Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images

Recent trials have evaluated the efficacy of deep convolutional neural network (CNN)-based AI systems to improve lesion detection and characterization in endoscopy. Impressive results are achieved, but many medical studies use a very small image resolution to save computing resources at the cost of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Diagnostics (Basel) Ročník 11; číslo 12; s. 2183
Hlavní autori: Thambawita, Vajira, Strümke, Inga, Hicks, Steven A., Halvorsen, Pål, Parasa, Sravanthi, Riegler, Michael A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Switzerland MDPI AG 24.11.2021
MDPI
Predmet:
ISSN:2075-4418, 2075-4418
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent trials have evaluated the efficacy of deep convolutional neural network (CNN)-based AI systems to improve lesion detection and characterization in endoscopy. Impressive results are achieved, but many medical studies use a very small image resolution to save computing resources at the cost of losing details. Today, no conventions between resolution and performance exist, and monitoring the performance of various CNN architectures as a function of image resolution provides insights into how subtleties of different lesions on endoscopy affect performance. This can help set standards for image or video characteristics for future CNN-based models in gastrointestinal (GI) endoscopy. This study examines the performance of CNNs on the HyperKvasir dataset, consisting of 10,662 images from 23 different findings. We evaluate two CNN models for endoscopic image classification under quality distortions with image resolutions ranging from 32 × 32 to 512 × 512 pixels. The performance is evaluated using two-fold cross-validation and F1-score, maximum Matthews correlation coefficient (MCC), precision, and sensitivity as metrics. Increased performance was observed with higher image resolution for all findings in the dataset. MCC was achieved at image resolutions between 512 × 512 pixels for classification for the entire dataset after including all subclasses. The highest performance was observed with an MCC value of 0.9002 when the models were trained on the highest resolution and tested on the same resolution. Different resolutions and their effect on CNNs are explored. We show that image resolution has a clear influence on the performance which calls for standards in the field in the future.
AbstractList Recent trials have evaluated the efficacy of deep convolutional neural network (CNN)-based AI systems to improve lesion detection and characterization in endoscopy. Impressive results are achieved, but many medical studies use a very small image resolution to save computing resources at the cost of losing details. Today, no conventions between resolution and performance exist, and monitoring the performance of various CNN architectures as a function of image resolution provides insights into how subtleties of different lesions on endoscopy affect performance. This can help set standards for image or video characteristics for future CNN-based models in gastrointestinal (GI) endoscopy. This study examines the performance of CNNs on the HyperKvasir dataset, consisting of 10,662 images from 23 different findings. We evaluate two CNN models for endoscopic image classification under quality distortions with image resolutions ranging from 32 × 32 to 512 × 512 pixels. The performance is evaluated using two-fold cross-validation and F1-score, maximum Matthews correlation coefficient (MCC), precision, and sensitivity as metrics. Increased performance was observed with higher image resolution for all findings in the dataset. MCC was achieved at image resolutions between 512 × 512 pixels for classification for the entire dataset after including all subclasses. The highest performance was observed with an MCC value of 0.9002 when the models were trained on the highest resolution and tested on the same resolution. Different resolutions and their effect on CNNs are explored. We show that image resolution has a clear influence on the performance which calls for standards in the field in the future.
Recent trials have evaluated the efficacy of deep convolutional neural network (CNN)-based AI systems to improve lesion detection and characterization in endoscopy. Impressive results are achieved, but many medical studies use a very small image resolution to save computing resources at the cost of losing details. Today, no conventions between resolution and performance exist, and monitoring the performance of various CNN architectures as a function of image resolution provides insights into how subtleties of different lesions on endoscopy affect performance. This can help set standards for image or video characteristics for future CNN-based models in gastrointestinal (GI) endoscopy. This study examines the performance of CNNs on the HyperKvasir dataset, consisting of 10,662 images from 23 different findings. We evaluate two CNN models for endoscopic image classification under quality distortions with image resolutions ranging from 32 × 32 to 512 × 512 pixels. The performance is evaluated using two-fold cross-validation and F1-score, maximum Matthews correlation coefficient (MCC), precision, and sensitivity as metrics. Increased performance was observed with higher image resolution for all findings in the dataset. MCC was achieved at image resolutions between 512 × 512 pixels for classification for the entire dataset after including all subclasses. The highest performance was observed with an MCC value of 0.9002 when the models were trained on the highest resolution and tested on the same resolution. Different resolutions and their effect on CNNs are explored. We show that image resolution has a clear influence on the performance which calls for standards in the field in the future.Recent trials have evaluated the efficacy of deep convolutional neural network (CNN)-based AI systems to improve lesion detection and characterization in endoscopy. Impressive results are achieved, but many medical studies use a very small image resolution to save computing resources at the cost of losing details. Today, no conventions between resolution and performance exist, and monitoring the performance of various CNN architectures as a function of image resolution provides insights into how subtleties of different lesions on endoscopy affect performance. This can help set standards for image or video characteristics for future CNN-based models in gastrointestinal (GI) endoscopy. This study examines the performance of CNNs on the HyperKvasir dataset, consisting of 10,662 images from 23 different findings. We evaluate two CNN models for endoscopic image classification under quality distortions with image resolutions ranging from 32 × 32 to 512 × 512 pixels. The performance is evaluated using two-fold cross-validation and F1-score, maximum Matthews correlation coefficient (MCC), precision, and sensitivity as metrics. Increased performance was observed with higher image resolution for all findings in the dataset. MCC was achieved at image resolutions between 512 × 512 pixels for classification for the entire dataset after including all subclasses. The highest performance was observed with an MCC value of 0.9002 when the models were trained on the highest resolution and tested on the same resolution. Different resolutions and their effect on CNNs are explored. We show that image resolution has a clear influence on the performance which calls for standards in the field in the future.
Author Parasa, Sravanthi
Riegler, Michael A.
Strümke, Inga
Thambawita, Vajira
Halvorsen, Pål
Hicks, Steven A.
AuthorAffiliation 3 Swedish Medical Group, Department of Gastroenterology, Seattle, WA 98104, USA; vaidhya209@gmail.com
2 Faculty of Technology, Art and Design (TKD), Oslo Metropolitan University, 0167 Oslo, Norway
1 Simula Metropolitan Center for Digital Engineering, 0167 Oslo, Norway; inga@simula.no (I.S.); steven@simula.no (S.A.H.); paalh@simula.no (P.H.); michael@simula.no (M.A.R.)
AuthorAffiliation_xml – name: 2 Faculty of Technology, Art and Design (TKD), Oslo Metropolitan University, 0167 Oslo, Norway
– name: 1 Simula Metropolitan Center for Digital Engineering, 0167 Oslo, Norway; inga@simula.no (I.S.); steven@simula.no (S.A.H.); paalh@simula.no (P.H.); michael@simula.no (M.A.R.)
– name: 3 Swedish Medical Group, Department of Gastroenterology, Seattle, WA 98104, USA; vaidhya209@gmail.com
Author_xml – sequence: 1
  givenname: Vajira
  orcidid: 0000-0001-6026-0929
  surname: Thambawita
  fullname: Thambawita, Vajira
– sequence: 2
  givenname: Inga
  orcidid: 0000-0003-1820-6544
  surname: Strümke
  fullname: Strümke, Inga
– sequence: 3
  givenname: Steven A.
  surname: Hicks
  fullname: Hicks, Steven A.
– sequence: 4
  givenname: Pål
  orcidid: 0000-0003-2073-7029
  surname: Halvorsen
  fullname: Halvorsen, Pål
– sequence: 5
  givenname: Sravanthi
  surname: Parasa
  fullname: Parasa, Sravanthi
– sequence: 6
  givenname: Michael A.
  surname: Riegler
  fullname: Riegler, Michael A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34943421$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1rFDEUhgep2Lr2FwgS8Mab1XxNZuKFULZVFxYUtdfhTJJZs8wkYzIj7m_xz5r9kraIISQhed8nJyfnaXHmg7dF8Zzg14xJ_MY4WPuQRqcTIYRSUrNHxQXFVTnnnNRnd9bnxWVKG5ybJKym5ZPinHHJGafkovi97AfQIwotWvawtuiLTaGbRhc8yv3a2gGtLETv_Bp9trENsQevLXIe3XgTkg7D9mhddJCSa52Gnf0tusqSX4ONrrd-hA59HSezRbdphwK0gpg91zBCsvv7TzinD7z0rHjcQpfs5XGeFbfvb74tPs5Xnz4sF1eruS5FOc5Fw7ghTSuJ0FKWmMiyaUVTMcyNrcCypsSYGVkxKYRscE6WAMONBgKWamCzYnngmgAbNeR4IW5VAKf2GyGuFcSc6c4qKg0QQ0RjWsJrbhpaC91gDC0tS57vmhXvDqxhanprdH55hO4e9P6Jd9_VOvxUdYUx5SIDXh0BMfyYbBpV75K2XQfehikpKgineairLH35QLoJU_Q5VTsVrcq65jvVi7sR_Q3lVANZIA8CHUNK0bZKu3H_hTlA1ymC1a7k1D9KLnvZA-8J_z_XHwyQ330
CitedBy_id crossref_primary_10_1002_ps_8464
crossref_primary_10_1371_journal_pone_0297536
crossref_primary_10_1109_ACCESS_2024_3443638
crossref_primary_10_1109_ACCESS_2025_3583688
crossref_primary_10_3390_technologies12110231
crossref_primary_10_1016_j_cpcardiol_2023_102129
crossref_primary_10_5230_jgc_2025_25_e39
crossref_primary_10_1016_j_bspc_2023_105118
crossref_primary_10_1109_TGRS_2022_3209340
crossref_primary_10_1016_j_ecoinf_2023_102361
crossref_primary_10_7717_peerj_14939
crossref_primary_10_1016_j_media_2024_103224
crossref_primary_10_3390_rs14143299
crossref_primary_10_1016_j_heliyon_2024_e38920
crossref_primary_10_1145_3579831
crossref_primary_10_3389_fphy_2025_1582245
crossref_primary_10_1088_1742_6596_2402_1_012009
crossref_primary_10_3390_s23063176
crossref_primary_10_3390_bios15010019
crossref_primary_10_1007_s10596_023_10227_0
crossref_primary_10_1007_s13721_023_00412_7
crossref_primary_10_1109_JBHI_2022_3225416
crossref_primary_10_1016_j_gie_2022_08_043
crossref_primary_10_1016_j_knosys_2024_112213
crossref_primary_10_1016_j_rse_2024_114122
crossref_primary_10_1002_alr_23525
crossref_primary_10_1016_j_gie_2022_10_016
crossref_primary_10_3390_diagnostics13040747
crossref_primary_10_1016_j_foohum_2024_100378
crossref_primary_10_1016_j_iswa_2025_200505
crossref_primary_10_1080_15481603_2023_2287291
crossref_primary_10_3390_s23177635
crossref_primary_10_1109_ACCESS_2025_3530297
crossref_primary_10_1177_26317745241306562
crossref_primary_10_1186_s41984_023_00213_0
crossref_primary_10_1016_j_crmeth_2023_100500
crossref_primary_10_1371_journal_pone_0309740
crossref_primary_10_1016_j_atech_2025_101405
crossref_primary_10_3389_fonc_2024_1379624
crossref_primary_10_3390_rs17132179
crossref_primary_10_1038_s41598_024_72237_x
crossref_primary_10_1016_j_compag_2023_108465
crossref_primary_10_34133_plantphenomics_0278
crossref_primary_10_1038_s41598_025_14408_y
crossref_primary_10_1016_j_rsase_2024_101333
crossref_primary_10_1007_s00167_023_07338_7
crossref_primary_10_1097_RTI_0000000000000833
crossref_primary_10_3390_bdcc7010051
crossref_primary_10_1080_10400419_2024_2339667
crossref_primary_10_1016_j_gassur_2025_102195
crossref_primary_10_1186_s40494_023_01094_0
crossref_primary_10_1038_s41598_024_82904_8
crossref_primary_10_1109_ACCESS_2024_3469155
crossref_primary_10_1021_acssensors_5c01433
crossref_primary_10_3390_rs16152786
crossref_primary_10_1016_j_isci_2024_110822
crossref_primary_10_1049_cim2_70039
Cites_doi 10.1038/s41598-017-02606-2
10.1145/3386295
10.1109/CBMS.2016.63
10.1038/s41597-020-00622-y
10.1109/TIP.2005.859378
10.1136/gutjnl-2019-319914
10.1038/s41551-018-0301-3
10.1371/journal.pone.0177678
10.1109/CVPR.2017.243
10.1016/j.neucom.2015.09.116
10.1016/j.ipm.2009.03.002
10.1109/TMI.2016.2528162
10.1109/72.298224
10.1109/CVPR.2009.5206848
10.1148/ryai.2019190015
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
3V.
7XB
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
M2O
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.3390/diagnostics11122183
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
Proquest Research Library
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2075-4418
ExternalDocumentID oai_doaj_org_article_29da1d16bdf1484db286cb00af2554ae
PMC8700246
34943421
10_3390_diagnostics11122183
Genre Journal Article
GroupedDBID 53G
5VS
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BCNDV
BENPR
BPHCQ
CCPQU
CITATION
DWQXO
EBD
ESX
GNUQQ
GROUPED_DOAJ
GUQSH
HYE
IAO
IHR
ITC
KQ8
M2O
M48
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RPM
3V.
NPM
7XB
8FK
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c565t-6b34d1bf916c9950195bf6b7304de7ae3b5003d9739669b02216ad4dca1ae2ca3
IEDL.DBID PIMPY
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000736817700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2075-4418
IngestDate Fri Oct 03 12:29:30 EDT 2025
Tue Nov 04 01:43:44 EST 2025
Sun Nov 09 11:06:30 EST 2025
Sun Nov 30 05:28:26 EST 2025
Thu Jan 02 22:56:02 EST 2025
Tue Nov 18 21:59:36 EST 2025
Sat Nov 29 07:18:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords endoscopic images
image resolution
convolutional neural networks
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-6b34d1bf916c9950195bf6b7304de7ae3b5003d9739669b02216ad4dca1ae2ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Consultant Covidien LP; Medical advisory board-Fujifilm.
Board member of Augere Medical.
ORCID 0000-0003-1820-6544
0000-0003-2073-7029
0000-0001-6026-0929
OpenAccessLink https://www.proquest.com/publiccontent/docview/2612758847?pq-origsite=%requestingapplication%
PMID 34943421
PQID 2612758847
PQPubID 2032410
ParticipantIDs doaj_primary_oai_doaj_org_article_29da1d16bdf1484db286cb00af2554ae
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8700246
proquest_miscellaneous_2614226187
proquest_journals_2612758847
pubmed_primary_34943421
crossref_citationtrail_10_3390_diagnostics11122183
crossref_primary_10_3390_diagnostics11122183
PublicationCentury 2000
PublicationDate 20211124
PublicationDateYYYYMMDD 2021-11-24
PublicationDate_xml – month: 11
  year: 2021
  text: 20211124
  day: 24
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Diagnostics (Basel)
PublicationTitleAlternate Diagnostics (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Hassan (ref_1) 2020; 69
ref_13
ref_12
ref_11
ref_10
Shin (ref_5) 2016; 35
Battiti (ref_8) 1994; 5
Thambawita (ref_16) 2020; 1
Wang (ref_3) 2018; 2
ref_17
Borgli (ref_9) 2020; 7
Boughorbel (ref_15) 2017; 12
Sokolova (ref_14) 2009; 45
Sheikh (ref_6) 2006; 15
Guo (ref_4) 2016; 187
Sabottke (ref_7) 2020; 2
Mossotto (ref_2) 2017; 7
References_xml – volume: 7
  start-page: 2427
  year: 2017
  ident: ref_2
  article-title: Classification of paediatric inflammatory bowel disease using machine learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02606-2
– volume: 1
  start-page: 1
  year: 2020
  ident: ref_16
  article-title: An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification
  publication-title: ACM Trans. Comput. Healthc.
  doi: 10.1145/3386295
– ident: ref_17
  doi: 10.1109/CBMS.2016.63
– volume: 7
  start-page: 283
  year: 2020
  ident: ref_9
  article-title: HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00622-y
– volume: 15
  start-page: 430
  year: 2006
  ident: ref_6
  article-title: Image information and visual quality
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2005.859378
– volume: 69
  start-page: 799
  year: 2020
  ident: ref_1
  article-title: New artificial intelligence system: First validation study versus experienced endoscopists for colorectal polyp detection
  publication-title: Gut
  doi: 10.1136/gutjnl-2019-319914
– volume: 2
  start-page: 741
  year: 2018
  ident: ref_3
  article-title: Development and validation of a deeplearning algorithm for the detection of polyps during colonoscopy
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0301-3
– volume: 12
  start-page: e0177678
  year: 2017
  ident: ref_15
  article-title: Optimal classifier for imbalanced data using matthews correlation coefficient metric
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0177678
– ident: ref_11
  doi: 10.1109/CVPR.2017.243
– ident: ref_12
– volume: 187
  start-page: 27
  year: 2016
  ident: ref_4
  article-title: Deep learning for visual understanding: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.09.116
– volume: 45
  start-page: 427
  year: 2009
  ident: ref_14
  article-title: A systematic analysis of performance measures for classification tasks
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2009.03.002
– volume: 35
  start-page: 1285
  year: 2016
  ident: ref_5
  article-title: Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 5
  start-page: 537
  year: 1994
  ident: ref_8
  article-title: Using mutual information for selecting features in supervised neural net learning
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.298224
– ident: ref_13
  doi: 10.1109/CVPR.2009.5206848
– volume: 2
  start-page: e190015
  year: 2020
  ident: ref_7
  article-title: The effect of image resolution on deep learning in radiography
  publication-title: Radiol. Artif. Intell.
  doi: 10.1148/ryai.2019190015
– ident: ref_10
  doi: 10.1109/CVPR.2016.90
SSID ssj0000913825
Score 2.5072927
Snippet Recent trials have evaluated the efficacy of deep convolutional neural network (CNN)-based AI systems to improve lesion detection and characterization in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2183
SubjectTerms Automation
Classification
convolutional neural networks
Datasets
Deep learning
endoscopic images
Endoscopy
Experiments
image resolution
Neural networks
Performance evaluation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB6hqkJcEJSXoVSLxBGr3V3b6-XW0latVKoeQOrNmn0YIoFTNSlSfwt_lpldJySoggtSTvHY2WRe32ZnvgF4S0nBedNi2WB0ZaX2evK5Opa-1Q69jKhxLw2bMOfn7eWlvVgZ9cU1YZkeOP9wu8oGlEE2LvSE3KvgVNvwVHnsCQxXGDn6EupZ2UylGGyZW6_ONEOa9vW7IVeuMfcxubdiZLCWihJj_10w889qyZX0c_wIHo64Uezn9T6Ge3HYgvsfx5PxJ_DzNLU7imkvTr9TjBD8v3y2KkGvwxivxMil-kVc_O4WEJNBHA1hyt0pt-OtaVAmlxAlrb0X-ySyMghAcO3hrUjFBgLFGdeSi0OcUz5Mn7943MTn582ewufjo08fTspx8ELpCd_Ny8bpKkjXE3T01tbcU-j6xlEwqEI0GLWrKRgEazRtlqwjGCAbDFXwKDEqj_oZbAzTIb4AwRnSBhVMsOkEz2Ewuja9cbG3bcQC1EIHnR9ZyXk4xreOdiesuO4OxRXwbnnTVSbl-Lv4ASt3KcqM2ukNsrNutLPuX3ZWwPbCNLrRzWcd868ZbvU1BbxZXiYH5VMXHOL0Jslwt7JsSeZ5tqTlSpgbSFdKFmDWbGxtqetXhsnXRAJOcZbgVfPyf3y3V_BAcamOlKWqtmFjfn0TX8Om_zGfzK53kmf9AvBILnA
  priority: 102
  providerName: Directory of Open Access Journals
Title Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
URI https://www.ncbi.nlm.nih.gov/pubmed/34943421
https://www.proquest.com/docview/2612758847
https://www.proquest.com/docview/2614226187
https://pubmed.ncbi.nlm.nih.gov/PMC8700246
https://doaj.org/article/29da1d16bdf1484db286cb00af2554ae
Volume 11
WOSCitedRecordID wos000736817700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central - New (Subscription)
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library (subscription)
  customDbUrl:
  eissn: 2075-4418
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913825
  issn: 2075-4418
  databaseCode: M2O
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB3RBCEufBcMJVokjlip147X5oJamopIJFgIpHCy9sslEtghSZH6W_izzKw3boOqnpCiHOKxs1Hevp3ZnXkD8BoXBaVFJsNUWhUm_LDCOTeyoc5iJXVkZSwPXbMJMZtl83le-PLotU-r3HKiI-pW7ZnytpGEh6bRtGM-JOErQTWW4t3yV0g9pOis1TfU2IM-CW9lPegXk2nxrdtzIQ1MjIha8aEYo_2hafPZSBEZJz0nf2FngXI6_tc5n__mUF5ZlE7v_9-f8wDueeeUHbVoegi3bP0I7kz98ftj-DNxNZWsqdjkJxIRo83_FroMXyfWLpkXbD1jxWVJAlvUbFybhkpgLvytrhsn5Sk5aLxlR2hypdsAowTHC-YyGphkHylhnZ3IDS667vu3j1vo9nnrJ_D1dPzl_YfQd3cINTqRmzBVcWIiVaF_qvN8RIWLqkoVMk5irJA2ViNkHJOLGCOyXKGvEaXSJEbLSFquZbwPvbqp7TNgtAznhhthcndMqKQR8UhUQtkqz6wMgG__0lJ76XPqwPGjxBCIcFBeg4MA3nQ3LVvlj5vNjwkrnSnJdrsPmtVZ6Vmg5LmRkYlSZSoMQxOjeJZqJD5ZYWSXSBvAwRYtpeeSdXkJjgBedZeRBehoR9a2OXc2VBIdZWjztAVmNxISIIoTHgUgdiC7M9TdK_Xiu1MaRzJHHy59fvOwXsBdTpk-URTy5AB6m9W5fQm39e_NYr0awJ6YZwPoH49nxeeB2_PA9yn_NPDT8y_RsE1E
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAEX3g9DgUWCG1bjteO1kRAqpFWjJlEORSond18ukcAOSQrKb-E_8BuZWT_aoKq3HpByiseblfPNyzvzDcBrdApKi0T6sbTKj3g3R53rWV8noZI6sDKUXTdsQozHydFROtmAP00vDJVVNjbRGWpTanpHvk1UV4K6KsWH2Q-fpkbR6WozQqOCxYFd_cKUbfF-0Mf_9w3ne7uHn_b9eqqArzF4WfqxCiMTqBzjIp2mPWqYU3msEOmRsULaUPUQ6SYVIWYCqUIfF8TSREbLQFquZYjrXoPNCMGedGBzMhhNvrRvdYhlE3Ouit4oDNPutqkq5ohzGc0Kp4hkzQW6SQEXhbf_Vmmec3t7d_63B3YXbtcBNtupNOIebNjiPtwY1SUED-D3wPWFsjJng-9oTBkdYFTqx_DTt3bGatLZEzY5a6tg04LtFqakNp5VfaubKEq1Vg7e79gOipybmMCoSHPFXFUGk2xIRfesL5cYOLjfb5ab6mq9xUP4fCWP5hF0irKwT4BRKJEaboRJ3VGnkkaEPZELZfM0sdID3oAm0zV9O00R-ZZhGkdIyy5Amgdv25tmFXvJ5eIfCY2tKFGPuy_K-UlWW7KMp0YGJoiVyTGVjoziSazReMscs9NIWg-2GjxmtT1cZGdg9OBVexktGR1PycKWp06G2rqDBGUeV9Bvd0IkSmHEAw_EmlKsbXX9SjH96tjS0SFhHBo_vXxbL-Hm_uFomA0H44NncItT5VIQ-Dzags5yfmqfw3X9czldzF_UKs_g-KqV5i-jHpno
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFFVceD8MBRYJbliJ147XRkKokEZEbSMfQCond18ukVo7JCkov4V_wq9jZm2nDap66wEpp3i8WTnfvLzfzAC8RqegtEikH0ur_Ij3CtS5vvV1EiqpAytD2XPDJsR4nBweptkG_GlrYYhW2dpEZ6hNpekdeZdaXQmqqhTdoqFFZIPhh-kPnyZI0UlrO06jhsieXf7C9G3-fjTA__oN58PdL58--82EAV9jILPwYxVGJlAFxkg6TftUPKeKWCHqI2OFtKHqI-pNKkLMClKF_i6IpYmMloG0XMsQ170BmxiSR1EHNrPRQfZt9YaHOm5i_lW3OgrDtNc1NXuO-i-jieEUnay5Qzc14LJQ91_G5gUXOLzzPz-8u3C7CbzZTq0p92DDlvdh66ChFjyA3yNXL8qqgo1O0cgyOtio1ZLhZ2DtlDXNaI9Zdl5uwSYl2y1NReU9y-ZWN2mUOFgO9u_YDopcmKTAiLy5ZI6twSTbJzI-G8gFBhTu99vlJrpeb_4Qvl7Lo3kEnbIq7RNgFGKkhhthUncEqqQRYV8UQtkiTaz0gLcAynXT1p2mi5zkmN4R6vJLUOfB29VN07qrydXiHwmZK1FqSe6-qGbHeWPhcp4aGZggVqbAFDsyiiexRqMuC8xaI2k92G6xmTd2cp6fA9ODV6vLaOHo2EqWtjpzMlTuHSQo87hWg9VOqLlSGPHAA7GmIGtbXb9STr67LuroqDA-jZ9eva2XsIWaku-PxnvP4BYnQlMQ-Dzahs5idmafw039czGZz1402s_g6Lp15i9t5KKp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Impact+of+Image+Resolution+on+Deep+Learning+Performance+in+Endoscopy+Image+Classification%3A+An+Experimental+Study+Using+a+Large+Dataset+of+Endoscopic+Images&rft.jtitle=Diagnostics+%28Basel%29&rft.au=Thambawita%2C+Vajira&rft.au=Str%C3%BCmke%2C+Inga&rft.au=Hicks%2C+Steven+A&rft.au=Halvorsen%2C+P%C3%A5l&rft.date=2021-11-24&rft.pub=MDPI+AG&rft.eissn=2075-4418&rft.volume=11&rft.issue=12&rft.spage=2183&rft_id=info:doi/10.3390%2Fdiagnostics11122183&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-4418&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-4418&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-4418&client=summon