Quantifying performance of machine learning methods for neuroimaging data
Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the...
Gespeichert in:
| Veröffentlicht in: | NeuroImage (Orlando, Fla.) Jg. 199; S. 351 - 365 |
|---|---|
| Hauptverfasser: | , , , , , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
Elsevier Inc
01.10.2019
Elsevier Limited |
| Schlagworte: | |
| ISSN: | 1053-8119, 1095-9572, 1095-9572 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques – embedded feature selection and bootstrap aggregation (bagging) – to model performance was also quantified. Five machine learning regression methods – Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size.
•The choice of machine learning algorithm influenced prediction accuracy.•Sample size was important: prediction accuracy generally increased once N ≥ 400.•The Elastic Net performed well at a range of effect sizes, relative to other methods.•Random Forest performed well at small effect sizes.•Gaussian Process Regression performed well at large effect sizes. |
|---|---|
| AbstractList | Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques – embedded feature selection and bootstrap aggregation (bagging) – to model performance was also quantified. Five machine learning regression methods – Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size. Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques - embedded feature selection and bootstrap aggregation (bagging) - to model performance was also quantified. Five machine learning regression methods - Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size.Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques - embedded feature selection and bootstrap aggregation (bagging) - to model performance was also quantified. Five machine learning regression methods - Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size. Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate neuroimaging data, which typically has many more data points than subjects, in addition to multicollinearity and low signal-to-noise. Consequently, the relative efficacy of different machine learning regression algorithms for different types of neuroimaging data are not known. Here, we sought to quantify the performance of a variety of machine learning algorithms for use with neuroimaging data with various sample sizes, feature set sizes, and predictor effect sizes. The contribution of additional machine learning techniques – embedded feature selection and bootstrap aggregation (bagging) – to model performance was also quantified. Five machine learning regression methods – Gaussian Process Regression, Multiple Kernel Learning, Kernel Ridge Regression, the Elastic Net and Random Forest, were examined with both real and simulated MRI data, and in comparison to standard multiple regression. The different machine learning regression algorithms produced varying results, which depended on sample size, feature set size, and predictor effect size. When the effect size was large, the Elastic Net, Kernel Ridge Regression and Gaussian Process Regression performed well at most sample sizes and feature set sizes. However, when the effect size was small, only the Elastic Net made accurate predictions, but this was limited to analyses with sample sizes greater than 400. Random Forest also produced a moderate performance for small effect sizes, but could do so across all sample sizes. Machine learning techniques also improved prediction accuracy for multiple regression. These data provide empirical evidence for the differential performance of various machines on neuroimaging data, which are dependent on number of sample size, features and effect size. •The choice of machine learning algorithm influenced prediction accuracy.•Sample size was important: prediction accuracy generally increased once N ≥ 400.•The Elastic Net performed well at a range of effect sizes, relative to other methods.•Random Forest performed well at small effect sizes.•Gaussian Process Regression performed well at large effect sizes. |
| Author | Jollans, Lee Whelan, Robert Boyle, Rory Martinot, Jean-Luc Smolka, Michael N. Garavan, Hugh Schumann, Gunter Artiges, Eric Banaschewski, Tobias Walter, Henrik Desrivières, Sylvane Paus, Tomáš Grigis, Antoine |
| AuthorAffiliation | 6 NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France 4 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany 2 Max-Planck Institute of Psychiatry, Munich, Germany 7 Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Maison de Solenn, Paris, France 9 Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany 11 Department of Psychiatry, University of Vermont, Burlington, USA 3 Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Psychiatry Department 91G16, Orsay Hospital, France 1 School of Psychology, Trinity College Dublin, Dublin, Ireland 12 Global |
| AuthorAffiliation_xml | – name: 10 Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany – name: 3 Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Psychiatry Department 91G16, Orsay Hospital, France – name: 11 Department of Psychiatry, University of Vermont, Burlington, USA – name: 12 Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland – name: 6 NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France – name: 9 Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany – name: 4 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany – name: 8 Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, M6A 2E1, Canada – name: 7 Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Maison de Solenn, Paris, France – name: 1 School of Psychology, Trinity College Dublin, Dublin, Ireland – name: 2 Max-Planck Institute of Psychiatry, Munich, Germany – name: 5 Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom |
| Author_xml | – sequence: 1 givenname: Lee surname: Jollans fullname: Jollans, Lee organization: School of Psychology, Trinity College Dublin, Dublin, Ireland – sequence: 2 givenname: Rory surname: Boyle fullname: Boyle, Rory organization: School of Psychology, Trinity College Dublin, Dublin, Ireland – sequence: 3 givenname: Eric surname: Artiges fullname: Artiges, Eric organization: Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité, and Psychiatry Department 91G16, Orsay Hospital, France – sequence: 4 givenname: Tobias surname: Banaschewski fullname: Banaschewski, Tobias organization: Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany – sequence: 5 givenname: Sylvane surname: Desrivières fullname: Desrivières, Sylvane organization: Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom – sequence: 6 givenname: Antoine surname: Grigis fullname: Grigis, Antoine organization: NeuroSpin, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France – sequence: 7 givenname: Jean-Luc surname: Martinot fullname: Martinot, Jean-Luc organization: Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité, and Maison de Solenn, Paris, France – sequence: 8 givenname: Tomáš surname: Paus fullname: Paus, Tomáš organization: Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario, M6A 2E1, Canada – sequence: 9 givenname: Michael N. surname: Smolka fullname: Smolka, Michael N. organization: Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany – sequence: 10 givenname: Henrik surname: Walter fullname: Walter, Henrik organization: Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany – sequence: 11 givenname: Gunter surname: Schumann fullname: Schumann, Gunter organization: Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom – sequence: 12 givenname: Hugh surname: Garavan fullname: Garavan, Hugh organization: Department of Psychiatry, University of Vermont, Burlington, USA – sequence: 13 givenname: Robert surname: Whelan fullname: Whelan, Robert email: robert.whelan@tcd.ie organization: School of Psychology, Trinity College Dublin, Dublin, Ireland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31173905$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv3CAURlGUKo9J_kJlqZtu7IJtbNhUbaM-IkWqqnaPruF6hqkNU7Ajzb8vVl7trGYF0v04HPguyanzDgnJGC0YZc27beFwDt6OsMaipEwWlBdUlCfkglHJc8nb8nTZ8yoXjMlzchnjllIqWS3OyHnFWFtJyi_I7Y8Z3GT7vXXrbIeh92EEpzHzfTaC3liH2YAQ3DIfcdp4E7MUyp4FloGBCa7Iqx6GiNeP64r8_PL51823_O7719ubj3e55k095bqtJeMGBNJONJq1bWVE3XYltLpDrIDXyGgNLXSs6ztgaLqGGllrZmRZrcj7B-pu7kY0Gt0UYFC7kFTCXnmw6v-Jsxu19veqaYSQVCbA20dA8H9mjJMabdQ4DODQz1GVZV0yLkvJU_TNQXTr5-DS41KqEbwWi_2KvP7X6Fnl6Y9flHXwMQbslbYTTNYvgnZQjKqlVLVVL6WqpVRFuUqlJoA4ADzdccTRTw9HMTVybzGoqC2mfo0NqCdlvD0G8uEAogfrrIbhN-6PQ_wFgMba8w |
| CitedBy_id | crossref_primary_10_3389_fnins_2023_934138 crossref_primary_10_1109_ACCESS_2020_3032391 crossref_primary_10_1093_cercor_bhaa390 crossref_primary_10_1038_s41386_021_00987_7 crossref_primary_10_1038_s42003_023_05396_8 crossref_primary_10_1016_j_aei_2022_101666 crossref_primary_10_1186_s12888_020_02541_z crossref_primary_10_1016_j_nicl_2021_102790 crossref_primary_10_1186_s40708_021_00129_1 crossref_primary_10_7759_cureus_56927 crossref_primary_10_1002_hbm_70191 crossref_primary_10_3389_fnins_2023_1199106 crossref_primary_10_1007_s11357_023_00831_4 crossref_primary_10_1093_cercor_bhac060 crossref_primary_10_1038_s41467_020_20655_6 crossref_primary_10_1093_cercor_bhae080 crossref_primary_10_1007_s12671_024_02513_4 crossref_primary_10_1080_00952990_2022_2116712 crossref_primary_10_1016_j_compbiomed_2023_106804 crossref_primary_10_1016_j_applthermaleng_2020_115914 crossref_primary_10_1016_j_dcn_2024_101475 crossref_primary_10_1016_j_cccb_2024_100212 crossref_primary_10_1038_s41598_023_39799_8 crossref_primary_10_1093_cercor_bhaa290 crossref_primary_10_1109_ACCESS_2020_3007499 crossref_primary_10_1111_ejn_16345 crossref_primary_10_1162_netn_a_00383 crossref_primary_10_1038_s41598_023_37508_z crossref_primary_10_1007_s12021_021_09525_8 crossref_primary_10_1093_bib_bbac359 crossref_primary_10_1016_j_techfore_2020_120175 crossref_primary_10_1038_s41368_023_00254_z crossref_primary_10_1093_gigascience_giad049 crossref_primary_10_1051_shsconf_202213903027 crossref_primary_10_1016_j_brat_2022_104086 crossref_primary_10_3389_fneur_2023_1168833 crossref_primary_10_3389_fnimg_2022_1056503 crossref_primary_10_3389_fneur_2023_1165603 crossref_primary_10_1016_j_enbenv_2024_02_005 crossref_primary_10_1016_j_eswa_2022_119320 crossref_primary_10_1038_s41537_025_00583_4 crossref_primary_10_1038_s41398_020_01192_8 crossref_primary_10_52294_001c_117311 crossref_primary_10_1016_j_neuropharm_2021_108500 crossref_primary_10_3389_fcvm_2022_814557 crossref_primary_10_1523_JNEUROSCI_0897_20_2020 crossref_primary_10_1016_j_clinph_2019_08_010 crossref_primary_10_1016_j_tins_2019_07_007 crossref_primary_10_1016_j_psycr_2022_100014 crossref_primary_10_1038_s41746_022_00576_y crossref_primary_10_1002_hbm_25837 crossref_primary_10_1016_j_bpsc_2019_11_001 crossref_primary_10_1159_000546112 crossref_primary_10_1002_hbm_26683 crossref_primary_10_1002_jnr_25185 crossref_primary_10_1016_j_biopsych_2022_01_008 crossref_primary_10_1016_j_atmosres_2021_105574 crossref_primary_10_1016_j_renene_2024_120565 crossref_primary_10_1016_j_nicl_2021_102620 crossref_primary_10_1016_j_nicl_2022_102983 crossref_primary_10_1016_j_schres_2020_03_022 crossref_primary_10_1002_hbm_25907 crossref_primary_10_1007_s12553_021_00538_6 crossref_primary_10_1016_j_nicl_2020_102199 crossref_primary_10_1371_journal_pone_0321008 crossref_primary_10_1016_j_media_2021_102050 crossref_primary_10_1038_s41467_024_54022_6 crossref_primary_10_1057_s41599_024_03436_0 crossref_primary_10_3389_fninf_2021_805669 crossref_primary_10_1002_nbm_70018 crossref_primary_10_1016_j_jare_2025_04_026 crossref_primary_10_12688_wellcomeopenres_15617_3 crossref_primary_10_3389_fnins_2024_1411797 crossref_primary_10_12688_wellcomeopenres_15617_2 crossref_primary_10_12688_wellcomeopenres_15617_1 crossref_primary_10_3390_diagnostics14212394 crossref_primary_10_1162_imag_a_00215 crossref_primary_10_1016_j_biopsych_2022_09_024 crossref_primary_10_1016_j_media_2020_101871 crossref_primary_10_1016_j_neuroimage_2025_121129 crossref_primary_10_1109_TMI_2022_3218720 crossref_primary_10_3758_s13415_021_00964_z crossref_primary_10_1016_j_neubiorev_2022_104552 crossref_primary_10_1016_j_media_2023_102913 crossref_primary_10_1177_1352458520958362 crossref_primary_10_1016_j_chemolab_2021_104430 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1016_j_jfp_2024_100417 crossref_primary_10_1007_s12665_025_12374_2 crossref_primary_10_1002_jmri_29470 crossref_primary_10_1016_j_neuroscience_2020_01_049 crossref_primary_10_1371_journal_pone_0284951 crossref_primary_10_1016_j_neuroimage_2020_116795 crossref_primary_10_1016_j_neuroimage_2023_120205 crossref_primary_10_1016_j_jpsychires_2023_10_046 crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1111_cote_12622 crossref_primary_10_1038_s41598_022_10949_8 crossref_primary_10_1093_cercor_bhad130 crossref_primary_10_1109_ACCESS_2024_3519867 crossref_primary_10_1093_scan_nsab035 crossref_primary_10_1177_13694332221092671 crossref_primary_10_1007_s10967_023_09327_z crossref_primary_10_3389_fninf_2020_575999 crossref_primary_10_1002_hbm_26172 crossref_primary_10_1016_j_jad_2022_08_078 crossref_primary_10_1016_j_dcn_2023_101231 crossref_primary_10_1007_s12065_024_01006_6 crossref_primary_10_1002_hbm_24947 |
| Cites_doi | 10.1016/j.neurobiolaging.2010.05.023 10.1016/j.neuron.2011.11.001 10.1016/j.neuroimage.2016.02.079 10.1038/tp.2016.213 10.1016/j.neuroimage.2015.05.074 10.1016/j.neuroimage.2017.07.059 10.1038/sdata.2017.10 10.1001/jamapsychiatry.2015.0497 10.1016/j.dcn.2013.03.001 10.1016/j.jneumeth.2017.12.005 10.1016/j.neuron.2014.10.047 10.1023/A:1018054314350 10.1111/j.1467-9868.2005.00503.x 10.1006/nimg.2001.0978 10.1016/j.neuroimage.2010.01.005 10.1016/j.neuroimage.2010.03.051 10.1016/j.tics.2016.03.014 10.1016/j.neulet.2010.01.056 10.3389/fnins.2012.00152 10.1001/jamapsychiatry.2015.0498 10.1016/j.neuroimage.2013.05.081 10.1038/npp.2013.328 10.1038/mp.2010.4 10.1016/j.compeleceng.2013.11.024 10.1093/schbul/sbr145 10.1016/j.neuroimage.2011.10.018 10.1186/1471-2202-8-91 10.1093/bioinformatics/btm344 10.1016/j.neuroimage.2011.10.014 10.1002/jmri.21049 10.1038/nrn2793 10.1371/journal.pone.0006353 10.1371/journal.pone.0085460 10.1002/jmri.22806 10.1016/j.neuroimage.2015.11.057 10.1126/science.aal3618 10.1038/nn.4478 10.1001/jamapsychiatry.2018.2165 10.1007/s12021-017-9347-8 10.1016/j.nicl.2013.06.004 10.1016/j.neuroimage.2016.10.038 10.1093/biomet/asn068 10.1007/s12021-015-9292-3 10.1016/j.neuroimage.2011.12.053 10.3389/fnagi.2016.00119 10.1016/j.neuroimage.2018.05.065 10.1177/0956797611417632 10.1038/nmeth.4642 10.1038/nature13402 10.1371/journal.pone.0152719 10.1093/bioinformatics/btp630 10.1016/j.neulet.2018.04.007 10.1016/j.neuroimage.2012.02.018 10.3389/fpsyt.2016.00050 10.1109/TAMD.2015.2440298 10.1073/pnas.0911855107 10.1186/1753-6561-6-S2-S10 10.1016/j.cub.2012.07.002 10.1073/pnas.1518285112 10.1002/hbm.22184 10.1016/j.neuroimage.2010.02.082 10.1016/j.neuroimage.2013.02.055 10.1146/annurev-clinpsy-032816-045037 10.3389/fninf.2015.00008 10.1007/s12021-013-9178-1 10.1038/nrn3475 10.1016/j.mri.2008.01.052 10.1016/j.neuroimage.2011.11.066 10.1126/science.1194144 10.1038/npp.2015.22 10.1007/s12021-013-9204-3 10.1038/sdata.2018.134 10.3389/fpsyt.2018.00242 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. 2019. Elsevier Inc. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. – notice: 2019. Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
| DOI | 10.1016/j.neuroimage.2019.05.082 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1095-9572 |
| EndPage | 365 |
| ExternalDocumentID | PMC6688909 31173905 10_1016_j_neuroimage_2019_05_082 S1053811919304781 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NIDA NIH HHS grantid: T32 DA043593 – fundername: NIMH NIH HHS grantid: R01 MH085772 – fundername: NIDA NIH HHS grantid: R01 DA047119 – fundername: NIBIB NIH HHS grantid: U54 EB020403 – fundername: Medical Research Council grantid: MR/R00465X/1 – fundername: MRF_ grantid: MRF-058-0004-RG-DESRI – fundername: Medical Research Council grantid: MR/N000390/1 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- ~HD AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJOXV AMFUW C45 HMQ LCYCR RIG SNS ZA5 29N 53G 9DU AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFFHD AFPKN AGHFR AGQPQ AIGII AKRLJ ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT AGCQF AGRNS ALIPV CGR CUY CVF ECM EIF NPM 3V. 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
| ID | FETCH-LOGICAL-c564t-c74915da8e0b86c1773d847b2a7cbee3a54e104a7ab1bfba1edb60d94c1d923 |
| IEDL.DBID | M7P |
| ISICitedReferencesCount | 119 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000478780200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-8119 1095-9572 |
| IngestDate | Tue Nov 04 01:46:15 EST 2025 Sun Nov 09 11:46:01 EST 2025 Tue Oct 07 07:12:11 EDT 2025 Mon Jul 21 06:02:53 EDT 2025 Tue Nov 18 22:40:46 EST 2025 Sat Nov 29 07:04:37 EST 2025 Fri Feb 23 02:47:27 EST 2024 Tue Oct 14 19:39:37 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Neuroimaging Regression algorithms Reproducibility Machine learning |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-c74915da8e0b86c1773d847b2a7cbee3a54e104a7ab1bfba1edb60d94c1d923 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6688909 |
| PMID | 31173905 |
| PQID | 2268548177 |
| PQPubID | 2031077 |
| PageCount | 15 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6688909 proquest_miscellaneous_2242159295 proquest_journals_2268548177 pubmed_primary_31173905 crossref_citationtrail_10_1016_j_neuroimage_2019_05_082 crossref_primary_10_1016_j_neuroimage_2019_05_082 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2019_05_082 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2019_05_082 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Amsterdam |
| PublicationTitle | NeuroImage (Orlando, Fla.) |
| PublicationTitleAlternate | Neuroimage |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
| References | Brown, Kuperman, Chung, Erhart, McCabe, Hagler (bib8) 2012; 22 Ogutu, Schulz-Streeck, Piepho (bib54) 2012; 6 Schrouff, Rosa, Rondina, Marquand, Chu, Ashburner (bib67) 2013; 11 Dwyer, Falkai, Koutsouleris (bib24) 2018; 14 Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, Etard, Delcroix (bib77) 2002; 15 Duff, Trachtenberg, Mackay, Howard, Wilson, Smith, Woolrich (bib23) 2012; 60 Biswal, Mennes, Zuo, Gohel, Kelly, Smith (bib6) 2010; 107 Arbabshirani, Plis, Sui, Calhoun (bib3) 2017; 145 Yang, Pelphrey, Sukhodolsky, Crowley, Dayan, Dvornek (bib88) 2016; 6 Chandrashekar, Sahin (bib12) 2014; 40 Garraux, Phillips, Schrouff, Kreisler, Lemaire, Degueldre (bib30) 2013; 2 Whelan, Watts, Orr, Althoff, Artiges, Banaschewski (bib86) 2014; 512 Niehaus, Clark, Bourne, Mackay, Holmes, Smith (bib51) 2014 Chu, Hsu, Chou, Bandettini, Lin (bib14) 2012; 60 Poldrack (bib59) 2011; 72 Westfall, Yarkoni (bib84) 2016; 11 Cole, Poudel, Tsagkrasoulis, Caan, Steves, Spector, Montana (bib16) 2017; 163 Davatzikos, Bhatt, Shaw, Batmanghelich, Trojanowski (bib18) 2011; 32 Hall, Robinson (bib33) 2009; 96 Palczewska, Palczewski, Robinson, Neagu (bib55) 2014 Woo, Chang, Lindquist, Wager (bib87) 2017; 20 Power, Barnes, Snyder, Schlaggar, Petersen (bib60) 2012; 59 Nnamoko, Arshad, England, Vora, Norman (bib52) 2014; 21 Schrouff, Monteiro, Portugal, Rosa, Phillips, Mourão-Miranda (bib68) 2018; 16 Lo, Chernoff, Zheng, Lo (bib44) 2015; 112 Munson, Caruana (bib47) 2009 Ramirez, Gorriz, Ortiz, Martinez-Murcia, Segovia, Salas-Gonzalez (bib64) 2018; 302 Price, Ramsden, Hope, Friston, Seghier (bib61) 2013; 5 Bzdok, Altman, Krzywinski (bib10) 2018; 15 Costafreda, Chu, Ashburner, Fu (bib17) 2009; 4 Pinel, Thirion, Meriaux, Jobert, Serres, Le Bihan (bib58) 2007; 8 Wang, Redmond, Bertoux, Hodges, Hornberger (bib81) 2016; 8 Formisano, De Martino, Valente (bib26) 2008; 26 Thompson, Andreassen, Arias-Vasquez, Bearden, Boedhoe, Brouwer (bib75) 2017; 145 Jack, Bernstein, Fox, Thompson, Alexander, Harvey (bib34) 2008; 27 Wei, Zhuang, Ai, Chen, Yang, Liu (bib83) 2018; 5 Gorgolewski, Esteban, Schaefer, Wandell, Poldrack (bib32) 2017 Ramírez, Górriz, Ortiz, Padilla, Martínez-Murcia (bib63) 2016 Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib9) 2013; 14 Di Martino, O'Connor, Chen, Alaerts, Anderson, Assaf (bib20) 2017; 4 Dosenbach, Nardos, Cohen, Fair, Power, Church (bib21) 2010; 329 Schumann, Loth, Banaschewski, Barbot, Barker, Büchel (bib69) 2010; 15 Gorgolewski, Varoquaux, Rivera, Schwarz, Ghosh, Maumet (bib31) 2015; 9 Jollans, Whelan (bib36) 2018; 9 Nooner, Colcombe, Tobe, Mennes, Benedict, Moreno (bib53) 2012; 6 Breiman (bib7) 1996; 24 Franke, Ziegler, Klöppel, Gaser (bib27) 2010; 50 Tohka, Moradi, Huttunen, Initiative, others (bib76) 2016; 14 Zhou, Wang, Xu, Ji, Phillips, Sun, Zhang (bib90) 2015; vol. 9043 Koutsouleris, Borgwardt, Meisenzahl, Bottlender, Moller, Riecher-Rossler (bib41) 2012; 38 Tangaro, Amoroso, Brescia, Cavuoti, Chincarini, Errico (bib74) 2015 Deary, Penke, Johnson (bib19) 2010; 11 Mwangi, Hasan, Soares (bib49) 2013; 75 Kennedy, Haselgrove, Riehl, Preuss, Buccigrossi (bib39) 2016; 124 Van Essen, Ugurbil, Auerbach, Barch, Behrens, Bucholz (bib78) 2012; 62 Clark, Beatty, Anderson, Kodituwakku, Phillips, Lane (bib15) 2014; 35 Zahari, Ramli, Mokhtar (bib89) 2014; 4 Shen, Tokoglu, Papademetris, Constable (bib71) 2013; 82 Ball, Stein, Ramsawh, Campbell-Sills, Paulus (bib4) 2014; 39 Rakotomamonjy, Bach, Canu, Grandvalet (bib94) 2010; 9 Fredo, Jahedi, Reiter, Müller (bib28) 2018; 12 Koutsouleris, Kahn, Chekroud, Leucht, Falkai, Wobrock (bib42) 2016; 3 Kambeitz, Kambeitz-Ilankovic, Leucht, Wood, Davatzikos, Malchow (bib37) 2015; 40 Adar, Okyay, Özkan, Şaylısoy, Adapınar, Adapınar (bib2) 2016 Chekroud, Zotti, Shehzad, Gueorguieva, Johnson, Trivedi (bib13) 2016; 3 Mwangi, Tian, Soares (bib50) 2014; 12 Stonnington, Chu, Klöppel, Jack, Ashburner, Frackowiak (bib73) 2010; 51 Abeel, Helleputte, Van de Peer, Dupont, Saeys (bib1) 2010; 26 Paulus (bib56) 2015; 72 Pine, Leibenluft (bib57) 2015; 72 Kohavi (bib40) 1995; vol. 14 Simmons, Nelson, Simonsohn (bib72) 2011; 22 Whelan (bib85) 2016; 1 Jie, Zhu, Ma, Osuch, Wammes, Théberge (bib35) 2015; 7 Saeys, Inza, Larranaga (bib65) 2007; 23 Ramírez, Górriz, Segovia, Chaves, Salas-Gonzalez, López (bib62) 2010; 472 Kambeitz, Cabral, Sacchet, Gotlib, Zahn, Serpa (bib38) 2016 Shawe-Taylor, Cristianini (bib93) 2004 Cawley, Talbot (bib11) 2010; 11 Dubois, Adolphs (bib22) 2016; 20 Koutsouleris, Kambeitz-Ilankovic, Ruhrmann, Rosen, Ruef, Dwyer (bib43) 2018; 75 Mwangi, Matthews, Steele (bib48) 2012; 35 Zhu, Du, Kerich, Lohoff, Momenan (bib91) 2018; 676 Zou, Hastie (bib92) 2005; 67 Varoquaux, Raamana, Engemann, Hoyos-Idrobo, Schwartz, Thirion (bib79) 2017; 145 Monté-Rubio, Falcón, Pomarol-Clotet, Ashburner (bib46) 2018; 178 Efron, Tibshirani (bib25) 1997; 92 Shen, Fripp, Mériaudeau, Chételat, Salvado, Bourgeat (bib70) 2012; 59 Gabrieli, Ghosh, Whitfield-Gabrieli (bib29) 2015; 85 Wechsler (bib82) 2003 Loken, Gelman (bib45) 2017; 355 Schnack, Kahn (bib66) 2016; 7 Wang, Goh, Resnick, Davatzikos (bib80) 2013; 8 Bellec, Rosa-Neto, Lyttelton, Benali, Evans (bib5) 2010; 51 Mwangi (10.1016/j.neuroimage.2019.05.082_bib49) 2013; 75 Tangaro (10.1016/j.neuroimage.2019.05.082_bib74) 2015 Kohavi (10.1016/j.neuroimage.2019.05.082_bib40) 1995; vol. 14 Westfall (10.1016/j.neuroimage.2019.05.082_bib84) 2016; 11 Dubois (10.1016/j.neuroimage.2019.05.082_bib22) 2016; 20 Stonnington (10.1016/j.neuroimage.2019.05.082_bib73) 2010; 51 Duff (10.1016/j.neuroimage.2019.05.082_bib23) 2012; 60 Varoquaux (10.1016/j.neuroimage.2019.05.082_bib79) 2017; 145 Zhou (10.1016/j.neuroimage.2019.05.082_bib90) 2015; vol. 9043 Schrouff (10.1016/j.neuroimage.2019.05.082_bib68) 2018; 16 Di Martino (10.1016/j.neuroimage.2019.05.082_bib20) 2017; 4 Clark (10.1016/j.neuroimage.2019.05.082_bib15) 2014; 35 Cole (10.1016/j.neuroimage.2019.05.082_bib16) 2017; 163 Tohka (10.1016/j.neuroimage.2019.05.082_bib76) 2016; 14 Jack (10.1016/j.neuroimage.2019.05.082_bib34) 2008; 27 Whelan (10.1016/j.neuroimage.2019.05.082_bib85) 2016; 1 Wei (10.1016/j.neuroimage.2019.05.082_bib83) 2018; 5 Poldrack (10.1016/j.neuroimage.2019.05.082_bib59) 2011; 72 Munson (10.1016/j.neuroimage.2019.05.082_bib47) 2009 Shen (10.1016/j.neuroimage.2019.05.082_bib70) 2012; 59 Jie (10.1016/j.neuroimage.2019.05.082_bib35) 2015; 7 Davatzikos (10.1016/j.neuroimage.2019.05.082_bib18) 2011; 32 Ramirez (10.1016/j.neuroimage.2019.05.082_bib64) 2018; 302 Shawe-Taylor (10.1016/j.neuroimage.2019.05.082_bib93) 2004 Jollans (10.1016/j.neuroimage.2019.05.082_bib36) 2018; 9 Palczewska (10.1016/j.neuroimage.2019.05.082_bib55) 2014 Schumann (10.1016/j.neuroimage.2019.05.082_bib69) 2010; 15 Zhu (10.1016/j.neuroimage.2019.05.082_bib91) 2018; 676 Ball (10.1016/j.neuroimage.2019.05.082_bib4) 2014; 39 Nooner (10.1016/j.neuroimage.2019.05.082_bib53) 2012; 6 Ogutu (10.1016/j.neuroimage.2019.05.082_bib54) 2012; 6 Wang (10.1016/j.neuroimage.2019.05.082_bib80) 2013; 8 Zou (10.1016/j.neuroimage.2019.05.082_bib92) 2005; 67 Brown (10.1016/j.neuroimage.2019.05.082_bib8) 2012; 22 Ramírez (10.1016/j.neuroimage.2019.05.082_bib62) 2010; 472 Kennedy (10.1016/j.neuroimage.2019.05.082_bib39) 2016; 124 Button (10.1016/j.neuroimage.2019.05.082_bib9) 2013; 14 Price (10.1016/j.neuroimage.2019.05.082_bib61) 2013; 5 Adar (10.1016/j.neuroimage.2019.05.082_bib2) Gabrieli (10.1016/j.neuroimage.2019.05.082_bib29) 2015; 85 Mwangi (10.1016/j.neuroimage.2019.05.082_bib50) 2014; 12 Simmons (10.1016/j.neuroimage.2019.05.082_bib72) 2011; 22 Bellec (10.1016/j.neuroimage.2019.05.082_bib5) 2010; 51 Saeys (10.1016/j.neuroimage.2019.05.082_bib65) 2007; 23 Gorgolewski (10.1016/j.neuroimage.2019.05.082_bib31) 2015; 9 Pinel (10.1016/j.neuroimage.2019.05.082_bib58) 2007; 8 Ramírez (10.1016/j.neuroimage.2019.05.082_bib63) 2016 Garraux (10.1016/j.neuroimage.2019.05.082_bib30) 2013; 2 Woo (10.1016/j.neuroimage.2019.05.082_bib87) 2017; 20 Koutsouleris (10.1016/j.neuroimage.2019.05.082_bib43) 2018; 75 Tzourio-Mazoyer (10.1016/j.neuroimage.2019.05.082_bib77) 2002; 15 Koutsouleris (10.1016/j.neuroimage.2019.05.082_bib42) 2016; 3 Formisano (10.1016/j.neuroimage.2019.05.082_bib26) 2008; 26 Schnack (10.1016/j.neuroimage.2019.05.082_bib66) 2016; 7 Thompson (10.1016/j.neuroimage.2019.05.082_bib75) 2017; 145 Chandrashekar (10.1016/j.neuroimage.2019.05.082_bib12) 2014; 40 Gorgolewski (10.1016/j.neuroimage.2019.05.082_bib32) 2017 Paulus (10.1016/j.neuroimage.2019.05.082_bib56) 2015; 72 Wang (10.1016/j.neuroimage.2019.05.082_bib81) 2016; 8 Chu (10.1016/j.neuroimage.2019.05.082_bib14) 2012; 60 Zahari (10.1016/j.neuroimage.2019.05.082_bib89) 2014; 4 Hall (10.1016/j.neuroimage.2019.05.082_bib33) 2009; 96 Abeel (10.1016/j.neuroimage.2019.05.082_bib1) 2010; 26 Schrouff (10.1016/j.neuroimage.2019.05.082_bib67) 2013; 11 Wechsler (10.1016/j.neuroimage.2019.05.082_bib82) 2003 Efron (10.1016/j.neuroimage.2019.05.082_bib25) 1997; 92 Arbabshirani (10.1016/j.neuroimage.2019.05.082_bib3) 2017; 145 Bzdok (10.1016/j.neuroimage.2019.05.082_bib10) 2018; 15 Kambeitz (10.1016/j.neuroimage.2019.05.082_bib37) 2015; 40 Monté-Rubio (10.1016/j.neuroimage.2019.05.082_bib46) 2018; 178 Dosenbach (10.1016/j.neuroimage.2019.05.082_bib21) 2010; 329 Loken (10.1016/j.neuroimage.2019.05.082_bib45) 2017; 355 Fredo (10.1016/j.neuroimage.2019.05.082_bib28) 2018; 12 Lo (10.1016/j.neuroimage.2019.05.082_bib44) 2015; 112 Deary (10.1016/j.neuroimage.2019.05.082_bib19) 2010; 11 Cawley (10.1016/j.neuroimage.2019.05.082_bib11) 2010; 11 Nnamoko (10.1016/j.neuroimage.2019.05.082_bib52) 2014; 21 Costafreda (10.1016/j.neuroimage.2019.05.082_bib17) 2009; 4 Power (10.1016/j.neuroimage.2019.05.082_bib60) 2012; 59 Biswal (10.1016/j.neuroimage.2019.05.082_bib6) 2010; 107 Breiman (10.1016/j.neuroimage.2019.05.082_bib7) 1996; 24 Dwyer (10.1016/j.neuroimage.2019.05.082_bib24) 2018; 14 Chekroud (10.1016/j.neuroimage.2019.05.082_bib13) 2016; 3 Shen (10.1016/j.neuroimage.2019.05.082_bib71) 2013; 82 Kambeitz (10.1016/j.neuroimage.2019.05.082_bib38) 2016 Yang (10.1016/j.neuroimage.2019.05.082_bib88) 2016; 6 Whelan (10.1016/j.neuroimage.2019.05.082_bib86) 2014; 512 Franke (10.1016/j.neuroimage.2019.05.082_bib27) 2010; 50 Niehaus (10.1016/j.neuroimage.2019.05.082_bib51) 2014 Rakotomamonjy (10.1016/j.neuroimage.2019.05.082_bib94) 2010; 9 Mwangi (10.1016/j.neuroimage.2019.05.082_bib48) 2012; 35 Van Essen (10.1016/j.neuroimage.2019.05.082_bib78) 2012; 62 Koutsouleris (10.1016/j.neuroimage.2019.05.082_bib41) 2012; 38 Pine (10.1016/j.neuroimage.2019.05.082_bib57) 2015; 72 31376925 - Trends Neurosci. 2019 Oct;42(10):659-661. doi: 10.1016/j.tins.2019.07.007. |
| References_xml | – volume: 4 start-page: e6353 year: 2009 ident: bib17 article-title: Prognostic and diagnostic potential of the structural neuroanatomy of depression publication-title: PLoS One – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: bib92 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B – volume: 38 start-page: 1234 year: 2012 end-page: 1246 ident: bib41 article-title: Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study publication-title: Schizophr. Bull. – year: 2003 ident: bib82 article-title: WISC-IV Technical and Interpretive Manual – volume: 107 start-page: 4734 year: 2010 end-page: 4739 ident: bib6 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 14 start-page: 279 year: 2016 end-page: 296 ident: bib76 article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia publication-title: Neuroinformatics – volume: 16 start-page: 117 year: 2018 end-page: 143 ident: bib68 article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models publication-title: Neuroinformatics – volume: 7 start-page: 50 year: 2016 ident: bib66 article-title: Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters publication-title: Front. Psychiatry – volume: 9 year: 2015 ident: bib31 article-title: NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Front. Neuroinf. – volume: 22 start-page: 1359 year: 2011 end-page: 1366 ident: bib72 article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant publication-title: Psychol. Sci. – volume: 145 start-page: 166 year: 2017 end-page: 179 ident: bib79 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: Neuroimage – volume: 60 start-page: 59 year: 2012 end-page: 70 ident: bib14 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage – volume: 472 start-page: 99 year: 2010 end-page: 103 ident: bib62 article-title: Computer aided diagnosis system for the Alzheimer's disease based on partial least squares and random forest SPECT image classification publication-title: Neurosci. Lett. – volume: 72 start-page: 631 year: 2015 end-page: 632 ident: bib56 article-title: Pragmatism instead of mechanism: a call for impactful biological psychiatry publication-title: JAMA Psychiatr. – volume: 6 start-page: e948 year: 2016 ident: bib88 article-title: Brain responses to biological motion predict treatment outcome in young children with autism publication-title: Transl. Psychiatry – volume: 39 start-page: 1254 year: 2014 end-page: 1261 ident: bib4 article-title: Single-subject anxiety treatment outcome prediction using functional neuroimaging publication-title: Neuropsychopharmacology – volume: 75 start-page: 1156 year: 2018 end-page: 1172 ident: bib43 article-title: Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: a multimodal, multisite machine learning analysis publication-title: JAMA Psychiatr. – volume: 124 start-page: 1069 year: 2016 end-page: 1073 ident: bib39 article-title: The NITRC image repository publication-title: Neuroimage – volume: 32 year: 2011 ident: bib18 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol. Aging – volume: 51 start-page: 1405 year: 2010 end-page: 1413 ident: bib73 article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease publication-title: Neuroimage – volume: 23 start-page: 2507 year: 2007 end-page: 2517 ident: bib65 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics – volume: 11 start-page: 2079 year: 2010 end-page: 2107 ident: bib11 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – volume: 145 start-page: 389 year: 2017 end-page: 408 ident: bib75 article-title: ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide publication-title: Neuroimage – volume: 35 start-page: 414 year: 2014 end-page: 428 ident: bib15 article-title: Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence: prediction of Relapse Using fMRI publication-title: Hum. Brain Mapp. – volume: 96 start-page: 175 year: 2009 end-page: 186 ident: bib33 article-title: Reducing variability of crossvalidation for smoothing-parameter choice publication-title: Biometrika – volume: 35 start-page: 64 year: 2012 end-page: 71 ident: bib48 article-title: Prediction of illness severity in patients with major depression using structural MR brain scans publication-title: J. Magn. Reson. Imaging – volume: 26 start-page: 921 year: 2008 end-page: 934 ident: bib26 article-title: Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning publication-title: Magn. Reson. Imag. – volume: 8 year: 2013 ident: bib80 article-title: Imaging-based biomarkers of cognitive performance in older adults constructed via high-dimensional pattern regression applied to MRI and PET publication-title: PLoS One – year: 2016 ident: bib2 article-title: Feature selection on MR images using genetic algorithm with SVM and naive Bayes classifiers – volume: 51 start-page: 1126 year: 2010 end-page: 1139 ident: bib5 article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI publication-title: Neuroimage – volume: 676 start-page: 27 year: 2018 end-page: 33 ident: bib91 article-title: Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI publication-title: Neurosci. Lett. – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: bib12 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. – volume: 9 year: 2018 ident: bib36 article-title: Neuromarkers for mental disorders: harnessing population neuroscience publication-title: Front. Psychiatry – start-page: 1 year: 2014 end-page: 4 ident: bib51 article-title: MVPA to enhance the study of rare cognitive events: an investigation of experimental PTSD publication-title: Pattern Recognition in Neuroimaging, 2014 International Workshop on – volume: 302 start-page: 47 year: 2018 end-page: 57 ident: bib64 article-title: Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares publication-title: J. Neurosci. Methods – start-page: 193 year: 2014 end-page: 218 ident: bib55 article-title: Interpreting random forest classification models using a feature contribution method publication-title: Integration of Reusable Systems – volume: 20 start-page: 425 year: 2016 end-page: 443 ident: bib22 article-title: Building a science of individual differences from fMRI publication-title: Trends Cognit. Sci. – volume: 15 start-page: 273 year: 2002 end-page: 289 ident: bib77 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage – volume: 62 start-page: 2222 year: 2012 end-page: 2231 ident: bib78 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage – volume: 4 start-page: 150 year: 2014 end-page: 156 ident: bib89 article-title: Bootstrapped parameter estimation in ridge regression with multicollinearity and multiple outliers publication-title: J. Appl. Environ. Biol. Sci. – volume: 5 start-page: 172 year: 2013 end-page: 184 ident: bib61 article-title: Predicting IQ change from brain structure: a cross-validation study publication-title: Dev. Cogn. Neurosci. – volume: 12 start-page: 6 year: 2018 end-page: 41 ident: bib28 article-title: Diagnostic classification of autism using resting-state fMRI data and conditional random forest publication-title: Age – volume: 6 year: 2012 ident: bib53 article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry publication-title: Front. Neurosci. – volume: 59 start-page: 2142 year: 2012 end-page: 2154 ident: bib60 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage – volume: 355 start-page: 584 year: 2017 end-page: 585 ident: bib45 article-title: Measurement error and the replication crisis publication-title: Science – start-page: 144 year: 2009 end-page: 159 ident: bib47 article-title: On feature selection, bias-variance, and bagging publication-title: Machine Learning and Knowledge Discovery in Databases – volume: 112 start-page: 13892 year: 2015 end-page: 13897 ident: bib44 article-title: Why significant variables aren't automatically good predictors publication-title: Proc. Natl. Acad. Sci. Unit. States Am. – volume: 8 start-page: 91 year: 2007 ident: bib58 article-title: Fast reproducible identification and large-scale databasing of individual functional cognitive networks publication-title: BMC Neurosci. – volume: 5 year: 2018 ident: bib83 article-title: Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset publication-title: Sci. Data – volume: 8 year: 2016 ident: bib81 article-title: A comparison of magnetic resonance imaging and neuropsychological examination in the diagnostic distinction of Alzheimer's disease and behavioral variant frontotemporal dementia publication-title: Front. Aging Neurosci. – volume: 145 start-page: 137 year: 2017 end-page: 165 ident: bib3 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage – volume: 11 start-page: 201 year: 2010 end-page: 211 ident: bib19 article-title: The neuroscience of human intelligence differences publication-title: Nat. Rev. Neurosci. – year: 2004 ident: bib93 article-title: Kernel Methods for Pattern Analysis – volume: 72 start-page: 692 year: 2011 end-page: 697 ident: bib59 article-title: Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding publication-title: Neuron – volume: 329 start-page: 1358 year: 2010 end-page: 1361 ident: bib21 article-title: Prediction of individual brain maturity using fMRI publication-title: Science – volume: 72 start-page: 633 year: 2015 end-page: 634 ident: bib57 article-title: Biomarkers with a mechanistic focus publication-title: JAMA Psychiatr. – volume: 21 year: 2014 ident: bib52 article-title: Evaluation of filter and wrapper methods for feature selection in supervised machine learning publication-title: Age – volume: 2 start-page: 883 year: 2013 end-page: 893 ident: bib30 article-title: Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes publication-title: Neuroimage: Clinic – volume: 59 start-page: 2155 year: 2012 end-page: 2166 ident: bib70 article-title: Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models publication-title: Neuroimage – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib7 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 178 start-page: 753 year: 2018 end-page: 768 ident: bib46 article-title: A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods publication-title: Neuroimage – volume: 11 year: 2016 ident: bib84 article-title: Statistically controlling for confounding constructs is harder than you think publication-title: PLoS One – volume: 512 start-page: 185 year: 2014 end-page: 189 ident: bib86 article-title: Neuropsychosocial profiles of current and future adolescent alcohol misusers publication-title: Nature – volume: 4 start-page: 170010 year: 2017 ident: bib20 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Sci. Data – volume: 40 start-page: 1742 year: 2015 end-page: 1751 ident: bib37 article-title: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies publication-title: Neuropsychopharmacology – start-page: 395 year: 2016 end-page: 404 ident: bib63 article-title: Ensemble tree learning techniques for magnetic resonance image analysis publication-title: Innovation in Medicine and Healthcare 2015 – volume: 14 start-page: 365 year: 2013 end-page: 376 ident: bib9 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. – volume: 60 start-page: 189 year: 2012 end-page: 203 ident: bib23 article-title: Task-driven ICA feature generation for accurate and interpretable prediction using fMRI publication-title: Neuroimage – volume: 9 start-page: 2491 year: 2010 end-page: 2521 ident: bib94 article-title: SimpleMKL publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 319 year: 2013 end-page: 337 ident: bib67 article-title: PRoNTo: pattern recognition for neuroimaging toolbox publication-title: Neuroinformatics – volume: 1 start-page: 423 year: 2016 end-page: 432 ident: bib85 article-title: The clinical added value of imaging: a perspective from outcome prediction publication-title: Biol. Psychiatry: Cogn. Neurosci. Neuroimaging – volume: 50 start-page: 883 year: 2010 end-page: 892 ident: bib27 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage – volume: 85 start-page: 11 year: 2015 end-page: 26 ident: bib29 article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience publication-title: Neuron – start-page: 1677 year: 2017 ident: bib32 article-title: OpenNeuro—a Free Online Platform for Sharing and Analysis of Neuroimaging Data – volume: 15 start-page: 1128 year: 2010 end-page: 1139 ident: bib69 article-title: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology publication-title: Mol. Psychiatry – volume: 3 start-page: 935 year: 2016 end-page: 946 ident: bib42 article-title: Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach publication-title: Lancet Lancet – volume: 3 start-page: 243 year: 2016 end-page: 250 ident: bib13 article-title: Cross-trial prediction of treatment outcome in depression: a machine learning approach publication-title: Lancet Lancet – volume: 163 start-page: 115 year: 2017 end-page: 124 ident: bib16 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: Neuroimage – volume: 27 start-page: 685 year: 2008 end-page: 691 ident: bib34 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging – volume: vol. 14 start-page: 1137 year: 1995 end-page: 1145 ident: bib40 publication-title: A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection – volume: 75 start-page: 58 year: 2013 end-page: 67 ident: bib49 article-title: Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: a machine learning approach publication-title: Neuroimage – volume: 20 start-page: 365 year: 2017 end-page: 377 ident: bib87 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. – volume: vol. 9043 start-page: 201 year: 2015 end-page: 209 ident: bib90 article-title: Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier publication-title: Bioinformatics and Biomedical Engineering – volume: 22 start-page: 1693 year: 2012 end-page: 1698 ident: bib8 article-title: Neuroanatomical assessment of biological maturity publication-title: Curr. Biol. – volume: 15 start-page: 233 year: 2018 ident: bib10 article-title: Statistics versus machine learning publication-title: Nat. Methods – volume: 92 start-page: 548 year: 1997 ident: bib25 article-title: Improvements on cross-validation: the .632+ bootstrap method publication-title: J. Am. Stat. Assoc. – volume: 6 start-page: S10 year: 2012 ident: bib54 article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions publication-title: BMC Proc. – year: 2015 ident: bib74 article-title: Feature selection based on machine learning in MRIs for hippocampal segmentation publication-title: Computational and Mathematical Methods in Medicine – volume: 26 start-page: 392 year: 2010 end-page: 398 ident: bib1 article-title: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods publication-title: Bioinformatics – volume: 7 start-page: 320 year: 2015 end-page: 331 ident: bib35 article-title: Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data publication-title: IEEE Trans. Autonom. Ment. Dev. – year: 2016 ident: bib38 article-title: Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies publication-title: Biol. Psychiatry – volume: 82 start-page: 403 year: 2013 end-page: 415 ident: bib71 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage – volume: 12 start-page: 229 year: 2014 end-page: 244 ident: bib50 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics – volume: 14 start-page: 91 year: 2018 end-page: 118 ident: bib24 article-title: Machine learning approaches for clinical psychology and psychiatry publication-title: Annu. Rev. Clin. Psychol. – volume: 32 issue: 12 year: 2011 ident: 10.1016/j.neuroimage.2019.05.082_bib18 article-title: Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2010.05.023 – volume: 72 start-page: 692 issue: 5 year: 2011 ident: 10.1016/j.neuroimage.2019.05.082_bib59 article-title: Inferring mental states from neuroimaging data: from reverse inference to large-scale decoding publication-title: Neuron doi: 10.1016/j.neuron.2011.11.001 – volume: 145 start-page: 137 year: 2017 ident: 10.1016/j.neuroimage.2019.05.082_bib3 article-title: Single subject prediction of brain disorders in neuroimaging: promises and pitfalls publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.02.079 – volume: 6 start-page: e948 issue: 11 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib88 article-title: Brain responses to biological motion predict treatment outcome in young children with autism publication-title: Transl. Psychiatry doi: 10.1038/tp.2016.213 – volume: 124 start-page: 1069 issue: 0 0 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib39 article-title: The NITRC image repository publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.05.074 – volume: 163 start-page: 115 year: 2017 ident: 10.1016/j.neuroimage.2019.05.082_bib16 article-title: Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.07.059 – volume: 4 start-page: 170010 year: 2017 ident: 10.1016/j.neuroimage.2019.05.082_bib20 article-title: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II publication-title: Sci. Data doi: 10.1038/sdata.2017.10 – volume: 72 start-page: 631 issue: 7 year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib56 article-title: Pragmatism instead of mechanism: a call for impactful biological psychiatry publication-title: JAMA Psychiatr. doi: 10.1001/jamapsychiatry.2015.0497 – volume: 5 start-page: 172 year: 2013 ident: 10.1016/j.neuroimage.2019.05.082_bib61 article-title: Predicting IQ change from brain structure: a cross-validation study publication-title: Dev. Cogn. Neurosci. doi: 10.1016/j.dcn.2013.03.001 – volume: 302 start-page: 47 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib64 article-title: Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2017.12.005 – volume: 85 start-page: 11 issue: 1 year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib29 article-title: Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience publication-title: Neuron doi: 10.1016/j.neuron.2014.10.047 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.neuroimage.2019.05.082_bib7 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 – year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib74 article-title: Feature selection based on machine learning in MRIs for hippocampal segmentation – volume: 67 start-page: 301 issue: 2 year: 2005 ident: 10.1016/j.neuroimage.2019.05.082_bib92 article-title: Regularization and variable selection via the elastic net publication-title: J. R. Stat. Soc. Ser. B doi: 10.1111/j.1467-9868.2005.00503.x – volume: 15 start-page: 273 issue: 1 year: 2002 ident: 10.1016/j.neuroimage.2019.05.082_bib77 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain publication-title: Neuroimage doi: 10.1006/nimg.2001.0978 – volume: 50 start-page: 883 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib27 article-title: Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.01.005 – volume: 51 start-page: 1405 issue: 4 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib73 article-title: Predicting clinical scores from magnetic resonance scans in Alzheimer's disease publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.051 – volume: 21 issue: 81 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib52 article-title: Evaluation of filter and wrapper methods for feature selection in supervised machine learning publication-title: Age – volume: 20 start-page: 425 issue: 6 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib22 article-title: Building a science of individual differences from fMRI publication-title: Trends Cognit. Sci. doi: 10.1016/j.tics.2016.03.014 – volume: 472 start-page: 99 issue: 2 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib62 article-title: Computer aided diagnosis system for the Alzheimer's disease based on partial least squares and random forest SPECT image classification publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2010.01.056 – volume: 6 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib53 article-title: The NKI-Rockland sample: a model for accelerating the pace of discovery science in psychiatry publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00152 – volume: 72 start-page: 633 issue: 7 year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib57 article-title: Biomarkers with a mechanistic focus publication-title: JAMA Psychiatr. doi: 10.1001/jamapsychiatry.2015.0498 – volume: 82 start-page: 403 year: 2013 ident: 10.1016/j.neuroimage.2019.05.082_bib71 article-title: Groupwise whole-brain parcellation from resting-state fMRI data for network node identification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.05.081 – volume: 39 start-page: 1254 issue: 5 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib4 article-title: Single-subject anxiety treatment outcome prediction using functional neuroimaging publication-title: Neuropsychopharmacology doi: 10.1038/npp.2013.328 – volume: 15 start-page: 1128 issue: 12 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib69 article-title: The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology publication-title: Mol. Psychiatry doi: 10.1038/mp.2010.4 – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib12 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – volume: 38 start-page: 1234 issue: 6 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib41 article-title: Disease prediction in the at-risk mental state for psychosis using neuroanatomical biomarkers: results from the FePsy study publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbr145 – volume: 59 start-page: 2142 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib60 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 4 start-page: 150 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib89 article-title: Bootstrapped parameter estimation in ridge regression with multicollinearity and multiple outliers publication-title: J. Appl. Environ. Biol. Sci. – volume: 8 start-page: 91 issue: 1 year: 2007 ident: 10.1016/j.neuroimage.2019.05.082_bib58 article-title: Fast reproducible identification and large-scale databasing of individual functional cognitive networks publication-title: BMC Neurosci. doi: 10.1186/1471-2202-8-91 – volume: 1 start-page: 423 issue: 5 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib85 article-title: The clinical added value of imaging: a perspective from outcome prediction publication-title: Biol. Psychiatry: Cogn. Neurosci. Neuroimaging – volume: 23 start-page: 2507 issue: 19 year: 2007 ident: 10.1016/j.neuroimage.2019.05.082_bib65 article-title: A review of feature selection techniques in bioinformatics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm344 – volume: 92 start-page: 548 issue: 438 year: 1997 ident: 10.1016/j.neuroimage.2019.05.082_bib25 article-title: Improvements on cross-validation: the .632+ bootstrap method publication-title: J. Am. Stat. Assoc. – volume: 59 start-page: 2155 issue: 3 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib70 article-title: Detecting global and local hippocampal shape changes in Alzheimer's disease using statistical shape models publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.014 – volume: 27 start-page: 685 issue: 4 year: 2008 ident: 10.1016/j.neuroimage.2019.05.082_bib34 article-title: The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.21049 – volume: 12 start-page: 6 issue: 2.76 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib28 article-title: Diagnostic classification of autism using resting-state fMRI data and conditional random forest publication-title: Age – volume: 11 start-page: 201 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib19 article-title: The neuroscience of human intelligence differences publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2793 – volume: 4 start-page: e6353 issue: 7 year: 2009 ident: 10.1016/j.neuroimage.2019.05.082_bib17 article-title: Prognostic and diagnostic potential of the structural neuroanatomy of depression publication-title: PLoS One doi: 10.1371/journal.pone.0006353 – volume: 11 start-page: 2079 issue: Jul year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib11 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: J. Mach. Learn. Res. – year: 2004 ident: 10.1016/j.neuroimage.2019.05.082_bib93 – volume: 8 issue: 12 year: 2013 ident: 10.1016/j.neuroimage.2019.05.082_bib80 article-title: Imaging-based biomarkers of cognitive performance in older adults constructed via high-dimensional pattern regression applied to MRI and PET publication-title: PLoS One doi: 10.1371/journal.pone.0085460 – start-page: 144 year: 2009 ident: 10.1016/j.neuroimage.2019.05.082_bib47 article-title: On feature selection, bias-variance, and bagging – volume: 3 start-page: 935 issue: 10 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib42 article-title: Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach publication-title: Lancet Lancet – volume: 35 start-page: 64 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib48 article-title: Prediction of illness severity in patients with major depression using structural MR brain scans publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.22806 – volume: 145 start-page: 389 year: 2017 ident: 10.1016/j.neuroimage.2019.05.082_bib75 article-title: ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.11.057 – volume: 355 start-page: 584 issue: 6325 year: 2017 ident: 10.1016/j.neuroimage.2019.05.082_bib45 article-title: Measurement error and the replication crisis publication-title: Science doi: 10.1126/science.aal3618 – volume: 20 start-page: 365 issue: 3 year: 2017 ident: 10.1016/j.neuroimage.2019.05.082_bib87 article-title: Building better biomarkers: brain models in translational neuroimaging publication-title: Nat. Neurosci. doi: 10.1038/nn.4478 – volume: 75 start-page: 1156 issue: 11 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib43 article-title: Prediction models of functional outcomes for individuals in the clinical high-risk state for psychosis or with recent-onset depression: a multimodal, multisite machine learning analysis publication-title: JAMA Psychiatr. doi: 10.1001/jamapsychiatry.2018.2165 – volume: 16 start-page: 117 issue: 1 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib68 article-title: Embedding anatomical or functional knowledge in whole-brain multiple kernel learning models publication-title: Neuroinformatics doi: 10.1007/s12021-017-9347-8 – volume: 2 start-page: 883 year: 2013 ident: 10.1016/j.neuroimage.2019.05.082_bib30 article-title: Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes publication-title: Neuroimage: Clinic doi: 10.1016/j.nicl.2013.06.004 – volume: 9 start-page: 2491 issue: Nov year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib94 article-title: SimpleMKL publication-title: J. Mach. Learn. Res. – volume: 145 start-page: 166 year: 2017 ident: 10.1016/j.neuroimage.2019.05.082_bib79 article-title: Assessing and tuning brain decoders: cross-validation, caveats, and guidelines publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.10.038 – volume: 96 start-page: 175 issue: 1 year: 2009 ident: 10.1016/j.neuroimage.2019.05.082_bib33 article-title: Reducing variability of crossvalidation for smoothing-parameter choice publication-title: Biometrika doi: 10.1093/biomet/asn068 – volume: vol. 14 start-page: 1137 year: 1995 ident: 10.1016/j.neuroimage.2019.05.082_bib40 – volume: 14 start-page: 279 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib76 article-title: Comparison of feature selection techniques in machine learning for anatomical brain MRI in dementia publication-title: Neuroinformatics doi: 10.1007/s12021-015-9292-3 – volume: 60 start-page: 189 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib23 article-title: Task-driven ICA feature generation for accurate and interpretable prediction using fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.053 – volume: 8 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib81 article-title: A comparison of magnetic resonance imaging and neuropsychological examination in the diagnostic distinction of Alzheimer's disease and behavioral variant frontotemporal dementia publication-title: Front. Aging Neurosci. doi: 10.3389/fnagi.2016.00119 – volume: 178 start-page: 753 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib46 article-title: A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.065 – volume: 22 start-page: 1359 issue: 11 year: 2011 ident: 10.1016/j.neuroimage.2019.05.082_bib72 article-title: False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant publication-title: Psychol. Sci. doi: 10.1177/0956797611417632 – volume: 15 start-page: 233 issue: 4 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib10 article-title: Statistics versus machine learning publication-title: Nat. Methods doi: 10.1038/nmeth.4642 – volume: 512 start-page: 185 issue: 7513 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib86 article-title: Neuropsychosocial profiles of current and future adolescent alcohol misusers publication-title: Nature doi: 10.1038/nature13402 – ident: 10.1016/j.neuroimage.2019.05.082_bib2 – volume: 11 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib84 article-title: Statistically controlling for confounding constructs is harder than you think publication-title: PLoS One doi: 10.1371/journal.pone.0152719 – volume: 26 start-page: 392 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib1 article-title: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp630 – volume: 676 start-page: 27 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib91 article-title: Random forest based classification of alcohol dependence patients and healthy controls using resting state MRI publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2018.04.007 – year: 2003 ident: 10.1016/j.neuroimage.2019.05.082_bib82 – volume: 62 start-page: 2222 issue: 4 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib78 article-title: The Human Connectome Project: a data acquisition perspective publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.018 – start-page: 193 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib55 article-title: Interpreting random forest classification models using a feature contribution method – volume: 7 start-page: 50 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib66 article-title: Detecting neuroimaging biomarkers for psychiatric disorders: sample size matters publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2016.00050 – volume: 7 start-page: 320 issue: 4 year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib35 article-title: Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data publication-title: IEEE Trans. Autonom. Ment. Dev. doi: 10.1109/TAMD.2015.2440298 – volume: 3 start-page: 243 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib13 article-title: Cross-trial prediction of treatment outcome in depression: a machine learning approach publication-title: Lancet Lancet – volume: 107 start-page: 4734 issue: 10 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib6 article-title: Toward discovery science of human brain function publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.0911855107 – volume: 6 start-page: S10 issue: 2 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib54 article-title: Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions publication-title: BMC Proc. doi: 10.1186/1753-6561-6-S2-S10 – start-page: 1677 year: 2017 ident: 10.1016/j.neuroimage.2019.05.082_bib32 – volume: vol. 9043 start-page: 201 year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib90 article-title: Detection of pathological brain in MRI scanning based on wavelet-entropy and naive Bayes classifier – volume: 22 start-page: 1693 issue: 18 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib8 article-title: Neuroanatomical assessment of biological maturity publication-title: Curr. Biol. doi: 10.1016/j.cub.2012.07.002 – volume: 112 start-page: 13892 issue: 45 year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib44 article-title: Why significant variables aren't automatically good predictors publication-title: Proc. Natl. Acad. Sci. Unit. States Am. doi: 10.1073/pnas.1518285112 – volume: 35 start-page: 414 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib15 article-title: Reduced fMRI activity predicts relapse in patients recovering from stimulant dependence: prediction of Relapse Using fMRI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22184 – volume: 51 start-page: 1126 issue: 3 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib5 article-title: Multi-level bootstrap analysis of stable clusters in resting-state fMRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.02.082 – volume: 75 start-page: 58 year: 2013 ident: 10.1016/j.neuroimage.2019.05.082_bib49 article-title: Prediction of individual subject's age across the human lifespan using diffusion tensor imaging: a machine learning approach publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.02.055 – start-page: 1 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib51 article-title: MVPA to enhance the study of rare cognitive events: an investigation of experimental PTSD – volume: 14 start-page: 91 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib24 article-title: Machine learning approaches for clinical psychology and psychiatry publication-title: Annu. Rev. Clin. Psychol. doi: 10.1146/annurev-clinpsy-032816-045037 – volume: 9 year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib31 article-title: NeuroVault.org: a web-based repository for collecting and sharing unthresholded statistical maps of the human brain publication-title: Front. Neuroinf. doi: 10.3389/fninf.2015.00008 – volume: 11 start-page: 319 issue: 3 year: 2013 ident: 10.1016/j.neuroimage.2019.05.082_bib67 article-title: PRoNTo: pattern recognition for neuroimaging toolbox publication-title: Neuroinformatics doi: 10.1007/s12021-013-9178-1 – year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib38 article-title: Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies publication-title: Biol. Psychiatry – volume: 14 start-page: 365 issue: 5 year: 2013 ident: 10.1016/j.neuroimage.2019.05.082_bib9 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3475 – volume: 26 start-page: 921 issue: 7 year: 2008 ident: 10.1016/j.neuroimage.2019.05.082_bib26 article-title: Multivariate analysis of fMRI time series: classification and regression of brain responses using machine learning publication-title: Magn. Reson. Imag. doi: 10.1016/j.mri.2008.01.052 – volume: 60 start-page: 59 issue: 1 year: 2012 ident: 10.1016/j.neuroimage.2019.05.082_bib14 article-title: Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.066 – volume: 329 start-page: 1358 issue: 5997 year: 2010 ident: 10.1016/j.neuroimage.2019.05.082_bib21 article-title: Prediction of individual brain maturity using fMRI publication-title: Science doi: 10.1126/science.1194144 – volume: 40 start-page: 1742 issue: 7 year: 2015 ident: 10.1016/j.neuroimage.2019.05.082_bib37 article-title: Detecting neuroimaging biomarkers for schizophrenia: a meta-analysis of multivariate pattern recognition studies publication-title: Neuropsychopharmacology doi: 10.1038/npp.2015.22 – volume: 12 start-page: 229 issue: 2 year: 2014 ident: 10.1016/j.neuroimage.2019.05.082_bib50 article-title: A review of feature reduction techniques in neuroimaging publication-title: Neuroinformatics doi: 10.1007/s12021-013-9204-3 – start-page: 395 year: 2016 ident: 10.1016/j.neuroimage.2019.05.082_bib63 article-title: Ensemble tree learning techniques for magnetic resonance image analysis – volume: 5 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib83 article-title: Structural and functional brain scans from the cross-sectional Southwest University adult lifespan dataset publication-title: Sci. Data doi: 10.1038/sdata.2018.134 – volume: 9 year: 2018 ident: 10.1016/j.neuroimage.2019.05.082_bib36 article-title: Neuromarkers for mental disorders: harnessing population neuroscience publication-title: Front. Psychiatry doi: 10.3389/fpsyt.2018.00242 – reference: 31376925 - Trends Neurosci. 2019 Oct;42(10):659-661. doi: 10.1016/j.tins.2019.07.007. |
| SSID | ssj0009148 |
| Score | 2.6069984 |
| Snippet | Machine learning is increasingly being applied to neuroimaging data. However, most machine learning algorithms have not been designed to accommodate... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 351 |
| SubjectTerms | Algorithms Alzheimer's disease Artificial intelligence Brain - diagnostic imaging Brain research Consortia Councils Datasets Grants Humans Learning algorithms Machine Learning Magnetic resonance imaging Medical imaging Medical research Models, Theoretical Neuroimaging Neuroimaging - methods Neuroimaging - standards Neurosciences Regression algorithms Reproducibility Reproducibility of Results |
| Title | Quantifying performance of machine learning methods for neuroimaging data |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811919304781 https://dx.doi.org/10.1016/j.neuroimage.2019.05.082 https://www.ncbi.nlm.nih.gov/pubmed/31173905 https://www.proquest.com/docview/2268548177 https://www.proquest.com/docview/2242159295 https://pubmed.ncbi.nlm.nih.gov/PMC6688909 |
| Volume | 199 |
| WOSCitedRecordID | wos000478780200033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1095-9572 dateEnd: 20191231 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: AIEXJ dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M7P dateStart: 19980501 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: 7X7 dateStart: 20020801 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Psychology Database customDbUrl: eissn: 1095-9572 dateEnd: 20251009 omitProxy: false ssIdentifier: ssj0009148 issn: 1053-8119 databaseCode: M2M dateStart: 20020801 isFulltext: true titleUrlDefault: https://www.proquest.com/psychology providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xDSFeGN8URmUkXi3ixMnZ2gMaUyeG1Kp8PPTNcmxnFLG0rC1__-zESRkIVImXRMr5JH-cfRf7598BvHapDJ7dUbRJRTnHigqTZdSkOhDEWVM40ySbwMlEzGZyGjfcVhFW2a2JzUJtFybskb_xYYLw0TVDfLv8QUPWqHC6GlNo7MFBYElIG-jedEu6y3h7FS7PqGBMRiRPi-9q-CLnl37WBoCXbPg7Rfo39_Rn-Pk7ivIXt3R2-L8Nug_3YkBKTloLegC3XP0Q7ozjkfsjOP-40QFQFK5DkeX2mgFZVOSyQWI6ElNPXJA2H_WK-EKkb3kQBCDqY_h8Nvpy-p7G_AvU5AVfU4Ncstxq4ZJSFMbXNLPemZWpRlM6l-mcO_83p1GXrKxKzZwti8RKbpj1ceMT2K8XtXsGRDrkpUOTGZdw319CY-UsFlgZm-fIBoBdpysTqclDhozvqsOgfVPb4VJhuFSSKz9cA2C95rKl59hBR3bjqrrrp37BVN6H7KB73OvGEKUNPXbUPupMQcWlYqW2djCAV73YT_JwcqNrt9iEMtybt49k8wE8ba2ub27GGGYy8RK8YY99gUAgflNSz782ROJFIYRM5PN_V-sF3A1taBGMR7C_vtq4l3Db_FzPV1dD2MMZNk8xhIOT89Hsg3-_G02mn_zXcToeNnPyGh5xP20 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VBQEXvksXChgJjhZx4sS2EEIIqLpqdwWih56wHNuBRTS77e6C-E_8SDxxkqUg0F564GxPFMfPM5PkzRuAxz5VGNk9FS6pKOeiotJmGbWpQYE4Zwtvm2YTYjyWR0fq7Qb86GphkFbZ-cTGUbupxW_kT0OaIEN2zYR4MTuh2DUK_652LTQiLPb992_hlW3-fPg67O-TNN19c_hqj7ZdBajNC76gVnDFcmekT0pZ2HDBzAUXXaZG2NL7zOTch3cUI0zJyqo0zLuySJziljmFMgfB4V_gWDCKRMF0tJL4ZTwW3uUZlYypljcU2WSNOuXkOPgIpJOpRi1Upn8Lhn8mu79zNn8JgrvX_q_Hdx2utsk2eRlPxw3Y8PVNuDRq6QS3YPhuaZAshaVeZLYqoSDTihw3LFNP2rYaH0nstT0nYRLpnzMOIMn2Nrw_h2VswWY9rf02EOUFL72wmfUJD7sjjai8E4WorMtzwQYgui3WtpVdx-4fX3THr_usV-DQCA6d5DqAYwCst5xF6ZE1bFSHIt2V1oZgoEN8XMP2WW_bpl8xrVrTeqcDnm7d4FyvUDeAR_1wcGD4V8rUfrrEOTyknSFLzwdwJ2K8X27GmMhUEkbEGfT3E1Ac_exIPfnUiKQXhZQqUXf_fVsP4fLe4ehAHwzH-_fgCq4nMjV3YHNxuvT34aL9upjMTx80Z53Ah_M9Gz8BrWiW6g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD6aOjTxwriOsgFGgseIOHFiWxNCwFZRDapyedgTlmM7UMTSsrZD_DN-HseJkzIQqC974Nk-URyfm-PvfAfgoUukj-wu4jYuI8Z4GQmTppFJtCeIsyZ3pm42wUcjcXwsxxvwo62F8bDK1ifWjtpOjf9H_hjTBIHZtSdLKgMsYnwweDr7GvkOUv6mtW2n0ajIkfv-DY9v8yfDA9zrR0kyOHz_4mUUOgxEJsvZIjKcSZpZLVxciNzgw1OL7rpINDeFc6nOmMPziua6oEVZaOpskcdWMkOt9JQH6Pw3OaYYrAebzw9H47crwl_KmjK8LI0EpTKgiBpsWc1VOTlBj-HBZbLmDhXJ30Ljn6nv7wjOX0LiYPv__ZhX4UpIw8mzxm6uwYarrsPW6wA0uAHDN0vtYVS-CIzMVsUVZFqSkxp_6khouPGRNF245wQnke6b-wEPv70J7y5gGbegV00rdxuIdJwVjpvUuJjhTgnNS2d5zktjs4zTPvB2u5UJhOy-L8gX1SLvPquVoiivKCrOFCpKH2gnOWtISdaQka1GqbboFsOEwsi5hux-JxsSsybhWlN6r1VCFRzkXK00sA8PumF0bf6-SlduuvRzGCakmL9nfdhp9L1bbkop2l2MI_ycJXQTPG36-ZFq8qmmT89zIWQs7_z7te7DFpqEejUcHe3CZb-cBsK5B73F6dLdhUvmbDGZn94Lhk_gw8Uax0-ydKEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+performance+of+machine+learning+methods+for+neuroimaging+data&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Jollans%2C+Lee&rft.au=Boyle%2C+Rory&rft.au=Artiges%2C+Eric&rft.au=Banaschewski%2C+Tobias&rft.date=2019-10-01&rft.eissn=1095-9572&rft.volume=199&rft.spage=351&rft_id=info:doi/10.1016%2Fj.neuroimage.2019.05.082&rft_id=info%3Apmid%2F31173905&rft.externalDocID=31173905 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |