Learning probabilistic logic models from probabilistic examples
We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids tog...
Gespeichert in:
| Veröffentlicht in: | Machine learning Jg. 73; H. 1; S. 55 - 85 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
01.10.2008
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-6125, 1573-0565 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches—abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. |
|---|---|
| AbstractList | We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches—abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. Abstract We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. Issue Title: Special issue on Inductive Logic Programming (ILP 2007); Guest Editors:Hendrik Blockeel, Jude Shavlik, Prasad Tadepalli We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches--abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. [PUBLICATION ABSTRACT] |
| Author | Santos, José Muggleton, Stephen Chen, Jianzhong |
| Author_xml | – sequence: 1 givenname: Jianzhong surname: Chen fullname: Chen, Jianzhong email: cjz@doc.ic.ac.uk organization: Department of Computing, Imperial College London – sequence: 2 givenname: Stephen surname: Muggleton fullname: Muggleton, Stephen organization: Department of Computing, Imperial College London – sequence: 3 givenname: José surname: Santos fullname: Santos, José organization: Department of Computing, Imperial College London |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19888348$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9rVDEUxYNU7LT6AdzI4ELcPJvk5e9GkaJWGHCj65Dk3Tem5CVj8kb025vHtFUH2k2yuL9zOPeeM3SScgKEnhP8hmAsLyrBWrMOY9VxLEXHHqEV4bLvMBf8BK2wUrwThPJTdFbrNcaYCiWeoFOilVI9Uyv0bgO2pJC2613JzroQQ52DX8e8be-UB4h1PZY8Hc3hl512EepT9Hi0scKzm_8cffv44evlVbf58unz5ftN57kQc6ecdl5z6f1oR2W1AI6FAAk9xYOXjinOPGDCAUutBwZEWOedGlRPpQPVn6O3B9_d3k0weEhzsdHsSphs-W2yDeb_SQrfzTb_NFRKwmjfDF7dGJT8Yw91NlOoHmK0CfK-mp4RrQlnDXz9IEhUzzkngiyhXh6h13lfUruDoe3UUktOG_Ti3-R3kW87aIA8AL7kWguMxofZziEvi4RoCDZL2-bQtmltm6Vts0QlR8o78wc09KCpjU1bKH8z3y_6A-5KvMo |
| CitedBy_id | crossref_primary_10_1007_s10994_010_5206_7 crossref_primary_10_1109_TNNLS_2023_3246980 crossref_primary_10_3390_metabo8010004 crossref_primary_10_1007_s10994_011_5259_2 |
| Cites_doi | 10.1016/0743-1066(94)90035-3 10.1007/3-540-45628-7 10.1016/0004-3702(93)90061-F 10.1016/0004-3702(90)90019-V 10.1007/s10994-006-5833-1 10.1016/S0169-7439(98)00167-1 10.1023/A:1010924021315 10.1214/aos/1176346150 10.1007/s10994-006-8988-x 10.1016/S0959-440X(03)00031-9 10.1093/logcom/2.6.719 10.1145/959242.959247 10.7551/mitpress/7432.001.0001 10.1007/978-3-540-78652-8 10.7551/mitpress/7432.003.0011 10.7551/mitpress/4298.003.0069 10.1007/978-94-017-0606-3 10.1007/3-540-44960-4_8 10.1007/3-540-36468-4_13 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC 2008 |
| Copyright_xml | – notice: Springer Science+Business Media, LLC 2008 |
| DBID | AAYXX CITATION NPM 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N M2P P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
| DOI | 10.1007/s10994-008-5076-4 |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information AUTh Library subscriptions: ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Science Database (subscription) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Computer Science Database Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| EndPage | 85 |
| ExternalDocumentID | PMC2771423 1896357071 19888348 10_1007_s10994_008_5076_4 |
| Genre | Journal Article Feature |
| GrantInformation_xml | – fundername: Wellcome Trust grantid: 069962 – fundername: Wellcome Trust : grantid: 069962 || WT |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 88I 8AO 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW LAK LLZTM M0N M2P M4Y MA- MVM N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF- PQQKQ PROAC PT4 Q2X QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WIP WK8 XJT YLTOR Z45 Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z8Z Z91 Z92 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT PQGLB NPM 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
| ID | FETCH-LOGICAL-c566t-8b9bc957ccfaf8a96e5066e7e320dc7b4854ce015e0799d4e16abcb8d8327be83 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258760000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Tue Nov 04 01:59:27 EST 2025 Sun Nov 09 14:12:48 EST 2025 Sun Nov 09 11:09:00 EST 2025 Tue Nov 04 18:52:04 EST 2025 Mon Jul 21 05:59:13 EDT 2025 Tue Nov 18 21:39:33 EST 2025 Sat Nov 29 01:43:25 EST 2025 Fri Feb 21 02:28:49 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Probabilistic inductive logic programming Stochastic logic programs Abduction Probabilistic examples |
| Language | English |
| License | http://www.springer.com/tdm |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c566t-8b9bc957ccfaf8a96e5066e7e320dc7b4854ce015e0799d4e16abcb8d8327be83 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 cjz@doc.ic.ac.uk, shm@doc.ic.ac.uk, jcs06@doc.ic.ac.uk |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10994-008-5076-4.pdf |
| PMID | 19888348 |
| PQID | 202679752 |
| PQPubID | 54194 |
| PageCount | 31 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2771423 proquest_miscellaneous_34199154 proquest_miscellaneous_1835551618 proquest_journals_202679752 pubmed_primary_19888348 crossref_citationtrail_10_1007_s10994_008_5076_4 crossref_primary_10_1007_s10994_008_5076_4 springer_journals_10_1007_s10994_008_5076_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2008-10-01 |
| PublicationDateYYYYMMDD | 2008-10-01 |
| PublicationDate_xml | – month: 10 year: 2008 text: 2008-10-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: United States – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationTitleAlternate | Mach Learn |
| PublicationYear | 2008 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | De Raedt, Kersting (CR8) 2003; 5 Poole (CR28) 1993; 64 Martensa, Dardenne (CR19) 1998; 44 Muggleton, De Raedt (CR26) 1994; 19–20 Pearl (CR27) 1988 Poole (CR29) 1997; 94 Kakas, Kowalski, Toni (CR17) 1992; 2 Alan, Zalta (CR1) 2007 CR18 CR15 Cussens, Getoor, Taskar (CR7) 2007 CR35 CR34 CR33 Muggleton, Getoor, Jensen (CR22) 2000 CR30 Flach, Kakas (CR11) 2000 Halpern (CR14) 1989; 46 Tamaddoni-Nezhad, Chaleil, Kakas, Muggleton (CR36) 2006; 64 Muggleton, De Raedt (CR21) 1996 CR4 CR3 Kakas, Denecker, Kakas, Sadri (CR16) 2002 Rissanen (CR32) 1982; 11 CR5 Muggleton, Bryant (CR25) 2000 Cussens (CR6) 2001; 44 Getoor, Taskar (CR13) 2007 De Raedt, Kersting, Ben-David, Case, Maruoka (CR9) 2004 De Raedt, Frasconi, Kersting, Muggleton (CR10) 2008 CR24 CR23 CR20 Alm, Arkin (CR2) 2003; 13 Friedman, Cooper, Moral (CR12) 1998 Richardson, Domingos (CR31) 2006; 62 E. Alm (5076_CR2) 2003; 13 M. Richardson (5076_CR31) 2006; 62 J. Cussens (5076_CR6) 2001; 44 5076_CR20 A. Tamaddoni-Nezhad (5076_CR36) 2006; 64 5076_CR24 5076_CR23 S. Muggleton (5076_CR26) 1994; 19–20 S. Muggleton (5076_CR21) 1996 5076_CR3 H. Alan (5076_CR1) 2007 J. Pearl (5076_CR27) 1988 L. Raedt De (5076_CR9) 2004 L. Getoor (5076_CR13) 2007 A. C. Kakas (5076_CR17) 1992; 2 5076_CR18 S. Muggleton (5076_CR22) 2000 5076_CR15 H. A. Martensa (5076_CR19) 1998; 44 J. Cussens (5076_CR7) 2007 L. Raedt De (5076_CR8) 2003; 5 5076_CR5 D. Poole (5076_CR28) 1993; 64 5076_CR4 5076_CR30 5076_CR35 L. Raedt De (5076_CR10) 2008 N. Friedman (5076_CR12) 1998 D. Poole (5076_CR29) 1997; 94 5076_CR33 P. Flach (5076_CR11) 2000 5076_CR34 J. Y. Halpern (5076_CR14) 1989; 46 A. Kakas (5076_CR16) 2002 J. Rissanen (5076_CR32) 1982; 11 S. Muggleton (5076_CR25) 2000 |
| References_xml | – volume: 19–20 start-page: 629 year: 1994 end-page: 679 ident: CR26 article-title: Inductive logic programming: theory and methods publication-title: Journal of Logic Programming doi: 10.1016/0743-1066(94)90035-3 – ident: CR18 – start-page: 254 year: 1996 end-page: 264 ident: CR21 article-title: Stochastic logic programs publication-title: Advances in inductive logic programming – ident: CR4 – start-page: 269 year: 2007 end-page: 290 ident: CR7 article-title: Logic-based formalisms for statistical relational learning publication-title: Introduction to statistical relational learning – year: 2007 ident: CR13 publication-title: Introduction to statistical relational learning – ident: CR30 – start-page: 402 year: 2002 end-page: 436 ident: CR16 article-title: Abduction in logic programming publication-title: Computational logic: logic programming and beyond, part I doi: 10.1007/3-540-45628-7 – volume: 64 start-page: 81 issue: 1 year: 1993 end-page: 129 ident: CR28 article-title: Probabilistic Horn abduction and Bayesian networks publication-title: Artificial Intelligence doi: 10.1016/0004-3702(93)90061-F – volume: 46 start-page: 311 year: 1989 end-page: 350 ident: CR14 article-title: An analysis of first-order logics of probability publication-title: Artificial Intelligence doi: 10.1016/0004-3702(90)90019-V – year: 1988 ident: CR27 publication-title: Probabilistic reasoning in intelligent systems: networks of plausible inference – ident: CR33 – year: 2000 ident: CR22 article-title: Learning stochastic logic programs publication-title: Proceedings of the AAAI2000 workshop on learning statistical models from relational data – ident: CR35 – volume: 62 start-page: 107 issue: 1–2 year: 2006 end-page: 136 ident: CR31 article-title: Markov logic networks publication-title: Machine Learning doi: 10.1007/s10994-006-5833-1 – volume: 44 start-page: 99 issue: 1–2 year: 1998 end-page: 121 ident: CR19 article-title: Validation and verification of regression in small data sets publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/S0169-7439(98)00167-1 – volume: 44 start-page: 245 issue: 3 year: 2001 end-page: 271 ident: CR6 article-title: Parameter estimation in stochastic logic programs publication-title: Machine Learning doi: 10.1023/A:1010924021315 – volume: 94 start-page: 5 issue: 1–2 year: 1997 end-page: 56 ident: CR29 article-title: The independent choice logic for modelling multiple agents under uncertainty publication-title: Artificial Intelligence – ident: CR23 – year: 2008 ident: CR10 publication-title: Probabilistic inductive logic programming—theory and applications – year: 2004 ident: CR9 article-title: Probabilistic inductive logic programming publication-title: Proceedings of the 15th international conference on algorithmic learning theory – volume: 11 start-page: 416 year: 1982 end-page: 431 ident: CR32 article-title: A universal prior for integers and estimation by minimum description length publication-title: Annals of Statistics doi: 10.1214/aos/1176346150 – ident: CR3 – ident: CR15 – start-page: 130 year: 2000 end-page: 146 ident: CR25 article-title: Theory completion using inverse entailment publication-title: Proceedings of the 10th international workshop on inductive logic programming (ILP-00) – year: 2007 ident: CR1 article-title: Interpretations of probability publication-title: The Stanford encyclopedia of philosophy (Winter 2007 edition) – year: 2000 ident: CR11 publication-title: Abductive and inductive reasoning – ident: CR34 – start-page: 129 year: 1998 end-page: 138 ident: CR12 article-title: The Bayesian structural em algorithm publication-title: Proceedings of the fourteenth annual conference on uncertainty in artificial intelligence (UAI-98) – volume: 64 start-page: 209 year: 2006 end-page: 230 ident: CR36 article-title: Application of abductive ILP to learning metabolic network inhibition from temporal data publication-title: Machine Learning doi: 10.1007/s10994-006-8988-x – ident: CR5 – volume: 13 start-page: 193 issue: 2 year: 2003 end-page: 202 ident: CR2 article-title: Biological networks publication-title: Current Opinion in Structural Biology doi: 10.1016/S0959-440X(03)00031-9 – volume: 5 start-page: 31 issue: 1 year: 2003 end-page: 48 ident: CR8 article-title: Probabilistic logic learning publication-title: ACM-SIGKDD Explorations: Special issue on Multi-Relational Data Mining – volume: 2 start-page: 719 issue: 6 year: 1992 end-page: 770 ident: CR17 article-title: Abductive logic programming publication-title: Journal of Logic and Computation doi: 10.1093/logcom/2.6.719 – ident: CR24 – ident: CR20 – volume-title: The Stanford encyclopedia of philosophy (Winter 2007 edition) year: 2007 ident: 5076_CR1 – volume-title: Probabilistic reasoning in intelligent systems: networks of plausible inference year: 1988 ident: 5076_CR27 – volume: 5 start-page: 31 issue: 1 year: 2003 ident: 5076_CR8 publication-title: ACM-SIGKDD Explorations: Special issue on Multi-Relational Data Mining doi: 10.1145/959242.959247 – volume: 64 start-page: 81 issue: 1 year: 1993 ident: 5076_CR28 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(93)90061-F – volume: 62 start-page: 107 issue: 1–2 year: 2006 ident: 5076_CR31 publication-title: Machine Learning doi: 10.1007/s10994-006-5833-1 – volume-title: Proceedings of the 15th international conference on algorithmic learning theory year: 2004 ident: 5076_CR9 – volume-title: Introduction to statistical relational learning year: 2007 ident: 5076_CR13 doi: 10.7551/mitpress/7432.001.0001 – volume: 13 start-page: 193 issue: 2 year: 2003 ident: 5076_CR2 publication-title: Current Opinion in Structural Biology doi: 10.1016/S0959-440X(03)00031-9 – volume: 44 start-page: 245 issue: 3 year: 2001 ident: 5076_CR6 publication-title: Machine Learning doi: 10.1023/A:1010924021315 – volume: 46 start-page: 311 year: 1989 ident: 5076_CR14 publication-title: Artificial Intelligence doi: 10.1016/0004-3702(90)90019-V – ident: 5076_CR5 – volume-title: Probabilistic inductive logic programming—theory and applications year: 2008 ident: 5076_CR10 doi: 10.1007/978-3-540-78652-8 – ident: 5076_CR15 – ident: 5076_CR3 – start-page: 269 volume-title: Introduction to statistical relational learning year: 2007 ident: 5076_CR7 doi: 10.7551/mitpress/7432.003.0011 – start-page: 254 volume-title: Advances in inductive logic programming year: 1996 ident: 5076_CR21 – volume: 11 start-page: 416 year: 1982 ident: 5076_CR32 publication-title: Annals of Statistics doi: 10.1214/aos/1176346150 – ident: 5076_CR20 – volume: 94 start-page: 5 issue: 1–2 year: 1997 ident: 5076_CR29 publication-title: Artificial Intelligence – ident: 5076_CR33 doi: 10.7551/mitpress/4298.003.0069 – volume: 64 start-page: 209 year: 2006 ident: 5076_CR36 publication-title: Machine Learning doi: 10.1007/s10994-006-8988-x – volume-title: Abductive and inductive reasoning year: 2000 ident: 5076_CR11 doi: 10.1007/978-94-017-0606-3 – volume: 44 start-page: 99 issue: 1–2 year: 1998 ident: 5076_CR19 publication-title: Chemometrics and Intelligent Laboratory Systems doi: 10.1016/S0169-7439(98)00167-1 – volume-title: Proceedings of the AAAI2000 workshop on learning statistical models from relational data year: 2000 ident: 5076_CR22 – ident: 5076_CR24 – ident: 5076_CR34 – ident: 5076_CR30 – ident: 5076_CR4 – start-page: 129 volume-title: Proceedings of the fourteenth annual conference on uncertainty in artificial intelligence (UAI-98) year: 1998 ident: 5076_CR12 – volume: 2 start-page: 719 issue: 6 year: 1992 ident: 5076_CR17 publication-title: Journal of Logic and Computation doi: 10.1093/logcom/2.6.719 – start-page: 130 volume-title: Proceedings of the 10th international workshop on inductive logic programming (ILP-00) year: 2000 ident: 5076_CR25 doi: 10.1007/3-540-44960-4_8 – ident: 5076_CR18 – ident: 5076_CR35 – start-page: 402 volume-title: Computational logic: logic programming and beyond, part I year: 2002 ident: 5076_CR16 – ident: 5076_CR23 doi: 10.1007/3-540-36468-4_13 – volume: 19–20 start-page: 629 year: 1994 ident: 5076_CR26 publication-title: Journal of Logic Programming doi: 10.1016/0743-1066(94)90035-3 |
| SSID | ssj0002686 |
| Score | 1.9865621 |
| Snippet | We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example... Issue Title: Special issue on Inductive Logic Programming (ILP 2007); Guest Editors:Hendrik Blockeel, Jude Shavlik, Prasad Tadepalli We revisit an application... Abstract We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The... |
| SourceID | pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 55 |
| SubjectTerms | Artificial Intelligence Computer Science Control Logic programming Mechatronics Natural Language Processing (NLP) Probability Robotics Simulation and Modeling |
| SummonAdditionalLinks | – databaseName: Springer Journals dbid: RSV link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7o6MGL-1LXCp6UQJekSU4iongScWNupUlTHZAqdkb8-b5k2o4zLqDn91Je07eVl3wfwAFNAplbKMQkDyihsaYEy7AmMS1CLI-MF4V2ZBP88lJ0u_KqvsddNafdm5Gky9SfLrs5GNtAEOxhEkKnYQarnbB8Ddc39236jRJH74jRgwZg-W5Gmd89YrwYfekwvx6UnJiWuiJ0vvAv8xdhvu45_ZOhkyzBlCmXYaHhc_Dr8F6B4xps9cG3NDMOeteiOPsuPfqOM6fy7X2UCbl5zyzGcLUKd-dnt6cXpCZYIBq7uD4RSiotGde6yAqRycQw7EAMN3EU5JorKhjVBhsGE3Apc2rCJFNaiRzTAFdGxGvQKZ9LswF-EhqFcsqY0vjLpgTLOU_QDSj-sJjMeBA0O53qGn3ckmA8pSPcZLtBqWXFtBuUUg8O2yUvQ-iN35S3ms-X1lFYpZGl15KcRR7st1IMHzsTyUrzPKhSzGjMzgpD4cHeDzoW8k5iq-nB-tAdRuZIIURMcS0fc5RWwYJ3j0vK3qMD8Y44D7GV9eCocZeR3T--5eaftLdgLmrQe8Nt6PRfB2YHZvVbv1e97rqo-QBZqRIl priority: 102 providerName: Springer Nature |
| Title | Learning probabilistic logic models from probabilistic examples |
| URI | https://link.springer.com/article/10.1007/s10994-008-5076-4 https://www.ncbi.nlm.nih.gov/pubmed/19888348 https://www.proquest.com/docview/202679752 https://www.proquest.com/docview/1835551618 https://www.proquest.com/docview/34199154 https://pubmed.ncbi.nlm.nih.gov/PMC2771423 |
| Volume | 73 |
| WOSCitedRecordID | wos000258760000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: P5Z dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: K7- dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 1573-0565 dateEnd: 20171231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: M2P dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Journals customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7Y1gdfrHdjdY3gkzKQy1yfSistgrgs9cLiS8hMJrUg2dpsxZ_vObOTLNvSvvgSCDOBmcy5fJMz-T6At1xmpiEqRNlknPHScYZp2LGStzmmR6Ha1gWxCTWd6vnczOLZnD4eqxxiYgjUzcLRN3LapEtllCj2z38zEo2i4mpU0NiCHQQ2OZ3o-lzMxkBcyCD0iH6EQ8FEPhQ1V3_OBU7cTDMERJLxzbR0DWtePzJ5pW4a0tHx7n9O5AHcjzg0PVgZzkO447tHsDtoPKTR5R_DfiRgPU1JeibQ8RKzcxpCZhp0dPqU_lG50u7_1sQ73D-Bb8dHXz98ZFF0gTlEdkumrbHOCOVcW7e6NtILRCVe-bLIGqcs14I7jyDCZ8qYhvtc1tZZ3WBoUNbr8ilsd4vOP4dU5t5iOxfCOtzGWS0apSSaBsdNjK99AtnwzisXGclJGONXteZSpmWqSCmTlqniCbwbHzlf0XHc1nlvWIEqemZfja8_gTdjK7oU1Unqzi8u-wqjnKD6Ya4TeH1DH6LBMwg_E3i2Moz1cIzWuuT4rNowmbEDEXpvtnRnPwOxd6FUjvA2gfeDca3HfeMsX9w6yz24VwwMvvlL2F5eXPpXcNf9WZ71FxPYUnM9gZ3Do-nsBO8-KTYJPoTXmfiB15Mv3_8BXRshcg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwEB2VggQbyptQoEGCDchSHn4uqqoCqlYtV10UqbsQOw5UQrmlueXxUf3HzjiPq9uq3XXB2k5kZ45nxhn7HIC3XCamIipEWSWc8dxxhmHYsZzXKYZHoeraBbEJNZnow0OzvwRnw10YOlY5-MTgqKupo3_ktEmXyiiRbRz_YiQaRcXVQUGjQ8Wu__cHd2zt-s4nNO-7LNv6fPBxm_WiAsxh5jJj2hrrjFDO1WWtSyO9wKjrlc-zpHLKci248xgkfaKMqbhPZWmd1RVCX1mvc3zvLbjNiViMTgpm-6Pjz2QQlsR1i1PHxGEoonY39QIHb6IZJmCS8cUweCm3vXxE80KdNoS_rZX_7MM9gPt9nh1vdgvjISz55hGsDBoWce_SHsNGTzD7PSZpnUA3TMzVcQgJcdAJamO6g3Oh3f8tiVe5fQJfb2QaT2G5mTb-OcQy9RbbuRDW4TbValEpJRH6HDdpvvQRJIONC9czrpPwx89izhVNsChICZRgUfAI3o-PHHd0I9d1Xh0sXvSepy1Gc0fwZmxFl0F1oLLx09O2QC8uqD6a6gjWruhDNH8G0-sInnVAnA_HaK1zjs-qBYiOHYiwfLGlOfoRiMszpVJM3yP4MIB5Pu4rZ_ni2lmuwd3tgy97xd7OZHcV7mUDW3H6EpZnJ6f-Fdxxv2dH7cnrsFZj-HbTGD8HRDB6rg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBSEulJ1QoEGCC8hqFju2D6hClBFV0WgOIFVcQuw4UAllSjNl-Wn8O95z4oymVXvrgbPtyMtb8-zvA3jOi0TXBIVY1AlnPLecoRu2LOdNiu5RyKaxnmxCTqfq4EDP1uBveAtD1yqDTfSGup5b-kdOSXohtRTZdjPcipjtTnaOfjAikKJCa2DT6CVk3_35hdlb93pvF4_6RZZN3n18-54NBAPMYhSzYMpoY7WQ1jZVoypdOIEe2EmXZ0ltpeFKcOvQYbpEal1zlxaVsUbVqAbSOJXjd6_AVYkpJt0mnInPoxPICk8yiTqM24BBRCio9q_2PB5vohgGYwXjqy7xTJx79rrmqZqtd4WTjf94E2_BzSH-jt_0CnMb1lx7BzYCt0U8mLq7sDMAz36NiXLHwxATonXsXUXs-YO6mN7mnGp3vyvCW-7uwadLWcZ9WG_nrXsIcZE6g-1cCGMxfTVK1FIWqBIckzdXuQiScN6lHZDYiRDke7nEkCYRKYkhlESk5BG8HIcc9TAkF3XeDKdfDhapK8ejj-DZ2IqmhOpDVevmJ12J1l1Q3TRVEWyd04fg_zSG3RE86IVyOR2tlMo5jpUr4jp2ICDz1Zb28JsHNM-kTDGsj-BVEOzlvM9d5aMLV7kF11G0yw970_1NuJEFEOP0Mawvjk_cE7hmfy4Ou-OnXm1j-HLZIv4PxxyDmg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Probabilistic+Logic+Models+from+Probabilistic+Examples&rft.jtitle=Machine+learning&rft.au=Chen%2C+Jianzhong&rft.au=Muggleton%2C+Stephen&rft.au=Santos%2C+Jos%C3%A9&rft.date=2008-10-01&rft.issn=0885-6125&rft.volume=73&rft.issue=1&rft.spage=55&rft_id=info:doi/10.1007%2Fs10994-008-5076-4&rft_id=info%3Apmid%2F19888348&rft.externalDocID=19888348 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |