Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering

Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of `unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-...

Full description

Saved in:
Bibliographic Details
Published in:IUCrJ Vol. 2; no. 2; pp. 207 - 217
Main Authors: Tria, Giancarlo, Mertens, Haydyn D. T., Kachala, Michael, Svergun, Dmitri I.
Format: Journal Article
Language:English
Published: England International Union of Crystallography 01.03.2015
Subjects:
ISSN:2052-2525, 2052-2525
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of `unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method ( EOM ) [Bernadó et al. (2007). J. Am. Chem. Soc. 129 , 5656–5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
AbstractList Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of 'unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et al. (2007 ▶). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of `unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM ) [Bernadó et al. (2007[Bernadó, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. (2007). J. Am. Chem. Soc. 129, 5656-5664.]). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernado et al. (2007). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed. 1 Keywords: small-angle scattering; proteins; macromolecular dynamics; unstructured biology; hybrid methods; symmetric oligomers
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of `unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method ( EOM ) [Bernadó et al. (2007). J. Am. Chem. Soc. 129 , 5656–5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of `unstructured' and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernado et al. (2007[Bernado, P., Mylonas, E., Petoukhov, M. V., Blackledge, M. & Svergun, D. I. (2007). J. Am. Chem. Soc. 129, 5656-5664.]). J. Am. Chem. Soc. 129, 5656-5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
New developments in the modelling of flexible biological macromolecules from SAXS data offer extended possibilities of using high-resolution models and provide metrics for quantitative characterization of the reconstructed ensembles. Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of ‘unstructured’ and flexible molecules requires alternative approaches to those traditionally employed in structural biology. Small-angle X-ray scattering (SAXS) is an established method for structural characterization of biological macromolecules in solution, and is directly applicable to the study of flexible systems such as intrinsically disordered proteins and multi-domain proteins with unstructured regions. The Ensemble Optimization Method (EOM) [Bernadó et al. (2007 ▶). J. Am. Chem. Soc. 129, 5656–5664] was the first approach introducing the concept of ensemble fitting of the SAXS data from flexible systems. In this approach, a large pool of macromolecules covering the available conformational space is generated and a sub-ensemble of conformers coexisting in solution is selected guided by the fit to the experimental SAXS data. This paper presents a series of new developments and advancements to the method, including significantly enhanced functionality and also quantitative metrics for the characterization of the results. Building on the original concept of ensemble optimization, the algorithms for pool generation have been redesigned to allow for the construction of partially or completely symmetric oligomeric models, and the selection procedure was improved to refine the size of the ensemble. Quantitative measures of the flexibility of the system studied, based on the characteristic integral parameters of the selected ensemble, are introduced. These improvements are implemented in the new EOM version 2.0, and the capabilities as well as inherent limitations of the ensemble approach in SAXS, and of EOM 2.0 in particular, are discussed.
Audience Academic
Author Svergun, Dmitri I.
Tria, Giancarlo
Mertens, Haydyn D. T.
Kachala, Michael
Author_xml – sequence: 1
  givenname: Giancarlo
  surname: Tria
  fullname: Tria, Giancarlo
– sequence: 2
  givenname: Haydyn D. T.
  surname: Mertens
  fullname: Mertens, Haydyn D. T.
– sequence: 3
  givenname: Michael
  surname: Kachala
  fullname: Kachala, Michael
– sequence: 4
  givenname: Dmitri I.
  surname: Svergun
  fullname: Svergun, Dmitri I.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25866658$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhk1JadI0P6CXYuill01Hsj7sS2EJTRoI9NAPchOyNNpqka1UskPz7ytnk5KkFIoOEu-88zAzmpfV3hhHrKrXBI4JAfn-CwVOKaeccAAK9PJZdbBIq0Xbe_Der45y3gIAIZRLRl5U-5S3QgjeHlTf1_ZajwZtjWPGoQ9YD9FiCH7c1NHVLuAvf6tqk-IQA5o5YK7nvBguV0nf1DmGefJxrLPR04SpRF5Vz50OGY_u7sPq2-nHryefVhefz85P1hcrwwWfVoR2LdPGGd7pppPAmOiJBUqoEdhYyg1nRlrmUFBoLbUCQWPDEFtuS6A5rM53XBv1Vl0lP-h0o6L26laIaaN0mrwJqDpGjAOHDXGyQNtO9z2jrG81dK3QsrA-7FhXcz-gNThOSYdH0MeR0f9Qm3itWNNRRngBvLsDpPhzxjypwWdTZqlHjHNWpAVgDQX5H1YhG5BUClqsb59Yt3FOY5lqcQmQQFuyFH-8c2106dWPLpYSTTkWB2_K5jhf9DUD0QG0dEl487DbP23er0YxyJ2h_HvOCZ0yftLLPxeyD4qAWvZQ_bWHJZM8ybyH_zvnN2Nu3Yo
CitedBy_id crossref_primary_10_1093_nar_gkaa520
crossref_primary_10_1107_S2059798322008579
crossref_primary_10_1038_s41467_019_09769_8
crossref_primary_10_1016_j_str_2017_01_012
crossref_primary_10_1111_febs_16379
crossref_primary_10_1074_jbc_RA118_006864
crossref_primary_10_1080_15548627_2023_2259707
crossref_primary_10_1038_s41467_017_02313_6
crossref_primary_10_1038_s41598_021_00495_0
crossref_primary_10_1107_S2059798317011597
crossref_primary_10_6023_A21120624
crossref_primary_10_1038_ncomms8542
crossref_primary_10_1038_s41598_017_04975_0
crossref_primary_10_1016_j_jmb_2022_167871
crossref_primary_10_1016_j_jmb_2021_167217
crossref_primary_10_1038_s41467_024_49255_4
crossref_primary_10_1107_S2059798317003849
crossref_primary_10_1038_s41467_025_61749_3
crossref_primary_10_1107_S205225251901073X
crossref_primary_10_3389_fmolb_2023_1249939
crossref_primary_10_1016_j_str_2016_06_001
crossref_primary_10_1016_j_abb_2016_02_029
crossref_primary_10_1016_j_antiviral_2017_02_005
crossref_primary_10_1021_jacs_1c10173
crossref_primary_10_3390_molecules25235624
crossref_primary_10_1074_jbc_RA119_010390
crossref_primary_10_1073_pnas_2302531120
crossref_primary_10_1002_pro_5200
crossref_primary_10_1073_pnas_2220180120
crossref_primary_10_3390_v12101115
crossref_primary_10_1093_nar_gkw1297
crossref_primary_10_1038_s41598_018_37009_4
crossref_primary_10_1016_j_jmb_2018_07_006
crossref_primary_10_1111_febs_16238
crossref_primary_10_1016_j_bpj_2018_07_009
crossref_primary_10_1038_s41598_020_61972_6
crossref_primary_10_1073_pnas_2217066120
crossref_primary_10_1016_j_bpj_2021_07_022
crossref_primary_10_1093_nar_gkw1183
crossref_primary_10_3389_fmolb_2016_00047
crossref_primary_10_1016_j_bpc_2017_05_016
crossref_primary_10_1093_nar_gkw1165
crossref_primary_10_1093_nar_gkab963
crossref_primary_10_1016_j_sbi_2021_11_014
crossref_primary_10_1093_pnasnexus_pgae521
crossref_primary_10_1016_j_ijbiomac_2019_06_135
crossref_primary_10_1007_s00249_020_01489_y
crossref_primary_10_1016_j_str_2018_09_007
crossref_primary_10_1039_D4SC04544K
crossref_primary_10_1111_febs_15015
crossref_primary_10_3389_fimmu_2018_03139
crossref_primary_10_1093_nar_gkx140
crossref_primary_10_1016_j_bpj_2019_02_015
crossref_primary_10_1107_S2052252515015626
crossref_primary_10_1016_j_bbagen_2016_05_008
crossref_primary_10_3390_molecules30081793
crossref_primary_10_1002_1873_3468_13437
crossref_primary_10_1016_j_bpj_2023_04_026
crossref_primary_10_1371_journal_ppat_1008342
crossref_primary_10_1074_jbc_M116_732909
crossref_primary_10_1021_jacs_6b10272
crossref_primary_10_3389_fmolb_2022_1100032
crossref_primary_10_1261_rna_064501_117
crossref_primary_10_1016_j_bbrc_2016_06_014
crossref_primary_10_1016_j_str_2017_09_013
crossref_primary_10_1107_S1600576717007786
crossref_primary_10_1074_jbc_M116_715698
crossref_primary_10_7554_eLife_92822_4
crossref_primary_10_1038_s41598_018_30190_6
crossref_primary_10_1016_j_csbj_2021_06_031
crossref_primary_10_1002_ange_202312517
crossref_primary_10_1074_jbc_RA117_001097
crossref_primary_10_1016_j_jmb_2021_167258
crossref_primary_10_1074_jbc_M116_766816
crossref_primary_10_1038_s41598_022_13982_9
crossref_primary_10_1074_jbc_M115_705491
crossref_primary_10_1186_s12915_016_0298_6
crossref_primary_10_1093_nar_gkab635
crossref_primary_10_1016_j_jsb_2020_107573
crossref_primary_10_1016_j_bpj_2018_01_011
crossref_primary_10_1016_j_str_2015_05_013
crossref_primary_10_3390_v14112358
crossref_primary_10_1107_S2059798320013765
crossref_primary_10_1016_j_jmb_2023_168053
crossref_primary_10_1073_pnas_2413100121
crossref_primary_10_3389_fmolb_2018_00060
crossref_primary_10_1021_jacs_8b05366
crossref_primary_10_1107_S2052252521005613
crossref_primary_10_1016_j_foodchem_2024_139455
crossref_primary_10_1016_j_str_2020_09_010
crossref_primary_10_1038_s42003_024_05845_y
crossref_primary_10_1107_S2059798316006665
crossref_primary_10_1016_j_bbamem_2024_184368
crossref_primary_10_1111_febs_16150
crossref_primary_10_1016_j_str_2022_03_011
crossref_primary_10_1016_j_bpj_2019_08_032
crossref_primary_10_1016_j_jsb_2020_107463
crossref_primary_10_1093_nar_gkac855
crossref_primary_10_1002_iub_2528
crossref_primary_10_1016_j_jmb_2023_168048
crossref_primary_10_1371_journal_pone_0239702
crossref_primary_10_1111_febs_17239
crossref_primary_10_1016_j_jmb_2019_10_011
crossref_primary_10_1016_j_jmb_2016_03_009
crossref_primary_10_1002_cbic_202300110
crossref_primary_10_3390_ijms23136969
crossref_primary_10_1016_j_str_2019_03_016
crossref_primary_10_1039_C9RA01510H
crossref_primary_10_1038_s41598_019_39543_1
crossref_primary_10_1002_prot_25523
crossref_primary_10_1016_j_str_2023_12_006
crossref_primary_10_1038_nchembio_2210
crossref_primary_10_1074_jbc_RA120_015468
crossref_primary_10_1107_S1399004715017721
crossref_primary_10_1016_j_abb_2017_05_005
crossref_primary_10_1016_j_jmb_2019_11_009
crossref_primary_10_1016_j_str_2018_01_010
crossref_primary_10_7554_eLife_92822
crossref_primary_10_1038_s41598_021_92280_2
crossref_primary_10_1038_s41594_022_00811_w
crossref_primary_10_1016_j_fbio_2025_107304
crossref_primary_10_1016_j_tibs_2016_11_002
crossref_primary_10_1038_s41467_023_39808_4
crossref_primary_10_1016_j_molp_2017_08_003
crossref_primary_10_1016_j_str_2017_11_019
crossref_primary_10_1002_1873_3468_12729
crossref_primary_10_3390_toxins15110637
crossref_primary_10_1016_j_sbi_2021_05_002
crossref_primary_10_1038_s41598_017_03323_6
crossref_primary_10_3390_v7112919
crossref_primary_10_15252_embj_2020107505
crossref_primary_10_3390_biom10101408
crossref_primary_10_1016_j_yjsbx_2024_100119
crossref_primary_10_1016_j_ijbiomac_2024_138614
crossref_primary_10_1016_j_molstruc_2019_07_050
crossref_primary_10_3390_ijms241814258
crossref_primary_10_1016_j_bbapap_2021_140719
crossref_primary_10_26508_lsa_202302051
crossref_primary_10_1093_nar_gkaa107
crossref_primary_10_1016_j_bpj_2023_12_001
crossref_primary_10_1038_ncomms15231
crossref_primary_10_1016_j_bbagen_2023_130376
crossref_primary_10_1111_febs_13801
crossref_primary_10_1093_plphys_kiaf392
crossref_primary_10_1016_j_bpc_2022_106843
crossref_primary_10_1186_s12915_018_0542_3
crossref_primary_10_1038_s41467_019_14196_w
crossref_primary_10_3389_fimmu_2024_1434463
crossref_primary_10_1074_jbc_M116_761809
crossref_primary_10_1107_S2052252518005900
crossref_primary_10_1371_journal_pgen_1010269
crossref_primary_10_1038_s41467_022_33693_z
crossref_primary_10_1038_nchembio_2434
crossref_primary_10_1016_j_jmb_2020_06_002
crossref_primary_10_15252_embr_201846293
crossref_primary_10_1016_j_str_2023_08_011
crossref_primary_10_1107_S1600576722001923
crossref_primary_10_1016_j_sbi_2016_10_011
crossref_primary_10_1371_journal_pbio_3001148
crossref_primary_10_1074_jbc_M117_799114
crossref_primary_10_1038_s41467_024_44859_2
crossref_primary_10_1074_jbc_M115_684928
crossref_primary_10_1073_pnas_2425831122
crossref_primary_10_1038_srep29040
crossref_primary_10_1038_s41594_023_00920_0
crossref_primary_10_1002_1873_3468_13954
crossref_primary_10_1038_s41598_019_52537_3
crossref_primary_10_1016_j_bpj_2016_04_009
crossref_primary_10_1371_journal_ppat_1007656
crossref_primary_10_1016_j_str_2018_09_013
crossref_primary_10_1093_nar_gkx1083
crossref_primary_10_1074_jbc_RA118_004481
crossref_primary_10_1016_j_ijbiomac_2021_11_074
crossref_primary_10_3390_cryst8030109
crossref_primary_10_1016_j_bbamem_2020_183256
crossref_primary_10_1016_j_jmb_2022_167708
crossref_primary_10_1073_pnas_1911489116
crossref_primary_10_3390_ijms24119308
crossref_primary_10_1038_s41467_019_12097_6
crossref_primary_10_1038_s41419_020_2504_2
crossref_primary_10_1093_nar_gkw1147
crossref_primary_10_3390_ijms21249413
crossref_primary_10_1038_s42003_024_06644_1
crossref_primary_10_1371_journal_ppat_1009824
crossref_primary_10_3389_fmolb_2021_749052
crossref_primary_10_1016_j_bpj_2021_10_003
crossref_primary_10_1038_srep33671
crossref_primary_10_1039_C5CP04886A
crossref_primary_10_3390_biom10081192
crossref_primary_10_1038_s41467_024_51972_9
crossref_primary_10_1038_s41589_019_0444_x
crossref_primary_10_1021_jacs_8b04792
crossref_primary_10_1126_science_aaw4388
crossref_primary_10_1016_j_toxicon_2018_01_007
crossref_primary_10_3390_cells9010035
crossref_primary_10_3389_fimmu_2018_02898
crossref_primary_10_1038_s41467_022_29322_4
crossref_primary_10_3389_fmolb_2022_1026724
crossref_primary_10_1093_nar_gkac451
crossref_primary_10_1073_pnas_1712450114
crossref_primary_10_1016_j_febslet_2015_08_027
crossref_primary_10_1016_j_sbi_2016_11_018
crossref_primary_10_1073_pnas_1818206116
crossref_primary_10_1107_S205225251901707X
crossref_primary_10_1021_acschemneuro_5c00106
crossref_primary_10_1107_S2059798322000729
crossref_primary_10_1021_jacs_4c11768
crossref_primary_10_1074_jbc_RA119_007847
crossref_primary_10_1016_j_ijbiomac_2023_125792
crossref_primary_10_1073_pnas_1613040114
crossref_primary_10_1038_s41598_019_45709_8
crossref_primary_10_1007_s12551_021_00916_4
crossref_primary_10_1016_j_str_2016_03_025
crossref_primary_10_1038_s41586_024_08336_6
crossref_primary_10_1038_nprot_2016_113
crossref_primary_10_1016_j_chembiol_2018_10_016
crossref_primary_10_1038_s41598_019_52344_w
crossref_primary_10_1016_j_jmb_2018_11_003
crossref_primary_10_3390_nano11061476
crossref_primary_10_1063_4_0000013
crossref_primary_10_1074_jbc_RA120_014534
crossref_primary_10_1016_j_jmb_2021_166930
crossref_primary_10_1038_s41598_017_05364_3
crossref_primary_10_1007_s12551_016_0194_x
crossref_primary_10_1038_s41598_017_01102_x
crossref_primary_10_1073_pnas_1611118114
crossref_primary_10_1073_pnas_2215556120
crossref_primary_10_1038_s41557_023_01361_4
crossref_primary_10_3390_molecules29122768
crossref_primary_10_1186_s12915_022_01381_5
crossref_primary_10_3390_biom11091324
crossref_primary_10_1093_nar_gkac1277
crossref_primary_10_1016_j_abb_2020_108468
crossref_primary_10_1038_s41467_025_57478_2
crossref_primary_10_1371_journal_pone_0195355
crossref_primary_10_1038_s42003_018_0203_7
crossref_primary_10_1038_s41573_025_01220_6
crossref_primary_10_1371_journal_pone_0182056
crossref_primary_10_1016_j_bpj_2018_11_020
crossref_primary_10_1016_j_foodres_2021_110653
crossref_primary_10_1016_j_ymeth_2022_08_008
crossref_primary_10_1111_mmi_14800
crossref_primary_10_1016_j_jmb_2021_166954
crossref_primary_10_1016_j_jmb_2017_10_027
crossref_primary_10_1016_j_pep_2025_106749
crossref_primary_10_3390_ijms23020923
crossref_primary_10_1016_j_str_2017_05_018
crossref_primary_10_1016_j_ijbiomac_2022_10_135
crossref_primary_10_1016_j_jmb_2017_01_008
crossref_primary_10_1016_j_csbj_2021_09_009
crossref_primary_10_4049_jimmunol_1900494
crossref_primary_10_1016_j_bbapap_2025_141075
crossref_primary_10_1038_s41598_021_89613_6
crossref_primary_10_1093_nar_gkab290
crossref_primary_10_1107_S1600576720013412
crossref_primary_10_1002_pro_70122
crossref_primary_10_1074_jbc_M115_674176
crossref_primary_10_1038_s41598_018_20320_5
crossref_primary_10_3390_biomedicines10102347
crossref_primary_10_1016_j_bbrc_2019_10_086
crossref_primary_10_1111_1462_2920_16624
crossref_primary_10_1038_ncomms16065
crossref_primary_10_7554_eLife_22510
crossref_primary_10_3390_molecules25204783
crossref_primary_10_1016_j_neuron_2018_02_010
crossref_primary_10_1038_s41467_023_42012_z
crossref_primary_10_1107_S2059798325005303
crossref_primary_10_3389_fmolb_2024_1347741
crossref_primary_10_3390_biom10040623
crossref_primary_10_1016_j_foodres_2023_113787
crossref_primary_10_1111_febs_16616
crossref_primary_10_15252_emmm_201911248
crossref_primary_10_1016_j_xphs_2016_07_021
crossref_primary_10_1074_jbc_RA118_003939
crossref_primary_10_1016_j_bbagen_2018_07_025
crossref_primary_10_1016_j_ijbiomac_2017_01_058
crossref_primary_10_7554_eLife_29154
crossref_primary_10_1098_rsob_200386
crossref_primary_10_1074_jbc_RA120_014865
crossref_primary_10_1007_s00018_021_04032_0
crossref_primary_10_1016_j_jmb_2019_05_047
crossref_primary_10_1038_s41467_017_01485_5
crossref_primary_10_1002_pro_5093
crossref_primary_10_3389_fnut_2022_1039762
crossref_primary_10_1002_anie_202312517
crossref_primary_10_1016_j_jmb_2020_01_030
crossref_primary_10_1016_j_bbagen_2018_07_011
crossref_primary_10_1021_acs_jpcb_5c04293
crossref_primary_10_1016_j_ultsonch_2023_106510
crossref_primary_10_3389_fmolb_2021_621128
crossref_primary_10_1088_2399_1984_abfb7c
crossref_primary_10_1093_nar_gkab080
crossref_primary_10_1038_s43586_021_00064_9
crossref_primary_10_1016_j_str_2020_04_020
crossref_primary_10_1042_BCJ20180405
crossref_primary_10_1016_j_jmb_2018_02_020
crossref_primary_10_3390_biom12121876
crossref_primary_10_3389_fmolb_2022_862910
crossref_primary_10_1002_bab_1577
crossref_primary_10_1016_j_str_2023_09_004
crossref_primary_10_1002_wcms_1359
crossref_primary_10_1074_jbc_M117_804195
crossref_primary_10_1038_s41467_023_37988_7
crossref_primary_10_1038_s41598_024_74335_2
crossref_primary_10_1107_S2052252515010891
crossref_primary_10_1016_j_carbpol_2021_117814
crossref_primary_10_1016_j_ymeth_2016_12_002
crossref_primary_10_1038_nmicrobiol_2017_47
crossref_primary_10_1371_journal_pone_0186110
crossref_primary_10_1016_j_jmb_2023_168154
crossref_primary_10_1016_j_jbc_2023_104592
crossref_primary_10_1016_j_biochi_2023_10_006
crossref_primary_10_1016_j_jsb_2019_04_003
crossref_primary_10_1007_s12551_025_01321_x
crossref_primary_10_1016_j_jsbmb_2018_06_011
crossref_primary_10_1016_j_str_2023_04_004
crossref_primary_10_1016_j_jmb_2022_167465
crossref_primary_10_1107_S1600576725003590
crossref_primary_10_1038_s41598_020_77706_7
crossref_primary_10_1038_s41598_020_76522_3
crossref_primary_10_1016_j_jmb_2020_03_014
crossref_primary_10_1016_j_bbagen_2017_10_015
crossref_primary_10_1074_jbc_M115_705160
crossref_primary_10_3390_ijms19113401
crossref_primary_10_1140_epje_s10189_024_00409_8
crossref_primary_10_1093_nar_gkaa1285
crossref_primary_10_1016_j_jmb_2021_167174
crossref_primary_10_1002_cphc_202300439
crossref_primary_10_7554_eLife_67605
crossref_primary_10_1038_nsmb_3232
crossref_primary_10_1038_s41467_024_51681_3
crossref_primary_10_3390_ijms21155277
crossref_primary_10_1073_pnas_1904813116
crossref_primary_10_1107_S205979831900264X
crossref_primary_10_3390_ijms23126596
crossref_primary_10_1093_nar_gkaf154
crossref_primary_10_1074_jbc_M115_662379
crossref_primary_10_1186_s12964_015_0125_7
crossref_primary_10_1002_pro_70068
crossref_primary_10_1038_s41598_017_15299_4
crossref_primary_10_1126_sciimmunol_abm3723
crossref_primary_10_1016_j_bbagen_2018_04_006
crossref_primary_10_3389_fimmu_2024_1389494
crossref_primary_10_1016_j_bbapap_2017_07_013
crossref_primary_10_1107_S205979832101247X
crossref_primary_10_7554_eLife_21848
crossref_primary_10_1021_jacs_4c13473
crossref_primary_10_1107_S2052252520008830
crossref_primary_10_1016_j_jbc_2021_100776
crossref_primary_10_1016_j_str_2025_07_008
crossref_primary_10_1073_pnas_2009596117
crossref_primary_10_1021_jacs_5b06027
crossref_primary_10_1107_S2059798315024328
crossref_primary_10_1111_febs_15660
crossref_primary_10_1093_nar_gkaa1021
crossref_primary_10_1016_j_jmb_2017_12_014
crossref_primary_10_1021_acs_biochem_5c00156
crossref_primary_10_1038_s41467_020_20262_5
crossref_primary_10_1074_jbc_RA119_008218
crossref_primary_10_1016_j_sbi_2019_04_004
crossref_primary_10_1016_j_jbc_2023_105356
crossref_primary_10_1002_advs_202302035
crossref_primary_10_1016_j_ijbiomac_2023_126288
crossref_primary_10_1038_s41580_023_00673_0
crossref_primary_10_1371_journal_pone_0156105
crossref_primary_10_1107_S1600577519005113
crossref_primary_10_1093_nar_gky206
crossref_primary_10_1107_S2052252517008740
crossref_primary_10_3389_fmolb_2022_823174
crossref_primary_10_1016_j_jbc_2025_110392
crossref_primary_10_3389_fmolb_2022_986121
crossref_primary_10_1073_pnas_2319998121
crossref_primary_10_1371_journal_pcbi_1006641
crossref_primary_10_1016_j_str_2024_05_018
crossref_primary_10_1002_cm_21773
crossref_primary_10_1038_nature16503
crossref_primary_10_1016_j_bpj_2018_04_018
crossref_primary_10_1016_j_jcis_2022_12_024
crossref_primary_10_1016_j_bpj_2019_06_024
crossref_primary_10_1128_spectrum_02373_23
crossref_primary_10_1038_srep40405
crossref_primary_10_1371_journal_pgen_1008435
crossref_primary_10_1038_s41598_020_67002_9
crossref_primary_10_1038_ncomms11343
crossref_primary_10_1016_j_str_2021_08_002
crossref_primary_10_1107_S1600576725002481
crossref_primary_10_3390_biom12091302
crossref_primary_10_1016_j_bpj_2019_12_025
crossref_primary_10_1261_rna_072595_119
crossref_primary_10_1107_S2059798317005745
crossref_primary_10_1016_j_bpj_2018_10_016
crossref_primary_10_1074_jbc_M117_799700
crossref_primary_10_1107_S205225252401217X
crossref_primary_10_1016_j_pbiomolbio_2018_09_005
crossref_primary_10_1093_nar_gkaf043
crossref_primary_10_1242_jcs_239202
crossref_primary_10_1021_jacs_0c02088
crossref_primary_10_3390_polym11122104
crossref_primary_10_1016_j_bpj_2017_02_024
crossref_primary_10_1371_journal_pone_0202391
crossref_primary_10_3390_nano12030390
crossref_primary_10_1038_s41467_017_02312_7
crossref_primary_10_3389_fcimb_2021_673122
crossref_primary_10_1002_pro_4941
crossref_primary_10_1074_jbc_RA119_008011
crossref_primary_10_1261_rna_060343_116
crossref_primary_10_1042_BCJ20240110
crossref_primary_10_1074_jbc_RA119_010697
crossref_primary_10_1038_s41598_017_14448_z
crossref_primary_10_1111_jnc_14556
Cites_doi 10.1038/ncomms2611
10.1073/pnas.0403643101
10.1006/jmbi.1997.1309
10.1073/pnas.0506202102
10.1107/S0021889812007662
10.1074/jbc.M112.398404
10.1002/bip.21638
10.1016/j.str.2014.03.012
10.2174/138920312799277901
10.1107/S0907444913018714
10.1016/j.jmb.2007.05.022
10.1016/j.jmb.2011.12.058
10.1021/ja069124n
10.1021/bi4008337
10.1006/jmbi.1993.1330
10.1093/acprof:oso/9780199639533.001.0001
10.1016/j.jsb.2009.08.009
10.1093/bioinformatics/bts172
10.1007/978-1-4614-3704-8_7
10.1073/pnas.1004569107
10.1038/471151a
10.4149/gpb_2009_02_174
10.15252/embj.201488143
10.1073/pnas.1113813108
10.1016/S0021-9258(18)96726-8
10.1002/prot.22153
10.1007/s00249-009-0549-3
10.1007/978-1-4757-6624-0
10.1038/nsmb.2160
10.1073/pnas.1323876111
10.1016/j.sbi.2011.03.012
10.1016/0022-2836(92)90324-D
10.1073/pnas.0404236101
10.1093/bioinformatics/bts701
10.1146/annurev.biophys.37.032807.125924
10.1021/bi00255a006
10.1016/j.str.2010.10.006
10.1073/pnas.1304749110
10.1371/journal.pone.0074783
10.1039/C0OB00535E
10.1107/S0021889806004699
10.1038/nchembio.1009
10.1073/pnas.1400340111
ContentType Journal Article
Copyright COPYRIGHT 2015 International Union of Crystallography
Copyright International Union of Crystallography Mar 2015
Giancarlo Tria et al. 2015 2015
Copyright_xml – notice: COPYRIGHT 2015 International Union of Crystallography
– notice: Copyright International Union of Crystallography Mar 2015
– notice: Giancarlo Tria et al. 2015 2015
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
EHMNL
HCIFZ
JG9
KB.
L7M
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1107/S205225251500202X
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
UK & Ireland Database (ProQuest)
SciTech Premium Collection
Materials Research Database
Materials Science Database
Advanced Technologies Database with Aerospace
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
UK & Ireland Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
Publicly Available Content Database

CrossRef
Materials Research Database

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
DocumentTitleAlternate Advanced ensemble modelling of flexible macromolecules
EISSN 2052-2525
EndPage 217
ExternalDocumentID oai_doaj_org_article_941cf0fe31f74c789abb424b8a0986a7
PMC4392415
3615028051
A406900827
25866658
10_1107_S205225251500202X
Genre Journal Article
GroupedDBID 5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
ADRAZ
AENEX
AFFHD
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
D1I
EBS
EHMNL
EJD
GROUPED_DOAJ
H13
HCIFZ
HYE
IAO
IPNFZ
ITC
KB.
KQ8
M48
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RCJ
RIG
RPM
ZBA
NPM
7SR
7U5
8BQ
8FD
AZQEC
DWQXO
JG9
L7M
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c565t-12984acfc59a3970446b1d0212c6e3d25c54c7d4fe6208d2d6e0ae34ee85dc7d3
IEDL.DBID KB.
ISICitedReferencesCount 485
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356866400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2052-2525
IngestDate Fri Oct 03 12:44:03 EDT 2025
Tue Nov 04 02:04:20 EST 2025
Sun Aug 24 03:49:05 EDT 2025
Sun Nov 09 11:19:48 EST 2025
Fri Jul 25 12:06:02 EDT 2025
Tue Nov 04 17:58:24 EST 2025
Mon Jul 21 06:04:22 EDT 2025
Sat Nov 29 07:54:21 EST 2025
Tue Nov 18 21:20:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords unstructured biology
symmetric oligomers
hybrid methods
macromolecular dynamics
small-angle scattering
proteins
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c565t-12984acfc59a3970446b1d0212c6e3d25c54c7d4fe6208d2d6e0ae34ee85dc7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1660702817?pq-origsite=%requestingapplication%
PMID 25866658
PQID 1660702817
PQPubID 2035043
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_941cf0fe31f74c789abb424b8a0986a7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4392415
proquest_miscellaneous_1800432075
proquest_miscellaneous_1673072762
proquest_journals_1660702817
gale_infotracacademiconefile_A406900827
pubmed_primary_25866658
crossref_citationtrail_10_1107_S205225251500202X
crossref_primary_10_1107_S205225251500202X
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Chester
PublicationTitle IUCrJ
PublicationTitleAlternate IUCrJ
PublicationYear 2015
Publisher International Union of Crystallography
Publisher_xml – name: International Union of Crystallography
References Møller (fc5007_bb26) 2013; 8
Calmettes (fc5007_bb9) 1993; 231
Xu (fc5007_bb44) 2012; 416
Bernadó (fc5007_bb3) 2010; 39
Devarakonda (fc5007_bb12) 2011; 108
Tanford (fc5007_bb39) 1966; 241
Uversky (fc5007_bb42) 2008; 37
Tompa (fc5007_bb40) 2011; 21
Chouard (fc5007_bb10) 2011; 471
fc5007_bb17
Jensen (fc5007_bb18) 2014; 111
Receveur-Brechot (fc5007_bb31) 2012; 13
Chattopadhyaya (fc5007_bb51) 1992; 228
fc5007_bb16
fc5007_bb38
Rambo (fc5007_bb30) 2011; 95
fc5007_bb14
Pérard (fc5007_bb28) 2013; 4
fc5007_bb35
Pelikan (fc5007_bb27) 2009; 28
Ozenne (fc5007_bb2) 2012; 11
Kleywegt (fc5007_bb19) 1997; 273
Cook (fc5007_bb52) 1994; 33
Sander (fc5007_bb34) 2013; 69
Sterckx (fc5007_bb37) 2014; 22
Mertens (fc5007_bb25) 2012; 287
Luan (fc5007_bb24) 2014; 53
Krissinel (fc5007_bb22) 2007; 372
Wang (fc5007_bb43) 2014; 111
Bernadó (fc5007_bb6) 2012; 896
Brewer (fc5007_bb8) 2011; 9
Kohn (fc5007_bb20) 2004; 101
fc5007_bb50
Tompa (fc5007_bb41) 2012; 8
Rubio-Cosials (fc5007_bb33) 2011; 18
Różycki (fc5007_bb32) 2011; 19
Bernadó (fc5007_bb4) 2005; 102
Petoukhov (fc5007_bb29) 2012; 45
Konarev (fc5007_bb21) 2006; 39
Fitzkee (fc5007_bb15) 2004; 101
Bernadó (fc5007_bb5) 2007; 129
Das (fc5007_bb11) 2013; 110
Banavali (fc5007_bb1) 2009; 74
Krzeminski (fc5007_bb23) 2013; 29
Yang (fc5007_bb45) 2010; 107
Soykan (fc5007_bb36) 2014; 33
Durand (fc5007_bb13) 2010; 169
References_xml – volume: 4
  start-page: 1612
  year: 2013
  ident: fc5007_bb28
  publication-title: Nature Commun.
  doi: 10.1038/ncomms2611
– volume: 101
  start-page: 12491
  year: 2004
  ident: fc5007_bb20
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0403643101
– volume: 273
  start-page: 371
  year: 1997
  ident: fc5007_bb19
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1309
– volume: 102
  start-page: 17002
  year: 2005
  ident: fc5007_bb4
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506202102
– volume: 45
  start-page: 342
  year: 2012
  ident: fc5007_bb29
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889812007662
– volume: 287
  start-page: 34304
  year: 2012
  ident: fc5007_bb25
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.398404
– volume: 95
  start-page: 559
  year: 2011
  ident: fc5007_bb30
  publication-title: Biopolymers
  doi: 10.1002/bip.21638
– volume: 22
  start-page: 854
  year: 2014
  ident: fc5007_bb37
  publication-title: Structure
  doi: 10.1016/j.str.2014.03.012
– ident: fc5007_bb17
– volume: 13
  start-page: 55
  year: 2012
  ident: fc5007_bb31
  publication-title: Curr. Protein Pept. Sci.
  doi: 10.2174/138920312799277901
– volume: 69
  start-page: 2050
  year: 2013
  ident: fc5007_bb34
  publication-title: Acta Cryst. D
  doi: 10.1107/S0907444913018714
– volume: 372
  start-page: 774
  year: 2007
  ident: fc5007_bb22
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2007.05.022
– volume: 416
  start-page: 629
  year: 2012
  ident: fc5007_bb44
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.12.058
– volume: 129
  start-page: 5656
  year: 2007
  ident: fc5007_bb5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja069124n
– volume: 53
  start-page: 39
  year: 2014
  ident: fc5007_bb24
  publication-title: Biochemistry
  doi: 10.1021/bi4008337
– volume: 231
  start-page: 840
  year: 1993
  ident: fc5007_bb9
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1330
– ident: fc5007_bb38
  doi: 10.1093/acprof:oso/9780199639533.001.0001
– volume: 169
  start-page: 45
  year: 2010
  ident: fc5007_bb13
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2009.08.009
– volume: 11
  start-page: 1463
  year: 2012
  ident: fc5007_bb2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts172
– volume: 896
  start-page: 107
  year: 2012
  ident: fc5007_bb6
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4614-3704-8_7
– volume: 107
  start-page: 15757
  year: 2010
  ident: fc5007_bb45
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1004569107
– volume: 471
  start-page: 151
  year: 2011
  ident: fc5007_bb10
  publication-title: Nature
  doi: 10.1038/471151a
– volume: 28
  start-page: 174
  year: 2009
  ident: fc5007_bb27
  publication-title: Gen. Physiol. Biophys.
  doi: 10.4149/gpb_2009_02_174
– volume: 33
  start-page: 2113
  year: 2014
  ident: fc5007_bb36
  publication-title: EMBO J.
  doi: 10.15252/embj.201488143
– volume: 108
  start-page: 18678
  year: 2011
  ident: fc5007_bb12
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1113813108
– volume: 241
  start-page: 1921
  year: 1966
  ident: fc5007_bb39
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)96726-8
– ident: fc5007_bb35
– volume: 74
  start-page: 378
  year: 2009
  ident: fc5007_bb1
  publication-title: Proteins
  doi: 10.1002/prot.22153
– volume: 39
  start-page: 769
  year: 2010
  ident: fc5007_bb3
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-009-0549-3
– ident: fc5007_bb14
  doi: 10.1007/978-1-4757-6624-0
– volume: 18
  start-page: 1281
  year: 2011
  ident: fc5007_bb33
  publication-title: Nature Struct. Mol. Biol.
  doi: 10.1038/nsmb.2160
– volume: 111
  start-page: E1557
  year: 2014
  ident: fc5007_bb18
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1323876111
– volume: 21
  start-page: 419
  year: 2011
  ident: fc5007_bb40
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2011.03.012
– ident: fc5007_bb16
– ident: fc5007_bb50
– volume: 228
  start-page: 1177
  year: 1992
  ident: fc5007_bb51
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(92)90324-D
– volume: 101
  start-page: 12497
  year: 2004
  ident: fc5007_bb15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0404236101
– volume: 29
  start-page: 398
  year: 2013
  ident: fc5007_bb23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts701
– volume: 37
  start-page: 215
  year: 2008
  ident: fc5007_bb42
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev.biophys.37.032807.125924
– volume: 33
  start-page: 15259
  year: 1994
  ident: fc5007_bb52
  publication-title: Biochemistry
  doi: 10.1021/bi00255a006
– volume: 19
  start-page: 109
  year: 2011
  ident: fc5007_bb32
  publication-title: Structure
  doi: 10.1016/j.str.2010.10.006
– volume: 110
  start-page: 13392
  year: 2013
  ident: fc5007_bb11
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1304749110
– volume: 8
  start-page: e74783
  year: 2013
  ident: fc5007_bb26
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0074783
– volume: 9
  start-page: 777
  year: 2011
  ident: fc5007_bb8
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C0OB00535E
– volume: 39
  start-page: 277
  year: 2006
  ident: fc5007_bb21
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889806004699
– volume: 8
  start-page: 597
  year: 2012
  ident: fc5007_bb41
  publication-title: Nature Chem. Biol.
  doi: 10.1038/nchembio.1009
– volume: 111
  start-page: E1559
  year: 2014
  ident: fc5007_bb43
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1400340111
SSID ssj0001125741
Score 2.5316029
Snippet Dynamic ensembles of macromolecules mediate essential processes in biology. Understanding the mechanisms driving the function and molecular interactions of...
New developments in the modelling of flexible biological macromolecules from SAXS data offer extended possibilities of using high-resolution models and provide...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 207
SubjectTerms Algorithms
Biology
hybrid methods
macromolecular dynamics
Macromolecules
Mathematical models
Optimization
Pools
Protein folding
Protein research
Proteins
Research Papers
SAXS
small-angle scattering
Structure
symmetric oligomers
unstructured biology
X-rays
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl9NAeSpu-3KZBhUKhYGLLevm4LQ05hUIf7E3oMW4DqTfsbgr9952RvYtNIL3kqpFhNRppvlnNfMPYO3RhsfapLX0XYilNgLINFZU-1RKMb6JKKTebMOfndrlsv0xafVFO2EAPPCjupJV17KoOmrozMhrb-hCkkMH6qrXa5zpyRD2TYCr_u4J-2-S2laJSohRKqPFJE8Odk680SGOIhhAuieXMKWXu_ps39MRFzdMnJ_7o9DF7NAJJvhgW8ITdg_6QPZzQCz5lPxbjAz_HWBV-h0vgufENVaDzVcc7IsPMoz5n5eVGubDhlAv_ky_Ltf_Ld6bJNzEzcaLkGft--vnbp7Ny7KNQRoRr2xJdupU-dlG1HuEHPeGGOhG3e9TQJKGiQs0m2YFGVSaRNFQeGglgVUJB85wd9KseXjKuQXa6CRUgEJIYm7RaxBoMdSuzQSdTsGqnSBdHknHqdXHpcrBRGXdD9wX7sP_kamDYuG3yR9qd_UQix84DaDJuNBn3P5Mp2HvaW0dHGH9c9GMlAi6RyLDcgqqBCRvhzKPd9rvxbG9crTXek8LWKH67F-OppKcW38PqmubgzYnQUItb5tjMh4iYrWAvBovar0soi3GlsgUzM1ubLXwu6S9-ZXZwRJiEyl7dhaZeswcIENWQc3fEDrbra3jD7sc_24vN-jgfuX_EACx-
  priority: 102
  providerName: Directory of Open Access Journals
Title Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering
URI https://www.ncbi.nlm.nih.gov/pubmed/25866658
https://www.proquest.com/docview/1660702817
https://www.proquest.com/docview/1673072762
https://www.proquest.com/docview/1800432075
https://pubmed.ncbi.nlm.nih.gov/PMC4392415
https://doaj.org/article/941cf0fe31f74c789abb424b8a0986a7
Volume 2
WOSCitedRecordID wos000356866400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: KB.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: UK & Ireland Database (ProQuest)
  customDbUrl:
  eissn: 2052-2525
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001125741
  issn: 2052-2525
  databaseCode: EHMNL
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/ukireland
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBZN0kNz6Dut23RxoVAouLFlvXwquyWhpXRZ-sI9GVmS00Bip-tNof--M1rtZk1gL71KY9Dg0cw30ugbQl5BCDOZtkWim9okTNYuKeoUnz5lzEmdG26tbzYhp1NVlsUsHLj1oaxy5RO9o7adwTPyo0wIsE6qMvnu8neCXaPwdjW00Nghe8iSgK0bPk3eXp-xQPSGiBkuMyHROfpKUwAcHII6R6BEy0E48qz9N33zRnAaFk5uRKKTe_-rw31yN2DQeLw0mgfklmsfkv0NZsJH5Mc41AbEkOa6i_rcxb5nDj5ej7smbpBH049qX9Dne-y6PsYy-tO4TOb6b7yy6rg3nsQTZh6T7yfH395_SEILhsQA0lskgAYU06YxvNCAXPD2t84s0sIb4XJLueHMSMsaJ2iqLLXCpdrlzDnFLUzkB2S37Vr3lMTCsUbkdeoAQzFIawpBTeYkNjpTtbAyIunqT1Qm8JNjm4zzyucpqaxu_LyIvFl_crkk59gmPMHfuxZEXm0_0M1Pq7BNq4Jlpkkbl2eNBMVUoeuaUVYrnRZKaFjkazSOCnc_LM7o8IgBVEQerWqMD4kRVoHk4coGquAW-uraACLycj0NGxpvaXTruiuUAacLqFLQLTLKUykC3IvIk6VJrvWiXEFKylVE5MBYB4oPZ9qzX55YHMApArpn25f-nNwB1MiXhXiHZHcxv3IvyG3zZ3HWz0dkR5ZqRPYmx9PZl5E_4hj5XQljs4-fZz__Ad8BPYI
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFAk48KYECiwSCAnJqr1er9cHhMKjatQ2ikRB4WTWu-u2UnFKnIL6p_iNzGzsNFGl3Hrg6h1bO_Y8vvHOA-AVujATaZsFuixMINLCBVkRUulTJFyqY5NY64dNpIOBGo2y4Rr8bWthKK2ytYneUNuxoX_kW5GUKJ1cRen7018BTY2i09V2hMZMLHbd-R8M2ep3_U_4fV9zvv354ONO0EwVCAyCl2mADk4JbUqTZBqdMR1oFpGlTudGutjyxCTCpFaUTvJQWW6lC7WLhXMqsbgQ43OvwbpAYVcdWB_294ffL_7qIF5AH90cn2JotfWFhwhxEoQRCUEzPlpygH5OwGVvsOAOl1M1F3zf9p3_7a3dhdsNyma9mVrcgzVX3YdbC70XH8C3XpP9wDCQdz-LE8f8VCAqz2fjkpXUKdRf1T5l0U8RdjWjQoFDNgom-py1estq49uU4spD-HoljD2CTjWu3GNg0olSxkXoECUKDNwyyU3kUhrlpgpp0y6E7ZfPTdOBnQaBnOQ-EgvT_JKwdOHt_JbTWfuRVcQfSJzmhNQ53F8YTw7zxhDlmYhMGZYujsoUGVOZLgrBRaF0mCmpcZNvSBhzsm-4OaObMg1kkTqF5T0qlSbgiJSbrczljeGr8wuB68LL-TKaLDqH0pUbnxENuhXEzZKvoFG-WSQC2i5szFRgzhcqHgbdiepCuqQcS4wvr1THR751OsJvgqxPVm_9BdzYOdjfy_f6g92ncBMxcjJLO9yEznRy5p7BdfN7elxPnjf6z-DHVSvPPwJllzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+ensemble+modelling+of+flexible+macromolecules+using+X-ray+solution+scattering&rft.jtitle=IUCrJ&rft.au=Tria%2C+Giancarlo&rft.au=Mertens%2C+Haydyn+D+T&rft.au=Kachala%2C+Michael&rft.au=Svergun%2C+Dmitri+I&rft.date=2015-03-01&rft.eissn=2052-2525&rft.volume=2&rft.issue=2&rft.spage=207&rft.epage=217&rft_id=info:doi/10.1107%2FS205225251500202X&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-2525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-2525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-2525&client=summon