Learning probabilistic logic models from probabilistic examples

We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids tog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning Jg. 73; H. 1; S. 55 - 85
Hauptverfasser: Chen, Jianzhong, Muggleton, Stephen, Santos, José
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Boston Springer US 01.10.2008
Springer Nature B.V
Schlagworte:
ISSN:0885-6125, 1573-0565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches—abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
AbstractList We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches—abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
Abstract We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.
Issue Title: Special issue on Inductive Logic Programming (ILP 2007); Guest Editors:Hendrik Blockeel, Jude Shavlik, Prasad Tadepalli We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches--abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples. [PUBLICATION ABSTRACT]
Author Santos, José
Muggleton, Stephen
Chen, Jianzhong
Author_xml – sequence: 1
  givenname: Jianzhong
  surname: Chen
  fullname: Chen, Jianzhong
  email: cjz@doc.ic.ac.uk
  organization: Department of Computing, Imperial College London
– sequence: 2
  givenname: Stephen
  surname: Muggleton
  fullname: Muggleton, Stephen
  organization: Department of Computing, Imperial College London
– sequence: 3
  givenname: José
  surname: Santos
  fullname: Santos, José
  organization: Department of Computing, Imperial College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19888348$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9rVDEUxYNU7LT6AdzI4ELcPJvk5e9GkaJWGHCj65Dk3Tem5CVj8kb025vHtFUH2k2yuL9zOPeeM3SScgKEnhP8hmAsLyrBWrMOY9VxLEXHHqEV4bLvMBf8BK2wUrwThPJTdFbrNcaYCiWeoFOilVI9Uyv0bgO2pJC2613JzroQQ52DX8e8be-UB4h1PZY8Hc3hl512EepT9Hi0scKzm_8cffv44evlVbf58unz5ftN57kQc6ecdl5z6f1oR2W1AI6FAAk9xYOXjinOPGDCAUutBwZEWOedGlRPpQPVn6O3B9_d3k0weEhzsdHsSphs-W2yDeb_SQrfzTb_NFRKwmjfDF7dGJT8Yw91NlOoHmK0CfK-mp4RrQlnDXz9IEhUzzkngiyhXh6h13lfUruDoe3UUktOG_Ti3-R3kW87aIA8AL7kWguMxofZziEvi4RoCDZL2-bQtmltm6Vts0QlR8o78wc09KCpjU1bKH8z3y_6A-5KvMo
CitedBy_id crossref_primary_10_1007_s10994_010_5206_7
crossref_primary_10_1109_TNNLS_2023_3246980
crossref_primary_10_3390_metabo8010004
crossref_primary_10_1007_s10994_011_5259_2
Cites_doi 10.1016/0743-1066(94)90035-3
10.1007/3-540-45628-7
10.1016/0004-3702(93)90061-F
10.1016/0004-3702(90)90019-V
10.1007/s10994-006-5833-1
10.1016/S0169-7439(98)00167-1
10.1023/A:1010924021315
10.1214/aos/1176346150
10.1007/s10994-006-8988-x
10.1016/S0959-440X(03)00031-9
10.1093/logcom/2.6.719
10.1145/959242.959247
10.7551/mitpress/7432.001.0001
10.1007/978-3-540-78652-8
10.7551/mitpress/7432.003.0011
10.7551/mitpress/4298.003.0069
10.1007/978-94-017-0606-3
10.1007/3-540-44960-4_8
10.1007/3-540-36468-4_13
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2008
Copyright_xml – notice: Springer Science+Business Media, LLC 2008
DBID AAYXX
CITATION
NPM
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s10994-008-5076-4
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials Local Electronic Collection Information
AUTh Library subscriptions: ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database (subscription)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Computer Science Database
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
EndPage 85
ExternalDocumentID PMC2771423
1896357071
19888348
10_1007_s10994_008_5076_4
Genre Journal Article
Feature
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 069962
– fundername: Wellcome Trust :
  grantid: 069962 || WT
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
88I
8AO
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
KOW
LAK
LLZTM
M0N
M2P
M4Y
MA-
MVM
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WIP
WK8
XJT
YLTOR
Z45
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z8Z
Z91
Z92
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
NPM
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c566t-8b9bc957ccfaf8a96e5066e7e320dc7b4854ce015e0799d4e16abcb8d8327be83
IEDL.DBID M2P
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000258760000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Tue Nov 04 01:59:27 EST 2025
Sun Nov 09 14:12:48 EST 2025
Sun Nov 09 11:09:00 EST 2025
Tue Nov 04 18:52:04 EST 2025
Mon Jul 21 05:59:13 EDT 2025
Tue Nov 18 21:39:33 EST 2025
Sat Nov 29 01:43:25 EST 2025
Fri Feb 21 02:28:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Probabilistic inductive logic programming
Stochastic logic programs
Abduction
Probabilistic examples
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-8b9bc957ccfaf8a96e5066e7e320dc7b4854ce015e0799d4e16abcb8d8327be83
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
cjz@doc.ic.ac.uk, shm@doc.ic.ac.uk, jcs06@doc.ic.ac.uk
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s10994-008-5076-4.pdf
PMID 19888348
PQID 202679752
PQPubID 54194
PageCount 31
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2771423
proquest_miscellaneous_34199154
proquest_miscellaneous_1835551618
proquest_journals_202679752
pubmed_primary_19888348
crossref_citationtrail_10_1007_s10994_008_5076_4
crossref_primary_10_1007_s10994_008_5076_4
springer_journals_10_1007_s10994_008_5076_4
PublicationCentury 2000
PublicationDate 2008-10-01
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: 2008-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: United States
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationTitleAlternate Mach Learn
PublicationYear 2008
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References De Raedt, Kersting (CR8) 2003; 5
Poole (CR28) 1993; 64
Martensa, Dardenne (CR19) 1998; 44
Muggleton, De Raedt (CR26) 1994; 19–20
Pearl (CR27) 1988
Poole (CR29) 1997; 94
Kakas, Kowalski, Toni (CR17) 1992; 2
Alan, Zalta (CR1) 2007
CR18
CR15
Cussens, Getoor, Taskar (CR7) 2007
CR35
CR34
CR33
Muggleton, Getoor, Jensen (CR22) 2000
CR30
Flach, Kakas (CR11) 2000
Halpern (CR14) 1989; 46
Tamaddoni-Nezhad, Chaleil, Kakas, Muggleton (CR36) 2006; 64
Muggleton, De Raedt (CR21) 1996
CR4
CR3
Kakas, Denecker, Kakas, Sadri (CR16) 2002
Rissanen (CR32) 1982; 11
CR5
Muggleton, Bryant (CR25) 2000
Cussens (CR6) 2001; 44
Getoor, Taskar (CR13) 2007
De Raedt, Kersting, Ben-David, Case, Maruoka (CR9) 2004
De Raedt, Frasconi, Kersting, Muggleton (CR10) 2008
CR24
CR23
CR20
Alm, Arkin (CR2) 2003; 13
Friedman, Cooper, Moral (CR12) 1998
Richardson, Domingos (CR31) 2006; 62
E. Alm (5076_CR2) 2003; 13
M. Richardson (5076_CR31) 2006; 62
J. Cussens (5076_CR6) 2001; 44
5076_CR20
A. Tamaddoni-Nezhad (5076_CR36) 2006; 64
5076_CR24
5076_CR23
S. Muggleton (5076_CR26) 1994; 19–20
S. Muggleton (5076_CR21) 1996
5076_CR3
H. Alan (5076_CR1) 2007
J. Pearl (5076_CR27) 1988
L. Raedt De (5076_CR9) 2004
L. Getoor (5076_CR13) 2007
A. C. Kakas (5076_CR17) 1992; 2
5076_CR18
S. Muggleton (5076_CR22) 2000
5076_CR15
H. A. Martensa (5076_CR19) 1998; 44
J. Cussens (5076_CR7) 2007
L. Raedt De (5076_CR8) 2003; 5
5076_CR5
D. Poole (5076_CR28) 1993; 64
5076_CR4
5076_CR30
5076_CR35
L. Raedt De (5076_CR10) 2008
N. Friedman (5076_CR12) 1998
D. Poole (5076_CR29) 1997; 94
5076_CR33
P. Flach (5076_CR11) 2000
5076_CR34
J. Y. Halpern (5076_CR14) 1989; 46
A. Kakas (5076_CR16) 2002
J. Rissanen (5076_CR32) 1982; 11
S. Muggleton (5076_CR25) 2000
References_xml – volume: 19–20
  start-page: 629
  year: 1994
  end-page: 679
  ident: CR26
  article-title: Inductive logic programming: theory and methods
  publication-title: Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– ident: CR18
– start-page: 254
  year: 1996
  end-page: 264
  ident: CR21
  article-title: Stochastic logic programs
  publication-title: Advances in inductive logic programming
– ident: CR4
– start-page: 269
  year: 2007
  end-page: 290
  ident: CR7
  article-title: Logic-based formalisms for statistical relational learning
  publication-title: Introduction to statistical relational learning
– year: 2007
  ident: CR13
  publication-title: Introduction to statistical relational learning
– ident: CR30
– start-page: 402
  year: 2002
  end-page: 436
  ident: CR16
  article-title: Abduction in logic programming
  publication-title: Computational logic: logic programming and beyond, part I
  doi: 10.1007/3-540-45628-7
– volume: 64
  start-page: 81
  issue: 1
  year: 1993
  end-page: 129
  ident: CR28
  article-title: Probabilistic Horn abduction and Bayesian networks
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(93)90061-F
– volume: 46
  start-page: 311
  year: 1989
  end-page: 350
  ident: CR14
  article-title: An analysis of first-order logics of probability
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(90)90019-V
– year: 1988
  ident: CR27
  publication-title: Probabilistic reasoning in intelligent systems: networks of plausible inference
– ident: CR33
– year: 2000
  ident: CR22
  article-title: Learning stochastic logic programs
  publication-title: Proceedings of the AAAI2000 workshop on learning statistical models from relational data
– ident: CR35
– volume: 62
  start-page: 107
  issue: 1–2
  year: 2006
  end-page: 136
  ident: CR31
  article-title: Markov logic networks
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– volume: 44
  start-page: 99
  issue: 1–2
  year: 1998
  end-page: 121
  ident: CR19
  article-title: Validation and verification of regression in small data sets
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(98)00167-1
– volume: 44
  start-page: 245
  issue: 3
  year: 2001
  end-page: 271
  ident: CR6
  article-title: Parameter estimation in stochastic logic programs
  publication-title: Machine Learning
  doi: 10.1023/A:1010924021315
– volume: 94
  start-page: 5
  issue: 1–2
  year: 1997
  end-page: 56
  ident: CR29
  article-title: The independent choice logic for modelling multiple agents under uncertainty
  publication-title: Artificial Intelligence
– ident: CR23
– year: 2008
  ident: CR10
  publication-title: Probabilistic inductive logic programming—theory and applications
– year: 2004
  ident: CR9
  article-title: Probabilistic inductive logic programming
  publication-title: Proceedings of the 15th international conference on algorithmic learning theory
– volume: 11
  start-page: 416
  year: 1982
  end-page: 431
  ident: CR32
  article-title: A universal prior for integers and estimation by minimum description length
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176346150
– ident: CR3
– ident: CR15
– start-page: 130
  year: 2000
  end-page: 146
  ident: CR25
  article-title: Theory completion using inverse entailment
  publication-title: Proceedings of the 10th international workshop on inductive logic programming (ILP-00)
– year: 2007
  ident: CR1
  article-title: Interpretations of probability
  publication-title: The Stanford encyclopedia of philosophy (Winter 2007 edition)
– year: 2000
  ident: CR11
  publication-title: Abductive and inductive reasoning
– ident: CR34
– start-page: 129
  year: 1998
  end-page: 138
  ident: CR12
  article-title: The Bayesian structural em algorithm
  publication-title: Proceedings of the fourteenth annual conference on uncertainty in artificial intelligence (UAI-98)
– volume: 64
  start-page: 209
  year: 2006
  end-page: 230
  ident: CR36
  article-title: Application of abductive ILP to learning metabolic network inhibition from temporal data
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-8988-x
– ident: CR5
– volume: 13
  start-page: 193
  issue: 2
  year: 2003
  end-page: 202
  ident: CR2
  article-title: Biological networks
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/S0959-440X(03)00031-9
– volume: 5
  start-page: 31
  issue: 1
  year: 2003
  end-page: 48
  ident: CR8
  article-title: Probabilistic logic learning
  publication-title: ACM-SIGKDD Explorations: Special issue on Multi-Relational Data Mining
– volume: 2
  start-page: 719
  issue: 6
  year: 1992
  end-page: 770
  ident: CR17
  article-title: Abductive logic programming
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/2.6.719
– ident: CR24
– ident: CR20
– volume-title: The Stanford encyclopedia of philosophy (Winter 2007 edition)
  year: 2007
  ident: 5076_CR1
– volume-title: Probabilistic reasoning in intelligent systems: networks of plausible inference
  year: 1988
  ident: 5076_CR27
– volume: 5
  start-page: 31
  issue: 1
  year: 2003
  ident: 5076_CR8
  publication-title: ACM-SIGKDD Explorations: Special issue on Multi-Relational Data Mining
  doi: 10.1145/959242.959247
– volume: 64
  start-page: 81
  issue: 1
  year: 1993
  ident: 5076_CR28
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(93)90061-F
– volume: 62
  start-page: 107
  issue: 1–2
  year: 2006
  ident: 5076_CR31
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-5833-1
– volume-title: Proceedings of the 15th international conference on algorithmic learning theory
  year: 2004
  ident: 5076_CR9
– volume-title: Introduction to statistical relational learning
  year: 2007
  ident: 5076_CR13
  doi: 10.7551/mitpress/7432.001.0001
– volume: 13
  start-page: 193
  issue: 2
  year: 2003
  ident: 5076_CR2
  publication-title: Current Opinion in Structural Biology
  doi: 10.1016/S0959-440X(03)00031-9
– volume: 44
  start-page: 245
  issue: 3
  year: 2001
  ident: 5076_CR6
  publication-title: Machine Learning
  doi: 10.1023/A:1010924021315
– volume: 46
  start-page: 311
  year: 1989
  ident: 5076_CR14
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(90)90019-V
– ident: 5076_CR5
– volume-title: Probabilistic inductive logic programming—theory and applications
  year: 2008
  ident: 5076_CR10
  doi: 10.1007/978-3-540-78652-8
– ident: 5076_CR15
– ident: 5076_CR3
– start-page: 269
  volume-title: Introduction to statistical relational learning
  year: 2007
  ident: 5076_CR7
  doi: 10.7551/mitpress/7432.003.0011
– start-page: 254
  volume-title: Advances in inductive logic programming
  year: 1996
  ident: 5076_CR21
– volume: 11
  start-page: 416
  year: 1982
  ident: 5076_CR32
  publication-title: Annals of Statistics
  doi: 10.1214/aos/1176346150
– ident: 5076_CR20
– volume: 94
  start-page: 5
  issue: 1–2
  year: 1997
  ident: 5076_CR29
  publication-title: Artificial Intelligence
– ident: 5076_CR33
  doi: 10.7551/mitpress/4298.003.0069
– volume: 64
  start-page: 209
  year: 2006
  ident: 5076_CR36
  publication-title: Machine Learning
  doi: 10.1007/s10994-006-8988-x
– volume-title: Abductive and inductive reasoning
  year: 2000
  ident: 5076_CR11
  doi: 10.1007/978-94-017-0606-3
– volume: 44
  start-page: 99
  issue: 1–2
  year: 1998
  ident: 5076_CR19
  publication-title: Chemometrics and Intelligent Laboratory Systems
  doi: 10.1016/S0169-7439(98)00167-1
– volume-title: Proceedings of the AAAI2000 workshop on learning statistical models from relational data
  year: 2000
  ident: 5076_CR22
– ident: 5076_CR24
– ident: 5076_CR34
– ident: 5076_CR30
– ident: 5076_CR4
– start-page: 129
  volume-title: Proceedings of the fourteenth annual conference on uncertainty in artificial intelligence (UAI-98)
  year: 1998
  ident: 5076_CR12
– volume: 2
  start-page: 719
  issue: 6
  year: 1992
  ident: 5076_CR17
  publication-title: Journal of Logic and Computation
  doi: 10.1093/logcom/2.6.719
– start-page: 130
  volume-title: Proceedings of the 10th international workshop on inductive logic programming (ILP-00)
  year: 2000
  ident: 5076_CR25
  doi: 10.1007/3-540-44960-4_8
– ident: 5076_CR18
– ident: 5076_CR35
– start-page: 402
  volume-title: Computational logic: logic programming and beyond, part I
  year: 2002
  ident: 5076_CR16
– ident: 5076_CR23
  doi: 10.1007/3-540-36468-4_13
– volume: 19–20
  start-page: 629
  year: 1994
  ident: 5076_CR26
  publication-title: Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
SSID ssj0002686
Score 1.9865621
Snippet We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example...
Issue Title: Special issue on Inductive Logic Programming (ILP 2007); Guest Editors:Hendrik Blockeel, Jude Shavlik, Prasad Tadepalli We revisit an application...
Abstract We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 55
SubjectTerms Artificial Intelligence
Computer Science
Control
Logic programming
Mechatronics
Natural Language Processing (NLP)
Probability
Robotics
Simulation and Modeling
SummonAdditionalLinks – databaseName: Springer Journals
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH7o6MGL-1LXCp6UQJekSU4iongScWNupUlTHZAqdkb8-b5k2o4zLqDn91Je07eVl3wfwAFNAplbKMQkDyihsaYEy7AmMS1CLI-MF4V2ZBP88lJ0u_KqvsddNafdm5Gky9SfLrs5GNtAEOxhEkKnYQarnbB8Ddc39236jRJH74jRgwZg-W5Gmd89YrwYfekwvx6UnJiWuiJ0vvAv8xdhvu45_ZOhkyzBlCmXYaHhc_Dr8F6B4xps9cG3NDMOeteiOPsuPfqOM6fy7X2UCbl5zyzGcLUKd-dnt6cXpCZYIBq7uD4RSiotGde6yAqRycQw7EAMN3EU5JorKhjVBhsGE3Apc2rCJFNaiRzTAFdGxGvQKZ9LswF-EhqFcsqY0vjLpgTLOU_QDSj-sJjMeBA0O53qGn3ckmA8pSPcZLtBqWXFtBuUUg8O2yUvQ-iN35S3ms-X1lFYpZGl15KcRR7st1IMHzsTyUrzPKhSzGjMzgpD4cHeDzoW8k5iq-nB-tAdRuZIIURMcS0fc5RWwYJ3j0vK3qMD8Y44D7GV9eCocZeR3T--5eaftLdgLmrQe8Nt6PRfB2YHZvVbv1e97rqo-QBZqRIl
  priority: 102
  providerName: Springer Nature
Title Learning probabilistic logic models from probabilistic examples
URI https://link.springer.com/article/10.1007/s10994-008-5076-4
https://www.ncbi.nlm.nih.gov/pubmed/19888348
https://www.proquest.com/docview/202679752
https://www.proquest.com/docview/1835551618
https://www.proquest.com/docview/34199154
https://pubmed.ncbi.nlm.nih.gov/PMC2771423
Volume 73
WOSCitedRecordID wos000258760000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: P5Z
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: AUTh Library subscriptions: ProQuest Central
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: K7-
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database (subscription)
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: M2P
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9RAFD7Y1gdfrHdjdY3gkzKQy1yfSistgrgs9cLiS8hMJrUg2dpsxZ_vObOTLNvSvvgSCDOBmcy5fJMz-T6At1xmpiEqRNlknPHScYZp2LGStzmmR6Ha1gWxCTWd6vnczOLZnD4eqxxiYgjUzcLRN3LapEtllCj2z38zEo2i4mpU0NiCHQQ2OZ3o-lzMxkBcyCD0iH6EQ8FEPhQ1V3_OBU7cTDMERJLxzbR0DWtePzJ5pW4a0tHx7n9O5AHcjzg0PVgZzkO447tHsDtoPKTR5R_DfiRgPU1JeibQ8RKzcxpCZhp0dPqU_lG50u7_1sQ73D-Bb8dHXz98ZFF0gTlEdkumrbHOCOVcW7e6NtILRCVe-bLIGqcs14I7jyDCZ8qYhvtc1tZZ3WBoUNbr8ilsd4vOP4dU5t5iOxfCOtzGWS0apSSaBsdNjK99AtnwzisXGclJGONXteZSpmWqSCmTlqniCbwbHzlf0XHc1nlvWIEqemZfja8_gTdjK7oU1Unqzi8u-wqjnKD6Ya4TeH1DH6LBMwg_E3i2Moz1cIzWuuT4rNowmbEDEXpvtnRnPwOxd6FUjvA2gfeDca3HfeMsX9w6yz24VwwMvvlL2F5eXPpXcNf9WZ71FxPYUnM9gZ3Do-nsBO8-KTYJPoTXmfiB15Mv3_8BXRshcg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtUwEB2VggQbyptQoEGCDchSHn4uqqoCqlYtV10UqbsQOw5UQrmlueXxUf3HzjiPq9uq3XXB2k5kZ45nxhn7HIC3XCamIipEWSWc8dxxhmHYsZzXKYZHoeraBbEJNZnow0OzvwRnw10YOlY5-MTgqKupo3_ktEmXyiiRbRz_YiQaRcXVQUGjQ8Wu__cHd2zt-s4nNO-7LNv6fPBxm_WiAsxh5jJj2hrrjFDO1WWtSyO9wKjrlc-zpHLKci248xgkfaKMqbhPZWmd1RVCX1mvc3zvLbjNiViMTgpm-6Pjz2QQlsR1i1PHxGEoonY39QIHb6IZJmCS8cUweCm3vXxE80KdNoS_rZX_7MM9gPt9nh1vdgvjISz55hGsDBoWce_SHsNGTzD7PSZpnUA3TMzVcQgJcdAJamO6g3Oh3f8tiVe5fQJfb2QaT2G5mTb-OcQy9RbbuRDW4TbValEpJRH6HDdpvvQRJIONC9czrpPwx89izhVNsChICZRgUfAI3o-PHHd0I9d1Xh0sXvSepy1Gc0fwZmxFl0F1oLLx09O2QC8uqD6a6gjWruhDNH8G0-sInnVAnA_HaK1zjs-qBYiOHYiwfLGlOfoRiMszpVJM3yP4MIB5Pu4rZ_ni2lmuwd3tgy97xd7OZHcV7mUDW3H6EpZnJ6f-Fdxxv2dH7cnrsFZj-HbTGD8HRDB6rg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qBSEulJ1QoEGCC8hqFju2D6hClBFV0WgOIFVcQuw4UAllSjNl-Wn8O95z4oymVXvrgbPtyMtb8-zvA3jOi0TXBIVY1AlnPLecoRu2LOdNiu5RyKaxnmxCTqfq4EDP1uBveAtD1yqDTfSGup5b-kdOSXohtRTZdjPcipjtTnaOfjAikKJCa2DT6CVk3_35hdlb93pvF4_6RZZN3n18-54NBAPMYhSzYMpoY7WQ1jZVoypdOIEe2EmXZ0ltpeFKcOvQYbpEal1zlxaVsUbVqAbSOJXjd6_AVYkpJt0mnInPoxPICk8yiTqM24BBRCio9q_2PB5vohgGYwXjqy7xTJx79rrmqZqtd4WTjf94E2_BzSH-jt_0CnMb1lx7BzYCt0U8mLq7sDMAz36NiXLHwxATonXsXUXs-YO6mN7mnGp3vyvCW-7uwadLWcZ9WG_nrXsIcZE6g-1cCGMxfTVK1FIWqBIckzdXuQiScN6lHZDYiRDke7nEkCYRKYkhlESk5BG8HIcc9TAkF3XeDKdfDhapK8ejj-DZ2IqmhOpDVevmJ12J1l1Q3TRVEWyd04fg_zSG3RE86IVyOR2tlMo5jpUr4jp2ICDz1Zb28JsHNM-kTDGsj-BVEOzlvM9d5aMLV7kF11G0yw970_1NuJEFEOP0Mawvjk_cE7hmfy4Ou-OnXm1j-HLZIv4PxxyDmg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Probabilistic+Logic+Models+from+Probabilistic+Examples&rft.jtitle=Machine+learning&rft.au=Chen%2C+Jianzhong&rft.au=Muggleton%2C+Stephen&rft.au=Santos%2C+Jos%C3%A9&rft.date=2008-10-01&rft.issn=0885-6125&rft.volume=73&rft.issue=1&rft.spage=55&rft_id=info:doi/10.1007%2Fs10994-008-5076-4&rft_id=info%3Apmid%2F19888348&rft.externalDocID=19888348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon