penalized EM algorithm incorporating missing data mechanism for Gaussian parameter estimation

Missing data rates could depend on the targeted values in many settings, including mass spectrometry‐based proteomic profiling studies. Here, we consider mean and covariance estimation under a multivariate Gaussian distribution with non‐ignorable missingness, including scenarios in which the dimensi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biometrics Ročník 70; číslo 2; s. 312 - 322
Hlavní autori: Chen, Lin S, Prentice, Ross L, Wang, Pei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States Blackwell Publishers 01.06.2014
Blackwell Publishing Ltd
International Biometric Society
Predmet:
ISSN:0006-341X, 1541-0420, 1541-0420
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Missing data rates could depend on the targeted values in many settings, including mass spectrometry‐based proteomic profiling studies. Here, we consider mean and covariance estimation under a multivariate Gaussian distribution with non‐ignorable missingness, including scenarios in which the dimension (p) of the response vector is equal to or greater than the number (n) of independent observations. A parameter estimation procedure is developed by maximizing a class of penalized likelihood functions that entails explicit modeling of missing data probabilities. The performance of the resulting “penalized EM algorithm incorporating missing data mechanism (PEMM)” estimation procedure is evaluated in simulation studies and in a proteomic data illustration.
Bibliografia:http://dx.doi.org/10.1111/biom.12149
ArticleID:BIOM12149
ark:/67375/WNG-6GCNFTGB-N
istex:5E4F452A5A48D3AE79C29D81327297D7EEC9FB61
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0006-341X
1541-0420
1541-0420
DOI:10.1111/biom.12149