Polymeric triple-shape materials

Shape-memory polymers represent a promising class of materials that can move from one shape to another in response to a stimulus such as heat. Thus far, these systems are dual-shape materials. Here, we report a triple-shape polymer able to change from a first shape (A) to a second shape (B) and from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS Jg. 103; H. 48; S. 18043
Hauptverfasser: Bellin, I, Kelch, S, Langer, R, Lendlein, A
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 28.11.2006
ISSN:0027-8424
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Shape-memory polymers represent a promising class of materials that can move from one shape to another in response to a stimulus such as heat. Thus far, these systems are dual-shape materials. Here, we report a triple-shape polymer able to change from a first shape (A) to a second shape (B) and from there to a third shape (C). Shapes B and C are recalled by subsequent temperature increases. Whereas shapes A and B are fixed by physical cross-links, shape C is defined by covalent cross-links established during network formation. The triple-shape effect is a general concept that requires the application of a two-step programming process to suitable polymers and can be realized for various polymer networks whose molecular structure allows formation of at least two separated domains providing pronounced physical cross-links. These domains can act as the switches, which are used in the two-step programming process for temporarily fixing shapes A and B. It is demonstrated that different combinations of shapes A and B for a polymer network in a given shape C can be obtained by adjusting specific parameters of the programming process. Dual-shape materials have already found various applications. However, as later discussed and illustrated by two examples, the ability to induce two shape changes that are not limited to be unidirectional rather than one could potentially offer unique opportunities, such as in medical devices or fasteners.
AbstractList Shape-memory polymers represent a promising class of materials that can move from one shape to another in response to a stimulus such as heat. Thus far, these systems are dual-shape materials. Here, we report a triple-shape polymer able to change from a first shape (A) to a second shape (B) and from there to a third shape (C). Shapes B and C are recalled by subsequent temperature increases. Whereas shapes A and B are fixed by physical cross-links, shape C is defined by covalent cross-links established during network formation. The triple-shape effect is a general concept that requires the application of a two-step programming process to suitable polymers and can be realized for various polymer networks whose molecular structure allows formation of at least two separated domains providing pronounced physical cross-links. These domains can act as the switches, which are used in the two-step programming process for temporarily fixing shapes A and B. It is demonstrated that different combinations of shapes A and B for a polymer network in a given shape C can be obtained by adjusting specific parameters of the programming process. Dual-shape materials have already found various applications. However, as later discussed and illustrated by two examples, the ability to induce two shape changes that are not limited to be unidirectional rather than one could potentially offer unique opportunities, such as in medical devices or fasteners.
Shape-memory polymers represent a promising class of materials that can move from one shape to another in response to a stimulus such as heat. Thus far, these systems are dual-shape materials. Here, we report a triple-shape polymer able to change from a first shape (A) to a second shape (B) and from there to a third shape (C). Shapes B and C are recalled by subsequent temperature increases. Whereas shapes A and B are fixed by physical cross-links, shape C is defined by covalent cross-links established during network formation. The triple-shape effect is a general concept that requires the application of a two-step programming process to suitable polymers and can be realized for various polymer networks whose molecular structure allows formation of at least two separated domains providing pronounced physical cross-links. These domains can act as the switches, which are used in the two-step programming process for temporarily fixing shapes A and B. It is demonstrated that different combinations of shapes A and B for a polymer network in a given shape C can be obtained by adjusting specific parameters of the programming process. Dual-shape materials have already found various applications. However, as later discussed and illustrated by two examples, the ability to induce two shape changes that are not limited to be unidirectional rather than one could potentially offer unique opportunities, such as in medical devices or fasteners.Shape-memory polymers represent a promising class of materials that can move from one shape to another in response to a stimulus such as heat. Thus far, these systems are dual-shape materials. Here, we report a triple-shape polymer able to change from a first shape (A) to a second shape (B) and from there to a third shape (C). Shapes B and C are recalled by subsequent temperature increases. Whereas shapes A and B are fixed by physical cross-links, shape C is defined by covalent cross-links established during network formation. The triple-shape effect is a general concept that requires the application of a two-step programming process to suitable polymers and can be realized for various polymer networks whose molecular structure allows formation of at least two separated domains providing pronounced physical cross-links. These domains can act as the switches, which are used in the two-step programming process for temporarily fixing shapes A and B. It is demonstrated that different combinations of shapes A and B for a polymer network in a given shape C can be obtained by adjusting specific parameters of the programming process. Dual-shape materials have already found various applications. However, as later discussed and illustrated by two examples, the ability to induce two shape changes that are not limited to be unidirectional rather than one could potentially offer unique opportunities, such as in medical devices or fasteners.
Author Lendlein, A
Kelch, S
Langer, R
Bellin, I
Author_xml – sequence: 1
  givenname: I
  surname: Bellin
  fullname: Bellin, I
  organization: Institute of Polymer Research, GKSS Research Center, Kantstrasse 55, 14513 Teltow, Germany
– sequence: 2
  givenname: S
  surname: Kelch
  fullname: Kelch, S
– sequence: 3
  givenname: R
  surname: Langer
  fullname: Langer, R
– sequence: 4
  givenname: A
  surname: Lendlein
  fullname: Lendlein, A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17116879$$D View this record in MEDLINE/PubMed
BookMark eNo1jztPxDAQhF0c4h5Q06FUdDnWTrxxSnTiJZ0EBdTRxt6IoLywk-L-PZY4itFIo0-jma1YDePAQtxI2EsosvtpoLAHBKMNSshWYgOgitTkKl-LbQjfAFBqA5diLQsp0RTlRiTvY3fq2bc2mX07dZyGL5o46WmOIXXhSlw00fj67Dvx-fT4cXhJj2_Pr4eHY2o16jmtDSqn64ZtE4WqRMyMi0viHEUkXY5lbaVx0gBptmQVqCwDUkzOIamduPvrnfz4s3CYq74NlruOBh6XUKGRpSl0HsHbM7jUPbtq8m1P_lT9f1K_NVpN4Q
CitedBy_id crossref_primary_10_1002_macp_201300413
crossref_primary_10_1016_j_compositesb_2019_106905
crossref_primary_10_1088_1361_6463_ab1190
crossref_primary_10_1002_marc_200900409
crossref_primary_10_1016_j_eurpolymj_2016_05_004
crossref_primary_10_1016_j_progpolymsci_2015_04_002
crossref_primary_10_1016_j_polymdegradstab_2009_12_020
crossref_primary_10_1021_ma8022926
crossref_primary_10_1088_2399_7532_aba1d9
crossref_primary_10_1080_14658011_2021_1949534
crossref_primary_10_1002_app_44405
crossref_primary_10_3390_polym11061049
crossref_primary_10_1002_adfm_200800850
crossref_primary_10_1021_ma201502k
crossref_primary_10_1007_s10118_021_2538_7
crossref_primary_10_1016_j_polymer_2012_04_053
crossref_primary_10_1016_j_progpolymsci_2012_06_001
crossref_primary_10_1088_0964_1726_23_2_023001
crossref_primary_10_3390_polym15040832
crossref_primary_10_1016_j_polymer_2011_09_030
crossref_primary_10_1088_1361_665X_ab28fc
crossref_primary_10_3390_polym9030098
crossref_primary_10_1586_erd_10_8
crossref_primary_10_1002_adma_201603334
crossref_primary_10_1002_macp_201000106
crossref_primary_10_1016_j_apmt_2024_102372
crossref_primary_10_1088_0964_1726_21_8_085022
crossref_primary_10_1002_adma_201200374
crossref_primary_10_1016_j_compositesa_2022_107328
crossref_primary_10_1595_205651319X15754757916993
crossref_primary_10_1007_s40544_023_0815_x
crossref_primary_10_1002_ange_201707239
crossref_primary_10_1007_s11426_013_5061_z
crossref_primary_10_1016_j_reactfunctpolym_2024_106053
crossref_primary_10_1134_S1811238222700187
crossref_primary_10_1016_j_polymer_2012_07_037
crossref_primary_10_1002_admi_202101588
crossref_primary_10_1002_pat_5882
crossref_primary_10_1002_jbm_b_31003
crossref_primary_10_1039_c2jm35619h
crossref_primary_10_1016_j_polymer_2011_08_003
crossref_primary_10_1002_macp_202000462
crossref_primary_10_1016_j_progpolymsci_2015_04_001
crossref_primary_10_1039_c3ce41313f
crossref_primary_10_1177_0892705719895052
crossref_primary_10_3390_ma7020805
crossref_primary_10_1002_ange_201008252
crossref_primary_10_1146_annurev_matsci_082908_145419
crossref_primary_10_1039_b922992b
crossref_primary_10_3390_polym6082287
crossref_primary_10_1016_j_polymer_2022_125653
crossref_primary_10_1016_j_addr_2016_05_012
crossref_primary_10_1088_0964_1726_19_6_065019
crossref_primary_10_1002_mame_201200204
crossref_primary_10_1002_polb_23251
crossref_primary_10_1002_pola_24488
crossref_primary_10_1002_macp_201200231
crossref_primary_10_1088_0964_1726_20_10_105024
crossref_primary_10_1002_adfm_202002014
crossref_primary_10_1088_0964_1726_22_9_093001
crossref_primary_10_1016_j_piutam_2014_12_010
crossref_primary_10_1002_adma_201100646
crossref_primary_10_1021_acsbiomaterials_5b00226
crossref_primary_10_1007_s10853_015_9586_8
crossref_primary_10_1016_j_polymer_2013_02_023
crossref_primary_10_1002_anie_201008252
crossref_primary_10_1039_b923000a
crossref_primary_10_1016_j_jmps_2013_08_003
crossref_primary_10_1039_C6CC03587F
crossref_primary_10_1063_1_4811134
crossref_primary_10_1039_b615954k
crossref_primary_10_1039_c004361n
crossref_primary_10_1016_j_apmt_2019_100490
crossref_primary_10_1177_1045389X10369718
crossref_primary_10_1002_mame_201100066
crossref_primary_10_1016_j_polymer_2016_04_060
crossref_primary_10_1177_0954008314565398
crossref_primary_10_1016_j_polymer_2011_08_027
crossref_primary_10_1177_0954008312470708
crossref_primary_10_1002_marc_201100683
crossref_primary_10_1002_adem_200700339
crossref_primary_10_1108_PRT_01_2017_0005
crossref_primary_10_1108_PRT_04_2017_0039
crossref_primary_10_1016_j_cej_2021_131212
crossref_primary_10_1016_j_eurpolymj_2013_01_022
crossref_primary_10_1002_pat_2074
crossref_primary_10_1088_1361_665X_ab0e91
crossref_primary_10_1016_j_matpr_2020_11_390
crossref_primary_10_1108_PRT_06_2014_0046
crossref_primary_10_1002_adfm_202009663
crossref_primary_10_1007_s10443_012_9271_x
crossref_primary_10_1016_j_polymer_2020_122514
crossref_primary_10_1002_adma_202302066
crossref_primary_10_1088_1361_665X_ad4cc2
crossref_primary_10_1002_adfm_201101590
crossref_primary_10_1080_15583724_2012_756519
crossref_primary_10_1002_pi_6005
crossref_primary_10_1089_3dp_2022_0376
crossref_primary_10_1016_j_polymer_2015_12_007
crossref_primary_10_1007_s10118_018_2118_7
crossref_primary_10_1007_s10118_022_2657_9
crossref_primary_10_1016_j_polymer_2022_124899
crossref_primary_10_1016_j_trechm_2019_11_003
crossref_primary_10_1016_j_compositesa_2009_08_011
crossref_primary_10_1177_1045389X20916795
crossref_primary_10_1021_acsapm_5c00489
crossref_primary_10_3390_polym14091833
crossref_primary_10_1002_adma_201102251
crossref_primary_10_1007_s10965_017_1319_z
crossref_primary_10_1088_0964_1726_16_6_N01
crossref_primary_10_1002_anie_201707239
crossref_primary_10_1002_adhm_201500412
crossref_primary_10_1039_b923717h
crossref_primary_10_1080_15685543_2015_999300
crossref_primary_10_1016_j_progpolymsci_2020_101289
crossref_primary_10_1016_j_jobe_2021_102657
crossref_primary_10_1039_D0QM00025F
crossref_primary_10_1039_b702524f
crossref_primary_10_1002_pen_24989
crossref_primary_10_1039_D0PY00075B
crossref_primary_10_1002_pc_26948
crossref_primary_10_1016_j_biomaterials_2008_12_027
crossref_primary_10_3390_polym2020071
crossref_primary_10_1002_adfm_201101369
crossref_primary_10_1002_mame_201800528
crossref_primary_10_1002_pola_28454
crossref_primary_10_3390_polym5041169
crossref_primary_10_1002_marc_201600217
crossref_primary_10_1002_macp_201700345
crossref_primary_10_1016_j_mtcomm_2021_102658
crossref_primary_10_1016_j_ijsolstr_2014_03_029
crossref_primary_10_1002_adma_201102225
crossref_primary_10_1016_j_addr_2012_06_004
crossref_primary_10_1007_s00419_019_01553_w
crossref_primary_10_1039_D2PY01607A
crossref_primary_10_1016_j_polymer_2015_02_023
crossref_primary_10_1108_PRT_10_2014_0092
crossref_primary_10_1016_j_jddst_2023_104162
crossref_primary_10_1088_0964_1726_19_1_015006
crossref_primary_10_1088_1748_3190_aaad1c
crossref_primary_10_1007_s40964_018_0047_1
crossref_primary_10_3390_polym14081598
crossref_primary_10_1002_adfm_201000052
crossref_primary_10_1080_25740881_2022_2121216
crossref_primary_10_1016_j_mattod_2014_06_003
crossref_primary_10_1039_c1jm12496j
crossref_primary_10_1002_adfm_201203876
crossref_primary_10_1002_adhm_201300692
crossref_primary_10_1088_0964_1726_24_5_055022
crossref_primary_10_1007_s10924_019_01366_6
crossref_primary_10_1016_j_matdes_2011_04_065
crossref_primary_10_1002_adfm_201604784
crossref_primary_10_1002_pc_27464
crossref_primary_10_1039_C8PY01810C
crossref_primary_10_1002_adma_201004566
crossref_primary_10_1108_PRT_03_2017_0031
crossref_primary_10_1557_mrs2009_235
crossref_primary_10_1002_masy_201100039
crossref_primary_10_1002_app_49935
crossref_primary_10_1007_s40843_018_9347_5
crossref_primary_10_1002_adma_201605908
crossref_primary_10_1007_s11705_017_1632_4
crossref_primary_10_3390_nano11040933
crossref_primary_10_1002_ange_201103908
crossref_primary_10_1021_ma102279y
crossref_primary_10_1002_pi_6725
crossref_primary_10_1002_adfm_201002579
crossref_primary_10_1016_j_matlet_2012_08_098
crossref_primary_10_1016_j_matpr_2018_06_551
crossref_primary_10_1038_s41578_018_0078_8
crossref_primary_10_1016_j_matpr_2019_05_332
crossref_primary_10_3390_jcs7010024
crossref_primary_10_1088_0964_1726_18_7_075003
crossref_primary_10_1016_j_polymer_2025_128141
crossref_primary_10_1007_s11433_015_5758_4
crossref_primary_10_1002_smll_202106443
crossref_primary_10_1007_s42114_024_01127_7
crossref_primary_10_1002_mame_201000035
crossref_primary_10_1002_adhm_202201975
crossref_primary_10_1039_C9PY01567A
crossref_primary_10_1002_polb_24061
crossref_primary_10_1038_nature08863
crossref_primary_10_1039_c1jm10722d
crossref_primary_10_1088_2399_7532_abcbe1
crossref_primary_10_1002_adem_200700355
crossref_primary_10_1039_c0jm00307g
crossref_primary_10_1002_adma_201101571
crossref_primary_10_1557_mrc_2015_18
crossref_primary_10_1002_macp_201400445
crossref_primary_10_1016_j_mattod_2025_03_002
crossref_primary_10_1088_1748_6041_3_1_015010
crossref_primary_10_1002_pi_4886
crossref_primary_10_1016_j_copbio_2007_09_008
crossref_primary_10_1002_marc_201900001
crossref_primary_10_1016_j_compscitech_2016_11_018
crossref_primary_10_1002_mame_201200275
crossref_primary_10_1002_adma_202000713
crossref_primary_10_3390_act9010010
crossref_primary_10_1002_marc_201000122
crossref_primary_10_1557_mrs2010_529
crossref_primary_10_1002_pola_28946
crossref_primary_10_1203_01_pdr_0000305937_26105_e7
crossref_primary_10_1515_epoly_2022_0024
crossref_primary_10_1002_adfm_202205842
crossref_primary_10_1088_0964_1726_20_3_035003
crossref_primary_10_1039_C9MH00302A
crossref_primary_10_1021_ma800586b
crossref_primary_10_1002_adfm_202400245
crossref_primary_10_1016_j_pmatsci_2011_03_001
crossref_primary_10_1021_ma101145r
crossref_primary_10_1002_adma_201904476
crossref_primary_10_1063_5_0008910
crossref_primary_10_1016_j_proeng_2012_06_393
crossref_primary_10_1016_j_radphyschem_2009_10_006
crossref_primary_10_1108_PRT_11_2012_0079
crossref_primary_10_1002_adma_201202884
crossref_primary_10_1017_S0001924000002062
crossref_primary_10_1016_j_polymer_2021_124144
crossref_primary_10_1002_macp_201200607
crossref_primary_10_1088_1361_665X_ac3d9d
crossref_primary_10_1088_1361_665X_abe4e5
crossref_primary_10_1016_j_matdes_2013_11_084
crossref_primary_10_1134_S1560090420050073
crossref_primary_10_1002_adfm_201000478
crossref_primary_10_1108_PRT_05_2015_0048
crossref_primary_10_1016_j_compositesa_2016_10_021
crossref_primary_10_1021_am302426e
crossref_primary_10_1016_j_cej_2019_01_016
crossref_primary_10_3390_cryst10020092
crossref_primary_10_1016_j_compositesb_2020_108292
crossref_primary_10_1002_admi_201800284
crossref_primary_10_1016_j_progpolymsci_2019_05_001
crossref_primary_10_1016_j_nxener_2025_100261
crossref_primary_10_3390_polym16192714
crossref_primary_10_1002_pola_28721
crossref_primary_10_1016_j_polymer_2019_121785
crossref_primary_10_1016_j_polymer_2010_05_049
crossref_primary_10_1515_polyeng_2015_0370
crossref_primary_10_1016_j_addma_2022_103171
crossref_primary_10_1002_mabi_202000108
crossref_primary_10_1039_b922027e
crossref_primary_10_1002_masy_201400141
crossref_primary_10_1016_j_polymer_2009_09_062
crossref_primary_10_1016_j_matpr_2020_10_961
crossref_primary_10_1016_j_polymer_2018_06_037
crossref_primary_10_1002_anie_201103908
crossref_primary_10_3390_polym13213858
crossref_primary_10_1002_app_40506
crossref_primary_10_1016_j_eml_2015_07_005
crossref_primary_10_1002_adma_201906876
crossref_primary_10_1016_j_polymdegradstab_2010_07_037
crossref_primary_10_1016_j_pmatsci_2019_100572
crossref_primary_10_1002_adma_200904202
crossref_primary_10_1002_adma_200904447
crossref_primary_10_1007_s12206_017_0934_2
crossref_primary_10_1016_S1369_7021_07_70047_0
crossref_primary_10_1016_j_ijengsci_2021_103524
crossref_primary_10_1002_polb_23059
crossref_primary_10_1016_j_carbon_2018_07_018
crossref_primary_10_1016_j_compscitech_2018_03_018
crossref_primary_10_1002_pat_3338
crossref_primary_10_1007_s10965_012_9952_z
crossref_primary_10_1073_pnas_2207353119
crossref_primary_10_1021_ma2005662
crossref_primary_10_1002_masy_202300245
crossref_primary_10_1039_D0RA00988A
crossref_primary_10_1063_5_0126892
crossref_primary_10_3390_polym2030120
crossref_primary_10_1007_s10853_012_6757_8
crossref_primary_10_1002_adma_201300880
crossref_primary_10_1177_1045389X231164522
crossref_primary_10_1002_adma_201503789
crossref_primary_10_1002_mabi_201200097
crossref_primary_10_1002_macp_201700079
crossref_primary_10_1002_polb_24014
crossref_primary_10_1016_j_ijengsci_2015_06_003
crossref_primary_10_1016_j_jmbbm_2016_04_027
crossref_primary_10_1134_S1063785020100284
crossref_primary_10_1002_adom_201300532
crossref_primary_10_1002_mame_200900348
crossref_primary_10_1002_cphc_201800389
crossref_primary_10_1016_j_coche_2012_10_006
crossref_primary_10_1155_2015_475316
ContentType Journal Article
DBID NPM
7X8
DOI 10.1073/pnas.0608586103
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
ExternalDocumentID 17116879
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HQ3
HTVGU
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NPM
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
VXZ
W8F
WH7
WHG
WOQ
WOW
X7M
XSW
Y6R
YBH
YIF
YIN
YKV
YSK
ZCA
ZCG
~02
~KM
7X8
ADQXQ
ADXHL
ID FETCH-LOGICAL-c565t-b862d5bfecffec6296638d5860852aa1d469bc18d180a5ecac202330a2eadd6a2
IEDL.DBID 7X8
ISICitedReferencesCount 418
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000242465200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0027-8424
IngestDate Fri Sep 05 06:23:50 EDT 2025
Wed Feb 19 01:47:00 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-b862d5bfecffec6296638d5860852aa1d469bc18d180a5ecac202330a2eadd6a2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://doi.org/10.1073/pnas.0608586103
PMID 17116879
PQID 68198754
PQPubID 23479
ParticipantIDs proquest_miscellaneous_68198754
pubmed_primary_17116879
PublicationCentury 2000
PublicationDate 2006-11-28
PublicationDateYYYYMMDD 2006-11-28
PublicationDate_xml – month: 11
  year: 2006
  text: 2006-11-28
  day: 28
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2006
References 12423604 - Biomaterials. 2003 Feb;24(3):491-7
19746597 - Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2035-57
15806564 - J Biomed Mater Res A. 2005 Jun 1;73(3):339-48
References_xml – reference: 19746597 - Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2035-57
– reference: 15806564 - J Biomed Mater Res A. 2005 Jun 1;73(3):339-48
– reference: 12423604 - Biomaterials. 2003 Feb;24(3):491-7
SSID ssj0009580
Score 2.4303265
Snippet Shape-memory polymers represent a promising class of materials that can move from one shape to another in response to a stimulus such as heat. Thus far, these...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 18043
Title Polymeric triple-shape materials
URI https://www.ncbi.nlm.nih.gov/pubmed/17116879
https://www.proquest.com/docview/68198754
Volume 103
WOSCitedRecordID wos000242465200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VysAClGd5ZmCAwTR2EseRkBBCVAxQdQDULfKrAgkloQlI_HvOeUgsiIElm6Xc-Xz-7uHvAE6V8ENjFCdaR5FL3SQEQT0CuSQUnKvYV3VvzvN9PJmI2SyZ9uCyewvj2io7n1g7apNrlyMfceHC4yi8Kt6JmxnlaqvtAI0l6AcIZNyxjGfiB-WuaB6gMPTDIQs7Yp84GBWZLC98jnBDIHwIfkeX9S0zXv_f_23AWosuvevGHAbQs9kmDNrzW3pnLcn0-RZ40_ztq67WeNXCJdtJ-SIL6yGAbWxyG57Gt483d6SdlkA0grKKKIxNTKTmVrtGEM4wjgmEQQFRSiYlNRgIK02FocKXkdWOm5EFgS8ZGpPhku3AcpZndg88ynispRXMOvpASxMpjPK1dO5AcW6HcNLpIEVrdCUGmdn8o0w7LQxht1FjWjSkGSmNKeUiTvb_XHsAq3Weg1LCxCH05yizPYIV_Vm9lovjepPxO5k-fAM1u7Bc
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymeric+triple-shape+materials&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Bellin%2C+I&rft.au=Kelch%2C+S&rft.au=Langer%2C+R&rft.au=Lendlein%2C+A&rft.date=2006-11-28&rft.issn=0027-8424&rft.volume=103&rft.issue=48&rft.spage=18043&rft_id=info:doi/10.1073%2Fpnas.0608586103&rft_id=info%3Apmid%2F17116879&rft_id=info%3Apmid%2F17116879&rft.externalDocID=17116879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon