Machine learning for email spam filtering: review, approaches and open research problems

The upsurge in the volume of unwanted emails called spam has created an intense need for the development of more dependable and robust antispam filters. Machine learning methods of recent are being used to successfully detect and filter spam emails. We present a systematic review of some of the popu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heliyon Jg. 5; H. 6; S. e01802
Hauptverfasser: Dada, Emmanuel Gbenga, Bassi, Joseph Stephen, Chiroma, Haruna, Abdulhamid, Shafi'i Muhammad, Adetunmbi, Adebayo Olusola, Ajibuwa, Opeyemi Emmanuel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.06.2019
Elsevier
Schlagworte:
ISSN:2405-8440, 2405-8440
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The upsurge in the volume of unwanted emails called spam has created an intense need for the development of more dependable and robust antispam filters. Machine learning methods of recent are being used to successfully detect and filter spam emails. We present a systematic review of some of the popular machine learning based email spam filtering approaches. Our review covers survey of the important concepts, attempts, efficiency, and the research trend in spam filtering. The preliminary discussion in the study background examines the applications of machine learning techniques to the email spam filtering process of the leading internet service providers (ISPs) like Gmail, Yahoo and Outlook emails spam filters. Discussion on general email spam filtering process, and the various efforts by different researchers in combating spam through the use machine learning techniques was done. Our review compares the strengths and drawbacks of existing machine learning approaches and the open research problems in spam filtering. We recommended deep leaning and deep adversarial learning as the future techniques that can effectively handle the menace of spam emails.
AbstractList The upsurge in the volume of unwanted emails called spam has created an intense need for the development of more dependable and robust antispam filters. Machine learning methods of recent are being used to successfully detect and filter spam emails. We present a systematic review of some of the popular machine learning based email spam filtering approaches. Our review covers survey of the important concepts, attempts, efficiency, and the research trend in spam filtering. The preliminary discussion in the study background examines the applications of machine learning techniques to the email spam filtering process of the leading internet service providers (ISPs) like Gmail, Yahoo and Outlook emails spam filters. Discussion on general email spam filtering process, and the various efforts by different researchers in combating spam through the use machine learning techniques was done. Our review compares the strengths and drawbacks of existing machine learning approaches and the open research problems in spam filtering. We recommended deep leaning and deep adversarial learning as the future techniques that can effectively handle the menace of spam emails.
The upsurge in the volume of unwanted emails called spam has created an intense need for the development of more dependable and robust antispam filters. Machine learning methods of recent are being used to successfully detect and filter spam emails. We present a systematic review of some of the popular machine learning based email spam filtering approaches. Our review covers survey of the important concepts, attempts, efficiency, and the research trend in spam filtering. The preliminary discussion in the study background examines the applications of machine learning techniques to the email spam filtering process of the leading internet service providers (ISPs) like Gmail, Yahoo and Outlook emails spam filters. Discussion on general email spam filtering process, and the various efforts by different researchers in combating spam through the use machine learning techniques was done. Our review compares the strengths and drawbacks of existing machine learning approaches and the open research problems in spam filtering. We recommended deep leaning and deep adversarial learning as the future techniques that can effectively handle the menace of spam emails.The upsurge in the volume of unwanted emails called spam has created an intense need for the development of more dependable and robust antispam filters. Machine learning methods of recent are being used to successfully detect and filter spam emails. We present a systematic review of some of the popular machine learning based email spam filtering approaches. Our review covers survey of the important concepts, attempts, efficiency, and the research trend in spam filtering. The preliminary discussion in the study background examines the applications of machine learning techniques to the email spam filtering process of the leading internet service providers (ISPs) like Gmail, Yahoo and Outlook emails spam filters. Discussion on general email spam filtering process, and the various efforts by different researchers in combating spam through the use machine learning techniques was done. Our review compares the strengths and drawbacks of existing machine learning approaches and the open research problems in spam filtering. We recommended deep leaning and deep adversarial learning as the future techniques that can effectively handle the menace of spam emails.
ArticleNumber e01802
Author Bassi, Joseph Stephen
Chiroma, Haruna
Adetunmbi, Adebayo Olusola
Abdulhamid, Shafi'i Muhammad
Dada, Emmanuel Gbenga
Ajibuwa, Opeyemi Emmanuel
AuthorAffiliation a Department of Computer Engineering, University of Maiduguri, Maiduguri, Nigeria
b Department of Computer Science, Federal College of Education (Technical), Gombe, Nigeria
e Department of Electrical Engineering, University of Ilorin, Ilorin, Nigeria
c Department of Cyber Security Science, Federal University of Technology Minna, Minna, Nigeria
d Department of Computer Science, Federal University of Technology Akure, Akure, Nigeria
AuthorAffiliation_xml – name: e Department of Electrical Engineering, University of Ilorin, Ilorin, Nigeria
– name: d Department of Computer Science, Federal University of Technology Akure, Akure, Nigeria
– name: b Department of Computer Science, Federal College of Education (Technical), Gombe, Nigeria
– name: c Department of Cyber Security Science, Federal University of Technology Minna, Minna, Nigeria
– name: a Department of Computer Engineering, University of Maiduguri, Maiduguri, Nigeria
Author_xml – sequence: 1
  givenname: Emmanuel Gbenga
  surname: Dada
  fullname: Dada, Emmanuel Gbenga
  email: gbengadada@unimaid.edu.ng
  organization: Department of Computer Engineering, University of Maiduguri, Maiduguri, Nigeria
– sequence: 2
  givenname: Joseph Stephen
  surname: Bassi
  fullname: Bassi, Joseph Stephen
  organization: Department of Computer Engineering, University of Maiduguri, Maiduguri, Nigeria
– sequence: 3
  givenname: Haruna
  surname: Chiroma
  fullname: Chiroma, Haruna
  organization: Department of Computer Science, Federal College of Education (Technical), Gombe, Nigeria
– sequence: 4
  givenname: Shafi'i Muhammad
  surname: Abdulhamid
  fullname: Abdulhamid, Shafi'i Muhammad
  organization: Department of Cyber Security Science, Federal University of Technology Minna, Minna, Nigeria
– sequence: 5
  givenname: Adebayo Olusola
  surname: Adetunmbi
  fullname: Adetunmbi, Adebayo Olusola
  organization: Department of Computer Science, Federal University of Technology Akure, Akure, Nigeria
– sequence: 6
  givenname: Opeyemi Emmanuel
  surname: Ajibuwa
  fullname: Ajibuwa, Opeyemi Emmanuel
  organization: Department of Electrical Engineering, University of Ilorin, Ilorin, Nigeria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31211254$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNUREvpTwBlyYIZrh0_EpBAqOJRqYgNSOwsx7me8cixg50p6r_Hw0xRy2ZWtnzP-Xzte55WJyEGrKrnBJYEiHi9Wa7Ru9sYlhRIt0QgLdBH1RllwBctY3Byb39aXeS8AQDCW9HJ5kl12hBKCOXsrPr5VZu1C1h71Cm4sKptTDWO2vk6T3qsrfMzplJ4Uye8cfj7Va2nKcViw1zrMNRxwlBquQDMui6l3uOYn1WPrfYZLw7refXj08fvl18W198-X11-uF4YLsS8IIRLiY3UnbVy6IELEFTYFpiRveW8l70GzVuAxgBBqY0R3AhkglFrwTTn1dWeO0S9UVNyo063Kmqn_h7EtFI6zc54VG15taSs4VT0rKNd17AWJTQtx6G3pimsd3vWtO1HHAyGOWn_APqwEtxareKNElxQwqEAXh4AKf7aYp7V6LJB73XAuM2KcsooY7JrjkuLsqWCS1qkL-639a-fuykWwdu9wKSYc0KrjJv17OKuS-cVAbWLjdqoQ2zULjZqH5vi5v-57y445nu_92EZb0lGUtk4DAYHl9DM5f_dEcIfRUjfLg
CitedBy_id crossref_primary_10_1016_j_procs_2022_12_401
crossref_primary_10_1007_s11276_024_03837_8
crossref_primary_10_1007_s11277_024_11628_9
crossref_primary_10_1080_02664763_2024_2307535
crossref_primary_10_1002_spy2_402
crossref_primary_10_3390_axioms12111003
crossref_primary_10_1109_TGRS_2023_3338091
crossref_primary_10_2196_15708
crossref_primary_10_1109_ACCESS_2023_3268064
crossref_primary_10_1109_ACCESS_2021_3105914
crossref_primary_10_33003_fjs_2025_0901_3226
crossref_primary_10_1007_s41403_023_00412_z
crossref_primary_10_1007_s42452_022_05027_7
crossref_primary_10_1515_hsz_2021_0393
crossref_primary_10_1016_j_patrec_2021_03_034
crossref_primary_10_1039_D2CS00203E
crossref_primary_10_1016_j_cose_2021_102259
crossref_primary_10_1016_j_compeleceng_2022_108384
crossref_primary_10_1080_08927022_2021_1916014
crossref_primary_10_1109_ACCESS_2022_3204051
crossref_primary_10_1109_ACCESS_2023_3249663
crossref_primary_10_3390_electronics10172083
crossref_primary_10_3390_math8050816
crossref_primary_10_1038_s41598_020_79548_9
crossref_primary_10_3390_app122010491
crossref_primary_10_3390_app12147043
crossref_primary_10_3390_s23094346
crossref_primary_10_2478_cait_2023_0037
crossref_primary_10_3233_JIFS_179890
crossref_primary_10_3390_app13031630
crossref_primary_10_3390_s22020613
crossref_primary_10_3390_su151310612
crossref_primary_10_1007_s10489_020_02086_4
crossref_primary_10_1016_j_atmosenv_2025_121422
crossref_primary_10_1007_s12274_023_6137_5
crossref_primary_10_1016_j_seta_2023_103307
crossref_primary_10_1016_j_compeleceng_2024_109625
crossref_primary_10_1016_j_patcog_2024_110789
crossref_primary_10_3390_math10152646
crossref_primary_10_1016_j_neucom_2021_02_075
crossref_primary_10_1109_ACCESS_2024_3391023
crossref_primary_10_3390_electronics12010042
crossref_primary_10_1016_j_knosys_2024_112939
crossref_primary_10_3389_fbuil_2023_1145591
crossref_primary_10_1016_j_asoc_2020_106956
crossref_primary_10_1016_j_rineng_2025_106727
crossref_primary_10_1002_aesr_202300004
crossref_primary_10_1007_s11831_023_09994_x
crossref_primary_10_1111_exsy_13153
crossref_primary_10_62823_IJARCMSS_8_2_I__7400
crossref_primary_10_3233_JIFS_201990
crossref_primary_10_3390_a18080515
crossref_primary_10_7717_peerj_cs_490
crossref_primary_10_3390_electronics13112034
crossref_primary_10_2478_crdj_2023_0007
crossref_primary_10_1016_j_jnoncrysol_2022_121640
crossref_primary_10_3390_diagnostics14242822
crossref_primary_10_38124_ijisrt_25jul1755
crossref_primary_10_1155_2022_2500772
crossref_primary_10_1016_j_eswa_2024_125767
crossref_primary_10_3233_JIFS_223136
crossref_primary_10_1016_j_ins_2023_119237
crossref_primary_10_63995_AZUQ8110
crossref_primary_10_1007_s11042_023_16448_w
crossref_primary_10_2478_cait_2024_0021
crossref_primary_10_2478_hjbpa_2024_0006
crossref_primary_10_3390_electronics10060668
crossref_primary_10_1016_j_ecoinf_2021_101226
crossref_primary_10_1109_ACCESS_2020_3041951
crossref_primary_10_1016_j_irbm_2021_06_006
crossref_primary_10_1007_s12652_020_02883_2
crossref_primary_10_1016_j_health_2022_100112
crossref_primary_10_1007_s12553_022_00712_4
crossref_primary_10_1016_j_jisa_2021_102947
crossref_primary_10_1016_j_matpr_2020_12_377
crossref_primary_10_3390_info11060312
crossref_primary_10_1016_j_asoc_2023_110226
crossref_primary_10_1007_s11042_023_15828_6
crossref_primary_10_7717_peerj_cs_2333
crossref_primary_10_1016_j_jksuci_2022_10_025
crossref_primary_10_2174_0115748928361472250123105507
crossref_primary_10_1002_jum_15765
crossref_primary_10_1007_s41315_021_00217_9
crossref_primary_10_21814_rlec_6316
crossref_primary_10_1016_j_csl_2024_101688
crossref_primary_10_1016_j_eswa_2021_115742
crossref_primary_10_1007_s41965_024_00166_9
crossref_primary_10_1088_1757_899X_1022_1_012113
crossref_primary_10_1016_j_eswa_2022_118101
crossref_primary_10_1080_19361610_2025_2508726
crossref_primary_10_1016_j_imu_2020_100372
crossref_primary_10_1109_ACCESS_2021_3110239
crossref_primary_10_1016_j_asoc_2023_110478
crossref_primary_10_1103_PhysRevApplied_13_054005
crossref_primary_10_1016_j_heliyon_2024_e32189
crossref_primary_10_1145_3737279
crossref_primary_10_1038_s41598_023_35867_1
crossref_primary_10_1016_j_comnet_2024_110603
crossref_primary_10_1155_2022_1862888
crossref_primary_10_3390_s22051843
crossref_primary_10_1016_j_ins_2024_120726
crossref_primary_10_1155_2022_1833507
crossref_primary_10_1109_ACCESS_2024_3376400
crossref_primary_10_3390_met12060958
crossref_primary_10_1080_01969722_2022_2148509
crossref_primary_10_1080_19393555_2020_1722867
crossref_primary_10_1109_ACCESS_2022_3210032
crossref_primary_10_1145_3538491
crossref_primary_10_1109_ACCESS_2024_3467996
crossref_primary_10_1016_j_cose_2023_103378
crossref_primary_10_1016_j_ins_2021_11_035
crossref_primary_10_1016_j_neucom_2024_127667
crossref_primary_10_1108_MIP_04_2024_0252
crossref_primary_10_3390_app112411968
crossref_primary_10_1007_s11277_021_09221_5
crossref_primary_10_12720_jait_16_9_1318_1328
crossref_primary_10_1017_jog_2021_120
crossref_primary_10_7717_peerj_cs_1221
crossref_primary_10_1145_3643563
crossref_primary_10_46763_IJEMT2551105dj
crossref_primary_10_1007_s11042_023_14814_2
crossref_primary_10_1016_j_matpr_2021_04_630
crossref_primary_10_3390_fi14070194
crossref_primary_10_3390_app14062254
crossref_primary_10_1016_j_procs_2025_03_300
crossref_primary_10_1007_s43681_024_00526_2
crossref_primary_10_1016_j_comnet_2021_108453
crossref_primary_10_1007_s10163_021_01182_y
crossref_primary_10_3390_app15116158
crossref_primary_10_3390_su13063196
crossref_primary_10_1186_s13673_020_00242_w
crossref_primary_10_1007_s10586_024_04742_7
crossref_primary_10_1016_j_biotechadv_2021_107739
crossref_primary_10_1108_DTA_07_2021_0191
crossref_primary_10_1007_s42979_025_03814_8
crossref_primary_10_1088_2632_2153_abd614
crossref_primary_10_3390_a17010047
crossref_primary_10_3390_bdcc4010001
crossref_primary_10_3233_JCS_210022
crossref_primary_10_1007_s11105_023_01413_6
crossref_primary_10_32604_cmc_2022_020472
crossref_primary_10_1109_ACCESS_2020_3030751
crossref_primary_10_3390_en13102509
crossref_primary_10_1007_s40747_021_00494_8
crossref_primary_10_1016_j_cose_2023_103671
crossref_primary_10_1016_j_comnet_2024_110847
crossref_primary_10_3390_app13031971
crossref_primary_10_1016_j_jbusres_2022_113558
crossref_primary_10_1109_ACCESS_2021_3116128
crossref_primary_10_3390_jcp4020019
crossref_primary_10_3390_math10244679
crossref_primary_10_1051_itmconf_20257004013
crossref_primary_10_1109_TPAMI_2021_3127698
crossref_primary_10_3390_ma16145013
crossref_primary_10_1007_s10462_022_10195_4
crossref_primary_10_12968_S1361_3723_23_70007_9
crossref_primary_10_1016_j_knosys_2021_106935
crossref_primary_10_7717_peerj_cs_1840
crossref_primary_10_1016_j_ipm_2021_102812
Cites_doi 10.1007/3-540-45014-9_1
10.1016/j.cose.2006.12.012
10.1007/978-3-642-04944-6_14
10.1007/BF00058655
10.4236/jsea.2013.64025
10.1016/j.aei.2005.01.004
10.1561/1500000006
10.22452/mjcs.vol31no1.2
10.1023/A:1007614523901
10.1016/j.ins.2014.02.114
10.1016/j.knosys.2008.01.001
10.1016/j.knosys.2011.10.001
10.1016/j.patrec.2005.10.010
10.1145/1247715.1247717
10.1214/aos/1016218223
10.1016/j.ipm.2009.05.005
10.1007/s10462-011-9280-4
10.5815/ijmecs.2016.07.08
10.1016/j.dss.2006.11.012
10.3390/e19060242
10.1016/S0065-2458(08)00603-7
10.1016/j.eswa.2009.02.037
10.1016/j.peva.2006.11.001
10.1145/1039621.1039625
10.1023/A:1010933404324
10.1088/1757-899X/226/1/012091
10.1108/eb046814
10.1016/j.ins.2006.12.005
ContentType Journal Article
Copyright 2019 The Authors
2019 The Authors 2019
Copyright_xml – notice: 2019 The Authors
– notice: 2019 The Authors 2019
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.heliyon.2019.e01802
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Computer Science
EISSN 2405-8440
ExternalDocumentID oai_doaj_org_article_81217243526b49299348e70385edbfc3
PMC6562150
31211254
10_1016_j_heliyon_2019_e01802
S2405844018353404
Genre Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAFWJ
ABMAC
ACGFS
ACLIJ
ADBBV
ADEZE
AEXQZ
AFPKN
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c566t-11577e37a9ff7db0560626f804c7bf55b7ba0a58003c01e7acc65c6e4642ff0c3
IEDL.DBID DOA
ISICitedReferencesCount 221
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473818300119&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2405-8440
IngestDate Fri Oct 03 12:21:24 EDT 2025
Thu Aug 21 18:20:49 EDT 2025
Thu Oct 02 03:39:31 EDT 2025
Fri Jul 11 09:47:34 EDT 2025
Thu Jan 02 23:01:49 EST 2025
Tue Nov 18 22:38:09 EST 2025
Sat Nov 29 01:44:21 EST 2025
Sat May 25 15:41:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Computer science
Deep learning
Support vector machines
Naïve Bayes
Spam filtering
Neural networks
Machine learning
Analysis of algorithms
Computer security
Computer privacy
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-11577e37a9ff7db0560626f804c7bf55b7ba0a58003c01e7acc65c6e4642ff0c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/81217243526b49299348e70385edbfc3
PMID 31211254
PQID 2242826572
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_81217243526b49299348e70385edbfc3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6562150
proquest_miscellaneous_2524244793
proquest_miscellaneous_2242826572
pubmed_primary_31211254
crossref_citationtrail_10_1016_j_heliyon_2019_e01802
crossref_primary_10_1016_j_heliyon_2019_e01802
elsevier_sciencedirect_doi_10_1016_j_heliyon_2019_e01802
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Biju, Wendy (bib59) 2009
Barreno, Nelson, Sears, Joseph, Tygar (bib119) 2006
Elbeltagi, Hegazy, Grierson (bib13) 2005; 19
Roy, Viswanatham, Krishna, Saraf, Gupta, Mishra (bib73) 2013
Li, Zhong (bib63) 2006
Breiman, Cutler (bib91) 2007
Porter (bib31) 1980; 14
Attar, Rad, Atani (bib34) 2011; 40
Ray (bib61) 2015
Pawlak (bib72) 1991
Fawcett (bib48) 2006; 27
Chandra, Mohammad, Rizwan (bib65) 2015; 2
Albelwi, Mahmood (bib96) 2017; 19
Rusland, Wahid, Kasim, Hafit (bib136) 2017; 226
Kumar, Arumugam (bib116) 2015; 23
Mousavi, Ayremlou (bib104) 2011
Irwin, Friedman (bib27) 2008
Abu-nimeh, Nappa, Wang, Nair (bib40) 2007
Bouguila, Amayri (bib5) 2009; 45
Pérez-Díaz, Ruano-Ordás, Fdez-Riverola, Méndez (bib74) 2012; 13
Schölkopf, Smola (bib131) 2001
Bhagyashri, Pratap (bib113) 2013; 3
Schapire (bib89) 1999; 37
(bib47) 2010
Fette, Sadeh, Tomasic (bib92) 2007
Sharma, Suryawansi (bib99) 2016; 136
Sakkis, Androutsopoulos, Paliouras, Karkaletsis (bib33) 2001
Pelletier, Almhana, Choulakian (bib137) 2004
Awad, Foqaha (bib1) 2016; 8
Palanisamy, Kumaresan, Varalakshmi (bib107) 2016; 3
Saravanan (bib56) 2010
Qasem, Shamsuddin, Zain (bib11) 2012; 27
Sanz, Hidalgo, Pérez (bib21) 2008; 74
Cao, Liao, Li (bib6) 2004
Akinyelu, Adewumi (bib90) 2016; 6
Dada, Ramlan (bib129) 2018; 31
Androutsopoulos, Paliouras, Michelakis (bib51) 2011
Breiman (bib86) 2001; 45
Brownlee (bib135) 2019
Zhao, Zhang (bib115) 2005
Feng, Zhou (bib133) 2013; 9
Dipika, Kanchan (bib55) 2016; 4
Nelson, Barreno, Chi, Joseph, Rubinstein, Saini, Sutton, Tygar, Xia (bib120) 2008
Chakraborty, Mondal (bib80) 2012; 47
Choudhary, Dhaka (bib106) 2013
Zhang, Zhu, Yao (bib36) 2004; 3
Friedman, Hastie, Tibshirani (bib87) 2000; 38
Gao, Yang, Zhao, Pardo, Wu, Pappas, Choudhary (bib46) 2008
Balakumar, Ganeshkumar (bib98) 2015; 3
Kundur (bib71) 2013
Katakis, Tsoumakas, Vlahavas (bib25) 2007
Christina, Karpagavalli, Suganya (bib28) 2010; 02
Debarr, Wechsler (bib43) 2009
Marsono, El-Kharashi, Gebali (bib62) 2008
Masud, Rashedur (bib81) 2013; 6
Awad, Elseuofi (bib100) 2011; 3
Mathswork (bib49) 2016
Agnieszka (bib75) 2016; 148
Dietterich (bib84) 2000; 1857
Androutsopoulos, Koutsias, Chandrinos, Paliouras, Spyropoulos (bib42) 2000
Lee, Kim, Kim, Park (bib125) 2010; 1
Cormack (bib20) 2008; 1
Mendez, Díaz, Iglesias, Corchado (bib35) 2006
Dhanaraj, Palaniswami (bib105) 2014; 8
Clark (bib52) 2008
Edstrom (bib64) 2016
Khan, Hamadneh, Tilahun, Ngnotchouye (bib70) 2016
Breiman (bib83) 1996; 24
Chen, Chang (bib79) 2014; 6
Adeva, Beresi, Calvo (bib85) 2000
Schölkopf, Smola (bib130) 2002
Mason (bib8) 2003
Vapnik (bib77) 1995
Guzella, Caminhas (bib16) 2009; 36
Freund, Schapire (bib88) 1997; 55
Cormack, Lynam (bib37) 2007; 25
Carpinteiro, Lima, Assis, de Souza, Moreira, Pinheiro (bib66) 2006
Whissell, Clarke (bib54) 2011
Idris, Muhammad (bib110) 2012
Renuka, Visalakshi, Sankar (bib112) 2015
Deng, Yu (bib94) 2014
Torabi, Nadimi-Shahraki, Nabiollahi (bib78) 2015; 13
Androutsopoulos, Koutsias, Chandrinos, Spyropoulos (bib50) 2000
Fdez-Riverola, Iglesias, Diaz, Méndez, Corchado (bib7) 2007; 43
Stuart, Cha, Tappert (bib9) 2004
Wang, Chen (bib15) 2007; 26
Zavvar, Rezaei, Garavand (bib109) 2016
Ott, Choi, Cardie, Hancock (bib118) 2011; 1
Laorden, Ugarte-Pedrero, Santos, Sanz, Nieves, Bringas (bib24) 2014; 277
Dugonik, Fister (bib69) 2014
Sosa (bib111) 2010
Bahgat, Rady, Gad (bib4) 2016
Yang (bib68) 2009; 5792
Lueg (bib17) 2005; 42
Guerra, Guedes, Meira, Hoepers, Chaves, Steding-Jessen (bib82) 2010, July
Han, Kamber, Pei (bib10) 2011
Bandana (bib123) 2013
Androutsopoulos, Koutsias, Chandrinos, Paliouras, Spyropoulos (bib38) 2000
Li, Zhong, Yao, Liu, Liu (bib19) 2006
Schaffer, Whitley, Eshelman (bib12) 1992
Shrivastava, Bindu (bib108) 2013; 4
Chhabra, Wadhvani, Shukla (bib134) 2010; 1
Pérez-Díaz, Ruano-Ordás, Fdez-Riverola, Méndez (bib76) 2016
Yuan, He, Zhu, RanaBhat, Li (bib122) 2018
Holmes, Pfahringer, Kirkby, Frank, Hall (bib124) 2002
Dhanaraj, Karthikeyani (bib22) 2013
Subramaniam, Jalab, Taqa (bib30) 2010; 5
Graham (bib114) 2002
Gomes, Cazita, Almeida, Almeida, Meira (bib14) 2007; 64
Sculley, Wachman (bib128) 2007
Almeida, Yamakami (bib32) 2010
Zhao, Xu, Liu, Guo (bib95) 2017
Wu, Deng (bib60) 2008
Karthika, Visalakshi (bib97) 2015; 14
Zhu, Dong, Liu (bib58) 2015; 8
Bhowmick, Hazarika (bib23) 2016
Dredze, Gevaryahu, Elias-Bachrach (bib45) 2007
Barreno (bib121) 2008
Marsono, El-Kharashi, Gebali (bib126) 2009
Rajamohana, Umamaheswari, Abirami (bib101) 2017
Ndumiyana, Magomelo, Sakala (bib67) 2013; 2
Wang (bib18) Aug 2005
Tan, Steinbach, Kumar (bib57) 2006
Whittaker, Ryner, Nazif (bib93) 2010
Yu, Xu (bib132) 2008; 21
Savita, Santoshkumar (bib26) 2014
Biggio, Corona, Fumera, Giacinto, Roli (bib39) 2011
Alkaht, Al-Khatib (bib102) 2016; 11
Sharma, Prajapat, Aslam (bib103) 2014
Sahil, Dishant, Mehak, Ishita, Nishtha (bib127) 2013; 2
(bib3) 2017
Fonseca, Fazzion, Cunha, Las-Casas, Guedes, Meira, Chaves (bib2) 2016; 99
Mitchell (bib53) 1997
(bib29) 2017
Tyagi (bib117) 2016
Koprinska, Poon, Clark, Chan (bib41) 2007; 177
Wang, Josephson, Lv, Charikar, Li (bib44) 2007
Almeida (10.1016/j.heliyon.2019.e01802_bib32) 2010
Laorden (10.1016/j.heliyon.2019.e01802_bib24) 2014; 277
Breiman (10.1016/j.heliyon.2019.e01802_bib91) 2007
Sahil (10.1016/j.heliyon.2019.e01802_bib127) 2013; 2
Stuart (10.1016/j.heliyon.2019.e01802_bib9) 2004
Mathswork (10.1016/j.heliyon.2019.e01802_bib49) 2016
Fonseca (10.1016/j.heliyon.2019.e01802_bib2) 2016; 99
Deng (10.1016/j.heliyon.2019.e01802_bib94) 2014
Torabi (10.1016/j.heliyon.2019.e01802_bib78) 2015; 13
Cormack (10.1016/j.heliyon.2019.e01802_bib20) 2008; 1
Wang (10.1016/j.heliyon.2019.e01802_bib15) 2007; 26
Dugonik (10.1016/j.heliyon.2019.e01802_bib69) 2014
Sanz (10.1016/j.heliyon.2019.e01802_bib21) 2008; 74
Wang (10.1016/j.heliyon.2019.e01802_bib44) 2007
Han (10.1016/j.heliyon.2019.e01802_bib10) 2011
Yu (10.1016/j.heliyon.2019.e01802_bib132) 2008; 21
Chandra (10.1016/j.heliyon.2019.e01802_bib65) 2015; 2
Freund (10.1016/j.heliyon.2019.e01802_bib88) 1997; 55
Zhao (10.1016/j.heliyon.2019.e01802_bib95) 2017
Whissell (10.1016/j.heliyon.2019.e01802_bib54) 2011
Sharma (10.1016/j.heliyon.2019.e01802_bib99) 2016; 136
Gomes (10.1016/j.heliyon.2019.e01802_bib14) 2007; 64
Alkaht (10.1016/j.heliyon.2019.e01802_bib102) 2016; 11
Ray (10.1016/j.heliyon.2019.e01802_bib61) 2015
Schölkopf (10.1016/j.heliyon.2019.e01802_bib130) 2002
Androutsopoulos (10.1016/j.heliyon.2019.e01802_bib50) 2000
Breiman (10.1016/j.heliyon.2019.e01802_bib86) 2001; 45
Christina (10.1016/j.heliyon.2019.e01802_bib28) 2010; 02
Carpinteiro (10.1016/j.heliyon.2019.e01802_bib66) 2006
Kumar (10.1016/j.heliyon.2019.e01802_bib116) 2015; 23
Feng (10.1016/j.heliyon.2019.e01802_bib133) 2013; 9
Pawlak (10.1016/j.heliyon.2019.e01802_bib72) 1991
Fette (10.1016/j.heliyon.2019.e01802_bib92) 2007
Nelson (10.1016/j.heliyon.2019.e01802_bib120) 2008
Dhanaraj (10.1016/j.heliyon.2019.e01802_bib22) 2013
Abu-nimeh (10.1016/j.heliyon.2019.e01802_bib40) 2007
Lee (10.1016/j.heliyon.2019.e01802_bib125) 2010; 1
Sculley (10.1016/j.heliyon.2019.e01802_bib128) 2007
Irwin (10.1016/j.heliyon.2019.e01802_bib27) 2008
Zhang (10.1016/j.heliyon.2019.e01802_bib36) 2004; 3
Dietterich (10.1016/j.heliyon.2019.e01802_bib84) 2000; 1857
Barreno (10.1016/j.heliyon.2019.e01802_bib119) 2006
Wu (10.1016/j.heliyon.2019.e01802_bib60) 2008
Schölkopf (10.1016/j.heliyon.2019.e01802_bib131) 2001
Bouguila (10.1016/j.heliyon.2019.e01802_bib5) 2009; 45
Karthika (10.1016/j.heliyon.2019.e01802_bib97) 2015; 14
Androutsopoulos (10.1016/j.heliyon.2019.e01802_bib38) 2000
Dada (10.1016/j.heliyon.2019.e01802_bib129) 2018; 31
Tan (10.1016/j.heliyon.2019.e01802_bib57) 2006
Zhao (10.1016/j.heliyon.2019.e01802_bib115) 2005
Chhabra (10.1016/j.heliyon.2019.e01802_bib134) 2010; 1
Dhanaraj (10.1016/j.heliyon.2019.e01802_bib105) 2014; 8
Fdez-Riverola (10.1016/j.heliyon.2019.e01802_bib7) 2007; 43
(10.1016/j.heliyon.2019.e01802_bib3) 2017
Mendez (10.1016/j.heliyon.2019.e01802_bib35) 2006
Bahgat (10.1016/j.heliyon.2019.e01802_bib4) 2016
Savita (10.1016/j.heliyon.2019.e01802_bib26) 2014
Attar (10.1016/j.heliyon.2019.e01802_bib34) 2011; 40
Idris (10.1016/j.heliyon.2019.e01802_bib110) 2012
Awad (10.1016/j.heliyon.2019.e01802_bib100) 2011; 3
Yuan (10.1016/j.heliyon.2019.e01802_bib122) 2018
Tyagi (10.1016/j.heliyon.2019.e01802_bib117) 2016
Qasem (10.1016/j.heliyon.2019.e01802_bib11) 2012; 27
Whittaker (10.1016/j.heliyon.2019.e01802_bib93) 2010
Mitchell (10.1016/j.heliyon.2019.e01802_bib53) 1997
Roy (10.1016/j.heliyon.2019.e01802_bib73) 2013
Choudhary (10.1016/j.heliyon.2019.e01802_bib106) 2013
Balakumar (10.1016/j.heliyon.2019.e01802_bib98) 2015; 3
Mason (10.1016/j.heliyon.2019.e01802_bib8) 2003
Guzella (10.1016/j.heliyon.2019.e01802_bib16) 2009; 36
Cormack (10.1016/j.heliyon.2019.e01802_bib37) 2007; 25
Marsono (10.1016/j.heliyon.2019.e01802_bib62) 2008
Zhu (10.1016/j.heliyon.2019.e01802_bib58) 2015; 8
Sakkis (10.1016/j.heliyon.2019.e01802_bib33) 2001
Masud (10.1016/j.heliyon.2019.e01802_bib81) 2013; 6
Friedman (10.1016/j.heliyon.2019.e01802_bib87) 2000; 38
Edstrom (10.1016/j.heliyon.2019.e01802_bib64) 2016
Rusland (10.1016/j.heliyon.2019.e01802_bib136) 2017; 226
Agnieszka (10.1016/j.heliyon.2019.e01802_bib75) 2016; 148
Wang (10.1016/j.heliyon.2019.e01802_bib18) 2005
Li (10.1016/j.heliyon.2019.e01802_bib19) 2006
Biju (10.1016/j.heliyon.2019.e01802_bib59) 2009
Ott (10.1016/j.heliyon.2019.e01802_bib118) 2011; 1
Schaffer (10.1016/j.heliyon.2019.e01802_bib12) 1992
Rajamohana (10.1016/j.heliyon.2019.e01802_bib101) 2017
Zavvar (10.1016/j.heliyon.2019.e01802_bib109) 2016
Barreno (10.1016/j.heliyon.2019.e01802_bib121) 2008
Mousavi (10.1016/j.heliyon.2019.e01802_bib104) 2011
Biggio (10.1016/j.heliyon.2019.e01802_bib39) 2011
Lueg (10.1016/j.heliyon.2019.e01802_bib17) 2005; 42
Renuka (10.1016/j.heliyon.2019.e01802_bib112) 2015
Porter (10.1016/j.heliyon.2019.e01802_bib31) 1980; 14
Adeva (10.1016/j.heliyon.2019.e01802_bib85) 2000
Bhagyashri (10.1016/j.heliyon.2019.e01802_bib113) 2013; 3
Clark (10.1016/j.heliyon.2019.e01802_bib52) 2008
Marsono (10.1016/j.heliyon.2019.e01802_bib126) 2009
Saravanan (10.1016/j.heliyon.2019.e01802_bib56) 2010
Debarr (10.1016/j.heliyon.2019.e01802_bib43) 2009
Katakis (10.1016/j.heliyon.2019.e01802_bib25) 2007
Androutsopoulos (10.1016/j.heliyon.2019.e01802_bib42) 2000
Sosa (10.1016/j.heliyon.2019.e01802_bib111) 2010
Koprinska (10.1016/j.heliyon.2019.e01802_bib41) 2007; 177
Pérez-Díaz (10.1016/j.heliyon.2019.e01802_bib74) 2012; 13
Shrivastava (10.1016/j.heliyon.2019.e01802_bib108) 2013; 4
Khan (10.1016/j.heliyon.2019.e01802_bib70) 2016
Awad (10.1016/j.heliyon.2019.e01802_bib1) 2016; 8
Chakraborty (10.1016/j.heliyon.2019.e01802_bib80) 2012; 47
Dredze (10.1016/j.heliyon.2019.e01802_bib45) 2007
(10.1016/j.heliyon.2019.e01802_bib47) 2010
Elbeltagi (10.1016/j.heliyon.2019.e01802_bib13) 2005; 19
Guerra (10.1016/j.heliyon.2019.e01802_bib82) 2010
Li (10.1016/j.heliyon.2019.e01802_bib63) 2006
Vapnik (10.1016/j.heliyon.2019.e01802_bib77) 1995
Chen (10.1016/j.heliyon.2019.e01802_bib79) 2014; 6
Kundur (10.1016/j.heliyon.2019.e01802_bib71) 2013
Subramaniam (10.1016/j.heliyon.2019.e01802_bib30) 2010; 5
Yang (10.1016/j.heliyon.2019.e01802_bib68) 2009; 5792
Schapire (10.1016/j.heliyon.2019.e01802_bib89) 1999; 37
Fawcett (10.1016/j.heliyon.2019.e01802_bib48) 2006; 27
Albelwi (10.1016/j.heliyon.2019.e01802_bib96) 2017; 19
Graham (10.1016/j.heliyon.2019.e01802_bib114) 2002
Bandana (10.1016/j.heliyon.2019.e01802_bib123) 2013
Brownlee (10.1016/j.heliyon.2019.e01802_bib135) 2019
Bhowmick (10.1016/j.heliyon.2019.e01802_bib23) 2016
Dipika (10.1016/j.heliyon.2019.e01802_bib55) 2016; 4
Gao (10.1016/j.heliyon.2019.e01802_bib46) 2008
Pérez-Díaz (10.1016/j.heliyon.2019.e01802_bib76) 2016
Pelletier (10.1016/j.heliyon.2019.e01802_bib137) 2004
(10.1016/j.heliyon.2019.e01802_bib29) 2017
Akinyelu (10.1016/j.heliyon.2019.e01802_bib90) 2016; 6
Cao (10.1016/j.heliyon.2019.e01802_bib6) 2004
Sharma (10.1016/j.heliyon.2019.e01802_bib103) 2014
Holmes (10.1016/j.heliyon.2019.e01802_bib124) 2002
Androutsopoulos (10.1016/j.heliyon.2019.e01802_bib51) 2011
Breiman (10.1016/j.heliyon.2019.e01802_bib83) 1996; 24
Ndumiyana (10.1016/j.heliyon.2019.e01802_bib67) 2013; 2
Palanisamy (10.1016/j.heliyon.2019.e01802_bib107) 2016; 3
References_xml – volume: 31
  start-page: 17
  year: 2018
  end-page: 34
  ident: bib129
  article-title: pdPSO: the Fusion of Primal-Dual interior point method and particle swarm optimisation algorithm
  publication-title: Malays. J. Comp. Sci., Malaysia
– start-page: 1
  year: 2008
  end-page: 12
  ident: bib27
  article-title: Spam Construction Trends
  publication-title: Information Security for South Africa (ISSA)
– year: 2010, July
  ident: bib82
  article-title: Exploring the spam arms race to characterize spam evolution
  publication-title: Proceedings of the 7th Collaboration, Electronic messaging, Anti-Abuse and Spam Conference (CEAS), Redmond, WA
– year: 2016
  ident: bib64
  article-title: Detecting Spam with Artificial Neural Networks
– start-page: 125
  year: 2011
  end-page: 134
  ident: bib54
  article-title: Clustering for semi-supervised spam filtering
  publication-title: Proceedings of the 8th Annual Collaboration, Electronic Messaging, Anti-abuse and Spam Conference (CEAS ’11)
– start-page: 1
  year: 2017
  end-page: 4
  ident: bib101
  article-title: Adaptive binary flower pollination algorithm for feature selection in review spam detection
  publication-title: IEEE International Conference on Innovations in Green Energy and Healthcare Technologies
– start-page: 68
  year: 2014
  end-page: 72
  ident: bib26
  article-title: Effective spam detection method for email, international conference on advances in engineering & technology - 2014 (ICAET-2014)
  publication-title: OSR J. Comp. Sci. (IOSR – JCE)
– volume: 8
  start-page: 175
  year: 2015
  end-page: 184
  ident: bib58
  article-title: Hierarchical reinforcement learning based on KNN classification algorithms
  publication-title: Int. J. Hosp. Inf. Technol.
– volume: 3
  year: 2013
  ident: bib113
  article-title: Auto E-mails classification using bayesian filter
  publication-title: Int. J. Adv. Technol. Eng. Res.
– year: 2016
  ident: bib49
  article-title: Detector Performance Analysis Using ROC Curves – MATLAB & Simulink Example
– volume: 11
  start-page: 2
  year: 2016
  ident: bib102
  article-title: Filtering SPAM Using Several Stages Neural Networks
  publication-title: Int. Rev. Comp. Softw.
– year: 2009
  ident: bib43
  article-title: Spam detection using clustering , random forests and active learning
  publication-title: CEAS 2009 Sixth Conference on Email and Anti-spam
– start-page: 106
  year: 2006
  end-page: 120
  ident: bib35
  article-title: A comparative performance study of feature selection methods for the anti-spam filtering domain
  publication-title: Advances in Data Mining. Applications in Medicine, Web Mining, Marketing, Image and Signal Mining
– volume: 3
  start-page: 173
  year: 2011
  end-page: 184
  ident: bib100
  article-title: Machine learning methods for spam E-mail classification
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 99
  year: 2016
  ident: bib2
  article-title: Measuring characterizing, and avoiding spam traffic costs
  publication-title: IEEE Int. Comp.
– year: 1995
  ident: bib77
  article-title: The Nature of Statistical Learning Theory
– year: 2013
  ident: bib22
  article-title: A study on e-mail image spam filtering techniques
  publication-title: Paper presented at the International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME)
– start-page: 887
  year: 2008
  end-page: 891
  ident: bib60
  article-title: Research in anti-spam method based on bayesian filtering
  publication-title: Computational Intelligence and Industrial Application, 2008. PACIIA ’08. Pacific-Asia Workshop on, 2
– year: 2007
  ident: bib92
  article-title: Learning to detect phishing emails
  publication-title: Proceedings of the 16th International World Wide Web Conference (WWW ’07), 649–656, Alberta, Canada, May 2007
– volume: 3
  start-page: 243
  year: 2004
  end-page: 269
  ident: bib36
  article-title: An evaluation of statistical spam filtering techniques spam filtering as text categorization
  publication-title: ACM Trans. Asian Lang. Inf. Process
– year: 2010
  ident: bib111
  article-title: Spam Classification Using Machine Learning Techniques – Sinespam
– start-page: 479
  year: 2013
  end-page: 484
  ident: bib73
  article-title: Applicability of rough set technique for data investigation and optimization of intrusion detection system
  publication-title: Quality, Reliability, Security and Robustness in Heterogeneous Networks
– start-page: 1
  year: 2016
  end-page: 27
  ident: bib23
  article-title: Machine Learning for E-Mail Spam Filtering: Review, Techniques and Trends
– volume: 5
  start-page: 1869
  year: 2010
  end-page: 1882
  ident: bib30
  article-title: Overview of textual anti-spam filtering techniques
  publication-title: Int. J. Phys. Sci.
– start-page: 1
  year: 2008
  end-page: 9
  ident: bib120
  article-title: Exploiting Machine Learning to subvert your spam filter
  publication-title: Proceedings of the 1st USENIX Workshop on Large-Scale Exploits and Emergent Threats, San Francisco, California, 2008
– volume: 177
  start-page: 2167
  year: 2007
  end-page: 2187
  ident: bib41
  article-title: Learning to classify e-mail
  publication-title: Inf. Sci.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib86
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 36
  start-page: 10206
  year: 2009
  end-page: 10222
  ident: bib16
  article-title: A review of machine learning approaches to spam filtering
  publication-title: Expert Syst. Appl.
– start-page: 16
  year: 2006
  end-page: 25
  ident: bib119
  article-title: Can machine learning be secure?
  publication-title: Proceedings of the 2006 ACM Symposium on Information
– year: 2011
  ident: bib10
  article-title: Data Mining: Concepts and Techniques
– year: 1991
  ident: bib72
  article-title: Rough Sets: Theoretical Aspects of Reasoning about Data
– start-page: 1
  year: 2010
  end-page: 7
  ident: bib32
  article-title: Content-based spam filtering
  publication-title: The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona
– year: 1997
  ident: bib53
  article-title: Machine Learning
– year: 2011
  ident: bib104
  article-title: Bayesian Spam Classifier
– volume: 8
  year: 2016
  ident: bib1
  article-title: Email spam classification using hybrid approach of RBF neural network and particle swarm optimization
  publication-title: Int. J. Netw. Secur. Appl.
– volume: 6
  year: 2016
  ident: bib90
  article-title: Classification of phishing email using random forest machine learning technique
  publication-title: J. Appl. Math.
– year: 2014
  ident: bib94
  article-title: Deep Learning: Methods and Applications
– volume: 1
  start-page: 309
  year: 2011
  end-page: 319
  ident: bib118
  article-title: Finding deceptive opinion spam by any stretch of imagination
  publication-title: ACM Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies
– start-page: 1
  year: 2000
  end-page: 12
  ident: bib42
  article-title: Learning to filter spam E-mail : a comparison of a naïve bayesian and a memory based approach
  publication-title: Proceedings of 4th European Conference on Principles and Practice of Knowledge Discovery in Databases, Lyon, France, September 2000
– year: 2002
  ident: bib130
  article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond
– volume: 02
  start-page: 3126
  year: 2010
  end-page: 3129
  ident: bib28
  article-title: Email spam filtering using supervised machine learning techniques
  publication-title: Int. J. Comput. Sci. Eng.
– year: 2016
  ident: bib117
  article-title: Content Based Spam Classification- A Deep Learning Approach
– volume: 226
  year: 2017
  ident: bib136
  article-title: Analysis of Näıve Bayes algorithm for email spam filtering across multiple datasets
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– year: 2003
  ident: bib8
  article-title: New Law Designed to Limit Amount of Spam in E-Mail
– start-page: 1
  year: 1992
  end-page: 37
  ident: bib12
  article-title: Combinations of genetic algorithms and neural networks: a survey of the state of the art
– year: 2018
  ident: bib122
  article-title: Adversarial Examples: Attacks and Defenses for Deep Learning
– volume: 14
  start-page: 130
  year: 1980
  end-page: 137
  ident: bib31
  article-title: An algorithm for suffix stripping
  publication-title: Program: Electron. Libr. Inf. Syst.
– volume: 1
  start-page: 3
  year: 2010
  end-page: 4
  ident: bib134
  article-title: Spam filtering using support vector machine
  publication-title: Special Issue of IJCCT
– volume: 5792
  start-page: 169
  year: 2009
  end-page: 178
  ident: bib68
  article-title: Firefly algorithms for multimodal optimisation
  publication-title: Lecture Notes in Computer Science
– volume: 19
  start-page: 242
  year: 2017
  ident: bib96
  article-title: A framework for designing the architectures of deep convolutional neural networks
  publication-title: Entropy
– volume: 3
  year: 2016
  ident: bib107
  article-title: Combined techniques for detecting email spam using negative selection and particle swarm optimization
  publication-title: Int. J. Adv. Res. Trends Eng. Technol.
– volume: 27
  start-page: 475
  year: 2012
  end-page: 497
  ident: bib11
  article-title: Multi-objective hybrid algorithms for radial basis function neural network design
  publication-title: Knowl. Based Syst.
– volume: 277
  start-page: 421
  year: 2014
  end-page: 444
  ident: bib24
  article-title: Study on the effectiveness of anomaly detection for spam filtering
  publication-title: Inf. Sci.
– start-page: 60
  year: 2007
  end-page: 69
  ident: bib40
  article-title: A comparison of machine learning techniques for phishing detection
  publication-title: eCrime 07: Proceedings of the Antiphishing Working Groups 2nd Annual eCrime Researchers Summit, New York,USA
– year: 2008
  ident: bib62
  article-title: Binary LNS-Based Naïve Bayes Inference Engine for Spam Control: Noise Analysis and FPGA Synthesis
– start-page: 1
  year: 2009
  end-page: 5
  ident: bib59
  article-title: Implementing spam detection using Bayesian and porter stemmer keyword stripping approaches
  publication-title: TENCON 2009-2009 IEEE Region 10 Conference
– start-page: 1
  year: 2017
  end-page: 8
  ident: bib95
  article-title: Towards Accurate Deceptive Opinion Spam Detection Based on Word Order-Preserving CNN
– volume: 148
  start-page: 35
  year: 2016
  end-page: 50
  ident: bib75
  article-title: Mining rule-based knowledge bases inspired by rough set theory
  publication-title: Fundam. Inf.
– volume: 38
  year: 2000
  ident: bib87
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann. Stat.
– year: 2010
  ident: bib47
  publication-title: CS Mining Group
– volume: 4
  start-page: 7
  year: 2016
  end-page: 11
  ident: bib55
  article-title: Spam e-mails filtering techniques
  publication-title: Int. J. Tech. Res. Appl.
– volume: 3
  start-page: 8
  year: 2015
  end-page: 14
  ident: bib98
  article-title: A data mining approach on various classifiers in email spam filtering
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
– year: 2002
  ident: bib114
  article-title: A Plan for Spam
– year: 2017
  ident: bib3
  publication-title: Kaspersky Lab Spam Report
– start-page: 42
  year: 2013
  end-page: 49
  ident: bib106
  article-title: Automatic E-mails classification using genetic algorithm
  publication-title: Special Conference Issue: National Conference on Cloud Computing and Big Data
– volume: 42
  year: 2005
  ident: bib17
  article-title: From spam filtering to information retrieval and back: seeking conceptual foundations for spam filtering
  publication-title: Proc. Assoc. Inf. Sci. Technol.
– volume: 55
  start-page: 119
  year: 1997
  end-page: 139
  ident: bib88
  article-title: A Decision - theoretic generalization of on - line learning and an application to boosting
  publication-title: JCSS
– year: 2006
  ident: bib66
  article-title: A Neural Model in Anti-spam Systems, Lecture Notes in Computer Science
– volume: 43
  start-page: 722
  year: 2007
  end-page: 736
  ident: bib7
  article-title: SpamHunting: an instance-based reasoning system for spam labelling and filtering
  publication-title: Decis. Support Syst.
– year: 2006
  ident: bib63
  article-title: Fast statistical spam filter by approximate classifications
  publication-title: Proceedings of the Joint International Conference on Measurement and Modeling of Computer Systems
– volume: 47
  start-page: 26
  year: 2012
  end-page: 31
  ident: bib80
  article-title: Spam mail filtering technique using different decision tree classifiers through data mining approach - a comparative performance analysis
  publication-title: Int. J. Comput. Appl.
– year: 2007
  ident: bib44
  article-title: Filtering image spam with near-duplicate detection
  publication-title: Proc of the Fourth Conf on Email and Anti-spam
– volume: 9
  start-page: 1407
  year: 2013
  end-page: 1420
  ident: bib133
  article-title: An effective and efficient two-stage dimensionality reduction algorithm for content-based spam filtering
  publication-title: J. Comput. Inf. Syst.
– year: 2010
  ident: bib93
  article-title: Large-scale automatic classification of phishing pages
  publication-title: Proceedings of the 17th Annual Network & Distributed System Security Symposium (NDSS ’10)
– start-page: 281
  year: 2016
  end-page: 313
  ident: bib70
  article-title: A Review and Comparative Study of Firefly Algorithm and its Modified Versions
– volume: 21
  start-page: 355
  year: 2008
  end-page: 362
  ident: bib132
  article-title: A comparative study for content-based dynamic spam classification using four Machine Learning algorithms
  publication-title: Knowl. Based Syst.
– volume: 6
  start-page: 196
  year: 2013
  end-page: 206
  ident: bib81
  article-title: Decision tree and naïve Bayes algorithm for classification and generation of actionable knowledge for direct marketing
  publication-title: J. Softw. Eng. Appl.
– year: 2011
  ident: bib51
  article-title: Learning to Filter Unsolicited Commercial E-Mail. Tech. Rep.
– start-page: 9
  year: 2000
  end-page: 17
  ident: bib38
  article-title: An evaluation of naive bayesian anti-spam filtering
  publication-title: Proceedings of 11th European Conference on Machine Learning (ECML 2000), Barcelona
– year: 2005
  ident: bib115
  article-title: An email classification model based on rough set theory
  publication-title: Proceedings of the 2005 International Conference on Active Media Technology, 2005
– volume: 64
  start-page: 690
  year: 2007
  end-page: 714
  ident: bib14
  article-title: Workload models of spam and legitimate e-mails
  publication-title: Perform. Eval
– volume: 40
  start-page: 71
  year: 2011
  end-page: 105
  ident: bib34
  article-title: A survey of image spamming and filtering techniques
  publication-title: Artif. Intell. Rev.
– volume: 1857
  start-page: 1
  year: 2000
  end-page: 15
  ident: bib84
  article-title: Ensemble methods in machine learning
  publication-title: Lect. Notes Comput. Sci.
– volume: 74
  start-page: 45
  year: 2008
  end-page: 114
  ident: bib21
  article-title: Email spam filtering
  publication-title: Adv. Comput.
– year: 2007
  ident: bib25
  article-title: Email mining : emerging techniques for email management
  publication-title: Web Data Management Practices: Emerging Techniques and Technologies
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib83
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– year: 2014
  ident: bib103
  article-title: A comparative study between naïve Bayes and neural network (MLP) classifier for spam email detection
  publication-title: Int. J. Comput. Appl.
– year: 2007
  ident: bib45
  article-title: Learning fast classifiers for image spam
  publication-title: Proc of the Fourth Conf on Email and Anti-spam
– volume: 26
  start-page: 381
  year: 2007
  end-page: 390
  ident: bib15
  article-title: Using header session messages to anti-spamming
  publication-title: Comput. Secur.
– year: 2017
  ident: bib29
  publication-title: Mail Server Solution
– volume: 13
  start-page: 11
  year: 2015
  end-page: 28
  ident: bib78
  article-title: Efficient support vector machines for spam detection: a survey. (IJCSIS)
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– volume: 14
  start-page: 171
  year: 2015
  end-page: 177
  ident: bib97
  article-title: A hybrid ACO based feature selection method for email spam classification
  publication-title: WSEAS Trans. Comput.
– volume: 2
  start-page: 21
  year: 2015
  end-page: 30
  ident: bib65
  article-title: Web spam classification using supervised artificial neural network algorithms
  publication-title: Adv. Comput. Intell.: Int. J. (ACII)
– year: 2012
  ident: bib110
  article-title: An improved AIS based E-mail classification technique for spam detection
  publication-title: Proceedings of the Eight International Conference on eLearning for Knowledge-Based Society, Thailand
– volume: 8
  start-page: 118
  year: 2014
  end-page: 130
  ident: bib105
  article-title: Firefly and Bayes classifier for email spam classification in a distributed environment
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 4
  start-page: 2956
  year: 2013
  end-page: 2961
  ident: bib108
  article-title: E-mail classification using genetic algorithm with heuristic fitness function
  publication-title: Int. J. Comput. Trends Technol.
– year: 2006
  ident: bib19
  article-title: Spam filtering and email-mediated applications
  publication-title: Paper presented at the International Workshop on Web Intelligence Meets Brain Informatics
– start-page: 68
  year: 2016
  end-page: 74
  ident: bib109
  article-title: Email spam detection using combination of particle swarm optimization and artificial neural network and support vector machine
  publication-title: Int. J. Mod. Educ. Comput. Sci.
– year: Aug 2005
  ident: bib18
  article-title: Learning to classify email: a survey
  publication-title: 2005 International Conference on Machine Learning and Cybernetics (Vol. 9, pp. 5716-5719)
– year: 2013
  ident: bib123
  article-title: Design and Development of Naïve Bayes Classifier
– start-page: 350
  year: 2011
  end-page: 359
  ident: bib39
  article-title: Bagging classifiers for fighting poisoning attacks in adversarial classification tasks
  publication-title: Multiple Classifier Systems
– start-page: 1
  year: 2008
  end-page: 19
  ident: bib52
  article-title: A Survey of Content-Based Spam Classifiers
– volume: 13
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib74
  article-title: Rough sets for spam filtering: selecting appropriate decision rules for boundary classification
  publication-title: Appl. Soft Comput.
– year: 2001
  ident: bib131
  article-title: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and beyond (Adaptive Computation and Machine Learning)
– year: 2009
  ident: bib126
  article-title: Targeting spam control on middleboxes: Spam detection based on layer-3 e-mail content classification
– year: 2008
  ident: bib121
  article-title: Evaluating the Security of Machine Learning Algorithms
– volume: 37
  year: 1999
  ident: bib89
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Mach. Learn.
– start-page: 321
  year: 2016
  end-page: 331
  ident: bib4
  article-title: An e-mail filtering approach using classification techniques
  publication-title: The 1st International Conference on Advanced Intelligent System and Informatics (AISI2015), November 28-30, 2015
– volume: 6
  start-page: 655
  year: 2014
  ident: bib79
  article-title: SVM classifier algorithm
  publication-title: Proc. Of 2014 International Conference on Artificial Intelligence and Software Engineering(AISE2014)
– year: 2016
  ident: bib76
  article-title: Boosting Accuracy of Classical Machine Learning Antispam Classifiers in Real Scenarios by Applying Rough Set Theory
– year: 2008
  ident: bib46
  article-title: Image spam hunter
  publication-title: Proc. Of the 33th IEEE International Conference on Acoustics, Speech, and Signal Processing, Las Vegas, NV, USA
– year: 2013
  ident: bib71
  article-title: Evaluation of Firefly Algorithm Using Benchmark Functions
– volume: 1
  start-page: 883
  year: 2010
  end-page: 888
  ident: bib125
  article-title: Spam detection using feature selection and parameters optimization
  publication-title: 2010 International Conference on Complex, Intelligent and Software Intensive Systems
– year: 2006
  ident: bib57
  article-title: Introduction to Data Mining
– volume: 23
  start-page: 874
  year: 2015
  end-page: 879
  ident: bib116
  article-title: A probabilistic neural network based classification of spam mails using particle swarm optimization feature selection
  publication-title: Middle East J. Sci. Res.
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: bib48
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
– volume: 45
  start-page: 631
  year: 2009
  end-page: 642
  ident: bib5
  article-title: A discrete mixture-based kernel for SVMs: application to spam and image categorization
  publication-title: Inf. Process. Manag.
– volume: 1
  start-page: 335
  year: 2008
  end-page: 455
  ident: bib20
  article-title: Email spam filtering: a systematic review
  publication-title: Found. Trends Inf. Retr.
– volume: 136
  start-page: 28
  year: 2016
  end-page: 34
  ident: bib99
  article-title: A novel method for detecting spam email using KNN classification with spearman correlation as distance measure
  publication-title: Int. J. Comput. Appl.
– start-page: 442
  year: 2004
  end-page: 450
  ident: bib9
  article-title: A neural network classifier for junk e-mail
  publication-title: Document Analysis Systems VI
– year: 2015
  ident: bib61
  article-title: 6 Easy Steps to Learn Naive Bayes Algorithm (With Code in Python)
– start-page: 161
  year: 2002
  end-page: 172
  ident: bib124
  article-title: Multiclass Alternating Decision Trees
– year: 2000
  ident: bib50
  article-title: An experimental comparison of naïve Bayesian and keyword-based anti-spam filtering with personal e-mail messages
  publication-title: Proc of the Ann Int ACM SIGIR Conf on Res and Devel in Inform Retrieval
– volume: 2
  start-page: 28
  year: 2013
  end-page: 37
  ident: bib67
  article-title: Spam detection using a neural network classifier
  publication-title: Online J. Phys. Environ. Sci. Res.
– volume: 25
  year: 2007
  ident: bib37
  article-title: On-line supervised spam filter evaluation
  publication-title: ACM Trans. Inf. Syst.
– volume: 19
  start-page: 43
  year: 2005
  end-page: 53
  ident: bib13
  article-title: Comparison among five evolutionary-based optimization algorithms
  publication-title: Adv. Eng. Inf.
– start-page: 22
  year: 2015
  end-page: 26
  ident: bib112
  article-title: Improving E-mail spam classification using ant colony optimization algorithm
  publication-title: Int. J. Comput. Appl.
– volume: 2
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib127
  article-title: Comparison and analysis of spam detection algorithms
  publication-title: Int. J. Appl. Innov. Eng. Manag. (IJAIEM)
– start-page: 688
  year: 2004
  end-page: 694
  ident: bib6
  article-title: An e-mail filtering approach using neural network
  publication-title: International Symposium on Neural Networks
– year: 2004
  ident: bib137
  article-title: Adaptive filtering of spam
  publication-title: Second Annual Conference on Communication Networks and Services Research (CNSR’04)
– start-page: 44
  year: 2001
  end-page: 50
  ident: bib33
  article-title: Stacking classifiers for anti-spam filtering of E-mail
  publication-title: Empirical Methods in Natural Language Processing
– start-page: 19
  year: 2014
  end-page: 23
  ident: bib69
  article-title: Multi-population firefly algorithm
  publication-title: Proc. Of the 1st Student Computer Science Research Conference, Ljubljana, Slovenia
– start-page: 415
  year: 2007
  end-page: 422
  ident: bib128
  publication-title: Relaxed Online SVMs for Spam Filtering
– year: 2010
  ident: bib56
  article-title: A Detailed Introduction to K-Nearest Neighbor (KNN) Algorithm
– year: 2007
  ident: bib91
  article-title: Random Forests-Classification Description
– year: 2019
  ident: bib135
  article-title: Master Machine Learning Algorithms
– year: 2000
  ident: bib85
  article-title: Accuracy and Diversity in ECOC Ensembles of Text Categorizers
– year: 2015
  ident: 10.1016/j.heliyon.2019.e01802_bib61
– year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib111
– year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib121
– year: 2002
  ident: 10.1016/j.heliyon.2019.e01802_bib114
– volume: 1857
  start-page: 1
  year: 2000
  ident: 10.1016/j.heliyon.2019.e01802_bib84
  article-title: Ensemble methods in machine learning
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/3-540-45014-9_1
– year: 2011
  ident: 10.1016/j.heliyon.2019.e01802_bib104
– volume: 26
  start-page: 381
  issue: 5
  year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib15
  article-title: Using header session messages to anti-spamming
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2006.12.012
– year: 2006
  ident: 10.1016/j.heliyon.2019.e01802_bib66
– volume: 5792
  start-page: 169
  year: 2009
  ident: 10.1016/j.heliyon.2019.e01802_bib68
  article-title: Firefly algorithms for multimodal optimisation
  doi: 10.1007/978-3-642-04944-6_14
– start-page: 350
  year: 2011
  ident: 10.1016/j.heliyon.2019.e01802_bib39
  article-title: Bagging classifiers for fighting poisoning attacks in adversarial classification tasks
– year: 2019
  ident: 10.1016/j.heliyon.2019.e01802_bib135
– start-page: 321
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib4
  article-title: An e-mail filtering approach using classification techniques
– start-page: 68
  year: 2014
  ident: 10.1016/j.heliyon.2019.e01802_bib26
  article-title: Effective spam detection method for email, international conference on advances in engineering & technology - 2014 (ICAET-2014)
  publication-title: OSR J. Comp. Sci. (IOSR – JCE)
– volume: 1
  start-page: 883
  year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib125
  article-title: Spam detection using feature selection and parameters optimization
– year: 2001
  ident: 10.1016/j.heliyon.2019.e01802_bib131
– year: 2004
  ident: 10.1016/j.heliyon.2019.e01802_bib137
  article-title: Adaptive filtering of spam
– start-page: 479
  year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib73
  article-title: Applicability of rough set technique for data investigation and optimization of intrusion detection system
– volume: 13
  start-page: 11
  issue: 1
  year: 2015
  ident: 10.1016/j.heliyon.2019.e01802_bib78
  article-title: Efficient support vector machines for spam detection: a survey. (IJCSIS)
  publication-title: Int. J. Comput. Sci. Inf. Secur.
– start-page: 125
  year: 2011
  ident: 10.1016/j.heliyon.2019.e01802_bib54
  article-title: Clustering for semi-supervised spam filtering
– start-page: 688
  year: 2004
  ident: 10.1016/j.heliyon.2019.e01802_bib6
  article-title: An e-mail filtering approach using neural network
– year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib64
– year: 2009
  ident: 10.1016/j.heliyon.2019.e01802_bib43
  article-title: Spam detection using clustering , random forests and active learning
– year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib56
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.heliyon.2019.e01802_bib83
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 6
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib90
  article-title: Classification of phishing email using random forest machine learning technique
  publication-title: J. Appl. Math.
– start-page: 22
  year: 2015
  ident: 10.1016/j.heliyon.2019.e01802_bib112
  article-title: Improving E-mail spam classification using ant colony optimization algorithm
  publication-title: Int. J. Comput. Appl.
– volume: 6
  start-page: 196
  year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib81
  article-title: Decision tree and naïve Bayes algorithm for classification and generation of actionable knowledge for direct marketing
  publication-title: J. Softw. Eng. Appl.
  doi: 10.4236/jsea.2013.64025
– year: 2005
  ident: 10.1016/j.heliyon.2019.e01802_bib115
  article-title: An email classification model based on rough set theory
– year: 1997
  ident: 10.1016/j.heliyon.2019.e01802_bib53
– year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib76
– year: 2014
  ident: 10.1016/j.heliyon.2019.e01802_bib94
– year: 1991
  ident: 10.1016/j.heliyon.2019.e01802_bib72
– volume: 6
  start-page: 655
  year: 2014
  ident: 10.1016/j.heliyon.2019.e01802_bib79
  article-title: SVM classifier algorithm
– volume: 42
  issue: 1
  year: 2005
  ident: 10.1016/j.heliyon.2019.e01802_bib17
  article-title: From spam filtering to information retrieval and back: seeking conceptual foundations for spam filtering
  publication-title: Proc. Assoc. Inf. Sci. Technol.
– year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib25
  article-title: Email mining : emerging techniques for email management
– volume: 2
  start-page: 28
  issue: 2
  year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib67
  article-title: Spam detection using a neural network classifier
  publication-title: Online J. Phys. Environ. Sci. Res.
– volume: 23
  start-page: 874
  issue: 5
  year: 2015
  ident: 10.1016/j.heliyon.2019.e01802_bib116
  article-title: A probabilistic neural network based classification of spam mails using particle swarm optimization feature selection
  publication-title: Middle East J. Sci. Res.
– start-page: 1
  year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib52
– volume: 19
  start-page: 43
  year: 2005
  ident: 10.1016/j.heliyon.2019.e01802_bib13
  article-title: Comparison among five evolutionary-based optimization algorithms
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2005.01.004
– year: 2000
  ident: 10.1016/j.heliyon.2019.e01802_bib85
– year: 2000
  ident: 10.1016/j.heliyon.2019.e01802_bib50
  article-title: An experimental comparison of naïve Bayesian and keyword-based anti-spam filtering with personal e-mail messages
– volume: 1
  start-page: 335
  issue: 4
  year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib20
  article-title: Email spam filtering: a systematic review
  publication-title: Found. Trends Inf. Retr.
  doi: 10.1561/1500000006
– start-page: 1
  year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib32
  article-title: Content-based spam filtering
– volume: 3
  issue: 4
  year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib113
  article-title: Auto E-mails classification using bayesian filter
  publication-title: Int. J. Adv. Technol. Eng. Res.
– year: 2006
  ident: 10.1016/j.heliyon.2019.e01802_bib57
– volume: 3
  start-page: 8
  issue: 1
  year: 2015
  ident: 10.1016/j.heliyon.2019.e01802_bib98
  article-title: A data mining approach on various classifiers in email spam filtering
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
– volume: 2
  start-page: 1
  issue: 4
  year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib127
  article-title: Comparison and analysis of spam detection algorithms
  publication-title: Int. J. Appl. Innov. Eng. Manag. (IJAIEM)
– year: 1995
  ident: 10.1016/j.heliyon.2019.e01802_bib77
– year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib47
– start-page: 1
  year: 2009
  ident: 10.1016/j.heliyon.2019.e01802_bib59
  article-title: Implementing spam detection using Bayesian and porter stemmer keyword stripping approaches
– start-page: 281
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib70
– start-page: 1
  year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib120
  article-title: Exploiting Machine Learning to subvert your spam filter
– year: 2002
  ident: 10.1016/j.heliyon.2019.e01802_bib130
– volume: 148
  start-page: 35
  issue: 1-2
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib75
  article-title: Mining rule-based knowledge bases inspired by rough set theory
  publication-title: Fundam. Inf.
– volume: 31
  start-page: 17
  issue: 1
  year: 2018
  ident: 10.1016/j.heliyon.2019.e01802_bib129
  article-title: pdPSO: the Fusion of Primal-Dual interior point method and particle swarm optimisation algorithm
  publication-title: Malays. J. Comp. Sci., Malaysia
  doi: 10.22452/mjcs.vol31no1.2
– year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib46
  article-title: Image spam hunter
– volume: 2
  start-page: 21
  issue: 1
  year: 2015
  ident: 10.1016/j.heliyon.2019.e01802_bib65
  article-title: Web spam classification using supervised artificial neural network algorithms
  publication-title: Adv. Comput. Intell.: Int. J. (ACII)
– year: 2014
  ident: 10.1016/j.heliyon.2019.e01802_bib103
  article-title: A comparative study between naïve Bayes and neural network (MLP) classifier for spam email detection
  publication-title: Int. J. Comput. Appl.
– volume: 13
  start-page: 1
  issue: 8
  year: 2012
  ident: 10.1016/j.heliyon.2019.e01802_bib74
  article-title: Rough sets for spam filtering: selecting appropriate decision rules for boundary classification
  publication-title: Appl. Soft Comput.
– year: 2011
  ident: 10.1016/j.heliyon.2019.e01802_bib10
– start-page: 1
  year: 2000
  ident: 10.1016/j.heliyon.2019.e01802_bib42
  article-title: Learning to filter spam E-mail : a comparison of a naïve bayesian and a memory based approach
– volume: 37
  year: 1999
  ident: 10.1016/j.heliyon.2019.e01802_bib89
  article-title: Improved boosting algorithms using confidence-rated predictions
  publication-title: Mach. Learn.: Mach. Learn.
  doi: 10.1023/A:1007614523901
– volume: 8
  issue: 4
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib1
  article-title: Email spam classification using hybrid approach of RBF neural network and particle swarm optimization
  publication-title: Int. J. Netw. Secur. Appl.
– start-page: 1
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib23
– volume: 9
  start-page: 1407
  issue: 4
  year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib133
  article-title: An effective and efficient two-stage dimensionality reduction algorithm for content-based spam filtering
  publication-title: J. Comput. Inf. Syst.
– volume: 1
  start-page: 309
  year: 2011
  ident: 10.1016/j.heliyon.2019.e01802_bib118
  article-title: Finding deceptive opinion spam by any stretch of imagination
– volume: 14
  start-page: 171
  year: 2015
  ident: 10.1016/j.heliyon.2019.e01802_bib97
  article-title: A hybrid ACO based feature selection method for email spam classification
  publication-title: WSEAS Trans. Comput.
– start-page: 1
  year: 2017
  ident: 10.1016/j.heliyon.2019.e01802_bib101
  article-title: Adaptive binary flower pollination algorithm for feature selection in review spam detection
– year: 2012
  ident: 10.1016/j.heliyon.2019.e01802_bib110
  article-title: An improved AIS based E-mail classification technique for spam detection
– year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib45
  article-title: Learning fast classifiers for image spam
– volume: 11
  start-page: 2
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib102
  article-title: Filtering SPAM Using Several Stages Neural Networks
  publication-title: Int. Rev. Comp. Softw.
– volume: 277
  start-page: 421
  year: 2014
  ident: 10.1016/j.heliyon.2019.e01802_bib24
  article-title: Study on the effectiveness of anomaly detection for spam filtering
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.02.114
– volume: 4
  start-page: 2956
  issue: 8
  year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib108
  article-title: E-mail classification using genetic algorithm with heuristic fitness function
  publication-title: Int. J. Comput. Trends Technol.
– volume: 21
  start-page: 355
  issue: 4
  year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib132
  article-title: A comparative study for content-based dynamic spam classification using four Machine Learning algorithms
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2008.01.001
– volume: 27
  start-page: 475
  year: 2012
  ident: 10.1016/j.heliyon.2019.e01802_bib11
  article-title: Multi-objective hybrid algorithms for radial basis function neural network design
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2011.10.001
– start-page: 9
  year: 2000
  ident: 10.1016/j.heliyon.2019.e01802_bib38
  article-title: An evaluation of naive bayesian anti-spam filtering
– year: 2011
  ident: 10.1016/j.heliyon.2019.e01802_bib51
– year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib93
  article-title: Large-scale automatic classification of phishing pages
– volume: 8
  start-page: 118
  issue: 17
  year: 2014
  ident: 10.1016/j.heliyon.2019.e01802_bib105
  article-title: Firefly and Bayes classifier for email spam classification in a distributed environment
  publication-title: Aust. J. Basic Appl. Sci.
– volume: 27
  start-page: 861
  issue: 8
  year: 2006
  ident: 10.1016/j.heliyon.2019.e01802_bib48
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– start-page: 42
  year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib106
  article-title: Automatic E-mails classification using genetic algorithm
– year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib71
– volume: 25
  issue: 3
  year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib37
  article-title: On-line supervised spam filter evaluation
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/1247715.1247717
– volume: 38
  issue: 2
  year: 2000
  ident: 10.1016/j.heliyon.2019.e01802_bib87
  article-title: Additive logistic regression: a statistical view of boosting
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1016218223
– volume: 3
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib107
  article-title: Combined techniques for detecting email spam using negative selection and particle swarm optimization
  publication-title: Int. J. Adv. Res. Trends Eng. Technol.
– year: 2017
  ident: 10.1016/j.heliyon.2019.e01802_bib3
– year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib123
– volume: 45
  start-page: 631
  issue: 6
  year: 2009
  ident: 10.1016/j.heliyon.2019.e01802_bib5
  article-title: A discrete mixture-based kernel for SVMs: application to spam and image categorization
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.05.005
– volume: 40
  start-page: 71
  issue: 1
  year: 2011
  ident: 10.1016/j.heliyon.2019.e01802_bib34
  article-title: A survey of image spamming and filtering techniques
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-011-9280-4
– volume: 5
  start-page: 1869
  issue: 12
  year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib30
  article-title: Overview of textual anti-spam filtering techniques
  publication-title: Int. J. Phys. Sci.
– year: 2017
  ident: 10.1016/j.heliyon.2019.e01802_bib29
– year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib92
  article-title: Learning to detect phishing emails
– start-page: 68
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib109
  article-title: Email spam detection using combination of particle swarm optimization and artificial neural network and support vector machine
  publication-title: Int. J. Mod. Educ. Comput. Sci.
  doi: 10.5815/ijmecs.2016.07.08
– volume: 43
  start-page: 722
  issue: 3
  year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib7
  article-title: SpamHunting: an instance-based reasoning system for spam labelling and filtering
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2006.11.012
– year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib44
  article-title: Filtering image spam with near-duplicate detection
– volume: 136
  start-page: 28
  issue: 6
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib99
  article-title: A novel method for detecting spam email using KNN classification with spearman correlation as distance measure
  publication-title: Int. J. Comput. Appl.
– start-page: 60
  year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib40
  article-title: A comparison of machine learning techniques for phishing detection
– start-page: 106
  year: 2006
  ident: 10.1016/j.heliyon.2019.e01802_bib35
  article-title: A comparative performance study of feature selection methods for the anti-spam filtering domain
– start-page: 1
  year: 2017
  ident: 10.1016/j.heliyon.2019.e01802_bib95
– volume: 3
  start-page: 173
  issue: 1
  year: 2011
  ident: 10.1016/j.heliyon.2019.e01802_bib100
  article-title: Machine learning methods for spam E-mail classification
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib117
– volume: 8
  start-page: 175
  issue: 8
  year: 2015
  ident: 10.1016/j.heliyon.2019.e01802_bib58
  article-title: Hierarchical reinforcement learning based on KNN classification algorithms
  publication-title: Int. J. Hosp. Inf. Technol.
– year: 2013
  ident: 10.1016/j.heliyon.2019.e01802_bib22
  article-title: A study on e-mail image spam filtering techniques
– volume: 19
  start-page: 242
  issue: 6
  year: 2017
  ident: 10.1016/j.heliyon.2019.e01802_bib96
  article-title: A framework for designing the architectures of deep convolutional neural networks
  publication-title: Entropy
  doi: 10.3390/e19060242
– volume: 55
  start-page: 119
  year: 1997
  ident: 10.1016/j.heliyon.2019.e01802_bib88
  article-title: A Decision - theoretic generalization of on - line learning and an application to boosting
  publication-title: JCSS
– start-page: 442
  year: 2004
  ident: 10.1016/j.heliyon.2019.e01802_bib9
  article-title: A neural network classifier for junk e-mail
– year: 2003
  ident: 10.1016/j.heliyon.2019.e01802_bib8
– start-page: 1
  year: 1992
  ident: 10.1016/j.heliyon.2019.e01802_bib12
– volume: 74
  start-page: 45
  year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib21
  article-title: Email spam filtering
  publication-title: Adv. Comput.
  doi: 10.1016/S0065-2458(08)00603-7
– start-page: 161
  year: 2002
  ident: 10.1016/j.heliyon.2019.e01802_bib124
– volume: 4
  start-page: 7
  issue: 6
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib55
  article-title: Spam e-mails filtering techniques
  publication-title: Int. J. Tech. Res. Appl.
– volume: 36
  start-page: 10206
  issue: 7
  year: 2009
  ident: 10.1016/j.heliyon.2019.e01802_bib16
  article-title: A review of machine learning approaches to spam filtering
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.037
– start-page: 1
  year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib27
  article-title: Spam Construction Trends
– volume: 47
  start-page: 26
  issue: 16
  year: 2012
  ident: 10.1016/j.heliyon.2019.e01802_bib80
  article-title: Spam mail filtering technique using different decision tree classifiers through data mining approach - a comparative performance analysis
  publication-title: Int. J. Comput. Appl.
– volume: 99
  year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib2
  article-title: Measuring characterizing, and avoiding spam traffic costs
  publication-title: IEEE Int. Comp.
– year: 2005
  ident: 10.1016/j.heliyon.2019.e01802_bib18
  article-title: Learning to classify email: a survey
– start-page: 44
  year: 2001
  ident: 10.1016/j.heliyon.2019.e01802_bib33
  article-title: Stacking classifiers for anti-spam filtering of E-mail
– year: 2018
  ident: 10.1016/j.heliyon.2019.e01802_bib122
– year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib91
– volume: 02
  start-page: 3126
  issue: 09
  year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib28
  article-title: Email spam filtering using supervised machine learning techniques
  publication-title: Int. J. Comput. Sci. Eng.
– volume: 1
  start-page: 3
  issue: 2
  year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib134
  article-title: Spam filtering using support vector machine
  publication-title: Special Issue of IJCCT
– volume: 64
  start-page: 690
  issue: 7–8
  year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib14
  article-title: Workload models of spam and legitimate e-mails
  publication-title: Perform. Eval
  doi: 10.1016/j.peva.2006.11.001
– year: 2016
  ident: 10.1016/j.heliyon.2019.e01802_bib49
– volume: 3
  start-page: 243
  issue: 4
  year: 2004
  ident: 10.1016/j.heliyon.2019.e01802_bib36
  article-title: An evaluation of statistical spam filtering techniques spam filtering as text categorization
  publication-title: ACM Trans. Asian Lang. Inf. Process
  doi: 10.1145/1039621.1039625
– year: 2006
  ident: 10.1016/j.heliyon.2019.e01802_bib19
  article-title: Spam filtering and email-mediated applications
– year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib62
– start-page: 415
  year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib128
– start-page: 16
  year: 2006
  ident: 10.1016/j.heliyon.2019.e01802_bib119
  article-title: Can machine learning be secure?
– year: 2009
  ident: 10.1016/j.heliyon.2019.e01802_bib126
– start-page: 887
  year: 2008
  ident: 10.1016/j.heliyon.2019.e01802_bib60
  article-title: Research in anti-spam method based on bayesian filtering
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.heliyon.2019.e01802_bib86
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 226
  year: 2017
  ident: 10.1016/j.heliyon.2019.e01802_bib136
  article-title: Analysis of Näıve Bayes algorithm for email spam filtering across multiple datasets
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/226/1/012091
– volume: 14
  start-page: 130
  issue: 3
  year: 1980
  ident: 10.1016/j.heliyon.2019.e01802_bib31
  article-title: An algorithm for suffix stripping
  publication-title: Program: Electron. Libr. Inf. Syst.
  doi: 10.1108/eb046814
– year: 2010
  ident: 10.1016/j.heliyon.2019.e01802_bib82
  article-title: Exploring the spam arms race to characterize spam evolution
– year: 2006
  ident: 10.1016/j.heliyon.2019.e01802_bib63
  article-title: Fast statistical spam filter by approximate classifications
– volume: 177
  start-page: 2167
  issue: 10
  year: 2007
  ident: 10.1016/j.heliyon.2019.e01802_bib41
  article-title: Learning to classify e-mail
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2006.12.005
– start-page: 19
  year: 2014
  ident: 10.1016/j.heliyon.2019.e01802_bib69
  article-title: Multi-population firefly algorithm
SSID ssj0001586973
Score 2.592911
Snippet The upsurge in the volume of unwanted emails called spam has created an intense need for the development of more dependable and robust antispam filters....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e01802
SubjectTerms Analysis of algorithms
Computer privacy
Computer science
Computer security
Deep learning
e-mail
Internet
Machine learning
Naïve Bayes
Neural networks
Spam filtering
Support vector machines
surveys
systematic review
Title Machine learning for email spam filtering: review, approaches and open research problems
URI https://dx.doi.org/10.1016/j.heliyon.2019.e01802
https://www.ncbi.nlm.nih.gov/pubmed/31211254
https://www.proquest.com/docview/2242826572
https://www.proquest.com/docview/2524244793
https://pubmed.ncbi.nlm.nih.gov/PMC6562150
https://doaj.org/article/81217243526b49299348e70385edbfc3
Volume 5
WOSCitedRecordID wos000473818300119&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2405-8440
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001586973
  issn: 2405-8440
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BhRAXHuUVHpWROJKts4ljhxugVly24gDS3izbcdhU2yzqbiv1wm9nJnaWDUjshUsOiZPInrHnG8_4G4C3U6WM5NKkRVU72q0yqXXCpoiVuS2dsoabvtiEPDtT83n1ZafUF-WEBXrgMHDHaIDQxhZE424LtOVVXigvKZ7la9u4nucTUc-OMxXOB6uy6sPLaLFEqoqC_z6-c3w-Wfhle7Mi_tOsmngisZqODFPP3z-yT3_jzz_TKHfs0ulDuB8BJfsQOvIIbvnuEB4MxRpYnLuHcHcWo-iPYT7rMyg9iyUjvjNErsxfmHbJcIG5YE1LMXR88J6Foy3v2MA97tfMdDWjolssEgUtWKxKs34C305Pvn76nMYKC6lDGLdJiWlH-lwa2rmtLYIhjg5Oo3jhpG2EsJJkJRBU5o5nXhrnSuFKX6DX0jTc5U_hoFt1_jmwDHFNWVV-6mtcBzIUclOKWmSWVrDK8QSKYXi1i_TjVAVjqYc8s3MdpaJJKjpIJYHJ9rUfgX9j3wsfSXbbxkSf3d9ApdJRqfQ-pUpADZLXEYkEhIGfavf9_82gKRpnKoVfTOdXV2uNYAn921LIf7URdFyHdjsTeBa0a9uTnNj40J9PQI70btTV8ZOuXfSM4QjaEdrxF_9jbF7CPepuSJd7BQebyyv_Gu646027vjyC23KujvrJiNfZz5NfZuk22A
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+for+email+spam+filtering%3A+review%2C+approaches+and+open+research+problems&rft.jtitle=Heliyon&rft.au=Dada%2C+Emmanuel+Gbenga&rft.au=Bassi%2C+Joseph+Stephen&rft.au=Chiroma%2C+Haruna&rft.au=Abdulhamid%2C+Shafi%27i+Muhammad&rft.date=2019-06-01&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=5&rft.issue=6&rft.spage=e01802&rft_id=info:doi/10.1016%2Fj.heliyon.2019.e01802&rft_id=info%3Apmid%2F31211254&rft.externalDocID=31211254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon