Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network
Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analy...
Gespeichert in:
| Veröffentlicht in: | PLoS computational biology Jg. 14; H. 9; S. e1006436 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Public Library of Science
01.09.2018
Public Library of Science (PLoS) |
| Schlagworte: | |
| ISSN: | 1553-7358, 1553-734X, 1553-7358 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism. |
|---|---|
| AbstractList | Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism. Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism.Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism. Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of co-expression can provide insights into the underlying cellular processes activated in a particular condition. One challenge in this type of analysis is that the sample sizes in each condition are usually small, making the statistical inference of co-expression patterns highly underpowered. A joint network construction that borrows information from related structures across conditions has the potential to improve the power of the analysis. One possible approach to constructing the co-expression network is to use the Gaussian graphical model. Though several methods are available for joint estimation of multiple graphical models, they do not fully account for the heterogeneity between samples and between co-expression patterns introduced by condition specificity. Here we develop the condition-adaptive fused graphical lasso (CFGL), a data-driven approach to incorporate condition specificity in the estimation of co-expression networks. We show that this method improves the accuracy with which networks are learned. The application of this method on a rat multi-tissue dataset and The Cancer Genome Atlas (TCGA) breast cancer dataset provides interesting biological insights. In both analyses, we identify numerous modules enriched for Gene Ontology functions and observe that the modules that are upregulated in a particular condition are often involved in condition-specific activities. Interestingly, we observe that the genes strongly associated with survival time in the TCGA dataset are less likely to be network hubs, suggesting that genes associated with cancer progression are likely to govern specific functions or execute final biological functions in pathways, rather than regulating a large number of biological processes. Additionally, we observed that the tumor-specific hub genes tend to have few shared edges with normal tissue, revealing tumor-specific regulatory mechanism. Gene co-expression networks provide insights into the mechanism of cellular activity and gene regulation. Condition-specific mechanisms may be identified by constructing and comparing co-expression networks of multiple conditions. We propose a novel statistical method to jointly construct co-expression networks for gene expression profiles from multiple conditions. By using a data-driven approach to capture condition-specific co-expression patterns, this method is effective in identifying both co-expression patterns that are specific to a condition and that are common across conditions. The application of this method to real datasets reveals interesting biological insights. |
| Audience | Academic |
| Author | Koch, Hillary Xue, Lingzhou Lyu, Yafei Saba, Laura Li, Qunhua Kechris, Katerina Zhang, Feipeng |
| AuthorAffiliation | 4 Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America 3 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America 1 Bioinformatics and Genomics, the Huck Institute of the Life Science, Pennsylvania State University, State College, Pennsylvania, United States of America Carnegie Mellon University, UNITED STATES 2 Department of Statistics, Pennsylvania State University, State College, Pennsylvania, United States of America |
| AuthorAffiliation_xml | – name: Carnegie Mellon University, UNITED STATES – name: 1 Bioinformatics and Genomics, the Huck Institute of the Life Science, Pennsylvania State University, State College, Pennsylvania, United States of America – name: 3 Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America – name: 2 Department of Statistics, Pennsylvania State University, State College, Pennsylvania, United States of America – name: 4 Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America |
| Author_xml | – sequence: 1 givenname: Yafei surname: Lyu fullname: Lyu, Yafei – sequence: 2 givenname: Lingzhou surname: Xue fullname: Xue, Lingzhou – sequence: 3 givenname: Feipeng surname: Zhang fullname: Zhang, Feipeng – sequence: 4 givenname: Hillary surname: Koch fullname: Koch, Hillary – sequence: 5 givenname: Laura orcidid: 0000-0001-9649-1294 surname: Saba fullname: Saba, Laura – sequence: 6 givenname: Katerina surname: Kechris fullname: Kechris, Katerina – sequence: 7 givenname: Qunhua orcidid: 0000-0003-0675-7648 surname: Li fullname: Li, Qunhua |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30240439$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9Uk1v1DAQjVAR_YB_gCASl3LI4s8k7qHSakVLpZW4wNnyx2TrJWsHOylw5ZfjZbertkLYB4_G7z3PeN5pceSDh6J4jdEM0wZ_WIcpetXPBqPdDCNUM1o_K04w57RqKG-PHsTHxWlKa4RyKOoXxTFFhCFGxUnxexG8daMLvlJWDaO7g7KbEthyFdVw64zqy16lFMrzxdX18v1FOfflATnEYMBOMXNCLJ3vIEbnV6U5iKYBjOucKVfgIecr-DlESCnflR7GHyF-e1k871Sf4NX-PCu-Xn38svhULT9f3yzmy8rwmo-VIJZx01KKLbRMG4WJ1pQqzhSxVhGgUGNUUxBaGAGaQS1Iq6FpBDGIG3pWvN3pDn1Icv99SRLCMwsJTjLiZoewQa3lEN1GxV8yKCf_JkJcSRVHZ3qQxLYWMGUtEMR02-pG0KbRSHOORUtw1rrcvzbpDVgDfoyqfyT6-Ma7W7kKd7LGDWWsyQLne4EYvk-QRrlxyUDfKw9hynXjvPLMRZuh755A_93dbIdaqdxAHlbI75q8LWxcnhh0LufnnDc1bRBFmfDmYQuH2u_dkwFsBzAxpBShO0AwkluT3tchtyaVe5Nm2sUTmnGj2tolF-T6_5P_AM6A8TY |
| CitedBy_id | crossref_primary_10_1111_nph_16167 crossref_primary_10_1111_biom_13645 crossref_primary_10_1016_j_gpb_2020_11_006 crossref_primary_10_3889_oamjms_2021_7215 crossref_primary_10_1093_bioinformatics_btaf096 crossref_primary_10_1109_TCBB_2023_3282028 crossref_primary_10_1007_s00357_022_09421_z crossref_primary_10_1186_s12967_025_06680_3 crossref_primary_10_1371_journal_pcbi_1012300 crossref_primary_10_1109_TCBB_2020_3002906 crossref_primary_10_1109_TCBB_2021_3103407 crossref_primary_10_1111_tpj_70291 crossref_primary_10_1371_journal_pcbi_1011616 crossref_primary_10_1371_journal_pcbi_1010758 crossref_primary_10_1002_jts_22818 |
| Cites_doi | 10.1111/j.1369-1600.2010.00254.x 10.1198/jasa.2011.tm10155 10.1111/rssb.12033 10.1093/biomet/asu074 10.4161/cc.9.15.12526 10.1038/sj.onc.1210858 10.3892/ol.2014.2721 10.1111/j.1467-9868.2011.01034.x 10.1214/12-AOS1017 10.1561/2200000016 10.1214/12-AOS1041 10.2217/fon.10.191 10.1214/aos/1176344136 10.4048/jbc.2017.20.3.240 10.1371/journal.pcbi.1001014 10.1214/009053606000000281 10.1074/jbc.M112.392332 10.1214/16-EJS1137 10.1186/gb-2009-10-5-r55 10.1080/01621459.2014.921182 10.1198/jcgs.2010.09208 10.1111/j.1467-9868.2008.00674.x 10.1016/S0304-3835(98)00249-3 10.1038/sj.ejhg.5201783 10.1038/nature11412 10.1101/gr.2584104 10.1016/j.celrep.2016.08.048 10.1111/febs.13358 10.1371/journal.pone.0014147 10.1093/abbs/gmu001 10.1103/RevModPhys.74.47 10.1002/1878-0261.12045 10.1214/15-AOAS844 10.1371/journal.pcbi.1004220 10.1016/j.ydbio.2012.12.007 10.1097/01.sla.0000154455.86404.e9 10.3389/fphys.2012.00299 10.1093/bioinformatics/btr260 10.1038/ncomms4231 10.1152/japplphysiol.00064.2003 10.1186/1741-7007-6-49 10.1371/journal.pgen.1004006 10.1186/1471-2105-9-559 10.1038/nrg2538 10.1111/j.1467-9868.2010.00740.x 10.1093/biomet/asu009 10.3892/ol.2012.1038 10.1073/pnas.070371497 10.1016/j.jtbi.2014.03.040 10.1371/journal.pcbi.1001106 10.1186/1471-2202-4-23 10.1016/j.tig.2012.03.004 10.1186/1471-2164-7-40 10.1158/0008-5472.CAN-05-0420 10.1093/bib/bbq086 10.1093/nar/gng015 10.1198/jasa.2009.0126 10.1093/nar/gku1163 10.1038/onc.2008.51 10.1214/08-AOAS215 10.1137/S003614450342480 10.1093/nar/28.1.27 10.1093/biomet/asq060 10.1093/nar/gkp427 10.1093/carcin/bgs210 10.1093/biostatistics/kxm045 10.1086/522374 10.1162/NECO_a_00379 10.1016/j.npep.2012.09.004 10.1101/gr.074914.107 10.1023/A:1018529323734 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2018 Public Library of Science 2018 Lyu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2018 Lyu et al 2018 Lyu et al |
| Copyright_xml | – notice: COPYRIGHT 2018 Public Library of Science – notice: 2018 Lyu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2018 Lyu et al 2018 Lyu et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7QP 7TK 7TM 7X7 7XB 88E 8AL 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0N M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM DOA |
| DOI | 10.1371/journal.pcbi.1006436 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest : Biological Science Collection journals [unlimited simultaneous users] ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ : Directory of Open Access Journals [open access] |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| DocumentTitleAlternate | CFGL: An adaptive procedure for inferring condition-specific gene co-expression network |
| EISSN | 1553-7358 |
| ExternalDocumentID | 2250630952 oai_doaj_org_article_2d8de1348e204b88b79377b0b5519821 PMC6173447 A557637030 30240439 10_1371_journal_pcbi_1006436 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | United States--US Colorado Pennsylvania |
| GeographicLocations_xml | – name: Colorado – name: Pennsylvania – name: United States--US |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: P30 DA044223 – fundername: NIGMS NIH HHS grantid: T32 GM102057 – fundername: NIGMS NIH HHS grantid: R01 GM109453 – fundername: NIAAA NIH HHS grantid: R24 AA013162 – fundername: NIAAA NIH HHS grantid: R01 AA021131 – fundername: ; grantid: R01-AA021131 – fundername: ; grantid: Huck Graduate Research Innovation Grant – fundername: ; grantid: DMS-1505256 – fundername: ; grantid: R24AA013162 – fundername: ; grantid: T32 GM102057 – fundername: ; grantid: P30DA044223 – fundername: ; grantid: R01GM109453 |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAKPC AAUCC AAWOE AAYXX ABDBF ABUWG ACCTH ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC B0M BAIFH BAWUL BBNVY BBTPI BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DWQXO E3Z EAP EAS EBD EBS EJD EMK EMOBN ESX F5P FPL FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IGS INH INR ISN ISR ITC J9A K6V K7- KQ8 LK8 M1P M48 M7P O5R O5S OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PV9 RNS RPM RZL SV3 TR2 TUS UKHRP WOW XSB ~8M ALIPV C1A CGR CUY CVF ECM EIF H13 IPNFZ NPM RIG WOQ 3V. 7QO 7QP 7TK 7TM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M0N P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 PUEGO 5PM - AAPBV ABPTK ACDSR BBAFP M~E UMP |
| ID | FETCH-LOGICAL-c565t-92d45c8331de84bca12bb33a54a2dda2e3e61063e9b9c9eb4e6928be7792c05c3 |
| IEDL.DBID | FPL |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000450712200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1553-7358 1553-734X |
| IngestDate | Sun Sep 04 00:10:37 EDT 2022 Fri Oct 03 12:51:34 EDT 2025 Tue Nov 04 02:00:16 EST 2025 Fri Sep 05 10:22:23 EDT 2025 Sat Nov 29 14:19:33 EST 2025 Tue Nov 04 17:31:26 EST 2025 Mon Jul 21 05:45:06 EDT 2025 Sat Nov 29 05:21:23 EST 2025 Tue Nov 18 21:25:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c565t-92d45c8331de84bca12bb33a54a2dda2e3e61063e9b9c9eb4e6928be7792c05c3 |
| Notes | new_version ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors have declared that no competing interests exist. |
| ORCID | 0000-0001-9649-1294 0000-0003-0675-7648 |
| OpenAccessLink | http://dx.doi.org/10.1371/journal.pcbi.1006436 |
| PMID | 30240439 |
| PQID | 2250630952 |
| PQPubID | 1436340 |
| ParticipantIDs | plos_journals_2250630952 doaj_primary_oai_doaj_org_article_2d8de1348e204b88b79377b0b5519821 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6173447 proquest_miscellaneous_2111143698 proquest_journals_2250630952 gale_infotracacademiconefile_A557637030 pubmed_primary_30240439 crossref_primary_10_1371_journal_pcbi_1006436 crossref_citationtrail_10_1371_journal_pcbi_1006436 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-09-01 |
| PublicationDateYYYYMMDD | 2018-09-01 |
| PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco – name: San Francisco, CA USA |
| PublicationTitle | PLoS computational biology |
| PublicationTitleAlternate | PLoS Comput Biol |
| PublicationYear | 2018 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | M Kanehisa (ref29) 2000; 28 KH Lee (ref17) 2017 M Vecchi (ref49) 2008; 27 Z Yao (ref58) 2017; 11 G Schwarz (ref70) 1978; 6 SL Lauritzen (ref20) 1996 Y Yang (ref4) 2014; 5 Y Zhu (ref25) 2014; 109 K V Everett (ref41) 2007; 15 L Liu (ref2) 2015; 9 HC Jung (ref52) 2017; 20 L Liu (ref63) 2015; 9 J Fan (ref33) 2008; 70 SB Cantor (ref56) 2011; 7 J Fan (ref16) 2009; 3 S Boyd (ref69) 2011; 3 RD Shah (ref78) 2013; 75 N Meinshausen (ref22) 2006 X Xiao (ref7) 2014; 10 (ref44) 2012; 490 J Friedman (ref36) 2008; 9 A Holz (ref39) 1997; 26 MS Duxbury (ref61) 2005; 241 J Peng (ref23) 2009; 104 FJ Moss (ref40) 2003; 4 SD Zhao (ref37) 2014; 101 N Tamura (ref42) 2000; 97 T Cai (ref35) 2011; 106 MP Keller (ref3) 2008; 18 S Gruvberger (ref45) 2001; 61 L Fan (ref59) 2015; 8 MEJ Newman (ref72) 2003; 45 Z Dezso (ref10) 2008; 6 K Wang (ref65) 2007; 81 LM Saba (ref75) 2015; 282 DN Messina (ref11) 2004; 14 Y Liang (ref57) 2012; 287 RD Blumenthal (ref60) 2005; 65 L Xue (ref19) 2012; 40 RA Irizarry (ref76) 2003; 31 J Guo (ref24) 2011; 98 H Höfling (ref67) 2009; 10 H Hoefling (ref28) 2010; 19 D Kohno (ref62) 2012; 46 AS Blazier (ref1) 2012; 3 D Xiong (ref54) 2012; 33 P Langfelder (ref21) 2008; 9 W Li (ref9) 2011; 7 JM Vaquerizas (ref12) 2009; 10 P Menéndez (ref13) 2010; 5 T Saegusa (ref27) 2016; 10 Y Zhang (ref48) 2014; 46 J Chen (ref79) 2009; 37 G Eelen (ref47) 2008; 27 BA Logsdon (ref14) 2010; 6 Y Okamura (ref30) 2015; 43 Y Ushida (ref51) 1998; 134 J Bezault (ref50) 1994; 54 MP Printz (ref73) 2003; 94 PL Hoffman (ref74) 2011; 16 C Moiola (ref53) 2010; 9 A Liberzon (ref31) 2011; 27 HE Lockstone (ref77) 2011; 12 R Dobrin (ref8) 2009; 10 Z Zhang (ref46) 2016; 16 P Holmans (ref64) 2010 G Wang (ref55) 2013; 5 J Ma (ref26) 2016; 17 R Albert (ref71) 2002; 74 E Pierson (ref5) 2015; 11 N Meinshausen (ref38) 2010; 72 L Xue (ref68) 2012; 40 YXR Wang (ref15) 2014; 362 MR Carlson (ref32) 2006; 7 Q Wang (ref43) 2013; 374 P Danaher (ref6) 2014; 76 Y Xia (ref34) 2015; 102 S Ma (ref18) 2013; 25 VK Ramanan (ref66) 2012; 28 |
| References_xml | – volume: 16 start-page: 393 issue: 3 year: 2011 ident: ref74 article-title: Using the Phenogen website for “in silico”analysis of morphine-induced analgesia: identifying candidate genes publication-title: Addict Biol doi: 10.1111/j.1369-1600.2010.00254.x – volume: 106 start-page: 594 issue: 494 year: 2011 ident: ref35 article-title: A constrained ℓ 1 minimization approach to sparse precision matrix estimation publication-title: J Am Stat Assoc doi: 10.1198/jasa.2011.tm10155 – volume: 76 start-page: 373 issue: 2 year: 2014 ident: ref6 article-title: The joint graphical lasso for inverse covariance estimation across multiple classes publication-title: J R Stat Soc Ser B Stat Method doi: 10.1111/rssb.12033 – volume: 102 start-page: 247 issue: 2 year: 2015 ident: ref34 article-title: Testing differential networks with applications to the detection of gene-gene interactions publication-title: Biometrika doi: 10.1093/biomet/asu074 – volume: 9 start-page: 3191 issue: 15 year: 2010 ident: ref53 article-title: Cyclin T1 overexpression induces malignant transformation and tumor growth publication-title: Cell Cycle doi: 10.4161/cc.9.15.12526 – volume: 27 start-page: 2148 issue: 15 year: 2008 ident: ref49 article-title: Breast cancer metastases are molecularly distinct from their primary tumors publication-title: Oncogene doi: 10.1038/sj.onc.1210858 – volume: 9 start-page: 891 issue: 2 year: 2015 ident: ref63 article-title: NPY1R is a novel peripheral blood marker predictive of metastasis and prognosis in breast cancer patients publication-title: Oncol Lett doi: 10.3892/ol.2014.2721 – volume: 75 start-page: 55 issue: 1 year: 2013 ident: ref78 article-title: Variable selection with error control: another look at stability selection publication-title: J R Stat Soc Ser B (Stat Method) doi: 10.1111/j.1467-9868.2011.01034.x – volume: 54 start-page: 2310 issue: 9 year: 1994 ident: ref50 article-title: Human lactoferrin inhibits growth of solid tumors and development of experimental metastases in mice publication-title: Cancer Res – volume: 40 start-page: 1403 issue: 3 year: 2012 ident: ref68 article-title: Nonconcave penalized composite conditional likelihood estimation of sparse Ising models publication-title: Ann Stat doi: 10.1214/12-AOS1017 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: ref69 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found Trends Mach Learn doi: 10.1561/2200000016 – volume: 40 start-page: 2541 issue: 5 year: 2012 ident: ref19 article-title: Regularized rank-based estimation of high-dimensional nonparanormal graphical models publication-title: Ann Stat doi: 10.1214/12-AOS1041 – volume: 7 start-page: 253 issue: 2 year: 2011 ident: ref56 article-title: Hereditary breast cancer and the BRCA1-associated FANCJ/BACH1/BRIP1 publication-title: Futur Oncol doi: 10.2217/fon.10.191 – volume: 6 start-page: 461 issue: 2 year: 1978 ident: ref70 article-title: Estimating the dimension of a model publication-title: Ann Stat doi: 10.1214/aos/1176344136 – volume: 20 start-page: 240 issue: 3 year: 2017 ident: ref52 article-title: Gene Regulatory Network Analysis for Triple-Negative Breast Neoplasms by Using Gene Expression Data publication-title: J Breast Cancer doi: 10.4048/jbc.2017.20.3.240 – volume: 6 start-page: e1001014 issue: 12 year: 2010 ident: ref14 article-title: Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1001014 – start-page: 1436 year: 2006 ident: ref22 article-title: High-dimensional graphs and variable selection with the lasso publication-title: Ann Stat doi: 10.1214/009053606000000281 – volume: 287 start-page: 33533 issue: 40 year: 2012 ident: ref57 article-title: Transcriptional network analysis identifies BACH1 as a master regulator of breast cancer bone metastasis publication-title: J Biol Chem doi: 10.1074/jbc.M112.392332 – volume: 10 start-page: 1341 issue: 1 year: 2016 ident: ref27 article-title: Joint estimation of precision matrices in heterogeneous populations publication-title: Electron J Stat doi: 10.1214/16-EJS1137 – volume: 10 start-page: R55 issue: 5 year: 2009 ident: ref8 article-title: Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease publication-title: Genome Biol doi: 10.1186/gb-2009-10-5-r55 – volume: 109 start-page: 1683 issue: 508 year: 2014 ident: ref25 article-title: Structural pursuit over multiple undirected graphs publication-title: J Am Stat Assoc doi: 10.1080/01621459.2014.921182 – volume: 19 start-page: 984 issue: 4 year: 2010 ident: ref28 article-title: A path algorithm for the fused lasso signal approximator publication-title: J Comput Graph Stat doi: 10.1198/jcgs.2010.09208 – volume: 70 start-page: 849 issue: 5 year: 2008 ident: ref33 article-title: Sure independence screening for ultrahigh dimensional feature space publication-title: J R Stat Soc Ser B Stat Method doi: 10.1111/j.1467-9868.2008.00674.x – volume: 134 start-page: 141 issue: 2 year: 1998 ident: ref51 article-title: Inhibitory effects of bovine lactoferrin on intestinal polyposis in the Apc Min mouse publication-title: Cancer Lett doi: 10.1016/S0304-3835(98)00249-3 – volume: 15 start-page: 463 issue: 4 year: 2007 ident: ref41 article-title: Linkage and association analysis of CACNG3 in childhood absence epilepsy publication-title: Eur J Hum Genet doi: 10.1038/sj.ejhg.5201783 – volume: 490 start-page: 61 issue: 7418 year: 2012 ident: ref44 article-title: Comprehensive molecular portraits of human breast tumors publication-title: Nature doi: 10.1038/nature11412 – volume: 14 start-page: 2041 issue: 10 B year: 2004 ident: ref11 article-title: An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression publication-title: Genome Res doi: 10.1101/gr.2584104 – volume: 16 start-page: 3146 issue: 12 year: 2016 ident: ref46 article-title: Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation publication-title: Cell Rep doi: 10.1016/j.celrep.2016.08.048 – volume: 282 start-page: 3556 issue: 18 year: 2015 ident: ref75 article-title: The sequenced rat brain transcriptome—its use in identifying networks predisposing alcohol consumption publication-title: FEBS J doi: 10.1111/febs.13358 – volume: 5 start-page: e14147 issue: 12 year: 2010 ident: ref13 article-title: Gene regulatory networks from multifactorial perturbations using graphical lasso: Application to the DREAM4 challenge publication-title: PLoS One doi: 10.1371/journal.pone.0014147 – volume: 46 start-page: 283 issue: 4 year: 2014 ident: ref48 article-title: CEACAM6 promotes tumor migration, invasion, and metastasis in gastric cancer publication-title: Acta Biochim Biophys Sin doi: 10.1093/abbs/gmu001 – volume: 74 start-page: 47 issue: 1 year: 2002 ident: ref71 article-title: Statistical mechanics of complex networks publication-title: Rev Mod Phys doi: 10.1103/RevModPhys.74.47 – volume: 11 start-page: 422 issue: 4 year: 2017 ident: ref58 article-title: ZKSCAN1 gene and its related circular RNA (circ ZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways publication-title: Mol Oncol doi: 10.1002/1878-0261.12045 – volume: 9 start-page: 1571 issue: 3 year: 2015 ident: ref2 article-title: Network assisted analysis to reveal the genetic basis of autism publication-title: Ann Appl Stat doi: 10.1214/15-AOAS844 – volume: 11 start-page: e1004220 issue: 5 year: 2015 ident: ref5 article-title: Sharing and Specificity of Co-expression Networks across 35 Human Tissues publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004220 – volume: 374 start-page: 264 issue: 2 year: 2013 ident: ref43 article-title: The Xin repeat-containing protein, mXinβ, initiates the maturation of the intercalated discs during postnatal heart development publication-title: Dev Biol doi: 10.1016/j.ydbio.2012.12.007 – start-page: 141 year: 2010 ident: ref64 article-title: Statistical methods for pathway analysis of genome-wide data for association with complex genetic traits publication-title: In: Advances in genetics – volume: 241 start-page: 491 issue: 3 year: 2005 ident: ref61 article-title: CEACAM6 Is a Novel Biomarker in Pancreatic Adenocarcinoma and PanIN Lesions publication-title: Ann Surg doi: 10.1097/01.sla.0000154455.86404.e9 – volume: 3 start-page: 299 year: 2012 ident: ref1 article-title: Integration of expression data in genome-scale metabolic network reconstructions publication-title: Front Physiol doi: 10.3389/fphys.2012.00299 – volume: 27 start-page: 1739 issue: 12 year: 2011 ident: ref31 article-title: Molecular signatures database (MSigDB) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 5 start-page: 3231 year: 2014 ident: ref4 article-title: Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types publication-title: Nat Commun doi: 10.1038/ncomms4231 – volume: 94 start-page: 2510 issue: 6 year: 2003 ident: ref73 article-title: Invited Review: HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics publication-title: J Appl Physiol doi: 10.1152/japplphysiol.00064.2003 – volume: 6 start-page: 49 issue: 1 year: 2008 ident: ref10 article-title: A comprehensive functional analysis of tissue specificity of human gene expression publication-title: BMC Biol doi: 10.1186/1741-7007-6-49 – volume: 10 start-page: e1004006 issue: 1 year: 2014 ident: ref7 article-title: Multi-tissue Analysis of Co-expression Networks by Higher-Order Generalized Singular Value Decomposition Identifies Functionally Coherent Transcriptional Modules publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004006 – volume: 9 start-page: 559 issue: 1 year: 2008 ident: ref21 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-559 – volume: 10 start-page: 252 year: 2009 ident: ref12 article-title: A census of human transcription factors: Function, expression and evolution publication-title: Nature Reviews Genetics doi: 10.1038/nrg2538 – volume: 72 start-page: 417 issue: 4 year: 2010 ident: ref38 article-title: Stability selection publication-title: J R Stat Soc Ser B Stat Method doi: 10.1111/j.1467-9868.2010.00740.x – volume: 101 start-page: 253 issue: 2 year: 2014 ident: ref37 article-title: Direct estimation of differential networks publication-title: Biometrika doi: 10.1093/biomet/asu009 – volume: 5 start-page: 544 issue: 2 year: 2013 ident: ref55 article-title: Identification of MXRA5 as a novel biomarker in colorectal cancer publication-title: Oncol Lett doi: 10.3892/ol.2012.1038 – volume: 97 start-page: 4239 issue: 8 year: 2000 ident: ref42 article-title: Cardiac fibrosis in mice lacking brain natriuretic peptide publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.070371497 – volume: 362 start-page: 53 year: 2014 ident: ref15 article-title: Review on statistical methods for gene network reconstruction using expression data publication-title: J Theor Biol doi: 10.1016/j.jtbi.2014.03.040 – volume: 7 start-page: e1001106 issue: 6 year: 2011 ident: ref9 article-title: Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1001106 – volume: 10 start-page: 883 issue: Apr year: 2009 ident: ref67 article-title: Estimation of sparse binary pairwise markov networks using pseudo-likelihoods publication-title: J Mach Learn Res – volume: 4 start-page: 23 issue: 1 year: 2003 ident: ref40 article-title: Human neuronal stargazin-like proteins, γ2, γ3 and γ4; an investigation of their specific localization in human brain and their influence on Ca V 2.1 voltage-dependent calcium channels expressed in Xenopus oocytes publication-title: BMC Neurosci doi: 10.1186/1471-2202-4-23 – volume: 8 start-page: 12428 issue: 10 year: 2015 ident: ref59 article-title: Silencing of ZNF139-siRNA induces apoptosis in human gastric cancer cell line BGC823 publication-title: Int J Clin Exp Pathol – volume: 28 start-page: 323 issue: 7 year: 2012 ident: ref66 article-title: Pathway analysis of genomic data: concepts, methods, and prospects for future development publication-title: TRENDS Genet doi: 10.1016/j.tig.2012.03.004 – volume: 7 start-page: 40 year: 2006 ident: ref32 article-title: Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks publication-title: BMC Genomics doi: 10.1186/1471-2164-7-40 – volume: 65 start-page: 8809 issue: 19 year: 2005 ident: ref60 article-title: Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen) publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-0420 – volume: 12 start-page: 634 issue: 6 year: 2011 ident: ref77 article-title: Exon array data analysis using Affymetrix power tools and R statistical software publication-title: Brief Bioinform doi: 10.1093/bib/bbq086 – year: 2017 ident: ref17 article-title: Nonparametric finite mixture of Gaussian graphical models publication-title: Technometrics – volume: 31 start-page: e15 issue: 4 year: 2003 ident: ref76 article-title: Summaries of Affymetrix GeneChip probe level data publication-title: Nucleic Acids Res doi: 10.1093/nar/gng015 – volume: 104 start-page: 735 issue: 486 year: 2009 ident: ref23 article-title: Partial correlation estimation by joint sparse regression models publication-title: J Am Stat Assoc doi: 10.1198/jasa.2009.0126 – volume: 43 start-page: D82 issue: D1 year: 2015 ident: ref30 article-title: COXPRESdb in 2015: Coexpression database for animal species by DNA-microarray and RNAseq-based expression data with multiple quality assessment systems publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1163 – volume: 27 start-page: 4233 issue: 30 year: 2008 ident: ref47 article-title: Expression of the BRCA1-interacting protein Brip1/BACH1/FANCJ is driven by E2F and correlates with human breast cancer malignancy publication-title: Oncogene doi: 10.1038/onc.2008.51 – volume: 3 start-page: 521 issue: 2 year: 2009 ident: ref16 article-title: Network exploration via the adaptive LASSO and SCAD penalties publication-title: Ann Appl Stat doi: 10.1214/08-AOAS215 – volume: 45 start-page: 167 issue: 2 year: 2003 ident: ref72 article-title: The structure and function of complex networks publication-title: SIAM Rev doi: 10.1137/S003614450342480 – volume: 28 start-page: 27 issue: 1 year: 2000 ident: ref29 article-title: KEGG: kyoto encyclopedia of genes and genomes publication-title: Nucleic Acids Res doi: 10.1093/nar/28.1.27 – volume: 98 start-page: 1 issue: 1 year: 2011 ident: ref24 article-title: Joint estimation of multiple graphical models publication-title: Biometrika doi: 10.1093/biomet/asq060 – volume: 61 start-page: 5979 year: 2001 ident: ref45 article-title: Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns publication-title: Cancer Res – volume: 37 start-page: W305 issue: suppl_2 year: 2009 ident: ref79 article-title: ToppGene Suite for gene list enrichment analysis and candidate gene prioritization publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp427 – volume: 33 start-page: 1797 issue: 9 year: 2012 ident: ref54 article-title: Exome sequencing identifies MXRA5 as a novel cancer gene frequently mutated in non—small cell lung carcinoma from Chinese patients publication-title: Carcinogenesis doi: 10.1093/carcin/bgs210 – volume: 17 start-page: 1 issue: 166 year: 2016 ident: ref26 article-title: Joint structural estimation of multiple graphical models publication-title: J Mach Learn Res – volume: 9 start-page: 432 issue: 3 year: 2008 ident: ref36 article-title: Sparse inverse covariance estimation with the graphical lasso publication-title: Biostatistics doi: 10.1093/biostatistics/kxm045 – year: 1996 ident: ref20 – volume: 81 start-page: 1278 issue: 6 year: 2007 ident: ref65 article-title: Pathway-based approaches for analysis of genomewide association studies publication-title: Am J Hum Genet doi: 10.1086/522374 – volume: 25 start-page: 2172 issue: 8 year: 2013 ident: ref18 article-title: Alternating direction methods for latent variable Gaussian graphical model selection publication-title: Neural Comput doi: 10.1162/NECO_a_00379 – volume: 46 start-page: 315 issue: 6 year: 2012 ident: ref62 article-title: Arcuate NPY neurons sense and integrate peripheral metabolic signals to control feeding publication-title: Neuropeptides doi: 10.1016/j.npep.2012.09.004 – volume: 18 start-page: 706 issue: 5 year: 2008 ident: ref3 article-title: A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility publication-title: Genome Res doi: 10.1101/gr.074914.107 – volume: 26 start-page: 467 issue: 7 year: 1997 ident: ref39 article-title: Developmental expression of the myelin gene MOBP in the rat nervous system publication-title: J Neurocytol doi: 10.1023/A:1018529323734 |
| SSID | ssj0035896 |
| Score | 2.3616903 |
| Snippet | Co-expression network analysis provides useful information for studying gene regulation in biological processes. Examining condition-specific patterns of... |
| SourceID | plos doaj pubmedcentral proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | e1006436 |
| SubjectTerms | Algorithms Animals Area Under Curve Biological activity Biology and Life Sciences Brain - metabolism Breast cancer Breast Neoplasms - genetics Breast Neoplasms - metabolism Cancer Clustering College campuses Computer and Information Sciences Computer Graphics Computer Simulation Databases, Factual Datasets Female Gene expression Gene Expression Profiling Gene Expression Regulation, Neoplastic Gene regulation Genes Genomes Genomics Graphic methods Heart Heterogeneity Humans Male Medicine and Health Sciences Metastasis Methods Modules Myocardium - metabolism Neoplasms - metabolism Network analysis Network hubs Normal Distribution Pharmaceutical sciences Physical Sciences Rats Regulatory mechanisms (biology) Research and Analysis Methods Software Sparsity Statistical inference Statistical methods Trends Tumors Variables |
| SummonAdditionalLinks | – databaseName: DOAJ : Directory of Open Access Journals [open access] dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQBRIXxHuzLMhISMAhbOJHbXMrFYUDWnEAqbfIrxWVVkmVtmj3yi9nxk6jLVppL1xjp8rMfJ4Z1-NvCHkjpY7gHGF9-wgbFOdVaZyIpRXMCh4rz5xPzSbU2ZleLs33a62-sCYs0wNnxZ2yoEOsudCRVcJp7ZDQTbnKQag3Ol0hZ5Uy-81U9sFc6tSZC5vilIqL5XBpjqv6dLDRh7V3K6wRgJA8PQhKibt_9NCT9UW3uSn9_LeK8lpYWjwkD4Z8ks6yHI_Indg-Jvdyh8mrJ-TPvMMzaVB-aYNdo2-j57tNDDQxVaOFKObPHX03X3z59v4jnbV0nJmiW9j18E7XU6zb6vFvQOrHH8WLmlhsRAGHEZ6X8XKorG1pmyvMn5Kfi88_5l_Loe1C6SG725aGBSG95rwOUYP1bM2c49xKYVkIlkUeIeea8mic8SaCZaeGaReVMsxX0vNnZNJ2bTwiVErpzqVSNiCJztSbSgvBWMWVqY2MoiB8r_fGD5zk2BrjokkHbQr2JlmNDVqrGaxVkHJ8a505OW6Z_wlNOs5FRu30AHDWDDhrbsNZQd4iIBpc9_CJ3g7XF0BQZNBqZhJ2bhz9Z0GOEDP7T9k04DKR2cxIVpCTPY5uHn49DsMqx6Mb28ZuB3MwsoEoRhfkeYbdKA5HmjrIKwuiDgB5IO_hSLv6lZjEIX1Fxsfj_6GgF-Q-JJM619-dkMm238WX5K7_vV1t-ldpef4FSCA-Uw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest advanced technologies & aerospace journals dbid: P5Z link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELaggLQX3rCBBRkJCThkN7Hj2uaCSkXhgFZ7AKniEvm1UGmVZJMWwZVfzkziBopWcOAaO5En83lmbI-_IeSpECqAcYT57QIsUKyTqbZFSE3BTMFD5ph1fbEJeXyslkt9EjfcuphWubWJvaH2tcM98iPAHdJDacFeNecpVo3C09VYQuMyuZIziPUBzyfi09YSc6H6-lxYGieVvFjGq3Nc5kdRU4eNsyvMFADHPN1xTT2D_2inJ81Z3V0UhP6ZS_mbc1rc-F-xbpLrMSylswFHt8ilUN0m14ZCld_vkB_zGo-2QYep8aZBE0lPN13wtCe8RkVTDMNr-ny-ePv-xUs6q-jYs3eSftPCO3VLMf2rxd1E6saP4n1PzFmiAOcAz9PwLSboVrQaEtXvko-LNx_m79JYvSF1ECSuU818IZziPPdBAQhMzqzl3IjCMO8NCzxA6DblQVvtdACATDVTNkipmcuE4_fIpKqrsE-oEMKeCimNRy6eqdOZKgrGMi51rkUoEsK3iitdpDbHChtnZX9eJ2GJM_zGEtVdRnUnJB3fagZqj3_0f42YGPsiMXf_oG4_l3Gel8wrH3IYZWBZYZWyyD8obWYhMtWK5Ql5hogq0XzAEJ2JtyBAUCTiKmcCFoAczXBC9hF026F05S-oJORgC6aLm5-MzWAs8ATIVKHeQB90kCCKVgm5P-B2FIcj2x2EpwmRO4jekXe3pVp96QnJIQpG4sgHfx_WQ7IH0aYaEvQOyGTdbsIjctV9Xa-69nE_c38CoOhNvw priority: 102 providerName: ProQuest |
| Title | Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30240439 https://www.proquest.com/docview/2250630952 https://www.proquest.com/docview/2111143698 https://pubmed.ncbi.nlm.nih.gov/PMC6173447 https://doaj.org/article/2d8de1348e204b88b79377b0b5519821 http://dx.doi.org/10.1371/journal.pcbi.1006436 |
| Volume | 14 |
| WOSCitedRecordID | wos000450712200026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: DOA dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: P5Z dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: M7P dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: K7- dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: 7X7 dateStart: 20050601 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: BENPR dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: PIMPY dateStart: 20050601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVATS databaseName: Public Library of Science (PLoS) Journals Open Access customDbUrl: eissn: 1553-7358 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0035896 issn: 1553-7358 databaseCode: FPL dateStart: 20050101 isFulltext: true titleUrlDefault: http://www.plos.org/publications/ providerName: Public Library of Science |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-8PQVf_NarnksEQX2otknTJL7tLbcqnksRhdWX0qQ5XDjaZT9EX_3LnWm71T3uEF_y0ExKkpnMTDKTXwCeSqk9Kkdc387jBsU6FRqb-LBIeJEIHzluXfPYhJpO9Wxmsj8bxXMRfKHiV92cvlw4O6eYPprQdA_2CficpHiSnWw1r5DapN31uMta7pifBqW_18WDxVm9usjRPJ8v-ZcBmtz8367fghudq8lGrWzchiu-ugPX2scnf96FX-OawtXIl7AoiwWpPXa6WfmSNSDWxDxGrnXNno8nb05evGajivWUjeErN0tsUy8ZpXQt6YSQuf6ndIeT8pAYiqjH76H_0SXdVqxqk8_vwefJ8afx27B7kSF06PitQ8PLRDotRFx6jYwtYm6tEIVMCl6WBffCozuWCm-sccYj01PDtfVKGe4i6cR9GFR15Q-ASSntqVSqKAlfJ3Um0knCeSSUiY30SQBiy6jcdXDl9GrGWd7E4BRuW9ppzGl28252Awj7VosWruMf9EckAz0tgW03H5CNebd2c17q0sfYS8-jxGptCVNQ2ciit2k0jwN4RhKUk0rALrqiu9mAAyVwrXwkcVMnSLUGcEBCtu3KKkdtSqBnRvIADreCd3H1k74aFQBFdYrK1xukIaOHQzE6gAetnPbDEYRghy5nAGpHgnfGu1tTzb81IOPo2RIY5MPLe_wIrqP3qNuEu0MYrJcb_xiuuu_r-Wo5hD01U02ph7B_dDzNPg6bA49hs2axfK_CIaXaZlhm8itSZe8-ZF9-A6meQqg |
| linkProvider | Public Library of Science |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwELXKAoIL39BAASOBgENoYsdrGwmhZWFp1aXqoZVWXILtuLBSlSzZXaBXfhC_kZl8waIKTj1wTZxo7LwZP8fjN4Q8FEJ5CI7g387DAsU6GWqb-NAkzCTcR45ZVxWbkLu7ajLRe2vkR3sWBtMq25hYBeqscPiPfBNwh_JQWrCXs88hVo3C3dW2hEYNix1__BWWbPMX26_h-z5ibPRmf7gVNlUFQgfkZRFqliXCKc7jzCswzsTMWs6NSAzLMsM890Ap-txrq532YHhfM2W9lJq5SDgO7z1DzgKN0BgI9sT7NvJzoap6YFiKJ5Q8mTRH9biMNxtkPJs5O8XMBCAC_ZWpsKoY0M0LvdlRMT-J9P6Zu_nbZDi6_L8N4xVyqaHddFD7yVWy5vNr5HxdiPP4Ovk-LHDrHjAamszMcAqgh8u5z2gl6I1AprjMKOiT4ejt-OlzOshp17IiAdmyhGeKkmJ6W4l_S6nrXornWTEni4K7erge-m9NAnJO8zoR_wY5OJUBuEl6eZH7dUKFEPZQSGky1BrqOx2pJGEs4lLHWvgkILwFSuoa6XasIHKUVvuREpZw9TCmCK-0gVdAwu6pWS1d8o_2rxCDXVsUHq8uFOXHtIljKctU5mOw0rMosUpZ1FeUNrLAvLVicUAeI4JTDI9gojPNKQ_oKAqNpQMBC1yO00xA1hHkrSnz9Bc0A7LRgvfk2w-62xAMcYfL5L5YQhskANAVrQJyq_aTrjsc1fyAfgdErnjQSn9X7-TTT5XgOrB8FMa8_Xez7pMLW_vvxul4e3fnDrkIzFrVyYgbpLcol_4uOee-LKbz8l4VNSj5cNr-9ROH36t3 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nj9MwELWWLiAufMMGFjASCDiEJnZc20gIlS6Fapeqh0UqpxA7LlRaJSVtgb3ys_h1zOQLilZw2gPXxIls583Mczx-Q8gDIZQD5wj2bR0sUIyVvjaR85OIJRF3gWXGlsUm5HisplM92SI_mrMwmFbZ-MTSUae5xX_kXcAdykNpwbqzOi1isjd8sfjsYwUp3GltymlUENl3x19h-bZ8PtqDb_2QseGrw8Ebv64w4FsgMitfszQSVnEepk5BR5OQGcN5IqKEpWnCHHdAL3rcaaOtdjCInmbKOCk1s4GwHN57hmwDJWdRh2xPRm8n75s4wIUqq4NhYR5f8mhaH9zjMuzWOHm6sGaOeQpAC3obgbGsH9BGic7iKF-eRIH_zOT8LTQOL_3Pk3qZXKwJOe1XFnSFbLnsKjlXleg8vka-D3Lc1Af0-kmaLDA40Nl66VJaSn0jxCkuQHL6eDB8ffDkGe1ntG1Z0oN0XcAzeUEx8a3A_6jUti_Fk66YrUXBkB1c9923OjU5o1mVon-dvDuVCbhBOlmeuR1ChRBmJqRMUlQh6lkdqChiLOBSh1q4yCO8AU1sa1F3rC1yFJc7lRIWd9U0xgi1uIaaR_z2qUUlavKP9i8Rj21blCQvL-TFx7j2cDFLVepC6KVjQWSUMqi8KE1ggJNrxUKPPEI0x-g4oYs2qc9_wEBRgizuC1j6cgxAHtlBwDddWca_YOqR3QbIJ9--394GN4l7X0nm8jW0QWoAQ9HKIzcrm2mHw1HnD4i5R-SGNW2Md_NONv9USrED_0fJzFt_79Y9ch7MKj4YjfdvkwtAuVWVpbhLOqti7e6Qs_bLar4s7tYuhJIPp21gPwGv8LWe |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Condition-adaptive+fused+graphical+lasso+%28CFGL%29%3A+An+adaptive+procedure+for+inferring+condition-specific+gene+co-expression+network&rft.jtitle=PLoS+computational+biology&rft.au=Lyu%2C+Yafei&rft.au=Xue%2C+Lingzhou&rft.au=Zhang%2C+Feipeng&rft.au=Koch%2C+Hillary&rft.date=2018-09-01&rft.pub=Public+Library+of+Science&rft.eissn=1553-7358&rft.volume=14&rft.issue=9&rft_id=info:doi/10.1371%2Fjournal.pcbi.1006436&rft.externalDocID=2250630952 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7358&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7358&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7358&client=summon |