/consumer scheduling problems in which producers are able to generate a range of products, a combination of which are required by consumers to meet specified demands. In practice, short-term schedules are formed independently at each mine, tasked with achieving a grade and quality target outlined in a medium-term plan. Because of uncertainty in the data available to a medium-term planner and the dynamics of the mining environment, such targets may not be feasible in the short term. In this paper, we present an algorithm in which the grade and quality targets assigned to each mine are iteratively adapted, ensuring the satisfaction of blending constraints at each port while generating schedules for each mine that maximise resource utilisation. This paper was accepted by Yinyu Ye, optimization .
Audience Trade
Academic
Author Pearce, Adrian R.
Stuckey, Peter J.
Blom, Michelle L.
Author_xml – sequence: 1
  givenname: Michelle L.
  surname: Blom
  fullname: Blom, Michelle L.
– sequence: 2
  givenname: Adrian R.
  surname: Pearce
  fullname: Pearce, Adrian R.
– sequence: 3
  givenname: Peter J.
  surname: Stuckey
  fullname: Stuckey, Peter J.
BookMark eNqFkt2L1DAUxYOs4Ozqq29CQPDJjkmapO3juH7C6iy4Poc0ve1kbJPZJHXX_96WkR0HRkwggfA7515uzjk6c94BQs8pWVJWFm8GF82SESqWjJX8EVpQwWQmBKFnaEEIExmtSPUEnce4JYQUZSEXqF7hd2D8sPPRJutd9lZHaPCq73ywaTPg1gecNoC_mQ00Y29dh32L1ztw2bVN-CukOx9-RLz-CQF_Gftkdz3gGzsAvoZgfROfoset7iM8-3NfoO8f3t9cfsqu1h8_X66uMiOkTFk1rZo1kjdE5poZYaqailJXxpSaaFZCIaisZEXztuAN17nhjNeVkE3DOeT5BXq5990FfztCTGrrx-CmkorJoqSkIJQfqE73oKxrfQraDDYateKTPSdVOVPZCaoDB0H309hbOz0f8csT_LQbGKw5KXh1JJiYBPep02OM6hh8_RdYj9E6iNMRbbdJcc8f4XyPm-BjDNAqY5Oef3ZqyPaKEjWHRc1hUXNY1ByWQ_8Psl2wgw6__i14sRdsY_LhgeacUMZychjgPIswxP_5_QYPMdiw
CitedBy_id crossref_primary_10_1007_s11081_021_09646_8
crossref_primary_10_1007_s42524_025_4205_0
crossref_primary_10_1080_0305215X_2016_1218002
crossref_primary_10_1080_17480930_2025_2559668
crossref_primary_10_1287_ijoc_2021_1140
crossref_primary_10_1016_j_asoc_2023_110180
crossref_primary_10_1016_j_resourpol_2021_102274
crossref_primary_10_1016_j_resourpol_2023_103340
crossref_primary_10_1016_j_ejor_2018_09_047
crossref_primary_10_1007_s42461_024_01082_3
crossref_primary_10_1007_s11081_020_09495_x
crossref_primary_10_1080_17480930_2018_1448248
crossref_primary_10_1016_j_omega_2020_102373
crossref_primary_10_1080_0305215X_2018_1429601
crossref_primary_10_1080_0305215X_2021_2004135
crossref_primary_10_1016_j_cie_2024_110168
crossref_primary_10_1080_17480930_2024_2323325
crossref_primary_10_1007_s00291_021_00618_z
crossref_primary_10_1007_s11081_022_09741_4
crossref_primary_10_1007_s10898_020_00882_3
crossref_primary_10_3390_su141710766
crossref_primary_10_1007_s42461_024_00970_y
crossref_primary_10_1007_s42461_021_00523_7
crossref_primary_10_1016_j_eswa_2025_129544
crossref_primary_10_1080_23311916_2023_2168172
Cites_doi 10.1016/j.ejor.2013.10.006
10.1007/s10479-012-1258-3
10.1590/S0104-66322006000100008
10.1016/j.ejor.2005.09.008
10.1080/00207543.2012.737955
10.1021/ie9906619
10.1080/17480930601118947
10.1287/inte.2013.0731
10.1016/0098-1354(96)00210-4
10.1111/j.1540-5915.1977.tb01066.x
10.1287/opre.1110.1003
10.1016/j.endm.2008.01.051
10.1016/j.ces.2004.01.009
10.1021/ie8016048
10.1145/1111237.1111238
10.1007/BF01580665
10.1021/ie0600588
10.1057/jors.2012.86
10.1007/s11590-011-0306-2
10.1287/inte.1090.0492
10.1002/aic.690421209
10.1287/inte.26.6.82
10.1287/ijoc.2013.0590
10.1016/j.cor.2007.12.006
10.1016/0360-8352(94)00221-8
10.1080/03052159708941137
10.1016/j.ejor.2005.12.035
10.1023/A:1021808313306
10.1016/0098-1354(96)00212-8
10.1179/1743286311Y.0000000009
10.1016/j.compchemeng.2009.06.007
10.1021/ie020130b
10.1287/mnsc.1030.0207
10.1287/opre.39.4.553
10.1016/S0098-1354(97)87643-0
10.1021/ie970532x
ContentType Journal Article
Copyright 2016 INFORMS
COPYRIGHT 2016 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Oct 2016
Copyright_xml – notice: 2016 INFORMS
– notice: COPYRIGHT 2016 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Oct 2016
DBID AAYXX
CITATION
N95
8BJ
FQK
JBE
DOI 10.1287/mnsc.2015.2284
DatabaseName CrossRef
Gale Business: Insights
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)



CrossRef



DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1526-5501
EndPage 3084
ExternalDocumentID A469640984
10_1287_mnsc_2015_2284
44012230
mnsc.2015.2284
Genre Research Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 08R
0R1
1AW
1OL
29M
2AX
3EH
3R3
3V.
4
4.4
41
5GY
6XO
7WY
7X5
85S
8AO
8FI
8FJ
8FL
8VB
AABCJ
AAIKC
AAPBV
AAYJJ
ABBHK
ABEFU
ABIVO
ABNOP
ABPPZ
ABSIS
ABTRL
ABUFD
ABUWG
ABZEH
ACDCL
ACHQT
ACNCT
ACTDY
ACVYA
ACYGS
ADBBV
ADDCT
ADGDI
ADNFJ
AEILP
AENEX
AETEA
AEUPB
AFDAS
AFFDN
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
AQUVI
AZQEC
B-7
BBAFP
BENPR
BEZIV
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DU5
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
HGD
HVGLF
H~9
IAO
IEA
IGG
IOF
IPO
ISM
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
L8O
LI
M0C
M0T
M2M
MV1
N95
NEJ
NIEAY
P-O
P2P
PQEST
PQQKQ
PQUKI
PRINS
PROAC
QWB
REX
RNS
RPU
SA0
SJN
TH9
TN5
U5U
UKR
VOH
VQA
WH7
X
XFK
XHC
XI7
XXP
XZL
Y99
YCJ
YNT
YZZ
ZCG
ZL0
-~X
18M
AAAZS
AAMNW
AAWTO
AAXLS
ABAWQ
ABDNZ
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ACHJO
ACXJH
ADEPB
ADMHG
ADNWM
ADULT
AEGXH
AEMOZ
AFAIT
AFTQD
AGKTX
AHAJD
AHQJS
AIAGR
ALIPV
APTMU
ASMEE
BAAKF
IPC
IPSME
IPY
ISL
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
OFU
XSW
.-4
41~
AADHG
AAYXX
ABDPE
AFFHD
CCPQU
CITATION
LPU
PHGZM
PHGZT
PJZUB
PPXIY
PQBIZ
PQBZA
PSYQQ
UKHRP
YYP
8BJ
FQK
JBE
ID FETCH-LOGICAL-c566t-9999b2d64d063a2c5c9b158a9cc8a0a28e751696913f74d4a3c424b956dd44e33
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388441900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-1909
IngestDate Wed Nov 19 11:11:27 EST 2025
Mon Oct 20 22:06:48 EDT 2025
Mon Nov 24 15:51:53 EST 2025
Mon Oct 20 16:37:34 EDT 2025
Thu Oct 16 15:50:47 EDT 2025
Sat Nov 29 08:30:50 EST 2025
Tue Nov 18 22:48:40 EST 2025
Sat Nov 29 04:10:07 EST 2025
Thu May 29 13:25:58 EDT 2025
Tue Jan 05 23:25:53 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c566t-9999b2d64d063a2c5c9b158a9cc8a0a28e751696913f74d4a3c424b956dd44e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2678107014
PQPubID 40737
PageCount 26
ParticipantIDs gale_infotracacademiconefile_A469640984
gale_businessinsightsgauss_A469640984
proquest_journals_2678107014
crossref_citationtrail_10_1287_mnsc_2015_2284
crossref_primary_10_1287_mnsc_2015_2284
gale_infotracgeneralonefile_A469640984
gale_incontextgauss__A469640984
jstor_primary_44012230
informs_primary_10_1287_mnsc_2015_2284
gale_infotracmisc_A469640984
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Management science
PublicationYear 2016
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
References B20
B42
B21
B43
B22
B44
B23
B45
B24
B46
B25
B47
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
B41
Méndez CA (B28) 2006; 30
Goodwin GC (B16) 2006; 8
Müller KP (B31) 2010
Kumral M (B22) 2006; 106
Minnitt RCA (B29) 2008; 108
Everett JE (B15) 2002
Misener R (B30) 2009; 8
Singh G (B40) 2013; 4
Lambert WB (B23) 2013; 222
References_xml – ident: B12
– ident: B9
– ident: B35
– ident: B14
– ident: B10
– ident: B3
– ident: B43
– ident: B20
– ident: B41
– ident: B45
– ident: B1
– ident: B27
– ident: B7
– ident: B5
– ident: B29
– ident: B47
– ident: B25
– ident: B23
– ident: B21
– ident: B18
– ident: B16
– ident: B31
– ident: B33
– ident: B37
– ident: B39
– ident: B8
– ident: B36
– ident: B11
– ident: B13
– ident: B2
– ident: B42
– ident: B40
– ident: B26
– ident: B4
– ident: B28
– ident: B44
– ident: B6
– ident: B46
– ident: B24
– ident: B22
– ident: B17
– ident: B32
– ident: B15
– ident: B30
– ident: B34
– ident: B19
– ident: B38
– ident: B44
  doi: 10.1016/j.ejor.2013.10.006
– ident: B13
  doi: 10.1007/s10479-012-1258-3
– ident: B8
  doi: 10.1590/S0104-66322006000100008
– ident: B32
  doi: 10.1016/j.ejor.2005.09.008
– ident: B43
  doi: 10.1080/00207543.2012.737955
– volume: 108
  start-page: 109
  issue: 2
  year: 2008
  ident: B29
  publication-title: J. Southern African Inst. Mining and Metallurgy
– ident: B45
  doi: 10.1021/ie9906619
– start-page: 14
  year: 2010
  ident: B31
  publication-title: Mechanical Tech.
– ident: B34
  doi: 10.1080/17480930601118947
– ident: B24
  doi: 10.1287/inte.2013.0731
– volume: 106
  start-page: 229
  issue: 3
  year: 2006
  ident: B22
  publication-title: J. South African Inst. Mining and Metallurgy
– ident: B37
  doi: 10.1016/0098-1354(96)00210-4
– start-page: 427
  volume-title: Proc. Informing Sci. IT Ed. Conf.
  year: 2002
  ident: B15
– ident: B4
  doi: 10.1111/j.1540-5915.1977.tb01066.x
– ident: B12
  doi: 10.1287/opre.1110.1003
– volume: 8
  start-page: 1337
  issue: 8
  year: 2006
  ident: B16
  publication-title: Optimal Control Appl. Management Sci.
– ident: B46
  doi: 10.1016/j.endm.2008.01.051
– ident: B36
  doi: 10.1016/j.ces.2004.01.009
– ident: B17
  doi: 10.1021/ie8016048
– ident: B18
  doi: 10.1145/1111237.1111238
– ident: B27
  doi: 10.1007/BF01580665
– ident: B21
  doi: 10.1021/ie0600588
– ident: B3
  doi: 10.1057/jors.2012.86
– ident: B9
  doi: 10.1007/s11590-011-0306-2
– ident: B33
  doi: 10.1287/inte.1090.0492
– ident: B2
  doi: 10.1002/aic.690421209
– ident: B14
  doi: 10.1287/inte.26.6.82
– ident: B6
  doi: 10.1287/ijoc.2013.0590
– ident: B7
  doi: 10.1016/j.cor.2007.12.006
– ident: B41
  doi: 10.1016/0360-8352(94)00221-8
– volume: 8
  start-page: 3
  issue: 1
  year: 2009
  ident: B30
  publication-title: Appl. Comput. Math.
– ident: B11
  doi: 10.1080/03052159708941137
– volume: 222
  start-page: 1
  issue: 1
  year: 2013
  ident: B23
  publication-title: Ann. Oper. Res.
– ident: B35
  doi: 10.1016/j.ejor.2005.12.035
– volume: 4
  start-page: 222
  issue: 2
  year: 2013
  ident: B40
  publication-title: Interfaces
– ident: B26
  doi: 10.1023/A:1021808313306
– ident: B39
  doi: 10.1016/0098-1354(96)00212-8
– ident: B42
  doi: 10.1179/1743286311Y.0000000009
– ident: B25
  doi: 10.1016/j.compchemeng.2009.06.007
– ident: B47
  doi: 10.1021/ie020130b
– ident: B1
  doi: 10.1287/mnsc.1030.0207
– ident: B38
  doi: 10.1287/opre.39.4.553
– volume: 30
  start-page: 931
  issue: 1
  year: 2006
  ident: B28
  publication-title: Comput. Chemical Engrg.
– ident: B10
  doi: 10.1016/S0098-1354(97)87643-0
– ident: B20
  doi: 10.1021/ie970532x
SSID ssj0007876
Score 2.343042
Snippet We consider the multiple-time-period, short-term production scheduling problem for a network of multiple open-pit mines and ports. Ore produced at each mine,...
SourceID proquest
gale
crossref
jstor
informs
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3059
SubjectTerms Algorithms
Analysis
Consumers
Customers
Data mining
hybrid optimisation
Methods
Mineral industry
Mines
Mining
Mining industry
Nonlinear programming
Ports
Production management
Production scheduling
Satisfaction
Scheduling (Management)
Short term
short-term open-pit mine production scheduling
Specification
Time periods
Uncertainty
Title A Decomposition-Based Algorithm for the Scheduling of Open-Pit Networks Over Multiple Time Periods
URI https://www.jstor.org/stable/44012230
https://www.proquest.com/docview/2678107014
Volume 62
WOSCitedRecordID wos000388441900016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ABI/INFORM Global
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: M0C
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/abiglobal
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest ABI/INFORM Collection
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: 7WY
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/abicomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: BENPR
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1526-5501
  dateEnd: 20201213
  omitProxy: false
  ssIdentifier: ssj0007876
  issn: 0025-1909
  databaseCode: M2M
  dateStart: 19870101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKBogL4muiMIYPwA5RRuM4Hz6WaROHrUwwxDhFjuOUSm1SJdk0_gr-Zd5rnDSBosGBS9RGT05s__I-7J_fI-SVVDKMwbTasSMSG-xxbEvNUjsNEuEr4ULIsMozexJMJuHFhTgbDH40Z2Gu5kGWhdfXYvlfpxruwWTj0dl_mO62UbgBv2HS4QrTDte_mvixlWgkihs2lo12KrHkfJoXs-rbouUVQlgLZmZuWM9YRcteziorq3nhpYXczjXfEGvQY47jWV6fDG4c2jV9xjLGtA3w5_miIebj7oB10lHDRb12P04KVDDtbtOnCmke31visNm0MqsSjt_y20yk2jIdsFMflrowxL6GT9jyQzuvabRZd5ESi-2CyyK6-tpnXVyOOtoXdJfYaBYYLqwcL7ISk1Y63gFjdV26X1Jtj7kvfAh4Q36LbLPAE6jpgy9fW9MO2s1vagDja5ksoND8237jPS_H2Po7dSrcsmG-_mb9Vy7N-QNy38QidFxj6CEZ6OwRudschXhM4jHdACXaQonCgyiMLl1DieYpbaBEGyhRhBJtoEQRStRA6Qn5fHx0fvjeNjU5bAWOf2VDPCFilvg8Ad9WMuUpETteKIVSoRxJFuoAd1594bhpwBMuXcUZjyEKTxLOtevukK0sz_RTQpkC31Un2hvJkKcuj5X0XQUOu8u8WGtnSOxmDCNlEtZj3ZR5hIErjHmEYx7hmEc45kOy38ov61Qtf5R8jVMSmTqvcClxJaycysuyjNYoGJKXKznMk5IhEasW6EnsG4k0h3dT0hxqgR5iXrWe5Jue5LTOKr9JcLcnCOpe9dsxOLqxkzsrmLVinOM2ujuCBzS4i4zeKiMGTqsD5t_hz27s9HNyb_3J75KtqrjUL8htdVXNymJv9cXske13R5Ozj_DvdHSIV3b6E35j7m4
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+decomposition-based+algorithm+for+the+scheduling+of+open-pit+networks+over+multiple+time+periods&rft.jtitle=Management+science&rft.au=Blom%2C+Michelle+L&rft.au=Pearce%2C+Adrian+R&rft.au=Stuckey%2C+Peter+J&rft.date=2016-10-01&rft.pub=Institute+for+Operations+Research+and+the+Management+Sciences&rft.issn=0025-1909&rft.volume=62&rft.issue=10&rft.spage=3059&rft_id=info:doi/10.1287%2Fmnsc.2015.2284&rft.externalDocID=A469640984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon