Quantifying performance of machine learning methods for neuroimaging data

Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Vol. 199; pp. 351 - 365
Main Authors: Jollans, Lee, Boyle, Rory, Artiges, Eric, Banaschewski, Tobias, Desrivières, Sylvane, Grigis, Antoine, Martinot, Jean-Luc, Paus, Tomáš, Smolka, Michael N., Walter, Henrik, Schumann, Gunter, Garavan, Hugh, Whelan, Robert
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01.10.2019
Elsevier Limited
Subjects:
ISSN:1053-8119, 1095-9572, 1095-9572
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques – embedded feature selection and bootstrap aggregation (bagging) – to model performance was also quantified. Five machine learning regression methods – Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size. •The choice of machine learning algorithm influenced prediction accuracy.•Sample size was important: prediction accuracy generally increased once N ≥ 400.•The Elastic Net performed well at a range of effect sizes, relative to other methods.•Random Forest performed well at small effect sizes.•Gaussian Process Regression performed well at large effect sizes.
AbstractList Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques – embedded feature selection and bootstrap aggregation (bagging) – to model performance was also quantified. Five machine learning regression methods – Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size.
Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques – embedded feature selection and bootstrap aggregation (bagging) – to model performance was also quantified. Five machine learning regression methods – Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size. •The choice of machine learning algorithm influenced prediction accuracy.•Sample size was important: prediction accuracy generally increased once N ≥ 400.•The Elastic Net performed well at a range of effect sizes, relative to other methods.•Random Forest performed well at small effect sizes.•Gaussian Process Regression performed well at large effect sizes.
Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques - embedded feature selection and bootstrap aggregation (bagging) - to model performance was also quantified. Five machine learning regression methods - Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size.Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques - embedded feature selection and bootstrap aggregation (bagging) - to model performance was also quantified. Five machine learning regression methods - Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size.
Author Jollans, Lee
Whelan, Robert
Boyle, Rory
Martinot, Jean-Luc
Smolka, Michael N.
Garavan, Hugh
Schumann, Gunter
Artiges, Eric
Banaschewski, Tobias
Walter, Henrik
Desrivières, Sylvane
Paus, Tomáš
Grigis, Antoine
AuthorAffiliation 6 NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
4 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
2 Max-Planck Institute of Psychiatry, Munich, Germany
7 Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Maison de Solenn, Paris, France
9 Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
11 Department of Psychiatry, University of Vermont, Burlington, USA
3 Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Psychiatry Department 91G16, Orsay Hospital, France
1 School of Psychology, Trinity College Dublin, Dublin, Ireland
12 Global
AuthorAffiliation_xml – name: 10 Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
– name: 3 Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Psychiatry Department 91G16, Orsay Hospital, France
– name: 11 Department of Psychiatry, University of Vermont, Burlington, USA
– name: 12 Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
– name: 6 NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
– name: 9 Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
– name: 4 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
– name: 8 Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, M6A 2E1, Canada
– name: 7 Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Maison de Solenn, Paris, France
– name: 1 School of Psychology, Trinity College Dublin, Dublin, Ireland
– name: 2 Max-Planck Institute of Psychiatry, Munich, Germany
– name: 5 Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
Author_xml – sequence: 1
  givenname: Lee
  surname: Jollans
  fullname: Jollans, Lee
  organization: School of Psychology, Trinity College Dublin, Dublin, Ireland
– sequence: 2
  givenname: Rory
  surname: Boyle
  fullname: Boyle, Rory
  organization: School of Psychology, Trinity College Dublin, Dublin, Ireland
– sequence: 3
  givenname: Eric
  surname: Artiges
  fullname: Artiges, Eric
  organization: Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité, and Psychiatry Department 91G16, Orsay Hospital, France
– sequence: 4
  givenname: Tobias
  surname: Banaschewski
  fullname: Banaschewski, Tobias
  organization: Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
– sequence: 5
  givenname: Sylvane
  surname: Desrivières
  fullname: Desrivières, Sylvane
  organization: Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
– sequence: 6
  givenname: Antoine
  surname: Grigis
  fullname: Grigis, Antoine
  organization: NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
– sequence: 7
  givenname: Jean-Luc
  surname: Martinot
  fullname: Martinot, Jean-Luc
  organization: Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité, and Maison de Solenn, Paris, France
– sequence: 8
  givenname: Tomáš
  surname: Paus
  fullname: Paus, Tomáš
  organization: Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, M6A 2E1, Canada
– sequence: 9
  givenname: Michael N.
  surname: Smolka
  fullname: Smolka, Michael N.
  organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
– sequence: 10
  givenname: Henrik
  surname: Walter
  fullname: Walter, Henrik
  organization: Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
– sequence: 11
  givenname: Gunter
  surname: Schumann
  fullname: Schumann, Gunter
  organization: Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
– sequence: 12
  givenname: Hugh
  surname: Garavan
  fullname: Garavan, Hugh
  organization: Department of Psychiatry, University of Vermont, Burlington, USA
– sequence: 13
  givenname: Robert
  surname: Whelan
  fullname: Whelan, Robert
  email: robert.whelan@tcd.ie
  organization: School of Psychology, Trinity College Dublin, Dublin, Ireland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31173905$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3CAURlGUKo9J_kJlqZtu7IJtbNhUbaM-IkWqqnaPruF6hqkNU7Ajzb8vVl7trGYF0v04HPguyanzDgnJGC0YZc27beFwDt6OsMaipEwWlBdUlCfkglHJc8nb8nTZ8yoXjMlzchnjllIqWS3OyHnFWFtJyi_I7Y8Z3GT7vXXrbIeh92EEpzHzfTaC3liH2YAQ3DIfcdp4E7MUyp4FloGBCa7Iqx6GiNeP64r8_PL51823_O7719ubj3e55k095bqtJeMGBNJONJq1bWVE3XYltLpDrIDXyGgNLXSs6ztgaLqGGllrZmRZrcj7B-pu7kY0Gt0UYFC7kFTCXnmw6v-Jsxu19veqaYSQVCbA20dA8H9mjJMabdQ4DODQz1GVZV0yLkvJU_TNQXTr5-DS41KqEbwWi_2KvP7X6Fnl6Y9flHXwMQbslbYTTNYvgnZQjKqlVLVVL6WqpVRFuUqlJoA4ADzdccTRTw9HMTVybzGoqC2mfo0NqCdlvD0G8uEAogfrrIbhN-6PQ_wFgMba8w
CitedBy_id crossref_primary_10_3389_fnins_2023_934138
crossref_primary_10_1109_ACCESS_2020_3032391
crossref_primary_10_1093_cercor_bhaa390
crossref_primary_10_1038_s41386_021_00987_7
crossref_primary_10_1038_s42003_023_05396_8
crossref_primary_10_1016_j_aei_2022_101666
crossref_primary_10_1186_s12888_020_02541_z
crossref_primary_10_1016_j_nicl_2021_102790
crossref_primary_10_1186_s40708_021_00129_1
crossref_primary_10_7759_cureus_56927
crossref_primary_10_1002_hbm_70191
crossref_primary_10_3389_fnins_2023_1199106
crossref_primary_10_1007_s11357_023_00831_4
crossref_primary_10_1093_cercor_bhac060
crossref_primary_10_1038_s41467_020_20655_6
crossref_primary_10_1093_cercor_bhae080
crossref_primary_10_1007_s12671_024_02513_4
crossref_primary_10_1080_00952990_2022_2116712
crossref_primary_10_1016_j_compbiomed_2023_106804
crossref_primary_10_1016_j_applthermaleng_2020_115914
crossref_primary_10_1016_j_dcn_2024_101475
crossref_primary_10_1016_j_cccb_2024_100212
crossref_primary_10_1038_s41598_023_39799_8
crossref_primary_10_1093_cercor_bhaa290
crossref_primary_10_1109_ACCESS_2020_3007499
crossref_primary_10_1111_ejn_16345
crossref_primary_10_1162_netn_a_00383
crossref_primary_10_1038_s41598_023_37508_z
crossref_primary_10_1007_s12021_021_09525_8
crossref_primary_10_1093_bib_bbac359
crossref_primary_10_1016_j_techfore_2020_120175
crossref_primary_10_1038_s41368_023_00254_z
crossref_primary_10_1093_gigascience_giad049
crossref_primary_10_1051_shsconf_202213903027
crossref_primary_10_1016_j_brat_2022_104086
crossref_primary_10_3389_fneur_2023_1168833
crossref_primary_10_3389_fnimg_2022_1056503
crossref_primary_10_3389_fneur_2023_1165603
crossref_primary_10_1016_j_enbenv_2024_02_005
crossref_primary_10_1016_j_eswa_2022_119320
crossref_primary_10_1038_s41537_025_00583_4
crossref_primary_10_1038_s41398_020_01192_8
crossref_primary_10_52294_001c_117311
crossref_primary_10_1016_j_neuropharm_2021_108500
crossref_primary_10_3389_fcvm_2022_814557
crossref_primary_10_1523_JNEUROSCI_0897_20_2020
crossref_primary_10_1016_j_clinph_2019_08_010
crossref_primary_10_1016_j_tins_2019_07_007
crossref_primary_10_1016_j_psycr_2022_100014
crossref_primary_10_1038_s41746_022_00576_y
crossref_primary_10_1002_hbm_25837
crossref_primary_10_1016_j_bpsc_2019_11_001
crossref_primary_10_1159_000546112
crossref_primary_10_1002_hbm_26683
crossref_primary_10_1002_jnr_25185
crossref_primary_10_1016_j_biopsych_2022_01_008
crossref_primary_10_1016_j_atmosres_2021_105574
crossref_primary_10_1016_j_renene_2024_120565
crossref_primary_10_1016_j_nicl_2021_102620
crossref_primary_10_1016_j_nicl_2022_102983
crossref_primary_10_1016_j_schres_2020_03_022
crossref_primary_10_1002_hbm_25907
crossref_primary_10_1007_s12553_021_00538_6
crossref_primary_10_1016_j_nicl_2020_102199
crossref_primary_10_1371_journal_pone_0321008
crossref_primary_10_1016_j_media_2021_102050
crossref_primary_10_1038_s41467_024_54022_6
crossref_primary_10_1057_s41599_024_03436_0
crossref_primary_10_3389_fninf_2021_805669
crossref_primary_10_1002_nbm_70018
crossref_primary_10_1016_j_jare_2025_04_026
crossref_primary_10_12688_wellcomeopenres_15617_3
crossref_primary_10_3389_fnins_2024_1411797
crossref_primary_10_12688_wellcomeopenres_15617_2
crossref_primary_10_12688_wellcomeopenres_15617_1
crossref_primary_10_3390_diagnostics14212394
crossref_primary_10_1162_imag_a_00215
crossref_primary_10_1016_j_biopsych_2022_09_024
crossref_primary_10_1016_j_media_2020_101871
crossref_primary_10_1016_j_neuroimage_2025_121129
crossref_primary_10_1109_TMI_2022_3218720
crossref_primary_10_3758_s13415_021_00964_z
crossref_primary_10_1016_j_neubiorev_2022_104552
crossref_primary_10_1016_j_media_2023_102913
crossref_primary_10_1177_1352458520958362
crossref_primary_10_1016_j_chemolab_2021_104430
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1016_j_jfp_2024_100417
crossref_primary_10_1007_s12665_025_12374_2
crossref_primary_10_1002_jmri_29470
crossref_primary_10_1016_j_neuroscience_2020_01_049
crossref_primary_10_1371_journal_pone_0284951
crossref_primary_10_1016_j_neuroimage_2020_116795
crossref_primary_10_1016_j_neuroimage_2023_120205
crossref_primary_10_1016_j_jpsychires_2023_10_046
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_1111_cote_12622
crossref_primary_10_1038_s41598_022_10949_8
crossref_primary_10_1093_cercor_bhad130
crossref_primary_10_1109_ACCESS_2024_3519867
crossref_primary_10_1093_scan_nsab035
crossref_primary_10_1177_13694332221092671
crossref_primary_10_1007_s10967_023_09327_z
crossref_primary_10_3389_fninf_2020_575999
crossref_primary_10_1002_hbm_26172
crossref_primary_10_1016_j_jad_2022_08_078
crossref_primary_10_1016_j_dcn_2023_101231
crossref_primary_10_1007_s12065_024_01006_6
crossref_primary_10_1002_hbm_24947
Cites_doi 10.1016/j.neurobiolaging.2010.05.023
10.1016/j.neuron.2011.11.001
10.1016/j.neuroimage.2016.02.079
10.1038/tp.2016.213
10.1016/j.neuroimage.2015.05.074
10.1016/j.neuroimage.2017.07.059
10.1038/sdata.2017.10
10.1001/jamapsychiatry.2015.0497
10.1016/j.dcn.2013.03.001
10.1016/j.jneumeth.2017.12.005
10.1016/j.neuron.2014.10.047
10.1023/A:1018054314350
10.1111/j.1467-9868.2005.00503.x
10.1006/nimg.2001.0978
10.1016/j.neuroimage.2010.01.005
10.1016/j.neuroimage.2010.03.051
10.1016/j.tics.2016.03.014
10.1016/j.neulet.2010.01.056
10.3389/fnins.2012.00152
10.1001/jamapsychiatry.2015.0498
10.1016/j.neuroimage.2013.05.081
10.1038/npp.2013.328
10.1038/mp.2010.4
10.1016/j.compeleceng.2013.11.024
10.1093/schbul/sbr145
10.1016/j.neuroimage.2011.10.018
10.1186/1471-2202-8-91
10.1093/bioinformatics/btm344
10.1016/j.neuroimage.2011.10.014
10.1002/jmri.21049
10.1038/nrn2793
10.1371/journal.pone.0006353
10.1371/journal.pone.0085460
10.1002/jmri.22806
10.1016/j.neuroimage.2015.11.057
10.1126/science.aal3618
10.1038/nn.4478
10.1001/jamapsychiatry.2018.2165
10.1007/s12021-017-9347-8
10.1016/j.nicl.2013.06.004
10.1016/j.neuroimage.2016.10.038
10.1093/biomet/asn068
10.1007/s12021-015-9292-3
10.1016/j.neuroimage.2011.12.053
10.3389/fnagi.2016.00119
10.1016/j.neuroimage.2018.05.065
10.1177/0956797611417632
10.1038/nmeth.4642
10.1038/nature13402
10.1371/journal.pone.0152719
10.1093/bioinformatics/btp630
10.1016/j.neulet.2018.04.007
10.1016/j.neuroimage.2012.02.018
10.3389/fpsyt.2016.00050
10.1109/TAMD.2015.2440298
10.1073/pnas.0911855107
10.1186/1753-6561-6-S2-S10
10.1016/j.cub.2012.07.002
10.1073/pnas.1518285112
10.1002/hbm.22184
10.1016/j.neuroimage.2010.02.082
10.1016/j.neuroimage.2013.02.055
10.1146/annurev-clinpsy-032816-045037
10.3389/fninf.2015.00008
10.1007/s12021-013-9178-1
10.1038/nrn3475
10.1016/j.mri.2008.01.052
10.1016/j.neuroimage.2011.11.066
10.1126/science.1194144
10.1038/npp.2015.22
10.1007/s12021-013-9204-3
10.1038/sdata.2018.134
10.3389/fpsyt.2018.00242
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright © 2019 Elsevier Inc. All rights reserved.
2019. Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
– notice: Copyright © 2019 Elsevier Inc. All rights reserved.
– notice: 2019. Elsevier Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2019.05.082
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 365
ExternalDocumentID PMC6688909
31173905
10_1016_j_neuroimage_2019_05_082
S1053811919304781
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: T32 DA043593
– fundername: NIMH NIH HHS
  grantid: R01 MH085772
– fundername: NIDA NIH HHS
  grantid: R01 DA047119
– fundername: NIBIB NIH HHS
  grantid: U54 EB020403
– fundername: Medical Research Council
  grantid: MR/R00465X/1
– fundername: MRF_
  grantid: MRF-058-0004-RG-DESRI
– fundername: Medical Research Council
  grantid: MR/N000390/1
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
~HD
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJOXV
AMFUW
C45
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
9DU
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFFHD
AFPKN
AGHFR
AGQPQ
AIGII
AKRLJ
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
AGCQF
AGRNS
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c564t-c74915da8e0b86c1773d847b2a7cbee3a54e104a7ab1bfba1edb60d94c1d923
IEDL.DBID M7P
ISICitedReferencesCount 119
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478780200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-8119
1095-9572
IngestDate Tue Nov 04 01:46:15 EST 2025
Sun Nov 09 11:46:01 EST 2025
Tue Oct 07 07:12:11 EDT 2025
Mon Jul 21 06:02:53 EDT 2025
Tue Nov 18 22:40:46 EST 2025
Sat Nov 29 07:04:37 EST 2025
Fri Feb 23 02:47:27 EST 2024
Tue Oct 14 19:39:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neuroimaging
Regression algorithms
Reproducibility
Machine learning
Language English
License Copyright © 2019 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-c74915da8e0b86c1773d847b2a7cbee3a54e104a7ab1bfba1edb60d94c1d923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6688909
PMID 31173905
PQID 2268548177
PQPubID 2031077
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6688909
proquest_miscellaneous_2242159295
proquest_journals_2268548177
pubmed_primary_31173905
crossref_citationtrail_10_1016_j_neuroimage_2019_05_082
crossref_primary_10_1016_j_neuroimage_2019_05_082
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_05_082
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_05_082
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2019
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Brown, Kuperman, Chung, Erhart, McCabe, Hagler (bib8) 2012; 22
Ogutu, Schulz-Streeck, Piepho (bib54) 2012; 6
Schrouff, Rosa, Rondina, Marquand, Chu, Ashburner (bib67) 2013; 11
Dwyer, Falkai, Koutsouleris (bib24) 2018; 14
Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix (bib77) 2002; 15
Duff, Trachtenberg, Mackay, Howard, Wilson, Smith, Woolrich (bib23) 2012; 60
Biswal, Mennes, Zuo, Gohel, Kelly, Smith (bib6) 2010; 107
Arbabshirani, Plis, Sui, Calhoun (bib3) 2017; 145
Yang, Pelphrey, Sukhodolsky, Crowley, Dayan, Dvornek (bib88) 2016; 6
Chandrashekar, Sahin (bib12) 2014; 40
Garraux, Phillips, Schrouff, Kreisler, Lemaire, Degueldre (bib30) 2013; 2
Whelan, Watts, Orr, Althoff, Artiges, Banaschewski (bib86) 2014; 512
Niehaus, Clark, Bourne, Mackay, Holmes, Smith (bib51) 2014
Chu, Hsu, Chou, Bandettini, Lin (bib14) 2012; 60
Poldrack (bib59) 2011; 72
Westfall, Yarkoni (bib84) 2016; 11
Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector, Montana (bib16) 2017; 163
Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bib18) 2011; 32
Hall, Robinson (bib33) 2009; 96
Palczewska, Palczewski, Robinson, Neagu (bib55) 2014
Woo, Chang, Lindquist, Wager (bib87) 2017; 20
Power, Barnes, Snyder, Schlaggar, Petersen (bib60) 2012; 59
Nnamoko, Arshad, England, Vora, Norman (bib52) 2014; 21
Schrouff, Monteiro, Portugal, Rosa, Phillips, Mourão-Miranda (bib68) 2018; 16
Lo, Chernoff, Zheng, Lo (bib44) 2015; 112
Munson, Caruana (bib47) 2009
Ramirez, Gorriz, Ortiz, Martinez-Murcia, Segovia, Salas-Gonzalez (bib64) 2018; 302
Price, Ramsden, Hope, Friston, Seghier (bib61) 2013; 5
Bzdok, Altman, Krzywinski (bib10) 2018; 15
Costafreda, Chu, Ashburner, Fu (bib17) 2009; 4
Pinel, Thirion, Meriaux, Jobert, Serres, Le Bihan (bib58) 2007; 8
Wang, Redmond, Bertoux, Hodges, Hornberger (bib81) 2016; 8
Formisano, De Martino, Valente (bib26) 2008; 26
Thompson, Andreassen, Arias-Vasquez, Bearden, Boedhoe, Brouwer (bib75) 2017; 145
Jack, Bernstein, Fox, Thompson, Alexander, Harvey (bib34) 2008; 27
Wei, Zhuang, Ai, Chen, Yang, Liu (bib83) 2018; 5
Gorgolewski, Esteban, Schaefer, Wandell, Poldrack (bib32) 2017
Ramírez, Górriz, Ortiz, Padilla, Martínez-Murcia (bib63) 2016
Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib9) 2013; 14
Di Martino, O'Connor, Chen, Alaerts, Anderson, Assaf (bib20) 2017; 4
Dosenbach, Nardos, Cohen, Fair, Power, Church (bib21) 2010; 329
Schumann, Loth, Banaschewski, Barbot, Barker, Büchel (bib69) 2010; 15
Gorgolewski, Varoquaux, Rivera, Schwarz, Ghosh, Maumet (bib31) 2015; 9
Jollans, Whelan (bib36) 2018; 9
Nooner, Colcombe, Tobe, Mennes, Benedict, Moreno (bib53) 2012; 6
Breiman (bib7) 1996; 24
Franke, Ziegler, Klöppel, Gaser (bib27) 2010; 50
Tohka, Moradi, Huttunen, Initiative, others (bib76) 2016; 14
Zhou, Wang, Xu, Ji, Phillips, Sun, Zhang (bib90) 2015; vol. 9043
Koutsouleris, Borgwardt, Meisenzahl, Bottlender, Moller, Riecher-Rossler (bib41) 2012; 38
Tangaro, Amoroso, Brescia, Cavuoti, Chincarini, Errico (bib74) 2015
Deary, Penke, Johnson (bib19) 2010; 11
Mwangi, Hasan, Soares (bib49) 2013; 75
Kennedy, Haselgrove, Riehl, Preuss, Buccigrossi (bib39) 2016; 124
Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz (bib78) 2012; 62
Clark, Beatty, Anderson, Kodituwakku, Phillips, Lane (bib15) 2014; 35
Zahari, Ramli, Mokhtar (bib89) 2014; 4
Shen, Tokoglu, Papademetris, Constable (bib71) 2013; 82
Ball, Stein, Ramsawh, Campbell-Sills, Paulus (bib4) 2014; 39
Rakotomamonjy, Bach, Canu, Grandvalet (bib94) 2010; 9
Fredo, Jahedi, Reiter, Müller (bib28) 2018; 12
Koutsouleris, Kahn, Chekroud, Leucht, Falkai, Wobrock (bib42) 2016; 3
Kambeitz, Kambeitz-Ilankovic, Leucht, Wood, Davatzikos, Malchow (bib37) 2015; 40
Adar, Okyay, Özkan, Şaylısoy, Adapınar, Adapınar (bib2) 2016
Chekroud, Zotti, Shehzad, Gueorguieva, Johnson, Trivedi (bib13) 2016; 3
Mwangi, Tian, Soares (bib50) 2014; 12
Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (bib73) 2010; 51
Abeel, Helleputte, Van de Peer, Dupont, Saeys (bib1) 2010; 26
Paulus (bib56) 2015; 72
Pine, Leibenluft (bib57) 2015; 72
Kohavi (bib40) 1995; vol. 14
Simmons, Nelson, Simonsohn (bib72) 2011; 22
Whelan (bib85) 2016; 1
Jie, Zhu, Ma, Osuch, Wammes, Théberge (bib35) 2015; 7
Saeys, Inza, Larranaga (bib65) 2007; 23
Ramírez, Górriz, Segovia, Chaves, Salas-Gonzalez, López (bib62) 2010; 472
Kambeitz, Cabral, Sacchet, Gotlib, Zahn, Serpa (bib38) 2016
Shawe-Taylor, Cristianini (bib93) 2004
Cawley, Talbot (bib11) 2010; 11
Dubois, Adolphs (bib22) 2016; 20
Koutsouleris, Kambeitz-Ilankovic, Ruhrmann, Rosen, Ruef, Dwyer (bib43) 2018; 75
Mwangi, Matthews, Steele (bib48) 2012; 35
Zhu, Du, Kerich, Lohoff, Momenan (bib91) 2018; 676
Zou, Hastie (bib92) 2005; 67
Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib79) 2017; 145
Monté-Rubio, Falcón, Pomarol-Clotet, Ashburner (bib46) 2018; 178
Efron, Tibshirani (bib25) 1997; 92
Shen, Fripp, Mériaudeau, Chételat, Salvado, Bourgeat (bib70) 2012; 59
Gabrieli, Ghosh, Whitfield-Gabrieli (bib29) 2015; 85
Wechsler (bib82) 2003
Loken, Gelman (bib45) 2017; 355
Schnack, Kahn (bib66) 2016; 7
Wang, Goh, Resnick, Davatzikos (bib80) 2013; 8
Bellec, Rosa-Neto, Lyttelton, Benali, Evans (bib5) 2010; 51
Mwangi (10.1016/j.neuroimage.2019.05.082_bib49) 2013; 75
Tangaro (10.1016/j.neuroimage.2019.05.082_bib74) 2015
Kohavi (10.1016/j.neuroimage.2019.05.082_bib40) 1995; vol. 14
Westfall (10.1016/j.neuroimage.2019.05.082_bib84) 2016; 11
Dubois (10.1016/j.neuroimage.2019.05.082_bib22) 2016; 20
Stonnington (10.1016/j.neuroimage.2019.05.082_bib73) 2010; 51
Duff (10.1016/j.neuroimage.2019.05.082_bib23) 2012; 60
Varoquaux (10.1016/j.neuroimage.2019.05.082_bib79) 2017; 145
Zhou (10.1016/j.neuroimage.2019.05.082_bib90) 2015; vol. 9043
Schrouff (10.1016/j.neuroimage.2019.05.082_bib68) 2018; 16
Di Martino (10.1016/j.neuroimage.2019.05.082_bib20) 2017; 4
Clark (10.1016/j.neuroimage.2019.05.082_bib15) 2014; 35
Cole (10.1016/j.neuroimage.2019.05.082_bib16) 2017; 163
Tohka (10.1016/j.neuroimage.2019.05.082_bib76) 2016; 14
Jack (10.1016/j.neuroimage.2019.05.082_bib34) 2008; 27
Whelan (10.1016/j.neuroimage.2019.05.082_bib85) 2016; 1
Wei (10.1016/j.neuroimage.2019.05.082_bib83) 2018; 5
Poldrack (10.1016/j.neuroimage.2019.05.082_bib59) 2011; 72
Munson (10.1016/j.neuroimage.2019.05.082_bib47) 2009
Shen (10.1016/j.neuroimage.2019.05.082_bib70) 2012; 59
Jie (10.1016/j.neuroimage.2019.05.082_bib35) 2015; 7
Davatzikos (10.1016/j.neuroimage.2019.05.082_bib18) 2011; 32
Ramirez (10.1016/j.neuroimage.2019.05.082_bib64) 2018; 302
Shawe-Taylor (10.1016/j.neuroimage.2019.05.082_bib93) 2004
Jollans (10.1016/j.neuroimage.2019.05.082_bib36) 2018; 9
Palczewska (10.1016/j.neuroimage.2019.05.082_bib55) 2014
Schumann (10.1016/j.neuroimage.2019.05.082_bib69) 2010; 15
Zhu (10.1016/j.neuroimage.2019.05.082_bib91) 2018; 676
Ball (10.1016/j.neuroimage.2019.05.082_bib4) 2014; 39
Nooner (10.1016/j.neuroimage.2019.05.082_bib53) 2012; 6
Ogutu (10.1016/j.neuroimage.2019.05.082_bib54) 2012; 6
Wang (10.1016/j.neuroimage.2019.05.082_bib80) 2013; 8
Zou (10.1016/j.neuroimage.2019.05.082_bib92) 2005; 67
Brown (10.1016/j.neuroimage.2019.05.082_bib8) 2012; 22
Ramírez (10.1016/j.neuroimage.2019.05.082_bib62) 2010; 472
Kennedy (10.1016/j.neuroimage.2019.05.082_bib39) 2016; 124
Button (10.1016/j.neuroimage.2019.05.082_bib9) 2013; 14
Price (10.1016/j.neuroimage.2019.05.082_bib61) 2013; 5
Adar (10.1016/j.neuroimage.2019.05.082_bib2)
Gabrieli (10.1016/j.neuroimage.2019.05.082_bib29) 2015; 85
Mwangi (10.1016/j.neuroimage.2019.05.082_bib50) 2014; 12
Simmons (10.1016/j.neuroimage.2019.05.082_bib72) 2011; 22
Bellec (10.1016/j.neuroimage.2019.05.082_bib5) 2010; 51
Saeys (10.1016/j.neuroimage.2019.05.082_bib65) 2007; 23
Gorgolewski (10.1016/j.neuroimage.2019.05.082_bib31) 2015; 9
Pinel (10.1016/j.neuroimage.2019.05.082_bib58) 2007; 8
Ramírez (10.1016/j.neuroimage.2019.05.082_bib63) 2016
Garraux (10.1016/j.neuroimage.2019.05.082_bib30) 2013; 2
Woo (10.1016/j.neuroimage.2019.05.082_bib87) 2017; 20
Koutsouleris (10.1016/j.neuroimage.2019.05.082_bib43) 2018; 75
Tzourio-Mazoyer (10.1016/j.neuroimage.2019.05.082_bib77) 2002; 15
Koutsouleris (10.1016/j.neuroimage.2019.05.082_bib42) 2016; 3
Formisano (10.1016/j.neuroimage.2019.05.082_bib26) 2008; 26
Schnack (10.1016/j.neuroimage.2019.05.082_bib66) 2016; 7
Thompson (10.1016/j.neuroimage.2019.05.082_bib75) 2017; 145
Chandrashekar (10.1016/j.neuroimage.2019.05.082_bib12) 2014; 40
Gorgolewski (10.1016/j.neuroimage.2019.05.082_bib32) 2017
Paulus (10.1016/j.neuroimage.2019.05.082_bib56) 2015; 72
Wang (10.1016/j.neuroimage.2019.05.082_bib81) 2016; 8
Chu (10.1016/j.neuroimage.2019.05.082_bib14) 2012; 60
Zahari (10.1016/j.neuroimage.2019.05.082_bib89) 2014; 4
Hall (10.1016/j.neuroimage.2019.05.082_bib33) 2009; 96
Abeel (10.1016/j.neuroimage.2019.05.082_bib1) 2010; 26
Schrouff (10.1016/j.neuroimage.2019.05.082_bib67) 2013; 11
Wechsler (10.1016/j.neuroimage.2019.05.082_bib82) 2003
Efron (10.1016/j.neuroimage.2019.05.082_bib25) 1997; 92
Arbabshirani (10.1016/j.neuroimage.2019.05.082_bib3) 2017; 145
Bzdok (10.1016/j.neuroimage.2019.05.082_bib10) 2018; 15
Kambeitz (10.1016/j.neuroimage.2019.05.082_bib37) 2015; 40
Monté-Rubio (10.1016/j.neuroimage.2019.05.082_bib46) 2018; 178
Dosenbach (10.1016/j.neuroimage.2019.05.082_bib21) 2010; 329
Loken (10.1016/j.neuroimage.2019.05.082_bib45) 2017; 355
Fredo (10.1016/j.neuroimage.2019.05.082_bib28) 2018; 12
Lo (10.1016/j.neuroimage.2019.05.082_bib44) 2015; 112
Deary (10.1016/j.neuroimage.2019.05.082_bib19) 2010; 11
Cawley (10.1016/j.neuroimage.2019.05.082_bib11) 2010; 11
Nnamoko (10.1016/j.neuroimage.2019.05.082_bib52) 2014; 21
Costafreda (10.1016/j.neuroimage.2019.05.082_bib17) 2009; 4
Power (10.1016/j.neuroimage.2019.05.082_bib60) 2012; 59
Biswal (10.1016/j.neuroimage.2019.05.082_bib6) 2010; 107
Breiman (10.1016/j.neuroimage.2019.05.082_bib7) 1996; 24
Dwyer (10.1016/j.neuroimage.2019.05.082_bib24) 2018; 14
Chekroud (10.1016/j.neuroimage.2019.05.082_bib13) 2016; 3
Shen (10.1016/j.neuroimage.2019.05.082_bib71) 2013; 82
Kambeitz (10.1016/j.neuroimage.2019.05.082_bib38) 2016
Yang (10.1016/j.neuroimage.2019.05.082_bib88) 2016; 6
Whelan (10.1016/j.neuroimage.2019.05.082_bib86) 2014; 512
Franke (10.1016/j.neuroimage.2019.05.082_bib27) 2010; 50
Niehaus (10.1016/j.neuroimage.2019.05.082_bib51) 2014
Rakotomamonjy (10.1016/j.neuroimage.2019.05.082_bib94) 2010; 9
Mwangi (10.1016/j.neuroimage.2019.05.082_bib48) 2012; 35
Van Essen (10.1016/j.neuroimage.2019.05.082_bib78) 2012; 62
Koutsouleris (10.1016/j.neuroimage.2019.05.082_bib41) 2012; 38
Pine (10.1016/j.neuroimage.2019.05.082_bib57) 2015; 72
31376925 - Trends Neurosci. 2019 Oct;42(10):659-661. doi: 10.1016/j.tins.2019.07.007.
References_xml – volume: 4
  start-page: e6353
  year: 2009
  ident: bib17
  article-title: Prognostic and diagnostic potential of the structural neuroanatomy of depression
  publication-title: PLoS One
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: bib92
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 38
  start-page: 1234
  year: 2012
  end-page: 1246
  ident: bib41
  article-title: Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study
  publication-title: Schizophr. Bull.
– year: 2003
  ident: bib82
  article-title: WISC-IV Technical and Interpretive Manual
– volume: 107
  start-page: 4734
  year: 2010
  end-page: 4739
  ident: bib6
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 14
  start-page: 279
  year: 2016
  end-page: 296
  ident: bib76
  article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia
  publication-title: Neuroinformatics
– volume: 16
  start-page: 117
  year: 2018
  end-page: 143
  ident: bib68
  article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models
  publication-title: Neuroinformatics
– volume: 7
  start-page: 50
  year: 2016
  ident: bib66
  article-title: Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters
  publication-title: Front. Psychiatry
– volume: 9
  year: 2015
  ident: bib31
  article-title: NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain
  publication-title: Front. Neuroinf.
– volume: 22
  start-page: 1359
  year: 2011
  end-page: 1366
  ident: bib72
  article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant
  publication-title: Psychol. Sci.
– volume: 145
  start-page: 166
  year: 2017
  end-page: 179
  ident: bib79
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: Neuroimage
– volume: 60
  start-page: 59
  year: 2012
  end-page: 70
  ident: bib14
  article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: Neuroimage
– volume: 472
  start-page: 99
  year: 2010
  end-page: 103
  ident: bib62
  article-title: Computer aided diagnosis system for the Alzheimer's disease based on partial least squares and random forest SPECT image classification
  publication-title: Neurosci. Lett.
– volume: 72
  start-page: 631
  year: 2015
  end-page: 632
  ident: bib56
  article-title: Pragmatism instead of mechanism: a call for impactful biological psychiatry
  publication-title: JAMA Psychiatr.
– volume: 6
  start-page: e948
  year: 2016
  ident: bib88
  article-title: Brain responses to biological motion predict treatment outcome in young children with autism
  publication-title: Transl. Psychiatry
– volume: 39
  start-page: 1254
  year: 2014
  end-page: 1261
  ident: bib4
  article-title: Single-subject anxiety treatment outcome prediction using functional neuroimaging
  publication-title: Neuropsychopharmacology
– volume: 75
  start-page: 1156
  year: 2018
  end-page: 1172
  ident: bib43
  article-title: Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: a multimodal, multisite machine learning analysis
  publication-title: JAMA Psychiatr.
– volume: 124
  start-page: 1069
  year: 2016
  end-page: 1073
  ident: bib39
  article-title: The NITRC image repository
  publication-title: Neuroimage
– volume: 32
  year: 2011
  ident: bib18
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
– volume: 51
  start-page: 1405
  year: 2010
  end-page: 1413
  ident: bib73
  article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
  publication-title: Neuroimage
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: bib65
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 2107
  ident: bib11
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– volume: 145
  start-page: 389
  year: 2017
  end-page: 408
  ident: bib75
  article-title: ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide
  publication-title: Neuroimage
– volume: 35
  start-page: 414
  year: 2014
  end-page: 428
  ident: bib15
  article-title: Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence: prediction of Relapse Using fMRI
  publication-title: Hum. Brain Mapp.
– volume: 96
  start-page: 175
  year: 2009
  end-page: 186
  ident: bib33
  article-title: Reducing variability of crossvalidation for smoothing-parameter choice
  publication-title: Biometrika
– volume: 35
  start-page: 64
  year: 2012
  end-page: 71
  ident: bib48
  article-title: Prediction of illness severity in patients with major depression using structural MR brain scans
  publication-title: J. Magn. Reson. Imaging
– volume: 26
  start-page: 921
  year: 2008
  end-page: 934
  ident: bib26
  article-title: Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning
  publication-title: Magn. Reson. Imag.
– volume: 8
  year: 2013
  ident: bib80
  article-title: Imaging-based biomarkers of cognitive performance in older adults constructed via high-dimensional pattern regression applied to MRI and PET
  publication-title: PLoS One
– year: 2016
  ident: bib2
  article-title: Feature selection on MR images using genetic algorithm with SVM and naive Bayes classifiers
– volume: 51
  start-page: 1126
  year: 2010
  end-page: 1139
  ident: bib5
  article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI
  publication-title: Neuroimage
– volume: 676
  start-page: 27
  year: 2018
  end-page: 33
  ident: bib91
  article-title: Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI
  publication-title: Neurosci. Lett.
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: bib12
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– volume: 9
  year: 2018
  ident: bib36
  article-title: Neuromarkers for mental disorders: harnessing population neuroscience
  publication-title: Front. Psychiatry
– start-page: 1
  year: 2014
  end-page: 4
  ident: bib51
  article-title: MVPA to enhance the study of rare cognitive events: an investigation of experimental PTSD
  publication-title: Pattern Recognition in Neuroimaging, 2014 International Workshop on
– volume: 302
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib64
  article-title: Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares
  publication-title: J. Neurosci. Methods
– start-page: 193
  year: 2014
  end-page: 218
  ident: bib55
  article-title: Interpreting random forest classification models using a feature contribution method
  publication-title: Integration of Reusable Systems
– volume: 20
  start-page: 425
  year: 2016
  end-page: 443
  ident: bib22
  article-title: Building a science of individual differences from fMRI
  publication-title: Trends Cognit. Sci.
– volume: 15
  start-page: 273
  year: 2002
  end-page: 289
  ident: bib77
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
– volume: 62
  start-page: 2222
  year: 2012
  end-page: 2231
  ident: bib78
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
– volume: 4
  start-page: 150
  year: 2014
  end-page: 156
  ident: bib89
  article-title: Bootstrapped parameter estimation in ridge regression with multicollinearity and multiple outliers
  publication-title: J. Appl. Environ. Biol. Sci.
– volume: 5
  start-page: 172
  year: 2013
  end-page: 184
  ident: bib61
  article-title: Predicting IQ change from brain structure: a cross-validation study
  publication-title: Dev. Cogn. Neurosci.
– volume: 12
  start-page: 6
  year: 2018
  end-page: 41
  ident: bib28
  article-title: Diagnostic classification of autism using resting-state fMRI data and conditional random forest
  publication-title: Age
– volume: 6
  year: 2012
  ident: bib53
  article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry
  publication-title: Front. Neurosci.
– volume: 59
  start-page: 2142
  year: 2012
  end-page: 2154
  ident: bib60
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
– volume: 355
  start-page: 584
  year: 2017
  end-page: 585
  ident: bib45
  article-title: Measurement error and the replication crisis
  publication-title: Science
– start-page: 144
  year: 2009
  end-page: 159
  ident: bib47
  article-title: On feature selection, bias-variance, and bagging
  publication-title: Machine Learning and Knowledge Discovery in Databases
– volume: 112
  start-page: 13892
  year: 2015
  end-page: 13897
  ident: bib44
  article-title: Why significant variables aren't automatically good predictors
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
– volume: 8
  start-page: 91
  year: 2007
  ident: bib58
  article-title: Fast reproducible identification and large-scale databasing of individual functional cognitive networks
  publication-title: BMC Neurosci.
– volume: 5
  year: 2018
  ident: bib83
  article-title: Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset
  publication-title: Sci. Data
– volume: 8
  year: 2016
  ident: bib81
  article-title: A comparison of magnetic resonance imaging and neuropsychological examination in the diagnostic distinction of Alzheimer's disease and behavioral variant frontotemporal dementia
  publication-title: Front. Aging Neurosci.
– volume: 145
  start-page: 137
  year: 2017
  end-page: 165
  ident: bib3
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
– volume: 11
  start-page: 201
  year: 2010
  end-page: 211
  ident: bib19
  article-title: The neuroscience of human intelligence differences
  publication-title: Nat. Rev. Neurosci.
– year: 2004
  ident: bib93
  article-title: Kernel Methods for Pattern Analysis
– volume: 72
  start-page: 692
  year: 2011
  end-page: 697
  ident: bib59
  article-title: Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding
  publication-title: Neuron
– volume: 329
  start-page: 1358
  year: 2010
  end-page: 1361
  ident: bib21
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
– volume: 72
  start-page: 633
  year: 2015
  end-page: 634
  ident: bib57
  article-title: Biomarkers with a mechanistic focus
  publication-title: JAMA Psychiatr.
– volume: 21
  year: 2014
  ident: bib52
  article-title: Evaluation of filter and wrapper methods for feature selection in supervised machine learning
  publication-title: Age
– volume: 2
  start-page: 883
  year: 2013
  end-page: 893
  ident: bib30
  article-title: Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes
  publication-title: Neuroimage: Clinic
– volume: 59
  start-page: 2155
  year: 2012
  end-page: 2166
  ident: bib70
  article-title: Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models
  publication-title: Neuroimage
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib7
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 178
  start-page: 753
  year: 2018
  end-page: 768
  ident: bib46
  article-title: A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods
  publication-title: Neuroimage
– volume: 11
  year: 2016
  ident: bib84
  article-title: Statistically controlling for confounding constructs is harder than you think
  publication-title: PLoS One
– volume: 512
  start-page: 185
  year: 2014
  end-page: 189
  ident: bib86
  article-title: Neuropsychosocial profiles of current and future adolescent alcohol misusers
  publication-title: Nature
– volume: 4
  start-page: 170010
  year: 2017
  ident: bib20
  article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Sci. Data
– volume: 40
  start-page: 1742
  year: 2015
  end-page: 1751
  ident: bib37
  article-title: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies
  publication-title: Neuropsychopharmacology
– start-page: 395
  year: 2016
  end-page: 404
  ident: bib63
  article-title: Ensemble tree learning techniques for magnetic resonance image analysis
  publication-title: Innovation in Medicine and Healthcare 2015
– volume: 14
  start-page: 365
  year: 2013
  end-page: 376
  ident: bib9
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
– volume: 60
  start-page: 189
  year: 2012
  end-page: 203
  ident: bib23
  article-title: Task-driven ICA feature generation for accurate and interpretable prediction using fMRI
  publication-title: Neuroimage
– volume: 9
  start-page: 2491
  year: 2010
  end-page: 2521
  ident: bib94
  article-title: SimpleMKL
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 319
  year: 2013
  end-page: 337
  ident: bib67
  article-title: PRoNTo: pattern recognition for neuroimaging toolbox
  publication-title: Neuroinformatics
– volume: 1
  start-page: 423
  year: 2016
  end-page: 432
  ident: bib85
  article-title: The clinical added value of imaging: a perspective from outcome prediction
  publication-title: Biol. Psychiatry: Cogn. Neurosci. Neuroimaging
– volume: 50
  start-page: 883
  year: 2010
  end-page: 892
  ident: bib27
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
– volume: 85
  start-page: 11
  year: 2015
  end-page: 26
  ident: bib29
  article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience
  publication-title: Neuron
– start-page: 1677
  year: 2017
  ident: bib32
  article-title: OpenNeuro—a Free Online Platform for Sharing and Analysis of Neuroimaging Data
– volume: 15
  start-page: 1128
  year: 2010
  end-page: 1139
  ident: bib69
  article-title: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology
  publication-title: Mol. Psychiatry
– volume: 3
  start-page: 935
  year: 2016
  end-page: 946
  ident: bib42
  article-title: Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach
  publication-title: Lancet Lancet
– volume: 3
  start-page: 243
  year: 2016
  end-page: 250
  ident: bib13
  article-title: Cross-trial prediction of treatment outcome in depression: a machine learning approach
  publication-title: Lancet Lancet
– volume: 163
  start-page: 115
  year: 2017
  end-page: 124
  ident: bib16
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
– volume: 27
  start-page: 685
  year: 2008
  end-page: 691
  ident: bib34
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
– volume: vol. 14
  start-page: 1137
  year: 1995
  end-page: 1145
  ident: bib40
  publication-title: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
– volume: 75
  start-page: 58
  year: 2013
  end-page: 67
  ident: bib49
  article-title: Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: a machine learning approach
  publication-title: Neuroimage
– volume: 20
  start-page: 365
  year: 2017
  end-page: 377
  ident: bib87
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
– volume: vol. 9043
  start-page: 201
  year: 2015
  end-page: 209
  ident: bib90
  article-title: Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier
  publication-title: Bioinformatics and Biomedical Engineering
– volume: 22
  start-page: 1693
  year: 2012
  end-page: 1698
  ident: bib8
  article-title: Neuroanatomical assessment of biological maturity
  publication-title: Curr. Biol.
– volume: 15
  start-page: 233
  year: 2018
  ident: bib10
  article-title: Statistics versus machine learning
  publication-title: Nat. Methods
– volume: 92
  start-page: 548
  year: 1997
  ident: bib25
  article-title: Improvements on cross-validation: the .632+ bootstrap method
  publication-title: J. Am. Stat. Assoc.
– volume: 6
  start-page: S10
  year: 2012
  ident: bib54
  article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
  publication-title: BMC Proc.
– year: 2015
  ident: bib74
  article-title: Feature selection based on machine learning in MRIs for hippocampal segmentation
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 26
  start-page: 392
  year: 2010
  end-page: 398
  ident: bib1
  article-title: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
  publication-title: Bioinformatics
– volume: 7
  start-page: 320
  year: 2015
  end-page: 331
  ident: bib35
  article-title: Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data
  publication-title: IEEE Trans. Autonom. Ment. Dev.
– year: 2016
  ident: bib38
  article-title: Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies
  publication-title: Biol. Psychiatry
– volume: 82
  start-page: 403
  year: 2013
  end-page: 415
  ident: bib71
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
– volume: 12
  start-page: 229
  year: 2014
  end-page: 244
  ident: bib50
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
– volume: 14
  start-page: 91
  year: 2018
  end-page: 118
  ident: bib24
  article-title: Machine learning approaches for clinical psychology and psychiatry
  publication-title: Annu. Rev. Clin. Psychol.
– volume: 32
  issue: 12
  year: 2011
  ident: 10.1016/j.neuroimage.2019.05.082_bib18
  article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2010.05.023
– volume: 72
  start-page: 692
  issue: 5
  year: 2011
  ident: 10.1016/j.neuroimage.2019.05.082_bib59
  article-title: Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.11.001
– volume: 145
  start-page: 137
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.082_bib3
  article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.079
– volume: 6
  start-page: e948
  issue: 11
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib88
  article-title: Brain responses to biological motion predict treatment outcome in young children with autism
  publication-title: Transl. Psychiatry
  doi: 10.1038/tp.2016.213
– volume: 124
  start-page: 1069
  issue: 0 0
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib39
  article-title: The NITRC image repository
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.05.074
– volume: 163
  start-page: 115
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.082_bib16
  article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.07.059
– volume: 4
  start-page: 170010
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.082_bib20
  article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.10
– volume: 72
  start-page: 631
  issue: 7
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib56
  article-title: Pragmatism instead of mechanism: a call for impactful biological psychiatry
  publication-title: JAMA Psychiatr.
  doi: 10.1001/jamapsychiatry.2015.0497
– volume: 5
  start-page: 172
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.082_bib61
  article-title: Predicting IQ change from brain structure: a cross-validation study
  publication-title: Dev. Cogn. Neurosci.
  doi: 10.1016/j.dcn.2013.03.001
– volume: 302
  start-page: 47
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib64
  article-title: Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.12.005
– volume: 85
  start-page: 11
  issue: 1
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib29
  article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.047
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.neuroimage.2019.05.082_bib7
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
– year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib74
  article-title: Feature selection based on machine learning in MRIs for hippocampal segmentation
– volume: 67
  start-page: 301
  issue: 2
  year: 2005
  ident: 10.1016/j.neuroimage.2019.05.082_bib92
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 15
  start-page: 273
  issue: 1
  year: 2002
  ident: 10.1016/j.neuroimage.2019.05.082_bib77
  article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
  publication-title: Neuroimage
  doi: 10.1006/nimg.2001.0978
– volume: 50
  start-page: 883
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib27
  article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.01.005
– volume: 51
  start-page: 1405
  issue: 4
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib73
  article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.051
– volume: 21
  issue: 81
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib52
  article-title: Evaluation of filter and wrapper methods for feature selection in supervised machine learning
  publication-title: Age
– volume: 20
  start-page: 425
  issue: 6
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib22
  article-title: Building a science of individual differences from fMRI
  publication-title: Trends Cognit. Sci.
  doi: 10.1016/j.tics.2016.03.014
– volume: 472
  start-page: 99
  issue: 2
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib62
  article-title: Computer aided diagnosis system for the Alzheimer's disease based on partial least squares and random forest SPECT image classification
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2010.01.056
– volume: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib53
  article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00152
– volume: 72
  start-page: 633
  issue: 7
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib57
  article-title: Biomarkers with a mechanistic focus
  publication-title: JAMA Psychiatr.
  doi: 10.1001/jamapsychiatry.2015.0498
– volume: 82
  start-page: 403
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.082_bib71
  article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.05.081
– volume: 39
  start-page: 1254
  issue: 5
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib4
  article-title: Single-subject anxiety treatment outcome prediction using functional neuroimaging
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2013.328
– volume: 15
  start-page: 1128
  issue: 12
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib69
  article-title: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2010.4
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib12
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 38
  start-page: 1234
  issue: 6
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib41
  article-title: Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbr145
– volume: 59
  start-page: 2142
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib60
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 4
  start-page: 150
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib89
  article-title: Bootstrapped parameter estimation in ridge regression with multicollinearity and multiple outliers
  publication-title: J. Appl. Environ. Biol. Sci.
– volume: 8
  start-page: 91
  issue: 1
  year: 2007
  ident: 10.1016/j.neuroimage.2019.05.082_bib58
  article-title: Fast reproducible identification and large-scale databasing of individual functional cognitive networks
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-8-91
– volume: 1
  start-page: 423
  issue: 5
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib85
  article-title: The clinical added value of imaging: a perspective from outcome prediction
  publication-title: Biol. Psychiatry: Cogn. Neurosci. Neuroimaging
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.neuroimage.2019.05.082_bib65
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 92
  start-page: 548
  issue: 438
  year: 1997
  ident: 10.1016/j.neuroimage.2019.05.082_bib25
  article-title: Improvements on cross-validation: the .632+ bootstrap method
  publication-title: J. Am. Stat. Assoc.
– volume: 59
  start-page: 2155
  issue: 3
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib70
  article-title: Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.014
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  ident: 10.1016/j.neuroimage.2019.05.082_bib34
  article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.21049
– volume: 12
  start-page: 6
  issue: 2.76
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib28
  article-title: Diagnostic classification of autism using resting-state fMRI data and conditional random forest
  publication-title: Age
– volume: 11
  start-page: 201
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib19
  article-title: The neuroscience of human intelligence differences
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2793
– volume: 4
  start-page: e6353
  issue: 7
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.082_bib17
  article-title: Prognostic and diagnostic potential of the structural neuroanatomy of depression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006353
– volume: 11
  start-page: 2079
  issue: Jul
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib11
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: J. Mach. Learn. Res.
– year: 2004
  ident: 10.1016/j.neuroimage.2019.05.082_bib93
– volume: 8
  issue: 12
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.082_bib80
  article-title: Imaging-based biomarkers of cognitive performance in older adults constructed via high-dimensional pattern regression applied to MRI and PET
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085460
– start-page: 144
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.082_bib47
  article-title: On feature selection, bias-variance, and bagging
– volume: 3
  start-page: 935
  issue: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib42
  article-title: Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach
  publication-title: Lancet Lancet
– volume: 35
  start-page: 64
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib48
  article-title: Prediction of illness severity in patients with major depression using structural MR brain scans
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22806
– volume: 145
  start-page: 389
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.082_bib75
  article-title: ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.11.057
– volume: 355
  start-page: 584
  issue: 6325
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.082_bib45
  article-title: Measurement error and the replication crisis
  publication-title: Science
  doi: 10.1126/science.aal3618
– volume: 20
  start-page: 365
  issue: 3
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.082_bib87
  article-title: Building better biomarkers: brain models in translational neuroimaging
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4478
– volume: 75
  start-page: 1156
  issue: 11
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib43
  article-title: Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: a multimodal, multisite machine learning analysis
  publication-title: JAMA Psychiatr.
  doi: 10.1001/jamapsychiatry.2018.2165
– volume: 16
  start-page: 117
  issue: 1
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib68
  article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-017-9347-8
– volume: 2
  start-page: 883
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.082_bib30
  article-title: Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes
  publication-title: Neuroimage: Clinic
  doi: 10.1016/j.nicl.2013.06.004
– volume: 9
  start-page: 2491
  issue: Nov
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib94
  article-title: SimpleMKL
  publication-title: J. Mach. Learn. Res.
– volume: 145
  start-page: 166
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.082_bib79
  article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.10.038
– volume: 96
  start-page: 175
  issue: 1
  year: 2009
  ident: 10.1016/j.neuroimage.2019.05.082_bib33
  article-title: Reducing variability of crossvalidation for smoothing-parameter choice
  publication-title: Biometrika
  doi: 10.1093/biomet/asn068
– volume: vol. 14
  start-page: 1137
  year: 1995
  ident: 10.1016/j.neuroimage.2019.05.082_bib40
– volume: 14
  start-page: 279
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib76
  article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-015-9292-3
– volume: 60
  start-page: 189
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib23
  article-title: Task-driven ICA feature generation for accurate and interpretable prediction using fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.053
– volume: 8
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib81
  article-title: A comparison of magnetic resonance imaging and neuropsychological examination in the diagnostic distinction of Alzheimer's disease and behavioral variant frontotemporal dementia
  publication-title: Front. Aging Neurosci.
  doi: 10.3389/fnagi.2016.00119
– volume: 178
  start-page: 753
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib46
  article-title: A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.065
– volume: 22
  start-page: 1359
  issue: 11
  year: 2011
  ident: 10.1016/j.neuroimage.2019.05.082_bib72
  article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant
  publication-title: Psychol. Sci.
  doi: 10.1177/0956797611417632
– volume: 15
  start-page: 233
  issue: 4
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib10
  article-title: Statistics versus machine learning
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4642
– volume: 512
  start-page: 185
  issue: 7513
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib86
  article-title: Neuropsychosocial profiles of current and future adolescent alcohol misusers
  publication-title: Nature
  doi: 10.1038/nature13402
– ident: 10.1016/j.neuroimage.2019.05.082_bib2
– volume: 11
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib84
  article-title: Statistically controlling for confounding constructs is harder than you think
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152719
– volume: 26
  start-page: 392
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib1
  article-title: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp630
– volume: 676
  start-page: 27
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib91
  article-title: Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2018.04.007
– year: 2003
  ident: 10.1016/j.neuroimage.2019.05.082_bib82
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib78
  article-title: The Human Connectome Project: a data acquisition perspective
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.018
– start-page: 193
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib55
  article-title: Interpreting random forest classification models using a feature contribution method
– volume: 7
  start-page: 50
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib66
  article-title: Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2016.00050
– volume: 7
  start-page: 320
  issue: 4
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib35
  article-title: Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data
  publication-title: IEEE Trans. Autonom. Ment. Dev.
  doi: 10.1109/TAMD.2015.2440298
– volume: 3
  start-page: 243
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib13
  article-title: Cross-trial prediction of treatment outcome in depression: a machine learning approach
  publication-title: Lancet Lancet
– volume: 107
  start-page: 4734
  issue: 10
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib6
  article-title: Toward discovery science of human brain function
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.0911855107
– volume: 6
  start-page: S10
  issue: 2
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib54
  article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions
  publication-title: BMC Proc.
  doi: 10.1186/1753-6561-6-S2-S10
– start-page: 1677
  year: 2017
  ident: 10.1016/j.neuroimage.2019.05.082_bib32
– volume: vol. 9043
  start-page: 201
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib90
  article-title: Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier
– volume: 22
  start-page: 1693
  issue: 18
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib8
  article-title: Neuroanatomical assessment of biological maturity
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2012.07.002
– volume: 112
  start-page: 13892
  issue: 45
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib44
  article-title: Why significant variables aren't automatically good predictors
  publication-title: Proc. Natl. Acad. Sci. Unit. States Am.
  doi: 10.1073/pnas.1518285112
– volume: 35
  start-page: 414
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib15
  article-title: Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence: prediction of Relapse Using fMRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22184
– volume: 51
  start-page: 1126
  issue: 3
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib5
  article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.02.082
– volume: 75
  start-page: 58
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.082_bib49
  article-title: Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: a machine learning approach
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.02.055
– start-page: 1
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib51
  article-title: MVPA to enhance the study of rare cognitive events: an investigation of experimental PTSD
– volume: 14
  start-page: 91
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib24
  article-title: Machine learning approaches for clinical psychology and psychiatry
  publication-title: Annu. Rev. Clin. Psychol.
  doi: 10.1146/annurev-clinpsy-032816-045037
– volume: 9
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib31
  article-title: NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2015.00008
– volume: 11
  start-page: 319
  issue: 3
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.082_bib67
  article-title: PRoNTo: pattern recognition for neuroimaging toolbox
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9178-1
– year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib38
  article-title: Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies
  publication-title: Biol. Psychiatry
– volume: 14
  start-page: 365
  issue: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2019.05.082_bib9
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3475
– volume: 26
  start-page: 921
  issue: 7
  year: 2008
  ident: 10.1016/j.neuroimage.2019.05.082_bib26
  article-title: Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning
  publication-title: Magn. Reson. Imag.
  doi: 10.1016/j.mri.2008.01.052
– volume: 60
  start-page: 59
  issue: 1
  year: 2012
  ident: 10.1016/j.neuroimage.2019.05.082_bib14
  article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.066
– volume: 329
  start-page: 1358
  issue: 5997
  year: 2010
  ident: 10.1016/j.neuroimage.2019.05.082_bib21
  article-title: Prediction of individual brain maturity using fMRI
  publication-title: Science
  doi: 10.1126/science.1194144
– volume: 40
  start-page: 1742
  issue: 7
  year: 2015
  ident: 10.1016/j.neuroimage.2019.05.082_bib37
  article-title: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies
  publication-title: Neuropsychopharmacology
  doi: 10.1038/npp.2015.22
– volume: 12
  start-page: 229
  issue: 2
  year: 2014
  ident: 10.1016/j.neuroimage.2019.05.082_bib50
  article-title: A review of feature reduction techniques in neuroimaging
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9204-3
– start-page: 395
  year: 2016
  ident: 10.1016/j.neuroimage.2019.05.082_bib63
  article-title: Ensemble tree learning techniques for magnetic resonance image analysis
– volume: 5
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib83
  article-title: Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset
  publication-title: Sci. Data
  doi: 10.1038/sdata.2018.134
– volume: 9
  year: 2018
  ident: 10.1016/j.neuroimage.2019.05.082_bib36
  article-title: Neuromarkers for mental disorders: harnessing population neuroscience
  publication-title: Front. Psychiatry
  doi: 10.3389/fpsyt.2018.00242
– reference: 31376925 - Trends Neurosci. 2019 Oct;42(10):659-661. doi: 10.1016/j.tins.2019.07.007.
SSID ssj0009148
Score 2.6070542
Snippet Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 351
SubjectTerms Algorithms
Alzheimer's disease
Artificial intelligence
Brain - diagnostic imaging
Brain research
Consortia
Councils
Datasets
Grants
Humans
Learning algorithms
Machine Learning
Magnetic resonance imaging
Medical imaging
Medical research
Models, Theoretical
Neuroimaging
Neuroimaging - methods
Neuroimaging - standards
Neurosciences
Regression algorithms
Reproducibility
Reproducibility of Results
Title Quantifying performance of machine learning methods for neuroimaging data
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919304781
https://dx.doi.org/10.1016/j.neuroimage.2019.05.082
https://www.ncbi.nlm.nih.gov/pubmed/31173905
https://www.proquest.com/docview/2268548177
https://www.proquest.com/docview/2242159295
https://pubmed.ncbi.nlm.nih.gov/PMC6688909
Volume 199
WOSCitedRecordID wos000478780200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20191231
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M7P
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: BENPR
  dateStart: 19980501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: 7X7
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Psychology Database
  customDbUrl:
  eissn: 1095-9572
  dateEnd: 20251011
  omitProxy: false
  ssIdentifier: ssj0009148
  issn: 1053-8119
  databaseCode: M2M
  dateStart: 20020801
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/psychology
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RFqFeWt4ESmQkrivWu14_xAFB1QoOicLjkJvlVyCIbtIm4fd3vOvdUBAoEpeVVuOR1jtjz9j-_A3ASxcZYmbOZJR7lzEeaKZ4mGWi8tyWFXe5dU2xCTEey-lUTdKG2yrBKrs5sZmo_cLFPfJXmCZIzK6pEG-Wl1msGhVPV1MJjT04iCwJRQPdm2xJdylrr8JVZSYpVQnJ0-K7Gr7I-QWO2gjwUg1_pyz-Fp7-TD9_R1H-EpbOj_-3Q3fhKCWk5G3rQffgVqjvw51ROnJ_AB8-bkwEFMXrUGS5vWZAFjNy0SAxA0mlJ76Sth71imAj0vc8CiIQ9SF8Pj_7cvo-S_UXMldxts6cYIpW3siQW8kdfmnpMZjZwghnQyhNxQKu5owwltqZNTR4y3OvmKMe88ZHsF8v6vAEiCkLYz1lllnDnMIVZVDC5s7iWs95Rwcgup-uXaImjxUyfugOg_Zdb82lo7l0Xmk01wBor7ls6Tl20FGdXXV3_RQnTI0xZAfd171uSlHa1GNH7ZPOFXSaKlZ66wcDeNGLcZDHkxtTh8UmtmHo3pjJVgN43Hpd392SUlGqHCXihj_2DSKB-E1JPf_WEIlzLiVa4-m_P-sZHMY-tAjGE9hfX23Cc7jtfq7nq6sh7ImpaJ5yCAfvzsaTT_g2KkbDZixeA1UsPfw
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB5VBQEX3qWBAkaC44r1rtdeCyGEgKpRmwhEDz1h-RUIoknaJCD-Ez-SmX2FgkC59MDZntV6_Xk8Xn_zDcBjTwoxI28TLoNPhIw80TKOElUE6fJC-tT5qtiEGg7LoyP9dgN-tLkwRKtsfWLlqMPU0z_ypxgmlBhdc6VezE4SqhpFt6ttCY0aFvvx-zc8ss2f91_j_D7Jst03h6_2kqaqQOILKRaJV0LzItgypq6UHh-YB3TRLrPKuxhzW4iIZxSrrONu5CyPwck0aOF50CRzgA7_gqCEUSIKZoOVxC8XdeJdkScl57rhDdVsskqdcnyMPoLoZLpSCy2zv22Gfwa7v3M2f9kEd6_9X5_vOlxtgm32sl4dN2AjTm7CpUFDJ7gF_XdLS2QpSvVis1UKBZuO2HHFMo2sKavxkdW1tucMO7HuO1MDkWxvw_tzGMYWbE6mk7gNzOaZdYELJ5wVXuNpOWrlUu_wHOuD5z1Q7RQb38iuU_WPL6bl1302K3AYAodJC4Pg6AHvLGe19MgaNrpFkWlTa3EzMLg_rmH7rLNtwq86rFrTeqcFnmnc4NysUNeDR10zOjC6lbKTOF1SH4FhJ0bpRQ_u1BjvhptzrnKdYos6g_6uA4mjn22ZjD9VIulSliXOxt1_v9ZDuLx3ODgwB_3h_j24QuOpmZo7sLk4Xcb7cNF_XYznpw-qtc7gw_mujZ9IfZcN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKaq4UJ4ltMAiwdHCa6_XXlUIAW1EVIjC49ATq30ZgqgTmqSIf8bPY9ZeOxQEyqUHzrtjZb0zs9_G33wD8NB4hZjSqIhyayLGHY0Ed2WUZ5brNOMm1qZuNpGPRsXxsRhvwI-2FsbTKtucWCdqOzX-P_LHCBMKRNdeLKkMtIjxweDp7GvkO0j5L61tO43GRY7c9294fZs_GR7gXj9KksHh-xcvo9BhIDIZZ4vI5EzQzKrCxbrgBh-eWkzXOlG50c6lKmMO7ysqV5rqUivqrOaxFcxQK7zkASb_zRwhBuvB5vPD0fjtSvCXsqYML0ujglIRWEQNt6zWqpycYMbw5DJRa4cWyd-Oxj-h7-8Mzl-OxMH2__syr8KVAMPJsyZursGGq67D1utANLgBwzdL5WlUvgiMzFbFFWRakpOaf-pIaLjxkTRduOcEJ5HunfsBT7-9Ce8uYBm3oFdNK3cbiEoTpS1lmmnFjMB7tBO5jo3GG66xhvYhb7dbmiDI7vuCfJEt8-6zXDmK9I4i40yio_SBdpazRpRkDRvRepRsi27xmJB4cq5hu9_ZBmDWAK41rfdaJ5QhQc7lygP78KAbxtTmv1epyk2Xfg5DQIr4PevDTuPv3XJTSjHuYhzJz0VCN8HLpp8fqSafavl0zosCd-POv3_WfdjCkJCvhqOjXbjsl9NQOPegtzhdurtwyZwtJvPTeyHwCXy42OD4CVkmoSc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+performance+of+machine+learning+methods+for+neuroimaging+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jollans%2C+Lee&rft.au=Boyle%2C+Rory&rft.au=Artiges%2C+Eric&rft.au=Banaschewski%2C+Tobias&rft.date=2019-10-01&rft.pub=Elsevier+Inc&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=199&rft.spage=351&rft.epage=365&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.05.082&rft.externalDocID=S1053811919304781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon