Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network

Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology Jg. 14; H. 9; S. e1006436
Hauptverfasser: Lyu, Yafei, Xue, Lingzhou, Zhang, Feipeng, Koch, Hillary, Saba, Laura, Kechris, Katerina, Li, Qunhua
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States Public Library of Science 01.09.2018
Public Library of Science (PLoS)
Schlagworte:
ISSN:1553-7358, 1553-734X, 1553-7358
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism.
AbstractList Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism.
Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism.Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism.
Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism. Gene co-expression networks provide insights into the mechanism of cellular activity and gene regulation. Condition-specific mechanisms may be identified by constructing and comparing co-expression networks of multiple conditions. We propose a novel statistical method to jointly construct co-expression networks for gene expression profiles from multiple conditions. By using a data-driven approach to capture condition-specific co-expression patterns, this method is effective in identifying both co-expression patterns that are specific to a condition and that are common across conditions. The application of this method to real datasets reveals interesting biological insights.
Audience Academic
Author Koch, Hillary
Xue, Lingzhou
Lyu, Yafei
Saba, Laura
Li, Qunhua
Kechris, Katerina
Zhang, Feipeng
AuthorAffiliation 4 Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
3 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
1 Bioinformatics and Genomics, the Huck Institute of the Life Science, Pennsylvania State University, State College, Pennsylvania, United States of America
Carnegie Mellon University, UNITED STATES
2 Department of Statistics, Pennsylvania State University, State College, Pennsylvania, United States of America
AuthorAffiliation_xml – name: Carnegie Mellon University, UNITED STATES
– name: 1 Bioinformatics and Genomics, the Huck Institute of the Life Science, Pennsylvania State University, State College, Pennsylvania, United States of America
– name: 3 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
– name: 2 Department of Statistics, Pennsylvania State University, State College, Pennsylvania, United States of America
– name: 4 Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
Author_xml – sequence: 1
  givenname: Yafei
  surname: Lyu
  fullname: Lyu, Yafei
– sequence: 2
  givenname: Lingzhou
  surname: Xue
  fullname: Xue, Lingzhou
– sequence: 3
  givenname: Feipeng
  surname: Zhang
  fullname: Zhang, Feipeng
– sequence: 4
  givenname: Hillary
  surname: Koch
  fullname: Koch, Hillary
– sequence: 5
  givenname: Laura
  orcidid: 0000-0001-9649-1294
  surname: Saba
  fullname: Saba, Laura
– sequence: 6
  givenname: Katerina
  surname: Kechris
  fullname: Kechris, Katerina
– sequence: 7
  givenname: Qunhua
  orcidid: 0000-0003-0675-7648
  surname: Li
  fullname: Li, Qunhua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30240439$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_YB_gCASl3LI4s8k7qHSakVLpZW4wNnyx2TrJWsHOylw5ZfjZbertkLYB4_G7z3PeN5pceSDh6J4jdEM0wZ_WIcpetXPBqPdDCNUM1o_K04w57RqKG-PHsTHxWlKa4RyKOoXxTFFhCFGxUnxexG8daMLvlJWDaO7g7KbEthyFdVw64zqy16lFMrzxdX18v1FOfflATnEYMBOMXNCLJ3vIEbnV6U5iKYBjOucKVfgIecr-DlESCnflR7GHyF-e1k871Sf4NX-PCu-Xn38svhULT9f3yzmy8rwmo-VIJZx01KKLbRMG4WJ1pQqzhSxVhGgUGNUUxBaGAGaQS1Iq6FpBDGIG3pWvN3pDn1Icv99SRLCMwsJTjLiZoewQa3lEN1GxV8yKCf_JkJcSRVHZ3qQxLYWMGUtEMR02-pG0KbRSHOORUtw1rrcvzbpDVgDfoyqfyT6-Ma7W7kKd7LGDWWsyQLne4EYvk-QRrlxyUDfKw9hynXjvPLMRZuh755A_93dbIdaqdxAHlbI75q8LWxcnhh0LufnnDc1bRBFmfDmYQuH2u_dkwFsBzAxpBShO0AwkluT3tchtyaVe5Nm2sUTmnGj2tolF-T6_5P_AM6A8TY
CitedBy_id crossref_primary_10_1111_nph_16167
crossref_primary_10_1111_biom_13645
crossref_primary_10_1016_j_gpb_2020_11_006
crossref_primary_10_3889_oamjms_2021_7215
crossref_primary_10_1093_bioinformatics_btaf096
crossref_primary_10_1109_TCBB_2023_3282028
crossref_primary_10_1007_s00357_022_09421_z
crossref_primary_10_1186_s12967_025_06680_3
crossref_primary_10_1371_journal_pcbi_1012300
crossref_primary_10_1109_TCBB_2020_3002906
crossref_primary_10_1109_TCBB_2021_3103407
crossref_primary_10_1111_tpj_70291
crossref_primary_10_1371_journal_pcbi_1011616
crossref_primary_10_1371_journal_pcbi_1010758
crossref_primary_10_1002_jts_22818
Cites_doi 10.1111/j.1369-1600.2010.00254.x
10.1198/jasa.2011.tm10155
10.1111/rssb.12033
10.1093/biomet/asu074
10.4161/cc.9.15.12526
10.1038/sj.onc.1210858
10.3892/ol.2014.2721
10.1111/j.1467-9868.2011.01034.x
10.1214/12-AOS1017
10.1561/2200000016
10.1214/12-AOS1041
10.2217/fon.10.191
10.1214/aos/1176344136
10.4048/jbc.2017.20.3.240
10.1371/journal.pcbi.1001014
10.1214/009053606000000281
10.1074/jbc.M112.392332
10.1214/16-EJS1137
10.1186/gb-2009-10-5-r55
10.1080/01621459.2014.921182
10.1198/jcgs.2010.09208
10.1111/j.1467-9868.2008.00674.x
10.1016/S0304-3835(98)00249-3
10.1038/sj.ejhg.5201783
10.1038/nature11412
10.1101/gr.2584104
10.1016/j.celrep.2016.08.048
10.1111/febs.13358
10.1371/journal.pone.0014147
10.1093/abbs/gmu001
10.1103/RevModPhys.74.47
10.1002/1878-0261.12045
10.1214/15-AOAS844
10.1371/journal.pcbi.1004220
10.1016/j.ydbio.2012.12.007
10.1097/01.sla.0000154455.86404.e9
10.3389/fphys.2012.00299
10.1093/bioinformatics/btr260
10.1038/ncomms4231
10.1152/japplphysiol.00064.2003
10.1186/1741-7007-6-49
10.1371/journal.pgen.1004006
10.1186/1471-2105-9-559
10.1038/nrg2538
10.1111/j.1467-9868.2010.00740.x
10.1093/biomet/asu009
10.3892/ol.2012.1038
10.1073/pnas.070371497
10.1016/j.jtbi.2014.03.040
10.1371/journal.pcbi.1001106
10.1186/1471-2202-4-23
10.1016/j.tig.2012.03.004
10.1186/1471-2164-7-40
10.1158/0008-5472.CAN-05-0420
10.1093/bib/bbq086
10.1093/nar/gng015
10.1198/jasa.2009.0126
10.1093/nar/gku1163
10.1038/onc.2008.51
10.1214/08-AOAS215
10.1137/S003614450342480
10.1093/nar/28.1.27
10.1093/biomet/asq060
10.1093/nar/gkp427
10.1093/carcin/bgs210
10.1093/biostatistics/kxm045
10.1086/522374
10.1162/NECO_a_00379
10.1016/j.npep.2012.09.004
10.1101/gr.074914.107
10.1023/A:1018529323734
ContentType Journal Article
Copyright COPYRIGHT 2018 Public Library of Science
2018 Lyu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2018 Lyu et al 2018 Lyu et al
Copyright_xml – notice: COPYRIGHT 2018 Public Library of Science
– notice: 2018 Lyu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2018 Lyu et al 2018 Lyu et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7QP
7TK
7TM
7X7
7XB
88E
8AL
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOA
DOI 10.1371/journal.pcbi.1006436
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest : Biological Science Collection journals [unlimited simultaneous users]
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ : Directory of Open Access Journals [open access]
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate CFGL: An adaptive procedure for inferring condition-specific gene co-expression network
EISSN 1553-7358
ExternalDocumentID 2250630952
oai_doaj_org_article_2d8de1348e204b88b79377b0b5519821
PMC6173447
A557637030
30240439
10_1371_journal_pcbi_1006436
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Colorado
Pennsylvania
GeographicLocations_xml – name: Colorado
– name: Pennsylvania
– name: United States--US
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: P30 DA044223
– fundername: NIGMS NIH HHS
  grantid: T32 GM102057
– fundername: NIGMS NIH HHS
  grantid: R01 GM109453
– fundername: NIAAA NIH HHS
  grantid: R24 AA013162
– fundername: NIAAA NIH HHS
  grantid: R01 AA021131
– fundername: ;
  grantid: R01-AA021131
– fundername: ;
  grantid: Huck Graduate Research Innovation Grant
– fundername: ;
  grantid: DMS-1505256
– fundername: ;
  grantid: R24AA013162
– fundername: ;
  grantid: T32 GM102057
– fundername: ;
  grantid: P30DA044223
– fundername: ;
  grantid: R01GM109453
GroupedDBID ---
123
29O
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAKPC
AAUCC
AAWOE
AAYXX
ABDBF
ABUWG
ACCTH
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADRAZ
AEAQA
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
B0M
BAIFH
BAWUL
BBNVY
BBTPI
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
DIK
DWQXO
E3Z
EAP
EAS
EBD
EBS
EJD
EMK
EMOBN
ESX
F5P
FPL
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
ISN
ISR
ITC
J9A
K6V
K7-
KQ8
LK8
M1P
M48
M7P
O5R
O5S
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PV9
RNS
RPM
RZL
SV3
TR2
TUS
UKHRP
WOW
XSB
~8M
ALIPV
C1A
CGR
CUY
CVF
ECM
EIF
H13
IPNFZ
NPM
RIG
WOQ
3V.
7QO
7QP
7TK
7TM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
PUEGO
5PM
-
AAPBV
ABPTK
ACDSR
BBAFP
M~E
UMP
ID FETCH-LOGICAL-c565t-92d45c8331de84bca12bb33a54a2dda2e3e61063e9b9c9eb4e6928be7792c05c3
IEDL.DBID FPL
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450712200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1553-7358
1553-734X
IngestDate Sun Sep 04 00:10:37 EDT 2022
Fri Oct 03 12:51:34 EDT 2025
Tue Nov 04 02:00:16 EST 2025
Fri Sep 05 10:22:23 EDT 2025
Sat Nov 29 14:19:33 EST 2025
Tue Nov 04 17:31:26 EST 2025
Mon Jul 21 05:45:06 EDT 2025
Sat Nov 29 05:21:23 EST 2025
Tue Nov 18 21:25:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-92d45c8331de84bca12bb33a54a2dda2e3e61063e9b9c9eb4e6928be7792c05c3
Notes new_version
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The authors have declared that no competing interests exist.
ORCID 0000-0001-9649-1294
0000-0003-0675-7648
OpenAccessLink http://dx.doi.org/10.1371/journal.pcbi.1006436
PMID 30240439
PQID 2250630952
PQPubID 1436340
ParticipantIDs plos_journals_2250630952
doaj_primary_oai_doaj_org_article_2d8de1348e204b88b79377b0b5519821
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173447
proquest_miscellaneous_2111143698
proquest_journals_2250630952
gale_infotracacademiconefile_A557637030
pubmed_primary_30240439
crossref_primary_10_1371_journal_pcbi_1006436
crossref_citationtrail_10_1371_journal_pcbi_1006436
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
– name: San Francisco, CA USA
PublicationTitle PLoS computational biology
PublicationTitleAlternate PLoS Comput Biol
PublicationYear 2018
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References M Kanehisa (ref29) 2000; 28
KH Lee (ref17) 2017
M Vecchi (ref49) 2008; 27
Z Yao (ref58) 2017; 11
G Schwarz (ref70) 1978; 6
SL Lauritzen (ref20) 1996
Y Yang (ref4) 2014; 5
Y Zhu (ref25) 2014; 109
K V Everett (ref41) 2007; 15
L Liu (ref2) 2015; 9
HC Jung (ref52) 2017; 20
L Liu (ref63) 2015; 9
J Fan (ref33) 2008; 70
SB Cantor (ref56) 2011; 7
J Fan (ref16) 2009; 3
S Boyd (ref69) 2011; 3
RD Shah (ref78) 2013; 75
N Meinshausen (ref22) 2006
X Xiao (ref7) 2014; 10
(ref44) 2012; 490
J Friedman (ref36) 2008; 9
A Holz (ref39) 1997; 26
MS Duxbury (ref61) 2005; 241
J Peng (ref23) 2009; 104
FJ Moss (ref40) 2003; 4
SD Zhao (ref37) 2014; 101
N Tamura (ref42) 2000; 97
T Cai (ref35) 2011; 106
MP Keller (ref3) 2008; 18
S Gruvberger (ref45) 2001; 61
L Fan (ref59) 2015; 8
MEJ Newman (ref72) 2003; 45
Z Dezso (ref10) 2008; 6
K Wang (ref65) 2007; 81
LM Saba (ref75) 2015; 282
DN Messina (ref11) 2004; 14
Y Liang (ref57) 2012; 287
RD Blumenthal (ref60) 2005; 65
L Xue (ref19) 2012; 40
RA Irizarry (ref76) 2003; 31
J Guo (ref24) 2011; 98
H Höfling (ref67) 2009; 10
H Hoefling (ref28) 2010; 19
D Kohno (ref62) 2012; 46
AS Blazier (ref1) 2012; 3
D Xiong (ref54) 2012; 33
P Langfelder (ref21) 2008; 9
W Li (ref9) 2011; 7
JM Vaquerizas (ref12) 2009; 10
P Menéndez (ref13) 2010; 5
T Saegusa (ref27) 2016; 10
Y Zhang (ref48) 2014; 46
J Chen (ref79) 2009; 37
G Eelen (ref47) 2008; 27
BA Logsdon (ref14) 2010; 6
Y Okamura (ref30) 2015; 43
Y Ushida (ref51) 1998; 134
J Bezault (ref50) 1994; 54
MP Printz (ref73) 2003; 94
PL Hoffman (ref74) 2011; 16
C Moiola (ref53) 2010; 9
A Liberzon (ref31) 2011; 27
HE Lockstone (ref77) 2011; 12
R Dobrin (ref8) 2009; 10
Z Zhang (ref46) 2016; 16
P Holmans (ref64) 2010
G Wang (ref55) 2013; 5
J Ma (ref26) 2016; 17
R Albert (ref71) 2002; 74
E Pierson (ref5) 2015; 11
N Meinshausen (ref38) 2010; 72
L Xue (ref68) 2012; 40
YXR Wang (ref15) 2014; 362
MR Carlson (ref32) 2006; 7
Q Wang (ref43) 2013; 374
P Danaher (ref6) 2014; 76
Y Xia (ref34) 2015; 102
S Ma (ref18) 2013; 25
VK Ramanan (ref66) 2012; 28
References_xml – volume: 16
  start-page: 393
  issue: 3
  year: 2011
  ident: ref74
  article-title: Using the Phenogen website for “in silico”analysis of morphine-induced analgesia: identifying candidate genes
  publication-title: Addict Biol
  doi: 10.1111/j.1369-1600.2010.00254.x
– volume: 106
  start-page: 594
  issue: 494
  year: 2011
  ident: ref35
  article-title: A constrained ℓ 1 minimization approach to sparse precision matrix estimation
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2011.tm10155
– volume: 76
  start-page: 373
  issue: 2
  year: 2014
  ident: ref6
  article-title: The joint graphical lasso for inverse covariance estimation across multiple classes
  publication-title: J R Stat Soc Ser B Stat Method
  doi: 10.1111/rssb.12033
– volume: 102
  start-page: 247
  issue: 2
  year: 2015
  ident: ref34
  article-title: Testing differential networks with applications to the detection of gene-gene interactions
  publication-title: Biometrika
  doi: 10.1093/biomet/asu074
– volume: 9
  start-page: 3191
  issue: 15
  year: 2010
  ident: ref53
  article-title: Cyclin T1 overexpression induces malignant transformation and tumor growth
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.15.12526
– volume: 27
  start-page: 2148
  issue: 15
  year: 2008
  ident: ref49
  article-title: Breast cancer metastases are molecularly distinct from their primary tumors
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1210858
– volume: 9
  start-page: 891
  issue: 2
  year: 2015
  ident: ref63
  article-title: NPY1R is a novel peripheral blood marker predictive of metastasis and prognosis in breast cancer patients
  publication-title: Oncol Lett
  doi: 10.3892/ol.2014.2721
– volume: 75
  start-page: 55
  issue: 1
  year: 2013
  ident: ref78
  article-title: Variable selection with error control: another look at stability selection
  publication-title: J R Stat Soc Ser B (Stat Method)
  doi: 10.1111/j.1467-9868.2011.01034.x
– volume: 54
  start-page: 2310
  issue: 9
  year: 1994
  ident: ref50
  article-title: Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice
  publication-title: Cancer Res
– volume: 40
  start-page: 1403
  issue: 3
  year: 2012
  ident: ref68
  article-title: Nonconcave penalized composite conditional likelihood estimation of sparse Ising models
  publication-title: Ann Stat
  doi: 10.1214/12-AOS1017
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: ref69
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000016
– volume: 40
  start-page: 2541
  issue: 5
  year: 2012
  ident: ref19
  article-title: Regularized rank-based estimation of high-dimensional nonparanormal graphical models
  publication-title: Ann Stat
  doi: 10.1214/12-AOS1041
– volume: 7
  start-page: 253
  issue: 2
  year: 2011
  ident: ref56
  article-title: Hereditary breast cancer and the BRCA1-associated FANCJ/BACH1/BRIP1
  publication-title: Futur Oncol
  doi: 10.2217/fon.10.191
– volume: 6
  start-page: 461
  issue: 2
  year: 1978
  ident: ref70
  article-title: Estimating the dimension of a model
  publication-title: Ann Stat
  doi: 10.1214/aos/1176344136
– volume: 20
  start-page: 240
  issue: 3
  year: 2017
  ident: ref52
  article-title: Gene Regulatory Network Analysis for Triple-Negative Breast Neoplasms by Using Gene Expression Data
  publication-title: J Breast Cancer
  doi: 10.4048/jbc.2017.20.3.240
– volume: 6
  start-page: e1001014
  issue: 12
  year: 2010
  ident: ref14
  article-title: Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001014
– start-page: 1436
  year: 2006
  ident: ref22
  article-title: High-dimensional graphs and variable selection with the lasso
  publication-title: Ann Stat
  doi: 10.1214/009053606000000281
– volume: 287
  start-page: 33533
  issue: 40
  year: 2012
  ident: ref57
  article-title: Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.392332
– volume: 10
  start-page: 1341
  issue: 1
  year: 2016
  ident: ref27
  article-title: Joint estimation of precision matrices in heterogeneous populations
  publication-title: Electron J Stat
  doi: 10.1214/16-EJS1137
– volume: 10
  start-page: R55
  issue: 5
  year: 2009
  ident: ref8
  article-title: Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease
  publication-title: Genome Biol
  doi: 10.1186/gb-2009-10-5-r55
– volume: 109
  start-page: 1683
  issue: 508
  year: 2014
  ident: ref25
  article-title: Structural pursuit over multiple undirected graphs
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2014.921182
– volume: 19
  start-page: 984
  issue: 4
  year: 2010
  ident: ref28
  article-title: A path algorithm for the fused lasso signal approximator
  publication-title: J Comput Graph Stat
  doi: 10.1198/jcgs.2010.09208
– volume: 70
  start-page: 849
  issue: 5
  year: 2008
  ident: ref33
  article-title: Sure independence screening for ultrahigh dimensional feature space
  publication-title: J R Stat Soc Ser B Stat Method
  doi: 10.1111/j.1467-9868.2008.00674.x
– volume: 134
  start-page: 141
  issue: 2
  year: 1998
  ident: ref51
  article-title: Inhibitory effects of bovine lactoferrin on intestinal polyposis in the Apc Min mouse
  publication-title: Cancer Lett
  doi: 10.1016/S0304-3835(98)00249-3
– volume: 15
  start-page: 463
  issue: 4
  year: 2007
  ident: ref41
  article-title: Linkage and association analysis of CACNG3 in childhood absence epilepsy
  publication-title: Eur J Hum Genet
  doi: 10.1038/sj.ejhg.5201783
– volume: 490
  start-page: 61
  issue: 7418
  year: 2012
  ident: ref44
  article-title: Comprehensive molecular portraits of human breast tumors
  publication-title: Nature
  doi: 10.1038/nature11412
– volume: 14
  start-page: 2041
  issue: 10 B
  year: 2004
  ident: ref11
  article-title: An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression
  publication-title: Genome Res
  doi: 10.1101/gr.2584104
– volume: 16
  start-page: 3146
  issue: 12
  year: 2016
  ident: ref46
  article-title: Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.08.048
– volume: 282
  start-page: 3556
  issue: 18
  year: 2015
  ident: ref75
  article-title: The sequenced rat brain transcriptome—its use in identifying networks predisposing alcohol consumption
  publication-title: FEBS J
  doi: 10.1111/febs.13358
– volume: 5
  start-page: e14147
  issue: 12
  year: 2010
  ident: ref13
  article-title: Gene regulatory networks from multifactorial perturbations using graphical lasso: Application to the DREAM4 challenge
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0014147
– volume: 46
  start-page: 283
  issue: 4
  year: 2014
  ident: ref48
  article-title: CEACAM6 promotes tumor migration, invasion, and metastasis in gastric cancer
  publication-title: Acta Biochim Biophys Sin
  doi: 10.1093/abbs/gmu001
– volume: 74
  start-page: 47
  issue: 1
  year: 2002
  ident: ref71
  article-title: Statistical mechanics of complex networks
  publication-title: Rev Mod Phys
  doi: 10.1103/RevModPhys.74.47
– volume: 11
  start-page: 422
  issue: 4
  year: 2017
  ident: ref58
  article-title: ZKSCAN1 gene and its related circular RNA (circ ZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways
  publication-title: Mol Oncol
  doi: 10.1002/1878-0261.12045
– volume: 9
  start-page: 1571
  issue: 3
  year: 2015
  ident: ref2
  article-title: Network assisted analysis to reveal the genetic basis of autism
  publication-title: Ann Appl Stat
  doi: 10.1214/15-AOAS844
– volume: 11
  start-page: e1004220
  issue: 5
  year: 2015
  ident: ref5
  article-title: Sharing and Specificity of Co-expression Networks across 35 Human Tissues
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004220
– volume: 374
  start-page: 264
  issue: 2
  year: 2013
  ident: ref43
  article-title: The Xin repeat-containing protein, mXinβ, initiates the maturation of the intercalated discs during postnatal heart development
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2012.12.007
– start-page: 141
  year: 2010
  ident: ref64
  article-title: Statistical methods for pathway analysis of genome-wide data for association with complex genetic traits
  publication-title: In: Advances in genetics
– volume: 241
  start-page: 491
  issue: 3
  year: 2005
  ident: ref61
  article-title: CEACAM6 Is a Novel Biomarker in Pancreatic Adenocarcinoma and PanIN Lesions
  publication-title: Ann Surg
  doi: 10.1097/01.sla.0000154455.86404.e9
– volume: 3
  start-page: 299
  year: 2012
  ident: ref1
  article-title: Integration of expression data in genome-scale metabolic network reconstructions
  publication-title: Front Physiol
  doi: 10.3389/fphys.2012.00299
– volume: 27
  start-page: 1739
  issue: 12
  year: 2011
  ident: ref31
  article-title: Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 5
  start-page: 3231
  year: 2014
  ident: ref4
  article-title: Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types
  publication-title: Nat Commun
  doi: 10.1038/ncomms4231
– volume: 94
  start-page: 2510
  issue: 6
  year: 2003
  ident: ref73
  article-title: Invited Review: HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics
  publication-title: J Appl Physiol
  doi: 10.1152/japplphysiol.00064.2003
– volume: 6
  start-page: 49
  issue: 1
  year: 2008
  ident: ref10
  article-title: A comprehensive functional analysis of tissue specificity of human gene expression
  publication-title: BMC Biol
  doi: 10.1186/1741-7007-6-49
– volume: 10
  start-page: e1004006
  issue: 1
  year: 2014
  ident: ref7
  article-title: Multi-tissue Analysis of Co-expression Networks by Higher-Order Generalized Singular Value Decomposition Identifies Functionally Coherent Transcriptional Modules
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004006
– volume: 9
  start-page: 559
  issue: 1
  year: 2008
  ident: ref21
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-559
– volume: 10
  start-page: 252
  year: 2009
  ident: ref12
  article-title: A census of human transcription factors: Function, expression and evolution
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg2538
– volume: 72
  start-page: 417
  issue: 4
  year: 2010
  ident: ref38
  article-title: Stability selection
  publication-title: J R Stat Soc Ser B Stat Method
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 101
  start-page: 253
  issue: 2
  year: 2014
  ident: ref37
  article-title: Direct estimation of differential networks
  publication-title: Biometrika
  doi: 10.1093/biomet/asu009
– volume: 5
  start-page: 544
  issue: 2
  year: 2013
  ident: ref55
  article-title: Identification of MXRA5 as a novel biomarker in colorectal cancer
  publication-title: Oncol Lett
  doi: 10.3892/ol.2012.1038
– volume: 97
  start-page: 4239
  issue: 8
  year: 2000
  ident: ref42
  article-title: Cardiac fibrosis in mice lacking brain natriuretic peptide
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.070371497
– volume: 362
  start-page: 53
  year: 2014
  ident: ref15
  article-title: Review on statistical methods for gene network reconstruction using expression data
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2014.03.040
– volume: 7
  start-page: e1001106
  issue: 6
  year: 2011
  ident: ref9
  article-title: Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001106
– volume: 10
  start-page: 883
  issue: Apr
  year: 2009
  ident: ref67
  article-title: Estimation of sparse binary pairwise markov networks using pseudo-likelihoods
  publication-title: J Mach Learn Res
– volume: 4
  start-page: 23
  issue: 1
  year: 2003
  ident: ref40
  article-title: Human neuronal stargazin-like proteins, γ2, γ3 and γ4; an investigation of their specific localization in human brain and their influence on Ca V 2.1 voltage-dependent calcium channels expressed in Xenopus oocytes
  publication-title: BMC Neurosci
  doi: 10.1186/1471-2202-4-23
– volume: 8
  start-page: 12428
  issue: 10
  year: 2015
  ident: ref59
  article-title: Silencing of ZNF139-siRNA induces apoptosis in human gastric cancer cell line BGC823
  publication-title: Int J Clin Exp Pathol
– volume: 28
  start-page: 323
  issue: 7
  year: 2012
  ident: ref66
  article-title: Pathway analysis of genomic data: concepts, methods, and prospects for future development
  publication-title: TRENDS Genet
  doi: 10.1016/j.tig.2012.03.004
– volume: 7
  start-page: 40
  year: 2006
  ident: ref32
  article-title: Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-7-40
– volume: 65
  start-page: 8809
  issue: 19
  year: 2005
  ident: ref60
  article-title: Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen)
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-0420
– volume: 12
  start-page: 634
  issue: 6
  year: 2011
  ident: ref77
  article-title: Exon array data analysis using Affymetrix power tools and R statistical software
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbq086
– year: 2017
  ident: ref17
  article-title: Nonparametric finite mixture of Gaussian graphical models
  publication-title: Technometrics
– volume: 31
  start-page: e15
  issue: 4
  year: 2003
  ident: ref76
  article-title: Summaries of Affymetrix GeneChip probe level data
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gng015
– volume: 104
  start-page: 735
  issue: 486
  year: 2009
  ident: ref23
  article-title: Partial correlation estimation by joint sparse regression models
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.0126
– volume: 43
  start-page: D82
  issue: D1
  year: 2015
  ident: ref30
  article-title: COXPRESdb in 2015: Coexpression database for animal species by DNA-microarray and RNAseq-based expression data with multiple quality assessment systems
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1163
– volume: 27
  start-page: 4233
  issue: 30
  year: 2008
  ident: ref47
  article-title: Expression of the BRCA1-interacting protein Brip1/BACH1/FANCJ is driven by E2F and correlates with human breast cancer malignancy
  publication-title: Oncogene
  doi: 10.1038/onc.2008.51
– volume: 3
  start-page: 521
  issue: 2
  year: 2009
  ident: ref16
  article-title: Network exploration via the adaptive LASSO and SCAD penalties
  publication-title: Ann Appl Stat
  doi: 10.1214/08-AOAS215
– volume: 45
  start-page: 167
  issue: 2
  year: 2003
  ident: ref72
  article-title: The structure and function of complex networks
  publication-title: SIAM Rev
  doi: 10.1137/S003614450342480
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  ident: ref29
  article-title: KEGG: kyoto encyclopedia of genes and genomes
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/28.1.27
– volume: 98
  start-page: 1
  issue: 1
  year: 2011
  ident: ref24
  article-title: Joint estimation of multiple graphical models
  publication-title: Biometrika
  doi: 10.1093/biomet/asq060
– volume: 61
  start-page: 5979
  year: 2001
  ident: ref45
  article-title: Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns
  publication-title: Cancer Res
– volume: 37
  start-page: W305
  issue: suppl_2
  year: 2009
  ident: ref79
  article-title: ToppGene Suite for gene list enrichment analysis and candidate gene prioritization
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp427
– volume: 33
  start-page: 1797
  issue: 9
  year: 2012
  ident: ref54
  article-title: Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non—small cell lung carcinoma from Chinese patients
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgs210
– volume: 17
  start-page: 1
  issue: 166
  year: 2016
  ident: ref26
  article-title: Joint structural estimation of multiple graphical models
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 432
  issue: 3
  year: 2008
  ident: ref36
  article-title: Sparse inverse covariance estimation with the graphical lasso
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxm045
– year: 1996
  ident: ref20
– volume: 81
  start-page: 1278
  issue: 6
  year: 2007
  ident: ref65
  article-title: Pathway-based approaches for analysis of genomewide association studies
  publication-title: Am J Hum Genet
  doi: 10.1086/522374
– volume: 25
  start-page: 2172
  issue: 8
  year: 2013
  ident: ref18
  article-title: Alternating direction methods for latent variable Gaussian graphical model selection
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00379
– volume: 46
  start-page: 315
  issue: 6
  year: 2012
  ident: ref62
  article-title: Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding
  publication-title: Neuropeptides
  doi: 10.1016/j.npep.2012.09.004
– volume: 18
  start-page: 706
  issue: 5
  year: 2008
  ident: ref3
  article-title: A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility
  publication-title: Genome Res
  doi: 10.1101/gr.074914.107
– volume: 26
  start-page: 467
  issue: 7
  year: 1997
  ident: ref39
  article-title: Developmental expression of the myelin gene MOBP in the rat nervous system
  publication-title: J Neurocytol
  doi: 10.1023/A:1018529323734
SSID ssj0035896
Score 2.3616903
Snippet Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of...
SourceID plos
doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e1006436
SubjectTerms Algorithms
Animals
Area Under Curve
Biological activity
Biology and Life Sciences
Brain - metabolism
Breast cancer
Breast Neoplasms - genetics
Breast Neoplasms - metabolism
Cancer
Clustering
College campuses
Computer and Information Sciences
Computer Graphics
Computer Simulation
Databases, Factual
Datasets
Female
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Neoplastic
Gene regulation
Genes
Genomes
Genomics
Graphic methods
Heart
Heterogeneity
Humans
Male
Medicine and Health Sciences
Metastasis
Methods
Modules
Myocardium - metabolism
Neoplasms - metabolism
Network analysis
Network hubs
Normal Distribution
Pharmaceutical sciences
Physical Sciences
Rats
Regulatory mechanisms (biology)
Research and Analysis Methods
Software
Sparsity
Statistical inference
Statistical methods
Trends
Tumors
Variables
SummonAdditionalLinks – databaseName: DOAJ : Directory of Open Access Journals [open access]
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQBRIXxHuzLMhISMAhbOJHbXMrFYUDWnEAqbfIrxWVVkmVtmj3yi9nxk6jLVppL1xjp8rMfJ4Z1-NvCHkjpY7gHGF9-wgbFOdVaZyIpRXMCh4rz5xPzSbU2ZleLs33a62-sCYs0wNnxZ2yoEOsudCRVcJp7ZDQTbnKQag3Ol0hZ5Uy-81U9sFc6tSZC5vilIqL5XBpjqv6dLDRh7V3K6wRgJA8PQhKibt_9NCT9UW3uSn9_LeK8lpYWjwkD4Z8ks6yHI_Indg-Jvdyh8mrJ-TPvMMzaVB-aYNdo2-j57tNDDQxVaOFKObPHX03X3z59v4jnbV0nJmiW9j18E7XU6zb6vFvQOrHH8WLmlhsRAGHEZ6X8XKorG1pmyvMn5Kfi88_5l_Loe1C6SG725aGBSG95rwOUYP1bM2c49xKYVkIlkUeIeea8mic8SaCZaeGaReVMsxX0vNnZNJ2bTwiVErpzqVSNiCJztSbSgvBWMWVqY2MoiB8r_fGD5zk2BrjokkHbQr2JlmNDVqrGaxVkHJ8a505OW6Z_wlNOs5FRu30AHDWDDhrbsNZQd4iIBpc9_CJ3g7XF0BQZNBqZhJ2bhz9Z0GOEDP7T9k04DKR2cxIVpCTPY5uHn49DsMqx6Mb28ZuB3MwsoEoRhfkeYbdKA5HmjrIKwuiDgB5IO_hSLv6lZjEIX1Fxsfj_6GgF-Q-JJM619-dkMm238WX5K7_vV1t-ldpef4FSCA-Uw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest advanced technologies & aerospace journals
  dbid: P5Z
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaggLQX3rCBBRkJCThkN7Hj2uaCSkXhgFZ7AKniEvm1UGmVZJMWwZVfzkziBopWcOAaO5En83lmbI-_IeSpECqAcYT57QIsUKyTqbZFSE3BTMFD5ph1fbEJeXyslkt9EjfcuphWubWJvaH2tcM98iPAHdJDacFeNecpVo3C09VYQuMyuZIziPUBzyfi09YSc6H6-lxYGieVvFjGq3Nc5kdRU4eNsyvMFADHPN1xTT2D_2inJ81Z3V0UhP6ZS_mbc1rc-F-xbpLrMSylswFHt8ilUN0m14ZCld_vkB_zGo-2QYep8aZBE0lPN13wtCe8RkVTDMNr-ny-ePv-xUs6q-jYs3eSftPCO3VLMf2rxd1E6saP4n1PzFmiAOcAz9PwLSboVrQaEtXvko-LNx_m79JYvSF1ECSuU818IZziPPdBAQhMzqzl3IjCMO8NCzxA6DblQVvtdACATDVTNkipmcuE4_fIpKqrsE-oEMKeCimNRy6eqdOZKgrGMi51rkUoEsK3iitdpDbHChtnZX9eJ2GJM_zGEtVdRnUnJB3fagZqj3_0f42YGPsiMXf_oG4_l3Gel8wrH3IYZWBZYZWyyD8obWYhMtWK5Ql5hogq0XzAEJ2JtyBAUCTiKmcCFoAczXBC9hF026F05S-oJORgC6aLm5-MzWAs8ATIVKHeQB90kCCKVgm5P-B2FIcj2x2EpwmRO4jekXe3pVp96QnJIQpG4sgHfx_WQ7IH0aYaEvQOyGTdbsIjctV9Xa-69nE_c38CoOhNvw
  priority: 102
  providerName: ProQuest
Title Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network
URI https://www.ncbi.nlm.nih.gov/pubmed/30240439
https://www.proquest.com/docview/2250630952
https://www.proquest.com/docview/2111143698
https://pubmed.ncbi.nlm.nih.gov/PMC6173447
https://doaj.org/article/2d8de1348e204b88b79377b0b5519821
http://dx.doi.org/10.1371/journal.pcbi.1006436
Volume 14
WOSCitedRecordID wos000450712200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: DOA
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: P5Z
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: M7P
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: K7-
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: 7X7
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: BENPR
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: PIMPY
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVATS
  databaseName: Public Library of Science (PLoS) Journals Open Access
  customDbUrl:
  eissn: 1553-7358
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035896
  issn: 1553-7358
  databaseCode: FPL
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://www.plos.org/publications/
  providerName: Public Library of Science
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-8PQVf_NarnksEQX2otknTJL7tLbcqnksRhdWX0qQ5XDjaZT9EX_3LnWm71T3uEF_y0ExKkpnMTDKTXwCeSqk9Kkdc387jBsU6FRqb-LBIeJEIHzluXfPYhJpO9Wxmsj8bxXMRfKHiV92cvlw4O6eYPprQdA_2CficpHiSnWw1r5DapN31uMta7pifBqW_18WDxVm9usjRPJ8v-ZcBmtz8367fghudq8lGrWzchiu-ugPX2scnf96FX-OawtXIl7AoiwWpPXa6WfmSNSDWxDxGrnXNno8nb05evGajivWUjeErN0tsUy8ZpXQt6YSQuf6ndIeT8pAYiqjH76H_0SXdVqxqk8_vwefJ8afx27B7kSF06PitQ8PLRDotRFx6jYwtYm6tEIVMCl6WBffCozuWCm-sccYj01PDtfVKGe4i6cR9GFR15Q-ASSntqVSqKAlfJ3Um0knCeSSUiY30SQBiy6jcdXDl9GrGWd7E4BRuW9ppzGl28252Awj7VosWruMf9EckAz0tgW03H5CNebd2c17q0sfYS8-jxGptCVNQ2ciit2k0jwN4RhKUk0rALrqiu9mAAyVwrXwkcVMnSLUGcEBCtu3KKkdtSqBnRvIADreCd3H1k74aFQBFdYrK1xukIaOHQzE6gAetnPbDEYRghy5nAGpHgnfGu1tTzb81IOPo2RIY5MPLe_wIrqP3qNuEu0MYrJcb_xiuuu_r-Wo5hD01U02ph7B_dDzNPg6bA49hs2axfK_CIaXaZlhm8itSZe8-ZF9-A6meQqg
linkProvider Public Library of Science
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELXKAoIL39BAASOBgENoYsdrGwmhZWFp1aXqoZVWXILtuLBSlSzZXaBXfhC_kZl8waIKTj1wTZxo7LwZP8fjN4Q8FEJ5CI7g387DAsU6GWqb-NAkzCTcR45ZVxWbkLu7ajLRe2vkR3sWBtMq25hYBeqscPiPfBNwh_JQWrCXs88hVo3C3dW2hEYNix1__BWWbPMX26_h-z5ibPRmf7gVNlUFQgfkZRFqliXCKc7jzCswzsTMWs6NSAzLMsM890Ap-txrq532YHhfM2W9lJq5SDgO7z1DzgKN0BgI9sT7NvJzoap6YFiKJ5Q8mTRH9biMNxtkPJs5O8XMBCAC_ZWpsKoY0M0LvdlRMT-J9P6Zu_nbZDi6_L8N4xVyqaHddFD7yVWy5vNr5HxdiPP4Ovk-LHDrHjAamszMcAqgh8u5z2gl6I1AprjMKOiT4ejt-OlzOshp17IiAdmyhGeKkmJ6W4l_S6nrXornWTEni4K7erge-m9NAnJO8zoR_wY5OJUBuEl6eZH7dUKFEPZQSGky1BrqOx2pJGEs4lLHWvgkILwFSuoa6XasIHKUVvuREpZw9TCmCK-0gVdAwu6pWS1d8o_2rxCDXVsUHq8uFOXHtIljKctU5mOw0rMosUpZ1FeUNrLAvLVicUAeI4JTDI9gojPNKQ_oKAqNpQMBC1yO00xA1hHkrSnz9Bc0A7LRgvfk2w-62xAMcYfL5L5YQhskANAVrQJyq_aTrjsc1fyAfgdErnjQSn9X7-TTT5XgOrB8FMa8_Xez7pMLW_vvxul4e3fnDrkIzFrVyYgbpLcol_4uOee-LKbz8l4VNSj5cNr-9ROH36t3
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwELWWLiAufMMGFjASCDiEJnZc20gIlS6Fapeqh0UqpxA7LlRaJSVtgb3ys_h1zOQLilZw2gPXxIls583Mczx-Q8gDIZQD5wj2bR0sUIyVvjaR85OIJRF3gWXGlsUm5HisplM92SI_mrMwmFbZ-MTSUae5xX_kXcAdykNpwbqzOi1isjd8sfjsYwUp3GltymlUENl3x19h-bZ8PtqDb_2QseGrw8Ebv64w4FsgMitfszQSVnEepk5BR5OQGcN5IqKEpWnCHHdAL3rcaaOtdjCInmbKOCk1s4GwHN57hmwDJWdRh2xPRm8n75s4wIUqq4NhYR5f8mhaH9zjMuzWOHm6sGaOeQpAC3obgbGsH9BGic7iKF-eRIH_zOT8LTQOL_3Pk3qZXKwJOe1XFnSFbLnsKjlXleg8vka-D3Lc1Af0-kmaLDA40Nl66VJaSn0jxCkuQHL6eDB8ffDkGe1ntG1Z0oN0XcAzeUEx8a3A_6jUti_Fk66YrUXBkB1c9923OjU5o1mVon-dvDuVCbhBOlmeuR1ChRBmJqRMUlQh6lkdqChiLOBSh1q4yCO8AU1sa1F3rC1yFJc7lRIWd9U0xgi1uIaaR_z2qUUlavKP9i8Rj21blCQvL-TFx7j2cDFLVepC6KVjQWSUMqi8KE1ggJNrxUKPPEI0x-g4oYs2qc9_wEBRgizuC1j6cgxAHtlBwDddWca_YOqR3QbIJ9--394GN4l7X0nm8jW0QWoAQ9HKIzcrm2mHw1HnD4i5R-SGNW2Md_NONv9USrED_0fJzFt_79Y9ch7MKj4YjfdvkwtAuVWVpbhLOqti7e6Qs_bLar4s7tYuhJIPp21gPwGv8LWe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Condition-adaptive+fused+graphical+lasso+%28CFGL%29%3A+An+adaptive+procedure+for+inferring+condition-specific+gene+co-expression+network&rft.jtitle=PLoS+computational+biology&rft.au=Lyu%2C+Yafei&rft.au=Xue%2C+Lingzhou&rft.au=Zhang%2C+Feipeng&rft.au=Koch%2C+Hillary&rft.date=2018-09-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7358&rft.volume=14&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006436&rft.externalDocID=2250630952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon