Fatty acid oxidation: An emerging facet of metabolic transformation in cancer
Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer c...
Uložené v:
| Vydané v: | Cancer letters Ročník 435; s. 92 - 100 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Ireland
Elsevier B.V
28.10.2018
Elsevier Limited |
| Predmet: | |
| ISSN: | 0304-3835, 1872-7980, 1872-7980 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a “lipolytic phenotype” of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway.
•FAO emerges as a new aspect of metabolic transformation in cancer.•Cancer cells rely on FAO for growth, stemness, drug resistance and metastasis.•FAO is reprogrammed in cancer and cancer-associated immune and other host cells.•FAO is druggable given the differential dependence of cancer and normal tissues.•FAO inhibitors including those for other ailments offer new anti-cancer therapies. |
|---|---|
| AbstractList | Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a “lipolytic phenotype” of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway.
•FAO emerges as a new aspect of metabolic transformation in cancer.•Cancer cells rely on FAO for growth, stemness, drug resistance and metastasis.•FAO is reprogrammed in cancer and cancer-associated immune and other host cells.•FAO is druggable given the differential dependence of cancer and normal tissues.•FAO inhibitors including those for other ailments offer new anti-cancer therapies. Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a “lipolytic phenotype” of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway. Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a "lipolytic phenotype" of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway.Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a "lipolytic phenotype" of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway. |
| Author | Temkin, Sarah M. Wang, Xiang-Yang Ma, Yibao Wang, Wei Fang, Xianjun Hawkridge, Adam M. Guo, Chunqing |
| AuthorAffiliation | b Gynecologic Oncology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA c Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA a Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA d Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA |
| AuthorAffiliation_xml | – name: b Gynecologic Oncology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA – name: c Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA – name: a Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA – name: d Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA |
| Author_xml | – sequence: 1 givenname: Yibao orcidid: 0000-0002-3270-8893 surname: Ma fullname: Ma, Yibao organization: Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA – sequence: 2 givenname: Sarah M. surname: Temkin fullname: Temkin, Sarah M. organization: Gynecologic Oncology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA – sequence: 3 givenname: Adam M. surname: Hawkridge fullname: Hawkridge, Adam M. organization: Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA – sequence: 4 givenname: Chunqing surname: Guo fullname: Guo, Chunqing organization: Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA – sequence: 5 givenname: Wei surname: Wang fullname: Wang, Wei organization: Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA – sequence: 6 givenname: Xiang-Yang surname: Wang fullname: Wang, Xiang-Yang organization: Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA – sequence: 7 givenname: Xianjun surname: Fang fullname: Fang, Xianjun email: xianjun.fang@vcuhealth.org organization: Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30102953$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU2LUzEYhYOMOB_6D0QCbty0vsnNTXIHEYbBUWHEja5Dmo-aem8yJulg_73ptA7aTSEkizzncN73nKOTmKJD6CWBOQHC367mRsfR1TkFIufQDvAn6IxIQWdikHCCzqADNutk15-i81JWANAz0T9Dpx0QoEPfnaEvN7rWDdYmWJx-B6trSPESX0XsJpeXIS6x18ZVnDyeXNWLNAaDa9ax-JSnBxyHiFsW4_Jz9NTrsbgX-_cCfb_58O360-z268fP11e3M9NzVtutrTDeEM35wgyDBU4l88ZoIoeFFZ7KvueCDpx55gfL-45aIYSTjPhOiu4Cvd_53q0Xk7PGxZZoVHc5TDpvVNJB_f8Tww-1TPeKUwYDgWbwZm-Q06-1K1VNoRg3jjq6tC6KgpR0YIRu0dcH6Cqtc2zjNWqgTMgettSrfxM9Rvm76QawHWByKiU7_4gQUNtC1UrtClXbQhW0A7zJLg9kJtSHrbe5wnhMvF-Ta13cB5dVMcG1omzIzlRlUzhm8O7AwIwhBqPHn25zXP4HUBPShA |
| CitedBy_id | crossref_primary_10_1016_j_autrev_2024_103579 crossref_primary_10_1007_s11060_025_05208_5 crossref_primary_10_1007_s12015_022_10348_6 crossref_primary_10_1016_j_smallrumres_2024_107376 crossref_primary_10_1016_j_ccell_2023_02_009 crossref_primary_10_1186_s40170_021_00276_3 crossref_primary_10_1038_s41420_025_02364_5 crossref_primary_10_3389_fphar_2023_1113007 crossref_primary_10_3390_cancers12082157 crossref_primary_10_1038_s41419_020_03203_4 crossref_primary_10_1002_ctm2_1061 crossref_primary_10_1016_j_vetmic_2023_109932 crossref_primary_10_3390_cancers13030474 crossref_primary_10_1002_cam4_70975 crossref_primary_10_1007_s10555_024_10170_1 crossref_primary_10_3390_ani14010167 crossref_primary_10_1111_febs_17345 crossref_primary_10_3390_cancers13092042 crossref_primary_10_3389_fcell_2025_1615454 crossref_primary_10_3390_ijms231710172 crossref_primary_10_1016_j_envint_2024_108488 crossref_primary_10_1038_s41417_023_00598_y crossref_primary_10_31083_j_fbl2703095 crossref_primary_10_1186_s12964_024_01792_7 crossref_primary_10_1016_j_semcancer_2025_03_003 crossref_primary_10_1016_j_cej_2025_165328 crossref_primary_10_1016_j_bbrc_2023_06_090 crossref_primary_10_3390_cancers12040862 crossref_primary_10_1016_j_archoralbio_2024_105982 crossref_primary_10_1016_j_pharmthera_2025_108849 crossref_primary_10_1016_j_ymben_2025_04_005 crossref_primary_10_1016_j_yexcr_2021_112892 crossref_primary_10_1158_1940_6207_CAPR_20_0425 crossref_primary_10_1016_j_jff_2019_103658 crossref_primary_10_3389_fphar_2024_1423629 crossref_primary_10_3390_genes15060755 crossref_primary_10_3390_metabo15070428 crossref_primary_10_1038_s41419_025_07781_z crossref_primary_10_1007_s13402_025_01081_6 crossref_primary_10_3389_fendo_2025_1534393 crossref_primary_10_1016_j_oraloncology_2025_107571 crossref_primary_10_1016_j_ejphar_2023_176034 crossref_primary_10_3390_ijms26031186 crossref_primary_10_1016_j_isci_2023_106899 crossref_primary_10_1002_ar_24725 crossref_primary_10_1038_s41419_020_03336_6 crossref_primary_10_3390_cancers13236135 crossref_primary_10_1016_j_tcb_2023_03_013 crossref_primary_10_1016_j_gendis_2025_101806 crossref_primary_10_3389_fimmu_2024_1431112 crossref_primary_10_1158_0008_5472_CAN_21_4029 crossref_primary_10_3390_biomedicines8080270 crossref_primary_10_1007_s11010_023_04685_4 crossref_primary_10_1002_mc_23635 crossref_primary_10_1038_s41467_022_32101_w crossref_primary_10_1186_s12943_021_01421_8 crossref_primary_10_1186_s12964_025_02109_y crossref_primary_10_3390_cancers12103044 crossref_primary_10_1186_s12943_025_02263_4 crossref_primary_10_3390_ijms23031155 crossref_primary_10_1038_s42003_024_06993_x crossref_primary_10_1186_s12943_024_02119_3 crossref_primary_10_1002_advs_202105126 crossref_primary_10_1111_jcmm_18042 crossref_primary_10_1186_s43556_020_00012_1 crossref_primary_10_1155_2022_2339584 crossref_primary_10_3390_ijms241914857 crossref_primary_10_1007_s10555_021_10012_4 crossref_primary_10_3390_metabo13080910 crossref_primary_10_3390_cancers14092340 crossref_primary_10_3390_foods12132629 crossref_primary_10_1042_BST20231141 crossref_primary_10_1002_mco2_559 crossref_primary_10_1016_j_heliyon_2024_e28441 crossref_primary_10_3390_ijms25147747 crossref_primary_10_1038_s41419_025_07644_7 crossref_primary_10_1038_s42003_025_08031_w crossref_primary_10_3389_fimmu_2022_955614 crossref_primary_10_3390_jcm11216544 crossref_primary_10_1002_1878_0261_13752 crossref_primary_10_3389_fphar_2021_670167 crossref_primary_10_3390_metabo10090345 crossref_primary_10_1186_s12944_024_02024_0 crossref_primary_10_1186_s12951_025_03516_6 crossref_primary_10_1002_1878_0261_13052 crossref_primary_10_1016_j_heliyon_2023_e23867 crossref_primary_10_1016_j_canlet_2022_215912 crossref_primary_10_1111_febs_16181 crossref_primary_10_48130_animadv_0025_0023 crossref_primary_10_1089_ars_2024_0741 crossref_primary_10_3389_fonc_2025_1564226 crossref_primary_10_1016_j_cellsig_2024_111087 crossref_primary_10_1016_j_semcancer_2024_12_002 crossref_primary_10_3389_fonc_2020_01010 crossref_primary_10_3389_fonc_2023_1271505 crossref_primary_10_1002_mc_23898 crossref_primary_10_1016_j_bcp_2022_115379 crossref_primary_10_7759_cureus_71968 crossref_primary_10_1016_j_apsb_2025_09_019 crossref_primary_10_3390_cancers17071077 crossref_primary_10_4103_RPS_RPS_209_23 crossref_primary_10_3389_fonc_2022_850401 crossref_primary_10_1007_s00432_022_04501_4 crossref_primary_10_1080_14728222_2023_2255377 crossref_primary_10_1002_cac2_12591 crossref_primary_10_1038_s41421_022_00406_1 crossref_primary_10_1186_s12951_023_01876_5 crossref_primary_10_1177_15347354221114100 crossref_primary_10_1016_j_toxicon_2025_108339 crossref_primary_10_1038_s41598_024_59746_5 crossref_primary_10_1042_BSR20220645 crossref_primary_10_3390_ijms241813928 crossref_primary_10_7759_cureus_91345 crossref_primary_10_3390_pharmaceutics15020437 crossref_primary_10_1016_j_molmet_2024_102031 crossref_primary_10_1177_17588359231152839 crossref_primary_10_3390_ph15101295 crossref_primary_10_1186_s12906_024_04425_1 crossref_primary_10_1186_s12951_024_02585_3 crossref_primary_10_1093_ckj_sfad046 crossref_primary_10_3389_fphar_2023_1163160 crossref_primary_10_1016_j_ejphar_2021_174608 crossref_primary_10_1016_j_pbiomolbio_2025_05_002 crossref_primary_10_1002_mco2_27 crossref_primary_10_31083_j_fbl2902066 crossref_primary_10_1093_jb_mvab004 crossref_primary_10_3390_cells12202486 crossref_primary_10_3389_fimmu_2024_1302587 crossref_primary_10_1016_j_bcp_2024_116122 crossref_primary_10_3389_fphar_2021_769647 crossref_primary_10_3390_ijms25158026 crossref_primary_10_1186_s12943_025_02265_2 crossref_primary_10_1134_S1990519X24700561 crossref_primary_10_1186_s12967_024_05091_0 crossref_primary_10_3390_cancers14194663 crossref_primary_10_1007_s12672_024_01069_y crossref_primary_10_1007_s11912_022_01223_1 crossref_primary_10_3390_cancers14040871 crossref_primary_10_1016_j_bbcan_2022_188837 crossref_primary_10_1016_j_phymed_2023_155128 crossref_primary_10_1073_pnas_2302878120 crossref_primary_10_1080_14789450_2021_1912602 crossref_primary_10_1186_s13046_024_02952_w crossref_primary_10_3389_fimmu_2025_1524801 crossref_primary_10_1038_s41419_021_04411_2 crossref_primary_10_1177_1010428320965284 crossref_primary_10_1016_j_bbalip_2025_159661 crossref_primary_10_7717_peerj_16335 crossref_primary_10_3389_fonc_2025_1464914 crossref_primary_10_1016_j_apsb_2023_09_005 crossref_primary_10_1155_2021_1815178 crossref_primary_10_1016_j_seminoncol_2025_152351 crossref_primary_10_1038_s41392_021_00659_4 crossref_primary_10_1038_s41523_022_00481_3 crossref_primary_10_1016_j_freeradbiomed_2024_10_258 crossref_primary_10_1515_biol_2022_0696 crossref_primary_10_3390_cancers16071313 crossref_primary_10_1016_j_cbi_2023_110672 crossref_primary_10_1158_0008_5472_CAN_23_2926 crossref_primary_10_1007_s11033_025_10472_9 crossref_primary_10_3389_fphar_2021_730751 crossref_primary_10_1158_1541_7786_MCR_20_0579 crossref_primary_10_3390_ijms23105572 crossref_primary_10_1007_s00217_021_03767_1 crossref_primary_10_3389_fendo_2025_1580559 crossref_primary_10_3390_biom14050601 crossref_primary_10_3389_fcvm_2020_00035 crossref_primary_10_1038_s41392_021_00485_8 crossref_primary_10_3389_fcvm_2024_1392816 crossref_primary_10_1186_s12967_024_05084_z crossref_primary_10_3389_fbioe_2022_943906 crossref_primary_10_3390_metabo12080697 crossref_primary_10_3389_fonc_2020_00928 crossref_primary_10_1016_j_heliyon_2024_e28837 crossref_primary_10_1186_s12920_022_01369_8 crossref_primary_10_1016_j_bbrc_2023_04_074 crossref_primary_10_1016_j_saa_2025_126275 crossref_primary_10_1016_j_cmet_2020_04_010 crossref_primary_10_1016_j_critrevonc_2023_104037 crossref_primary_10_1038_s41416_022_01869_5 crossref_primary_10_1186_s13045_021_01200_4 crossref_primary_10_1016_j_semcancer_2023_05_002 crossref_primary_10_1038_s41556_024_01439_2 crossref_primary_10_1186_s12935_021_02057_w crossref_primary_10_1186_s40364_024_00681_y crossref_primary_10_1038_s41467_022_29137_3 crossref_primary_10_1016_j_biomaterials_2025_123259 crossref_primary_10_1155_2022_2159794 crossref_primary_10_1016_j_bbcan_2024_189149 crossref_primary_10_1016_j_xpro_2024_103518 crossref_primary_10_3390_biomedicines9020127 crossref_primary_10_1089_genbio_2023_0017 crossref_primary_10_2174_0109298673259347231019121757 crossref_primary_10_3389_fmolb_2021_742859 crossref_primary_10_3390_cells11030413 crossref_primary_10_3390_ijms24098441 crossref_primary_10_1016_j_bbamcr_2020_118944 crossref_primary_10_1111_liv_15409 crossref_primary_10_1016_j_metabol_2025_156334 crossref_primary_10_1111_febs_70193 crossref_primary_10_3390_cancers13050935 crossref_primary_10_1155_2024_6673550 crossref_primary_10_1080_14728222_2025_2532394 crossref_primary_10_3390_metabo14030148 crossref_primary_10_1038_s41598_020_58334_7 crossref_primary_10_1088_1361_6463_adbfa2 crossref_primary_10_3390_nu14030573 crossref_primary_10_1016_j_neo_2025_101125 crossref_primary_10_1158_1541_7786_MCR_20_0991 crossref_primary_10_1016_j_actbio_2023_05_040 crossref_primary_10_1016_j_molcel_2024_02_035 crossref_primary_10_1016_j_semcancer_2021_01_001 crossref_primary_10_1038_s41698_024_00662_2 crossref_primary_10_1002_cac2_12360 crossref_primary_10_1177_00037028241254403 crossref_primary_10_1007_s12094_022_02863_2 crossref_primary_10_1007_s12282_022_01356_y crossref_primary_10_1002_cac2_12247 crossref_primary_10_3389_fgene_2024_1505011 crossref_primary_10_1016_j_ejphar_2023_175655 crossref_primary_10_1016_j_bcp_2023_115550 crossref_primary_10_1016_j_bbcan_2025_189447 crossref_primary_10_1016_j_molmet_2024_102044 crossref_primary_10_3389_fphar_2024_1516650 crossref_primary_10_1016_j_bbadis_2025_167919 crossref_primary_10_1186_s13046_025_03276_z crossref_primary_10_1111_imm_13871 crossref_primary_10_3390_cancers14081865 crossref_primary_10_1002_advs_202510004 crossref_primary_10_1016_j_jbc_2023_105470 crossref_primary_10_1038_s41419_024_06956_4 crossref_primary_10_1016_j_bbalip_2021_159068 crossref_primary_10_1016_j_ijbiomac_2025_146087 crossref_primary_10_1038_s41397_024_00355_w crossref_primary_10_1016_j_tranon_2021_101023 crossref_primary_10_1038_s41420_024_01807_9 crossref_primary_10_1111_cbdd_70158 crossref_primary_10_1158_0008_5472_CAN_20_2052 crossref_primary_10_3390_ijms22031444 crossref_primary_10_1016_j_molmet_2021_101389 crossref_primary_10_3390_ijms21218031 crossref_primary_10_1038_s41598_023_41176_4 crossref_primary_10_1038_s41419_024_06666_x crossref_primary_10_3390_inorganics11100394 crossref_primary_10_1186_s12911_022_02020_3 crossref_primary_10_1002_advs_202306515 crossref_primary_10_1073_pnas_2221653120 crossref_primary_10_1016_j_bbcan_2025_189318 crossref_primary_10_1016_j_seminoncol_2025_152392 crossref_primary_10_1186_s12935_021_01799_x crossref_primary_10_3390_ijms26051857 crossref_primary_10_3389_fonc_2020_572919 crossref_primary_10_1016_j_bbcan_2025_189430 crossref_primary_10_1016_j_addr_2020_07_013 crossref_primary_10_1093_rheumatology_keab788 crossref_primary_10_1155_2021_5754592 crossref_primary_10_1177_15330338221140655 crossref_primary_10_1016_j_canlet_2024_217415 crossref_primary_10_1016_j_biopha_2024_116247 crossref_primary_10_1016_j_biopha_2022_113376 crossref_primary_10_1002_cac2_12502 crossref_primary_10_1016_j_mcpro_2025_101026 crossref_primary_10_1016_j_taap_2024_117042 crossref_primary_10_1038_s41598_025_95173_w crossref_primary_10_1016_j_biopha_2023_114346 crossref_primary_10_1038_s41598_020_79565_8 crossref_primary_10_1186_s40170_020_00237_2 crossref_primary_10_3390_cells10020202 crossref_primary_10_1089_ars_2020_8161 crossref_primary_10_1096_fj_202403019R crossref_primary_10_3390_cancers12030581 crossref_primary_10_1016_j_cellsig_2023_110838 crossref_primary_10_1038_s41419_022_04606_1 crossref_primary_10_3390_cancers14194913 crossref_primary_10_1016_j_jare_2024_05_001 crossref_primary_10_3389_fonc_2021_656851 crossref_primary_10_2174_0113895575339660250106093738 crossref_primary_10_1016_j_chemphyslip_2021_105057 crossref_primary_10_1186_s12885_024_12781_x crossref_primary_10_1186_s12964_022_00849_9 crossref_primary_10_4252_wjsc_v12_i11_1295 crossref_primary_10_2174_0929867331666230707094644 crossref_primary_10_1002_jcp_70000 crossref_primary_10_1038_s41467_023_36122_x crossref_primary_10_1111_obr_13833 crossref_primary_10_3892_ol_2024_14222 crossref_primary_10_1002_adma_202415550 crossref_primary_10_1007_s00109_024_02461_5 crossref_primary_10_1016_j_semcancer_2022_10_005 crossref_primary_10_1186_s12944_024_02426_0 crossref_primary_10_3389_fcell_2021_675617 crossref_primary_10_1016_j_freeradbiomed_2024_01_004 crossref_primary_10_3389_fonc_2020_00428 crossref_primary_10_3390_biology13110892 crossref_primary_10_3390_ijms21207589 crossref_primary_10_3390_ijms22031258 crossref_primary_10_3892_ijmm_2024_5439 crossref_primary_10_1016_j_cellsig_2023_110847 crossref_primary_10_1016_j_jtemb_2024_127507 crossref_primary_10_3390_ijms24129921 crossref_primary_10_1016_j_cmet_2019_11_010 crossref_primary_10_1016_j_devcel_2023_07_005 crossref_primary_10_3892_or_2023_8575 crossref_primary_10_1038_s41419_022_04730_y crossref_primary_10_15212_AMM_2024_0057 crossref_primary_10_1016_j_jds_2024_09_018 crossref_primary_10_3390_nu14040851 crossref_primary_10_1016_j_canlet_2023_216352 crossref_primary_10_3390_cancers15154013 crossref_primary_10_1016_j_intimp_2020_107198 crossref_primary_10_3390_cancers12113318 crossref_primary_10_3390_cells11091392 crossref_primary_10_1038_s41401_025_01581_z crossref_primary_10_1021_jacs_3c02043 crossref_primary_10_3389_fonc_2023_1230934 crossref_primary_10_1016_j_scitotenv_2024_171510 crossref_primary_10_1002_1878_0261_13560 crossref_primary_10_1002_pmic_202300393 crossref_primary_10_1038_s41419_023_05968_w crossref_primary_10_1084_jem_20201606 crossref_primary_10_3389_fimmu_2025_1603032 crossref_primary_10_1038_s41419_023_06181_5 crossref_primary_10_1016_j_pestbp_2023_105756 crossref_primary_10_3389_fmed_2021_740087 crossref_primary_10_3390_ijms252111760 crossref_primary_10_1038_s41420_025_02351_w crossref_primary_10_1016_j_drudis_2024_104220 crossref_primary_10_1038_s41598_022_06934_w crossref_primary_10_3389_fonc_2022_987499 crossref_primary_10_1007_s13105_021_00791_3 crossref_primary_10_3389_fphar_2022_1032806 crossref_primary_10_3390_ani11102969 crossref_primary_10_1080_10717544_2021_1995081 crossref_primary_10_1186_s12967_024_05446_7 crossref_primary_10_1186_s13046_024_03203_8 crossref_primary_10_1016_j_canlet_2024_217076 crossref_primary_10_3390_ijms232315263 crossref_primary_10_1038_s41420_025_02554_1 crossref_primary_10_1177_00368504251352375 crossref_primary_10_3389_fonc_2022_940402 crossref_primary_10_3390_antiox12112012 crossref_primary_10_3390_cells10051056 crossref_primary_10_3390_antiox9030243 crossref_primary_10_3892_ol_2024_14801 |
| Cites_doi | 10.1007/s10495-015-1137-x 10.1053/j.semnuclmed.2016.07.005 10.1016/j.stem.2016.06.001 10.1182/blood-2014-12-617498 10.1093/neuonc/now128 10.1172/JCI62129 10.1158/1535-7163.MCT-14-0183 10.1056/NEJMoa0808710 10.1194/jlr.M200312-JLR200 10.1016/0024-3205(89)90401-3 10.1038/nrc2222 10.1093/toxsci/68.1.93 10.1016/j.cell.2015.05.025 10.1126/science.123.3191.309 10.1016/j.ccr.2012.08.014 10.1038/nrc3245 10.1111/j.1527-3466.2007.00006.x 10.1038/nrc2981 10.1038/ni.3366 10.1021/jm101360s 10.2174/157488407781668776 10.18632/oncotarget.16123 10.1038/nature08268 10.1038/nrc3599 10.1038/sj.pcan.4500879 10.4049/jimmunol.1003613 10.1016/j.cmet.2017.11.001 10.1042/bst0301064 10.1016/j.molcel.2016.08.014 10.1016/j.ebiom.2016.11.025 10.1016/j.immuni.2011.12.007 10.1016/j.plipres.2015.11.004 10.1016/j.canlet.2015.11.020 10.1038/onc.2012.70 10.1038/onc.2015.447 10.1038/nrc3483 10.1038/nrc.2016.89 10.1038/nature21028 10.1016/j.celrep.2016.02.004 10.2337/diabetes.50.1.123 10.1038/leu.2015.213 10.1158/0008-5472.CAN-14-2676 10.1038/nm.4093 10.1158/1078-0432.CCR-11-3281 10.1038/s41388-018-0384-z 10.1097/00005344-200012000-00016 10.1016/S0021-9258(17)34693-8 10.1038/cddis.2016.132 10.1038/nrc1586 10.1038/ncb2329 10.1159/000019923 10.1038/onc.2017.124 10.1371/journal.pone.0046484 10.1158/2326-6066.CIR-15-0036 10.1016/j.canlet.2017.03.019 10.1016/S0022-5347(01)66366-3 10.1016/j.immuni.2017.12.004 10.1038/nature14362 10.1021/jm100809g 10.1016/j.semcdb.2012.01.003 10.1126/science.1160809 10.1016/j.cmet.2016.07.003 10.18632/oncotarget.6817 10.1186/1471-2091-13-23 10.1158/2159-8290.CD-16-0441 10.1007/s11307-014-0814-4 10.1038/nm.2172 10.1101/gad.276733.115 10.1016/j.cmet.2015.12.004 10.1146/annurev-physiol-021115-105045 10.1073/pnas.97.4.1444 10.18632/oncotarget.6757 10.1172/jci.insight.87489 10.1016/j.bbabio.2010.10.022 10.1038/nm.2882 10.1182/blood-2013-03-489468 10.1002/nbm.2794 10.1016/S0021-9258(18)47214-6 10.1038/onc.2016.150 10.1371/journal.pbio.2003782 10.1038/cddis.2017.21 10.1038/onc.2016.103 10.1074/jbc.M707965200 10.1002/iub.78 10.2337/db12-0259 10.1016/j.cmet.2015.12.006 10.1016/j.cmet.2013.05.017 10.1038/s41598-017-13505-x 10.1038/ni.2956 10.1016/j.mam.2004.06.004 10.1038/nm.2492 10.1101/gad.1987211 10.1016/j.celrep.2016.07.009 10.1158/0008-5472.CAN-15-2616 10.1016/j.canlet.2018.05.017 10.1093/jnci/djt030 10.1074/jbc.272.6.3324 10.1016/j.ccr.2013.06.014 10.1023/A:1007705707667 10.1158/0008-5472.CAN-16-0651 10.1186/1471-2407-11-56 10.1016/j.celrep.2016.01.004 10.1038/nbt.2285 10.1038/sj.cdd.4401636 10.1038/sj.onc.1208622 10.1161/01.RES.86.5.580 10.1016/j.cell.2010.01.025 10.1038/nature08097 10.1038/ng.3073 10.1038/nature20791 10.1097/00008390-199205000-00004 10.1016/j.cmet.2006.05.011 10.1016/j.plipres.2012.10.004 10.1016/j.celrep.2014.08.056 10.1172/JCI38942 10.1016/j.plefa.2010.02.029 10.1038/nm.4055 |
| ContentType | Journal Article |
| Copyright | 2018 Copyright © 2018. Published by Elsevier B.V. Copyright Elsevier Limited Oct 28, 2018 |
| Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier B.V. – notice: Copyright Elsevier Limited Oct 28, 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TO 7U9 H94 K9. NAPCQ 7X8 5PM |
| DOI | 10.1016/j.canlet.2018.08.006 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7980 |
| EndPage | 100 |
| ExternalDocumentID | PMC6240910 30102953 10_1016_j_canlet_2018_08_006 S0304383518305184 |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GeographicLocations | Asia Europe |
| GeographicLocations_xml | – name: Europe – name: Asia |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA099326 – fundername: NCI NIH HHS grantid: R01 CA175033 – fundername: NCI NIH HHS grantid: P30 CA016059 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4CK 4G. 5GY 5RE 5VS 6J9 6PF 7-5 71M 8FE 8FH 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABGSF ABJNI ABMAC ABMZM ABUDA ACDAQ ACGFO ACGFS ACIEU ACIUM ACLOT ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFPUW AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IH2 IHE J1W K-O KOM LK8 M29 M41 MO0 N9A O-L O9- OAUVE OC~ OO- OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSU SSZ T5K Z5R ~G- ~HD 3V. 7RV 7X7 8C1 8FI AACTN AAIAV AFCTW AFKRA AFKWA AJOXV AMFUW AZQEC BBNVY BENPR BHPHI FYUFA GUQSH HCIFZ M1P M2M M2O M7P RIG .55 .GJ 3O- 53G 9DU AAQXK AAYXX ABWVN ABXDB ACRPL ADMUD ADNMO AFFNX AFJKZ AGQPQ AGRDE AI. AIGII ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HED HMK HMO HVGLF HZ~ R2- SAE SEW UDS VH1 WUQ X7M ZGI CGR CUY CVF ECM EIF NPM 7TO 7U9 H94 K9. NAPCQ 7X8 5PM |
| ID | FETCH-LOGICAL-c564t-c5ad7cfc1a66bc99d06284fcca189bd7f2855672964f4f9d6532d777e841f3873 |
| ISICitedReferencesCount | 398 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444662700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3835 1872-7980 |
| IngestDate | Tue Sep 30 16:46:32 EDT 2025 Sun Sep 28 15:10:06 EDT 2025 Tue Oct 07 06:59:05 EDT 2025 Thu Apr 03 06:58:44 EDT 2025 Tue Nov 18 22:19:49 EST 2025 Sat Nov 29 07:18:00 EST 2025 Tue Jul 16 04:31:35 EDT 2024 Tue Oct 14 19:38:58 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | NADPH Fatty acid β-oxidation ATP Lipolytic phenotype Cancer |
| Language | English |
| License | Copyright © 2018. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c564t-c5ad7cfc1a66bc99d06284fcca189bd7f2855672964f4f9d6532d777e841f3873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-3270-8893 |
| PMID | 30102953 |
| PQID | 2092478500 |
| PQPubID | 2031080 |
| PageCount | 9 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240910 proquest_miscellaneous_2088294120 proquest_journals_2092478500 pubmed_primary_30102953 crossref_primary_10_1016_j_canlet_2018_08_006 crossref_citationtrail_10_1016_j_canlet_2018_08_006 elsevier_sciencedirect_doi_10_1016_j_canlet_2018_08_006 elsevier_clinicalkey_doi_10_1016_j_canlet_2018_08_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-10-28 |
| PublicationDateYYYYMMDD | 2018-10-28 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-28 day: 28 |
| PublicationDecade | 2010 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland – name: Clare |
| PublicationTitle | Cancer letters |
| PublicationTitleAlternate | Cancer Lett |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V Elsevier Limited |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Limited |
| References | Liu, Zuckier, Ghesani (bib62) 2010; 30 Shi, Fu, Jia, He, Fu, Wang (bib39) 2016; 14 Wu, Hurren, MacLean, Gronda, Jitkova, Sukhai, Minden, Schimmer (bib42) 2015; 20 Warburg, Posener, Negelein (bib2) 1924; 152 Park, Vithayathil, Kumar, Sung, Dobrolecki, Putluri, Bhat, Bhowmik, Gupta, Arora, Wu, Tsouko, Zhang, Maity, Donti, Graham, Frigo, Coarfa, Yotnda, Putluri, Sreekumar, Lewis, Creighton, Wong, Kaipparettu (bib51) 2016; 14 Liu, Liu, Jiang, Carew, Ogasawara, Pelicano, Croce, Estrov, Xu, Keating, Huang (bib40) 2016; 35 Caro, Kishan, Norberg, Stanley, Chapuy, Ficarro, Polak, Tondera, Gounarides, Yin, Zhou, Green, Chen, Monti, Marto, Shipp, Danial (bib19) 2012; 22 Hermanova, Arruabarrena-Aristorena, Valis, Nuskova, Alberich-Jorda, Fiser, Fernandez-Ruiz, Kavan, Pecinova, Niso-Santano, Zaliova, Novak, Houstek, Mracek, Kroemer, Carracedo, Trka, Starkova (bib81) 2016; 30 Cook, Soto-Pantoja, Clarke, Cruz, Zwart, Warri, Hilakivi-Clarke, Roberts, Clarke (bib45) 2016; 76 Cairns, Harris, Mak (bib7) 2011; 11 Abu-Elheiga, Brinkley, Zhong, Chirala, Woldegiorgis, Wakil (bib34) 2000; 97 Padanad, Konstantinidou, Venkateswaran, Melegari, Rindhe, Mitsche, Yang, Batten, Huffman, Liu, Tang, Rodriguez-Canales, Kalhor, Shay, Minna, McDonald, Wistuba, DeBerardinis, Scaglioni (bib43) 2016; 16 Reilly, Mak (bib26) 2012; 18 Ricciardi, Mirabilii, Allegretti, Licchetta, Calarco, Torrisi, Foa, Nicolai, Peluso, Tafuri (bib114) 2015; 126 Effert, Bares, Handt, Wolff, Bull, Jakse (bib65) 1996; 155 Vander Heiden, Cantley, Thompson (bib3) 2009; 324 Bensaad, Favaro, Lewis, Peck, Lord, Collins, Pinnick, Wigfield, Buffa, Li, Zhang, Wakelam, Karpe, Schulze, Harris (bib120) 2014; 9 Cheong, Lu, Lindsten, Thompson (bib16) 2012; 30 Vats, Mukundan, Odegaard, Zhang, Smith, Morel, Wagner, Greaves, Murray, Chawla (bib93) 2006; 4 Herber, Cao, Nefedova, Novitskiy, Nagaraj, Tyurin, Corzo, Cho, Celis, Lennox, Knight, Padhya, McCaffrey, McCaffrey, Antonia, Fishman, Ferris, Kagan, Gabrilovich (bib99) 2010; 16 Fragasso, Spoladore, Cuko, Palloshi (bib108) 2007; 2 Xie, Jones, Deeney, Hur, Bankaitis (bib77) 2016; 14 Shao, Mohamed, Xu, Waters, Jing, Ma, Zhang, Spiegel, Idowu, Fang (bib44) 2016; 7 Liu (bib63) 2006; 9 Ye, Adane, Khan, Sullivan, Minhajuddin, Gasparetto, Stevens, Pei, Balys, Ashton, Klemm, Woolthuis, Stranahan, Park, Jordan (bib78) 2016; 19 Paumen, Ishida, Muramatsu, Yamamoto, Honjo (bib68) 1997; 272 Hossain, Al-Khami, Wyczechowska, Hernandez, Zheng, Reiss, Valle, Trillo-Tinoco, Maj, Zou, Rodriguez, Ochoa (bib98) 2015; 3 Pearce, Walsh, Cejas, Harms, Shen, Wang, Jones, Choi (bib89) 2009; 460 German, Yoon, Yusuf, Murphy, Finley, Laurent, Haas, Satterstrom, Guarnerio, Zaganjor, Santos, Pandolfi, Beck, Gygi, Scadden, Kaelin, Haigis (bib37) 2016; 63 Pike, Smift, Croteau, Ferrick, Wu (bib8) 2011; 1807 Zaugg, Yao, Reilly, Kannan, Kiarash, Mason, Huang, Sawyer, Fuerth, Faubert, Kalliomaki, Elia, Luo, Nadeem, Bungard, Yalavarthi, Growney, Wakeham, Moolani, Silvester, Ten, Bakker, Tsuchihara, Berger, Hill, Jones, Tsao, Robinson, Thompson, Pan, Mak (bib25) 2011; 25 Ceccarelli, Chomienne, Gubler, Arduini (bib113) 2011; 54 Wang, Attane, Milhas, Dirat, Dauvillier, Guerard, Gilhodes, Lazar, Alet, Laurent, Le Gonidec, Biard, Herve, Bost, Ren, Bono, Escourrou, Prentki, Nieto, Valet, Muller (bib60) 2017; 2 Bagger, Botker, Thomassen, Nielsen (bib107) 1997; 11 Poulsen, Siersbaek, Mandrup (bib29) 2012; 23 Merrill, Ni, Yoon, Tirmenstein, Narayanan, Benavides, Easton, Creech, Hu, McFarland, Hahn, Thomas, Morgan (bib53) 2002; 68 Hardie, Pan (bib33) 2002; 30 Yan, Parsons, Jin, McLendon, Rasheed, Yuan, Kos, Batinic-Haberle, Jones, Riggins, Friedman, Friedman, Reardon, Herndon, Kinzler, Velculescu, Vogelstein, Bigner (bib15) 2009; 360 Wong, Wang, Zecchin, Thienpont, Cornelissen, Kalucka, Garcia-Caballero, Missiaen, Huang, Bruning, Blacher, Vinckier, Goveia, Knobloch, Zhao, Dierkes, Shi, Hagerling, Moral-Darde, Wyns, Lippens, Jessberger, Fendt, Luttun, Noel, Kiefer, Ghesquiere, Moons, Schoonjans, Dewerchin, Eelen, Lambrechts, Carmeliet (bib23) 2017; 542 Wang, Rajput, Watabe, Liao, Cao (bib14) 2010; 2 Schoors, Bruning, Missiaen, Queiroz, Borgers, Elia, Zecchin, Cantelmo, Christen, Goveia, Heggermont, Godde, Vinckier, Van Veldhoven, Eelen, Schoonjans, Gerhardt, Dewerchin, Baes, De Bock, Ghesquiere, Lunt, Fendt, Carmeliet (bib22) 2015; 520 Pacilli, Calienni, Margarucci, D'Apolito, Petillo, Rocchi, Pasquinelli, Nicolai, Koverech, Calvani, Peluso, Montanaro (bib115) 2013; 105 Lin, Patel, Affleck, Wilson, Turnbull, Joshi, Maxwell, Stoll (bib48) 2017; 19 Li, Zhao, Zhou, Zhang, Zhao, Miao, Song, Sun, Liu, Zhao, Huang (bib87) 2013; 8 Giordano, Calvani, Petillo, Grippo, Tuccillo, Melone, Bonelli, Calarco, Peluso (bib69) 2005; 12 Mascagna, Ghanem, Morandini, d'Ischia, Misuraca, Lejeune, Prota (bib117) 1992; 2 Kennedy, Kiosoglous, Murphy, Pelle, Horowitz (bib104) 2000; 36 Ito, Carracedo, Weiss, Arai, Ala, Avigan, Schafer, Evans, Suda, Lee, Pandolfi (bib31) 2012; 18 Tung, Shi, Wong, Zhu, Gorczynski, Laister, Minden, Blechert, Genzel, Reichl, Spaner (bib80) 2013; 122 Sierra, Gratacos, Carrasco, Clotet, Urena, Serra, Asins, Hegardt, Casals (bib27) 2008; 283 Leamy, Egnatchik, Young (bib71) 2013; 52 Zou (bib96) 2005; 5 Zammit (bib21) 2008; 60 Keung, Ussher, Jaswal, Raubenheimer, Lam, Wagg, Lopaschuk (bib111) 2013; 62 Qu, Zeng, Liu, Wang, Deng (bib12) 2016; 7 Carracedo, Weiss, Leliaert, Bhasin, de Boer, Laurent, Adams, Sundvall, Song, Ito, Finley, Egia, Libermann, Gerhart-Hines, Puigserver, Haigis, Maratos-Flier, Richardson, Schafer, Pandolfi (bib75) 2012; 122 Wang, Zeng, Lu, Wang, Liu, He, Zhao, Wang, Li, Lu, Wu, Yu, Wang, Pu, Li, Jia, Shi, Xie, Kang, Huang, Ju, Xu (bib76) 2018 Itkonen, Brown, Urbanucci, Tredwell, Ho Lau, Barfeld, Hart, Guldvik, Takhar, Heemers, Erho, Bloch, Davicioni, Derua, Waelkens, Mohler, Clarke, Swinnen, Keun, Rekvig, Mills (bib119) 2017; 8 Fridman, Pages, Sautes-Fridman, Galon (bib92) 2012; 12 Pirat, Farce, Lebegue, Renault, Furman, Millet, Yous, Speca, Berthelot, Desreumaux, Chavatte (bib30) 2012; 55 Barger, Gallo, Tandon, Liu, Sullivan, Grimes, Plas (bib82) 2013; 32 Nomura, Liu, Rovira, Gonzalez-Hurtado, Lee, Wolfgang, Finkel (bib95) 2016; 17 Patra, Wang, Bhaskar, Miller, Wang, Wheaton, Chandel, Laakso, Muller, Allen, Jha, Smolen, Clasquin, Robey, Hay (bib17) 2013; 24 Jin, Alesi, Kang (bib4) 2016; 35 Bressler, Gay, Copeland, Bahl, Bedotto, Goldman (bib103) 1989; 44 Buzzai, Bauer, Jones, Deberardinis, Hatzivassiliou, Elstrom, Thompson (bib73) 2005; 24 Kantor, Lucien, Kozak, Lopaschuk (bib106) 2000; 86 Ashrafian, Horowitz, Frenneaux (bib105) 2007; 25 Petruzzelli, Wagner (bib110) 2016; 30 Ma, Yu, Mohamed, Shao, Wang, Sundaresan, Zweit, Idowu, Fang (bib18) 2016; 35 McGarry, Leatherman, Foster (bib35) 1978; 253 Mihaylova, Shaw (bib32) 2011; 13 Farge, Saland, de Toni, Aroua, Hosseini, Perry, Bosc, Sugita, Stuani, Fraisse, Scotland, Larrue, Boutzen, Feliu, Nicolau-Travers, Cassant-Sourdy, Broin, David, Serhan, Sarry, Tavitian, Kaoma, Vallar, Iacovoni, Linares, Montersino, Castellano, Griessinger, Collette, Duchamp, Barreira, Hirsch, Palama, Gales, Delhommeau, Garmy-Susini, Portais, Vergez, Selak, Danet-Desnoyers, Carroll, Recher, Sarry (bib84) 2017; 7 van der Windt, Everts, Chang, Curtis, Freitas, Amiel, Pearce, Pearce (bib90) 2012; 36 Wen, Xing, Harris, Zaytseva, Mitov, Napier, Weiss, Mark Evers, Gao (bib59) 2017; 8 Nieman, Kenny, Penicka, Ladanyi, Buell-Gutbrod, Zillhardt, Romero, Carey, Mills, Hotamisligil, Yamada, Peter, Gwin, Lengyel (bib58) 2011; 17 Currie, Schulze, Zechner, Walther, Farese (bib11) 2013; 18 Tirado-Velez, Joumady, Saez-Benito, Cozar-Castellano, Perdomo (bib56) 2012; 7 Corbet, Pinto, Martherus, Santiago de Jesus, Polet, Feron (bib36) 2016; 24 Samudio, Harmancey, Fiegl, Kantarjian, Konopleva, Korchin, Kaluarachchi, Bornmann, Duvvuri, Taegtmeyer, Andreeff (bib52) 2010; 120 Schuster, Nanni, Fanti (bib66) 2016; 46 Lee, Wolfgang (bib28) 2012; 13 Wang, Fahrmann, Lee, Li, Tripathi, Yue, Zhang, Lifshitz, Song, Yuan, Somlo, Jandial, Ann, Hanash, Jove, Yu (bib41) 2017; 27 Shinohara, Kumazaki, Minami, Ito, Sugito, Kuranaga, Taniguchi, Yamada, Otsuki, Naoe, Akao (bib83) 2016; 371 Chen, Uthaya Kumar, Punj, Xu, Sher, Tahara, Hess, Machida (bib88) 2016; 23 Maher, Marin-Valencia, Bachoo, Mashimo, Raisanen, Hatanpaa, Jindal, Jeffrey, Choi, Madden, Mathews, Pascual, Mickey, Malloy, DeBerardinis (bib67) 2012; 25 Zhao, Xiao, Evans, Theivanthiran, DeVito, Holtzhausen, Liu, Liu, Boczkowski, Nair, Locasale, Hanks (bib101) 2018; 48 Menendez, Lupu (bib13) 2007; 7 Yao, Liu, Wang, Moon, Gross, Patti (bib116) 2018; 16 Lee, Angka, Rota, Hanlon, Mitchell, Hurren, Wang, Gronda, Boyaci, Bojko, Minden, Sriskanthadevan, Datti, Wrana, Edginton, Pawliszyn, Joseph, Quadrilatero, Schimmer, Spagnuolo (bib9) 2015; 75 Schafer, Grassian, Song, Jiang, Gerhart-Hines, Irie, Gao, Puigserver, Brugge (bib72) 2009; 461 Bonnefont, Djouadi, Prip-Buus, Gobin, Munnich, Bastin (bib24) 2004; 25 Casals, Zammit, Herrero, Fado, Rodriguez-Rodriguez, Serra (bib86) 2016; 61 Rohrig, Schulze (bib5) 2016; 16 Carracedo, Cantley, Pandolfi (bib10) 2013; 13 Dobbins, Szczepaniak, Bentley, Esser, Myhill, McGarry (bib70) 2001; 50 Kitajima, Yoshida, Kohno, Li, Suzuki, Nagatani, Nishimoto, Sasaki, Muranaka, Wan, Thai, Okahashi, Matsuda, Shimizu, Nishiuchi, Suzuki, Tominaga, Gotoh, Suzuki, Ewen, Barbie, Hirose, Tanaka, Takahashi (bib85) 2017; 36 Holohan, Van Schaeybroeck, Longley, Johnston (bib79) 2013; 13 Berge, Tronstad, Bohov, Madsen, Berge (bib118) 2003; 44 Halama, Kulinski, Dib, Zaghlool, Siveen, Iskandarani, Zierer, Prabhu, Satheesh, Bhagwat, Uddin, Kastenmuller, Elemento, Gross, Suhre (bib121) 2018; 430 Gatza, Silva, Parker, Fan, Perou (bib57) 2014; 46 Grivennikov, Greten, Karin (bib97) 2010; 140 Schlaepfer, Rider, Rodrigues, Gijon, Pac, Romero, Cimic, Sirintrapun, Glode, Eckel, Cramer (bib54) 2014; 13 Hofer, Laubenbacher, Block, Breul, Hartung, Schwaiger (bib64) 1999; 36 Huang, Everts, Ivanova, O'Sullivan, Nascimento, Smith, Beatty, Love-Gregory, Lam, O'Neill, Yan, Du, Abumrad, Urban, Artyomov, Pearce, Pearce (bib94) 2014; 15 Weis Liu (10.1016/j.canlet.2018.08.006_bib62) 2010; 30 Pearce (10.1016/j.canlet.2018.08.006_bib89) 2009; 460 Caro (10.1016/j.canlet.2018.08.006_bib19) 2012; 22 Barger (10.1016/j.canlet.2018.08.006_bib82) 2013; 32 Cubillos-Ruiz (10.1016/j.canlet.2018.08.006_bib100) 2015; 161 Ceccarelli (10.1016/j.canlet.2018.08.006_bib113) 2011; 54 Wang (10.1016/j.canlet.2018.08.006_bib41) 2017; 27 Mascagna (10.1016/j.canlet.2018.08.006_bib117) 1992; 2 Bensaad (10.1016/j.canlet.2018.08.006_bib120) 2014; 9 Warburg (10.1016/j.canlet.2018.08.006_bib6) 1956; 123 Leamy (10.1016/j.canlet.2018.08.006_bib71) 2013; 52 Vats (10.1016/j.canlet.2018.08.006_bib93) 2006; 4 Ricciardi (10.1016/j.canlet.2018.08.006_bib114) 2015; 126 Hardie (10.1016/j.canlet.2018.08.006_bib33) 2002; 30 Corbet (10.1016/j.canlet.2018.08.006_bib36) 2016; 24 Zhao (10.1016/j.canlet.2018.08.006_bib101) 2018; 48 Berge (10.1016/j.canlet.2018.08.006_bib118) 2003; 44 Poulsen (10.1016/j.canlet.2018.08.006_bib29) 2012; 23 Tung (10.1016/j.canlet.2018.08.006_bib80) 2013; 122 Reilly (10.1016/j.canlet.2018.08.006_bib26) 2012; 18 Chen (10.1016/j.canlet.2018.08.006_bib88) 2016; 23 Schafer (10.1016/j.canlet.2018.08.006_bib72) 2009; 461 Pacilli (10.1016/j.canlet.2018.08.006_bib115) 2013; 105 Giordano (10.1016/j.canlet.2018.08.006_bib69) 2005; 12 Ye (10.1016/j.canlet.2018.08.006_bib78) 2016; 19 Hofer (10.1016/j.canlet.2018.08.006_bib64) 1999; 36 Halama (10.1016/j.canlet.2018.08.006_bib121) 2018; 430 Michalek (10.1016/j.canlet.2018.08.006_bib91) 2011; 186 Hermanova (10.1016/j.canlet.2018.08.006_bib81) 2016; 30 Wong (10.1016/j.canlet.2018.08.006_bib23) 2017; 542 Lee (10.1016/j.canlet.2018.08.006_bib9) 2015; 75 Fridman (10.1016/j.canlet.2018.08.006_bib92) 2012; 12 Paumen (10.1016/j.canlet.2018.08.006_bib68) 1997; 272 Sierra (10.1016/j.canlet.2018.08.006_bib27) 2008; 283 Schlaepfer (10.1016/j.canlet.2018.08.006_bib55) 2015; 17 Currie (10.1016/j.canlet.2018.08.006_bib11) 2013; 18 van der Windt (10.1016/j.canlet.2018.08.006_bib90) 2012; 36 Camarda (10.1016/j.canlet.2018.08.006_bib49) 2016; 22 Itkonen (10.1016/j.canlet.2018.08.006_bib119) 2017; 8 Warburg (10.1016/j.canlet.2018.08.006_bib2) 1924; 152 Schwenk (10.1016/j.canlet.2018.08.006_bib20) 2010; 82 Shi (10.1016/j.canlet.2018.08.006_bib39) 2016; 14 Cook (10.1016/j.canlet.2018.08.006_bib45) 2016; 76 Farge (10.1016/j.canlet.2018.08.006_bib84) 2017; 7 Vander Heiden (10.1016/j.canlet.2018.08.006_bib3) 2009; 324 Halldorsson (10.1016/j.canlet.2018.08.006_bib74) 2017; 396 Pike (10.1016/j.canlet.2018.08.006_bib8) 2011; 1807 Liu (10.1016/j.canlet.2018.08.006_bib40) 2016; 35 Casals (10.1016/j.canlet.2018.08.006_bib86) 2016; 61 Nieman (10.1016/j.canlet.2018.08.006_bib58) 2011; 17 Hossain (10.1016/j.canlet.2018.08.006_bib98) 2015; 3 Cheong (10.1016/j.canlet.2018.08.006_bib16) 2012; 30 Wen (10.1016/j.canlet.2018.08.006_bib59) 2017; 8 Kennedy (10.1016/j.canlet.2018.08.006_bib104) 2000; 36 Effert (10.1016/j.canlet.2018.08.006_bib65) 1996; 155 Yao (10.1016/j.canlet.2018.08.006_bib116) 2018; 16 Menendez (10.1016/j.canlet.2018.08.006_bib13) 2007; 7 Gatza (10.1016/j.canlet.2018.08.006_bib57) 2014; 46 Zou (10.1016/j.canlet.2018.08.006_bib96) 2005; 5 Schlaepfer (10.1016/j.canlet.2018.08.006_bib54) 2014; 13 Carracedo (10.1016/j.canlet.2018.08.006_bib75) 2012; 122 Yan (10.1016/j.canlet.2018.08.006_bib15) 2009; 360 Liu (10.1016/j.canlet.2018.08.006_bib63) 2006; 9 Petruzzelli (10.1016/j.canlet.2018.08.006_bib110) 2016; 30 Shinohara (10.1016/j.canlet.2018.08.006_bib83) 2016; 371 Li (10.1016/j.canlet.2018.08.006_bib87) 2013; 8 Cairns (10.1016/j.canlet.2018.08.006_bib7) 2011; 11 Wang (10.1016/j.canlet.2018.08.006_bib47) 2016; 7 Samudio (10.1016/j.canlet.2018.08.006_bib52) 2010; 120 Holohan (10.1016/j.canlet.2018.08.006_bib79) 2013; 13 Bressler (10.1016/j.canlet.2018.08.006_bib103) 1989; 44 German (10.1016/j.canlet.2018.08.006_bib37) 2016; 63 Buzzai (10.1016/j.canlet.2018.08.006_bib73) 2005; 24 Ashrafian (10.1016/j.canlet.2018.08.006_bib105) 2007; 25 Huang (10.1016/j.canlet.2018.08.006_bib94) 2014; 15 Linher-Melville (10.1016/j.canlet.2018.08.006_bib46) 2011; 11 Padanad (10.1016/j.canlet.2018.08.006_bib43) 2016; 16 Wang (10.1016/j.canlet.2018.08.006_bib76) 2018 Ito (10.1016/j.canlet.2018.08.006_bib31) 2012; 18 Schoors (10.1016/j.canlet.2018.08.006_bib22) 2015; 520 Lee (10.1016/j.canlet.2018.08.006_bib28) 2012; 13 Weis (10.1016/j.canlet.2018.08.006_bib112) 1994; 269 Xie (10.1016/j.canlet.2018.08.006_bib77) 2016; 14 Park (10.1016/j.canlet.2018.08.006_bib51) 2016; 14 Yan (10.1016/j.canlet.2018.08.006_bib50) 2017; 7 Nomura (10.1016/j.canlet.2018.08.006_bib95) 2016; 17 Carracedo (10.1016/j.canlet.2018.08.006_bib10) 2013; 13 Lazar (10.1016/j.canlet.2018.08.006_bib61) 2016; 76 Dobbins (10.1016/j.canlet.2018.08.006_bib70) 2001; 50 Bonnefont (10.1016/j.canlet.2018.08.006_bib24) 2004; 25 Wang (10.1016/j.canlet.2018.08.006_bib60) 2017; 2 Merrill (10.1016/j.canlet.2018.08.006_bib53) 2002; 68 Houten (10.1016/j.canlet.2018.08.006_bib102) 2016; 78 Zammit (10.1016/j.canlet.2018.08.006_bib21) 2008; 60 Fragasso (10.1016/j.canlet.2018.08.006_bib108) 2007; 2 Patra (10.1016/j.canlet.2018.08.006_bib17) 2013; 24 Tirado-Velez (10.1016/j.canlet.2018.08.006_bib56) 2012; 7 Fukawa (10.1016/j.canlet.2018.08.006_bib109) 2016; 22 Ma (10.1016/j.canlet.2018.08.006_bib18) 2016; 35 Zaugg (10.1016/j.canlet.2018.08.006_bib25) 2011; 25 Grivennikov (10.1016/j.canlet.2018.08.006_bib97) 2010; 140 Shao (10.1016/j.canlet.2018.08.006_bib44) 2016; 7 Herber (10.1016/j.canlet.2018.08.006_bib99) 2010; 16 Lin (10.1016/j.canlet.2018.08.006_bib48) 2017; 19 Keung (10.1016/j.canlet.2018.08.006_bib111) 2013; 62 Qu (10.1016/j.canlet.2018.08.006_bib12) 2016; 7 Mihaylova (10.1016/j.canlet.2018.08.006_bib32) 2011; 13 Pirat (10.1016/j.canlet.2018.08.006_bib30) 2012; 55 Maher (10.1016/j.canlet.2018.08.006_bib67) 2012; 25 Pascual (10.1016/j.canlet.2018.08.006_bib38) 2017; 541 Kitajima (10.1016/j.canlet.2018.08.006_bib85) 2017; 36 McGarry (10.1016/j.canlet.2018.08.006_bib35) 1978; 253 Abu-Elheiga (10.1016/j.canlet.2018.08.006_bib34) 2000; 97 Jin (10.1016/j.canlet.2018.08.006_bib4) 2016; 35 Wang (10.1016/j.canlet.2018.08.006_bib14) 2010; 2 Wu (10.1016/j.canlet.2018.08.006_bib42) 2015; 20 Kantor (10.1016/j.canlet.2018.08.006_bib106) 2000; 86 Bagger (10.1016/j.canlet.2018.08.006_bib107) 1997; 11 Pavlova (10.1016/j.canlet.2018.08.006_bib1) 2016; 23 Schuster (10.1016/j.canlet.2018.08.006_bib66) 2016; 46 Rohrig (10.1016/j.canlet.2018.08.006_bib5) 2016; 16 |
| References_xml | – volume: 20 start-page: 1099 year: 2015 end-page: 1108 ident: bib42 article-title: Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells publication-title: Apoptosis – volume: 18 start-page: 5850 year: 2012 end-page: 5855 ident: bib26 article-title: Molecular pathways: tumor cells Co-opt the brain-specific metabolism gene CPT1C to promote survival publication-title: Clin. Canc. Res. – volume: 105 start-page: 489 year: 2013 end-page: 498 ident: bib115 article-title: Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis publication-title: J. Natl. Cancer Inst. – volume: 11 start-page: 56 year: 2011 ident: bib46 article-title: Establishing a relationship between prolactin and altered fatty acid beta-oxidation via carnitine palmitoyl transferase 1 in breast cancer cells publication-title: BMC Canc. – volume: 62 start-page: 711 year: 2013 end-page: 720 ident: bib111 article-title: Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice publication-title: Diabetes – volume: 283 start-page: 6878 year: 2008 end-page: 6885 ident: bib27 article-title: CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity publication-title: J. Biol. Chem. – volume: 48 start-page: 147 year: 2018 end-page: 160 ident: bib101 article-title: Paracrine Wnt5a-beta-catenin signaling triggers a metabolic program that drives dendritic cell tolerization publication-title: Immunity – volume: 8 year: 2013 ident: bib87 article-title: Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel publication-title: PLoS One – volume: 50 start-page: 123 year: 2001 end-page: 130 ident: bib70 article-title: Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats publication-title: Diabetes – volume: 269 start-page: 26443 year: 1994 end-page: 26448 ident: bib112 article-title: Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme publication-title: J. Biol. Chem. – volume: 2 start-page: 515 year: 2010 end-page: 526 ident: bib14 article-title: Acetyl-CoA carboxylase-a as a novel target for cancer therapy publication-title: Front. Biosci. (Schol. Ed.) – volume: 17 start-page: 216 year: 2016 end-page: 217 ident: bib95 article-title: Fatty acid oxidation in macrophage polarization publication-title: Nat. Immunol. – volume: 22 start-page: 547 year: 2012 end-page: 560 ident: bib19 article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma publication-title: Canc. Cell – volume: 9 start-page: 230 year: 2006 end-page: 234 ident: bib63 article-title: Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer publication-title: Prostate Cancer Prostatic Dis. – volume: 35 start-page: 6132 year: 2016 end-page: 6142 ident: bib18 article-title: A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer publication-title: Oncogene – volume: 152 start-page: 319 year: 1924 end-page: 344 ident: bib2 article-title: üeber den Stoffwechsel der Tumoren publication-title: Biochem. Z. – volume: 7 year: 2012 ident: bib56 article-title: Inhibition of fatty acid metabolism reduces human myeloma cells proliferation publication-title: PLoS One – volume: 253 start-page: 4128 year: 1978 end-page: 4136 ident: bib35 article-title: Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA publication-title: J. Biol. Chem. – volume: 30 start-page: 209 year: 2016 end-page: 218 ident: bib81 article-title: Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells publication-title: Leukemia – volume: 36 start-page: 794 year: 2000 end-page: 801 ident: bib104 article-title: Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart publication-title: J. Cardiovasc. Pharmacol. – volume: 13 start-page: 23 year: 2012 ident: bib28 article-title: Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism publication-title: BMC Biochem. – volume: 8 year: 2017 ident: bib59 article-title: Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer publication-title: Cell Death Dis. – volume: 24 start-page: 311 year: 2016 end-page: 323 ident: bib36 article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation publication-title: Cell Metabol. – volume: 17 start-page: 529 year: 2015 end-page: 538 ident: bib55 article-title: Inhibition of lipid oxidation increases glucose metabolism and enhances 2-deoxy-2-[(18)F]fluoro-d-glucose uptake in prostate cancer mouse xenografts publication-title: Mol. Imag. Biol. – volume: 14 start-page: 2154 year: 2016 end-page: 2165 ident: bib51 article-title: Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer publication-title: Cell Rep. – volume: 36 start-page: 5145 year: 2017 end-page: 5157 ident: bib85 article-title: The RB-IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity publication-title: Oncogene – volume: 460 start-page: 103 year: 2009 ident: bib89 article-title: Enhancing CD8 T-cell memory by modulating fatty acid metabolism publication-title: Nature – volume: 122 start-page: 3088 year: 2012 end-page: 3100 ident: bib75 article-title: A metabolic prosurvival role for PML in breast cancer publication-title: J. Clin. Invest. – volume: 7 start-page: 12920 year: 2017 ident: bib50 article-title: Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1beta/ERRalpha signaling pathway in MCF10A-ras cells publication-title: Sci. Rep. – volume: 27 start-page: 136 year: 2017 end-page: 150 ident: bib41 article-title: JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance publication-title: Cell Metabol. – volume: 24 start-page: 4165 year: 2005 end-page: 4173 ident: bib73 article-title: The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation publication-title: Oncogene – volume: 542 start-page: 49 year: 2017 end-page: 54 ident: bib23 article-title: The role of fatty acid beta-oxidation in lymphangiogenesis publication-title: Nature – volume: 52 start-page: 165 year: 2013 end-page: 174 ident: bib71 article-title: Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease publication-title: Prog. Lipid Res. – volume: 126 start-page: 1925 year: 2015 end-page: 1929 ident: bib114 article-title: Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias publication-title: Blood – volume: 36 start-page: 31 year: 1999 end-page: 35 ident: bib64 article-title: Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy publication-title: Eur. Urol. – volume: 13 start-page: 1016 year: 2011 end-page: 1023 ident: bib32 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nat. Cell Biol. – volume: 46 start-page: 507 year: 2016 end-page: 521 ident: bib66 article-title: PET tracers beyond FDG in prostate cancer publication-title: Semin. Nucl. Med. – volume: 7 start-page: 3832 year: 2016 end-page: 3846 ident: bib44 article-title: Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer publication-title: Oncotarget – volume: 97 start-page: 1444 year: 2000 end-page: 1449 ident: bib34 article-title: The subcellular localization of acetyl-CoA carboxylase 2 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 36 start-page: 68 year: 2012 end-page: 78 ident: bib90 article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development publication-title: Immunity – volume: 2 start-page: 190 year: 2007 end-page: 196 ident: bib108 article-title: Modulation of fatty acids oxidation in heart failure by selective pharmacological inhibition of 3-ketoacyl coenzyme-A thiolase publication-title: Curr. Clin. Pharmacol. – volume: 25 start-page: 1041 year: 2011 end-page: 1051 ident: bib25 article-title: Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress publication-title: Genes Dev. – volume: 68 start-page: 93 year: 2002 end-page: 101 ident: bib53 article-title: Etomoxir-induced oxidative stress in HepG2 cells detected by differential gene expression is confirmed biochemically publication-title: Toxicol. Sci. – volume: 122 start-page: 969 year: 2013 end-page: 980 ident: bib80 article-title: PPARalpha and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia publication-title: Blood – volume: 430 start-page: 133 year: 2018 end-page: 147 ident: bib121 article-title: Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis publication-title: Canc. Lett. – volume: 86 start-page: 580 year: 2000 end-page: 588 ident: bib106 article-title: The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase publication-title: Circ. Res. – volume: 78 start-page: 23 year: 2016 end-page: 44 ident: bib102 article-title: The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders publication-title: Annu. Rev. Physiol. – volume: 30 start-page: 1064 year: 2002 end-page: 1070 ident: bib33 article-title: Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase publication-title: Biochem. Soc. Trans. – volume: 23 start-page: 27 year: 2016 end-page: 47 ident: bib1 article-title: The emerging hallmarks of cancer metabolism publication-title: Cell Metabol. – volume: 155 start-page: 994 year: 1996 end-page: 998 ident: bib65 article-title: Metabolic imaging of untreated prostate cancer by positron emission tomography with 18 fluorine-labeled deoxyglucose publication-title: J. Urol. – volume: 54 start-page: 3109 year: 2011 end-page: 3152 ident: bib113 article-title: Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research publication-title: J. Med. Chem. – volume: 186 start-page: 3299 year: 2011 end-page: 3303 ident: bib91 article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets publication-title: J. Immunol. – volume: 11 start-page: 85 year: 2011 end-page: 95 ident: bib7 article-title: Regulation of cancer cell metabolism publication-title: Nat. Rev. Canc. – volume: 7 start-page: 763 year: 2007 end-page: 777 ident: bib13 article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis publication-title: Nat. Rev. Canc. – volume: 19 start-page: 23 year: 2016 end-page: 37 ident: bib78 article-title: Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche publication-title: Cell Stem Cell – volume: 25 start-page: 76 year: 2007 end-page: 97 ident: bib105 article-title: Perhexiline publication-title: Cardiovasc. Drug Rev. – volume: 19 start-page: 43 year: 2017 end-page: 54 ident: bib48 article-title: Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells publication-title: Neuro Oncol. – volume: 25 start-page: 1234 year: 2012 end-page: 1244 ident: bib67 article-title: Metabolism of [U-13 C]glucose in human brain tumors in vivo publication-title: NMR Biomed. – volume: 32 start-page: 453 year: 2013 end-page: 461 ident: bib82 article-title: S6K1 determines the metabolic requirements for BCR-ABL survival publication-title: Oncogene – volume: 2 start-page: 25 year: 1992 end-page: 32 ident: bib117 article-title: Synthesis and cytotoxic properties of new N-substituted 4-aminophenol derivatives with a potential as antimelanoma agents publication-title: Melanoma Res. – volume: 30 start-page: 369 year: 2010 end-page: 374 ident: bib62 article-title: Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach publication-title: Anticancer Res. – volume: 13 start-page: 714 year: 2013 end-page: 726 ident: bib79 article-title: Cancer drug resistance: an evolving paradigm publication-title: Nat. Rev. Canc. – volume: 15 start-page: 846 year: 2014 end-page: 855 ident: bib94 article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages publication-title: Nat. Immunol. – volume: 541 start-page: 41 year: 2017 end-page: 45 ident: bib38 article-title: Targeting metastasis-initiating cells through the fatty acid receptor CD36 publication-title: Nature – volume: 13 start-page: 227 year: 2013 end-page: 232 ident: bib10 article-title: Cancer metabolism: fatty acid oxidation in the limelight publication-title: Nat. Rev. Canc. – volume: 140 start-page: 883 year: 2010 end-page: 899 ident: bib97 article-title: Immunity, inflammation, and cancer publication-title: Cell – volume: 16 start-page: 880 year: 2010 end-page: 886 ident: bib99 article-title: Lipid accumulation and dendritic cell dysfunction in cancer publication-title: Nat. Med. – volume: 61 start-page: 134 year: 2016 end-page: 148 ident: bib86 article-title: Carnitine palmitoyltransferase 1C: from cognition to cancer publication-title: Prog. Lipid Res. – volume: 16 start-page: 732 year: 2016 end-page: 749 ident: bib5 article-title: The multifaceted roles of fatty acid synthesis in cancer publication-title: Nat. Rev. Canc. – volume: 16 start-page: 1614 year: 2016 end-page: 1628 ident: bib43 article-title: Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis publication-title: Cell Rep. – volume: 5 start-page: 263 year: 2005 end-page: 274 ident: bib96 article-title: Immunosuppressive networks in the tumour environment and their therapeutic relevance publication-title: Nat. Rev. Canc. – volume: 25 start-page: 495 year: 2004 end-page: 520 ident: bib24 article-title: Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects publication-title: Mol. Aspect. Med. – volume: 55 start-page: 4027 year: 2012 end-page: 4061 ident: bib30 article-title: Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators publication-title: J. Med. Chem. – volume: 16 year: 2018 ident: bib116 article-title: Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of beta-oxidation publication-title: PLoS Biol. – volume: 7 start-page: 716 year: 2017 end-page: 735 ident: bib84 article-title: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism publication-title: Canc. Discov. – volume: 461 start-page: 109 year: 2009 end-page: 113 ident: bib72 article-title: Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment publication-title: Nature – volume: 8 start-page: 38264 year: 2017 end-page: 38275 ident: bib119 article-title: Lipid degradation promotes prostate cancer cell survival publication-title: Oncotarget – volume: 75 start-page: 2478 year: 2015 end-page: 2488 ident: bib9 article-title: Targeting mitochondria with Avocatin B induces selective leukemia cell death publication-title: Canc. Res. – volume: 24 start-page: 213 year: 2013 end-page: 228 ident: bib17 article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer publication-title: Canc. Cell – volume: 4 start-page: 13 year: 2006 end-page: 24 ident: bib93 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metabol. – volume: 23 start-page: 206 year: 2016 end-page: 219 ident: bib88 article-title: NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism publication-title: Cell Metabol. – volume: 371 start-page: 1 year: 2016 end-page: 11 ident: bib83 article-title: Perturbation of energy metabolism by fatty-acid derivative AIC-47 and imatinib in BCR-ABL-harboring leukemic cells publication-title: Canc. Lett. – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: bib3 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 161 start-page: 1527 year: 2015 end-page: 1538 ident: bib100 article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis publication-title: Cell – volume: 14 start-page: 991 year: 2016 end-page: 999 ident: bib77 article-title: Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism publication-title: Cell Rep. – volume: 11 start-page: 479 year: 1997 end-page: 484 ident: bib107 article-title: Effects of ranolazine on ischemic threshold, coronary sinus blood flow, and myocardial metabolism in coronary artery disease publication-title: Cardiovasc. Drugs Ther. – volume: 520 start-page: 192 year: 2015 end-page: 197 ident: bib22 article-title: Fatty acid carbon is essential for dNTP synthesis in endothelial cells publication-title: Nature – volume: 7 start-page: 6711 year: 2016 end-page: 6726 ident: bib47 article-title: HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress publication-title: Oncotarget – volume: 12 start-page: 603 year: 2005 end-page: 613 ident: bib69 article-title: tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1 publication-title: Cell Death Differ. – volume: 13 start-page: 2361 year: 2014 end-page: 2371 ident: bib54 article-title: Lipid catabolism via CPT1 as a therapeutic target for prostate cancer publication-title: Mol. Canc. Therapeut. – volume: 23 start-page: 631 year: 2012 end-page: 639 ident: bib29 article-title: PPARs: fatty acid sensors controlling metabolism publication-title: Semin. Cell Dev. Biol. – volume: 22 start-page: 427 year: 2016 end-page: 432 ident: bib49 article-title: Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer publication-title: Nat. Med. – volume: 3 start-page: 1236 year: 2015 end-page: 1247 ident: bib98 article-title: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies publication-title: Cancer Immunol Res – year: 2018 ident: bib76 article-title: CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis publication-title: Oncogene – volume: 17 start-page: 1498 year: 2011 end-page: 1503 ident: bib58 article-title: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth publication-title: Nat. Med. – volume: 272 start-page: 3324 year: 1997 end-page: 3329 ident: bib68 article-title: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis publication-title: J. Biol. Chem. – volume: 18 start-page: 153 year: 2013 end-page: 161 ident: bib11 article-title: Cellular fatty acid metabolism and cancer publication-title: Cell Metabol. – volume: 396 start-page: 117 year: 2017 end-page: 129 ident: bib74 article-title: Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition publication-title: Canc. Lett. – volume: 123 start-page: 309 year: 1956 end-page: 314 ident: bib6 article-title: On the origin of cancer cells publication-title: Science – volume: 360 start-page: 765 year: 2009 end-page: 773 ident: bib15 article-title: IDH1 and IDH2 mutations in gliomas publication-title: N. Engl. J. Med. – volume: 18 start-page: 1350 year: 2012 end-page: 1358 ident: bib31 article-title: A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance publication-title: Nat. Med. – volume: 1807 start-page: 726 year: 2011 end-page: 734 ident: bib8 article-title: Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells publication-title: Biochim. Biophys. Acta – volume: 35 start-page: 3619 year: 2016 end-page: 3625 ident: bib4 article-title: Glutaminolysis as a target for cancer therapy publication-title: Oncogene – volume: 12 start-page: 298 year: 2012 end-page: 306 ident: bib92 article-title: The immune contexture in human tumours: impact on clinical outcome publication-title: Nat. Rev. Canc. – volume: 44 start-page: 118 year: 2003 end-page: 127 ident: bib118 article-title: Impact of mitochondrial beta-oxidation in fatty acid-mediated inhibition of glioma cell proliferation publication-title: J. Lipid Res. – volume: 63 start-page: 1006 year: 2016 end-page: 1020 ident: bib37 article-title: PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2 publication-title: Mol. Cell – volume: 22 start-page: 666 year: 2016 end-page: 671 ident: bib109 article-title: Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia publication-title: Nat. Med. – volume: 35 start-page: 5663 year: 2016 end-page: 5673 ident: bib40 article-title: Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline publication-title: Oncogene – volume: 44 start-page: 1897 year: 1989 end-page: 1906 ident: bib103 article-title: Chronic inhibition of fatty acid oxidation: new model of diastolic dysfunction publication-title: Life Sci. – volume: 30 start-page: 671 year: 2012 end-page: 678 ident: bib16 article-title: Therapeutic targets in cancer cell metabolism and autophagy publication-title: Nat. Biotechnol. – volume: 60 start-page: 347 year: 2008 end-page: 354 ident: bib21 article-title: Carnitine palmitoyltransferase 1: central to cell function publication-title: IUBMB Life – volume: 76 start-page: 5657 year: 2016 end-page: 5670 ident: bib45 article-title: Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer publication-title: Canc. Res. – volume: 120 start-page: 142 year: 2010 end-page: 156 ident: bib52 article-title: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction publication-title: J. Clin. Invest. – volume: 46 start-page: 1051 year: 2014 end-page: 1059 ident: bib57 article-title: An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer publication-title: Nat. Genet. – volume: 9 start-page: 349 year: 2014 end-page: 365 ident: bib120 article-title: Fatty acid uptake and lipid storage induced by HIF-1 alpha contribute to cell growth and survival after hypoxia-reoxygenation publication-title: Cell Rep. – volume: 2 year: 2017 ident: bib60 article-title: Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells publication-title: JCI Insight – volume: 82 start-page: 149 year: 2010 end-page: 154 ident: bib20 article-title: Fatty acid transport across the cell membrane: regulation by fatty acid transporters publication-title: Prostaglandins Leukot. Essent. Fatty Acids – volume: 14 start-page: 55 year: 2016 end-page: 64 ident: bib39 article-title: High expression of CPT1A predicts adverse outcomes: a potential therapeutic target for acute myeloid leukemia publication-title: EBioMedicine – volume: 30 start-page: 489 year: 2016 end-page: 501 ident: bib110 article-title: Mechanisms of metabolic dysfunction in cancer-associated cachexia publication-title: Genes Dev. – volume: 7 start-page: e2226 year: 2016 ident: bib12 article-title: Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer publication-title: Cell Death Dis. – volume: 76 start-page: 4051 year: 2016 end-page: 4057 ident: bib61 article-title: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer publication-title: Canc. Res. – volume: 20 start-page: 1099 year: 2015 ident: 10.1016/j.canlet.2018.08.006_bib42 article-title: Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells publication-title: Apoptosis doi: 10.1007/s10495-015-1137-x – volume: 46 start-page: 507 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib66 article-title: PET tracers beyond FDG in prostate cancer publication-title: Semin. Nucl. Med. doi: 10.1053/j.semnuclmed.2016.07.005 – volume: 19 start-page: 23 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib78 article-title: Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.06.001 – volume: 126 start-page: 1925 year: 2015 ident: 10.1016/j.canlet.2018.08.006_bib114 article-title: Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias publication-title: Blood doi: 10.1182/blood-2014-12-617498 – volume: 19 start-page: 43 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib48 article-title: Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells publication-title: Neuro Oncol. doi: 10.1093/neuonc/now128 – volume: 122 start-page: 3088 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib75 article-title: A metabolic prosurvival role for PML in breast cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI62129 – volume: 13 start-page: 2361 year: 2014 ident: 10.1016/j.canlet.2018.08.006_bib54 article-title: Lipid catabolism via CPT1 as a therapeutic target for prostate cancer publication-title: Mol. Canc. Therapeut. doi: 10.1158/1535-7163.MCT-14-0183 – volume: 360 start-page: 765 year: 2009 ident: 10.1016/j.canlet.2018.08.006_bib15 article-title: IDH1 and IDH2 mutations in gliomas publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0808710 – volume: 44 start-page: 118 year: 2003 ident: 10.1016/j.canlet.2018.08.006_bib118 article-title: Impact of mitochondrial beta-oxidation in fatty acid-mediated inhibition of glioma cell proliferation publication-title: J. Lipid Res. doi: 10.1194/jlr.M200312-JLR200 – volume: 44 start-page: 1897 year: 1989 ident: 10.1016/j.canlet.2018.08.006_bib103 article-title: Chronic inhibition of fatty acid oxidation: new model of diastolic dysfunction publication-title: Life Sci. doi: 10.1016/0024-3205(89)90401-3 – volume: 7 start-page: 763 year: 2007 ident: 10.1016/j.canlet.2018.08.006_bib13 article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2222 – volume: 68 start-page: 93 year: 2002 ident: 10.1016/j.canlet.2018.08.006_bib53 article-title: Etomoxir-induced oxidative stress in HepG2 cells detected by differential gene expression is confirmed biochemically publication-title: Toxicol. Sci. doi: 10.1093/toxsci/68.1.93 – volume: 161 start-page: 1527 year: 2015 ident: 10.1016/j.canlet.2018.08.006_bib100 article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis publication-title: Cell doi: 10.1016/j.cell.2015.05.025 – volume: 123 start-page: 309 year: 1956 ident: 10.1016/j.canlet.2018.08.006_bib6 article-title: On the origin of cancer cells publication-title: Science doi: 10.1126/science.123.3191.309 – volume: 22 start-page: 547 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib19 article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma publication-title: Canc. Cell doi: 10.1016/j.ccr.2012.08.014 – volume: 12 start-page: 298 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib92 article-title: The immune contexture in human tumours: impact on clinical outcome publication-title: Nat. Rev. Canc. doi: 10.1038/nrc3245 – volume: 25 start-page: 76 year: 2007 ident: 10.1016/j.canlet.2018.08.006_bib105 article-title: Perhexiline publication-title: Cardiovasc. Drug Rev. doi: 10.1111/j.1527-3466.2007.00006.x – volume: 11 start-page: 85 year: 2011 ident: 10.1016/j.canlet.2018.08.006_bib7 article-title: Regulation of cancer cell metabolism publication-title: Nat. Rev. Canc. doi: 10.1038/nrc2981 – volume: 17 start-page: 216 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib95 article-title: Fatty acid oxidation in macrophage polarization publication-title: Nat. Immunol. doi: 10.1038/ni.3366 – volume: 55 start-page: 4027 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib30 article-title: Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators publication-title: J. Med. Chem. doi: 10.1021/jm101360s – volume: 2 start-page: 190 year: 2007 ident: 10.1016/j.canlet.2018.08.006_bib108 article-title: Modulation of fatty acids oxidation in heart failure by selective pharmacological inhibition of 3-ketoacyl coenzyme-A thiolase publication-title: Curr. Clin. Pharmacol. doi: 10.2174/157488407781668776 – volume: 8 start-page: 38264 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib119 article-title: Lipid degradation promotes prostate cancer cell survival publication-title: Oncotarget doi: 10.18632/oncotarget.16123 – volume: 461 start-page: 109 year: 2009 ident: 10.1016/j.canlet.2018.08.006_bib72 article-title: Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment publication-title: Nature doi: 10.1038/nature08268 – volume: 13 start-page: 714 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib79 article-title: Cancer drug resistance: an evolving paradigm publication-title: Nat. Rev. Canc. doi: 10.1038/nrc3599 – volume: 9 start-page: 230 year: 2006 ident: 10.1016/j.canlet.2018.08.006_bib63 article-title: Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer publication-title: Prostate Cancer Prostatic Dis. doi: 10.1038/sj.pcan.4500879 – volume: 186 start-page: 3299 year: 2011 ident: 10.1016/j.canlet.2018.08.006_bib91 article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets publication-title: J. Immunol. doi: 10.4049/jimmunol.1003613 – volume: 152 start-page: 319 year: 1924 ident: 10.1016/j.canlet.2018.08.006_bib2 article-title: üeber den Stoffwechsel der Tumoren publication-title: Biochem. Z. – volume: 27 start-page: 136 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib41 article-title: JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance publication-title: Cell Metabol. doi: 10.1016/j.cmet.2017.11.001 – volume: 30 start-page: 1064 year: 2002 ident: 10.1016/j.canlet.2018.08.006_bib33 article-title: Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase publication-title: Biochem. Soc. Trans. doi: 10.1042/bst0301064 – volume: 63 start-page: 1006 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib37 article-title: PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.08.014 – volume: 14 start-page: 55 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib39 article-title: High expression of CPT1A predicts adverse outcomes: a potential therapeutic target for acute myeloid leukemia publication-title: EBioMedicine doi: 10.1016/j.ebiom.2016.11.025 – volume: 36 start-page: 68 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib90 article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development publication-title: Immunity doi: 10.1016/j.immuni.2011.12.007 – volume: 61 start-page: 134 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib86 article-title: Carnitine palmitoyltransferase 1C: from cognition to cancer publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2015.11.004 – volume: 371 start-page: 1 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib83 article-title: Perturbation of energy metabolism by fatty-acid derivative AIC-47 and imatinib in BCR-ABL-harboring leukemic cells publication-title: Canc. Lett. doi: 10.1016/j.canlet.2015.11.020 – volume: 32 start-page: 453 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib82 article-title: S6K1 determines the metabolic requirements for BCR-ABL survival publication-title: Oncogene doi: 10.1038/onc.2012.70 – volume: 35 start-page: 3619 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib4 article-title: Glutaminolysis as a target for cancer therapy publication-title: Oncogene doi: 10.1038/onc.2015.447 – volume: 13 start-page: 227 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib10 article-title: Cancer metabolism: fatty acid oxidation in the limelight publication-title: Nat. Rev. Canc. doi: 10.1038/nrc3483 – volume: 16 start-page: 732 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib5 article-title: The multifaceted roles of fatty acid synthesis in cancer publication-title: Nat. Rev. Canc. doi: 10.1038/nrc.2016.89 – volume: 2 start-page: 515 year: 2010 ident: 10.1016/j.canlet.2018.08.006_bib14 article-title: Acetyl-CoA carboxylase-a as a novel target for cancer therapy publication-title: Front. Biosci. (Schol. Ed.) – volume: 542 start-page: 49 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib23 article-title: The role of fatty acid beta-oxidation in lymphangiogenesis publication-title: Nature doi: 10.1038/nature21028 – volume: 14 start-page: 2154 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib51 article-title: Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.02.004 – volume: 50 start-page: 123 year: 2001 ident: 10.1016/j.canlet.2018.08.006_bib70 article-title: Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats publication-title: Diabetes doi: 10.2337/diabetes.50.1.123 – volume: 30 start-page: 209 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib81 article-title: Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells publication-title: Leukemia doi: 10.1038/leu.2015.213 – volume: 75 start-page: 2478 year: 2015 ident: 10.1016/j.canlet.2018.08.006_bib9 article-title: Targeting mitochondria with Avocatin B induces selective leukemia cell death publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-14-2676 – volume: 22 start-page: 666 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib109 article-title: Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia publication-title: Nat. Med. doi: 10.1038/nm.4093 – volume: 18 start-page: 5850 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib26 article-title: Molecular pathways: tumor cells Co-opt the brain-specific metabolism gene CPT1C to promote survival publication-title: Clin. Canc. Res. doi: 10.1158/1078-0432.CCR-11-3281 – year: 2018 ident: 10.1016/j.canlet.2018.08.006_bib76 article-title: CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis publication-title: Oncogene doi: 10.1038/s41388-018-0384-z – volume: 36 start-page: 794 year: 2000 ident: 10.1016/j.canlet.2018.08.006_bib104 article-title: Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart publication-title: J. Cardiovasc. Pharmacol. doi: 10.1097/00005344-200012000-00016 – volume: 253 start-page: 4128 year: 1978 ident: 10.1016/j.canlet.2018.08.006_bib35 article-title: Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)34693-8 – volume: 7 start-page: e2226 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib12 article-title: Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.132 – volume: 5 start-page: 263 year: 2005 ident: 10.1016/j.canlet.2018.08.006_bib96 article-title: Immunosuppressive networks in the tumour environment and their therapeutic relevance publication-title: Nat. Rev. Canc. doi: 10.1038/nrc1586 – volume: 13 start-page: 1016 year: 2011 ident: 10.1016/j.canlet.2018.08.006_bib32 article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism publication-title: Nat. Cell Biol. doi: 10.1038/ncb2329 – volume: 36 start-page: 31 year: 1999 ident: 10.1016/j.canlet.2018.08.006_bib64 article-title: Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy publication-title: Eur. Urol. doi: 10.1159/000019923 – volume: 36 start-page: 5145 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib85 article-title: The RB-IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity publication-title: Oncogene doi: 10.1038/onc.2017.124 – volume: 7 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib56 article-title: Inhibition of fatty acid metabolism reduces human myeloma cells proliferation publication-title: PLoS One doi: 10.1371/journal.pone.0046484 – volume: 3 start-page: 1236 year: 2015 ident: 10.1016/j.canlet.2018.08.006_bib98 article-title: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies publication-title: Cancer Immunol Res doi: 10.1158/2326-6066.CIR-15-0036 – volume: 396 start-page: 117 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib74 article-title: Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition publication-title: Canc. Lett. doi: 10.1016/j.canlet.2017.03.019 – volume: 155 start-page: 994 year: 1996 ident: 10.1016/j.canlet.2018.08.006_bib65 article-title: Metabolic imaging of untreated prostate cancer by positron emission tomography with 18 fluorine-labeled deoxyglucose publication-title: J. Urol. doi: 10.1016/S0022-5347(01)66366-3 – volume: 48 start-page: 147 year: 2018 ident: 10.1016/j.canlet.2018.08.006_bib101 article-title: Paracrine Wnt5a-beta-catenin signaling triggers a metabolic program that drives dendritic cell tolerization publication-title: Immunity doi: 10.1016/j.immuni.2017.12.004 – volume: 520 start-page: 192 year: 2015 ident: 10.1016/j.canlet.2018.08.006_bib22 article-title: Fatty acid carbon is essential for dNTP synthesis in endothelial cells publication-title: Nature doi: 10.1038/nature14362 – volume: 54 start-page: 3109 year: 2011 ident: 10.1016/j.canlet.2018.08.006_bib113 article-title: Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research publication-title: J. Med. Chem. doi: 10.1021/jm100809g – volume: 23 start-page: 631 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib29 article-title: PPARs: fatty acid sensors controlling metabolism publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2012.01.003 – volume: 324 start-page: 1029 year: 2009 ident: 10.1016/j.canlet.2018.08.006_bib3 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 24 start-page: 311 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib36 article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation publication-title: Cell Metabol. doi: 10.1016/j.cmet.2016.07.003 – volume: 7 start-page: 6711 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib47 article-title: HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress publication-title: Oncotarget doi: 10.18632/oncotarget.6817 – volume: 13 start-page: 23 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib28 article-title: Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism publication-title: BMC Biochem. doi: 10.1186/1471-2091-13-23 – volume: 7 start-page: 716 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib84 article-title: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism publication-title: Canc. Discov. doi: 10.1158/2159-8290.CD-16-0441 – volume: 17 start-page: 529 year: 2015 ident: 10.1016/j.canlet.2018.08.006_bib55 article-title: Inhibition of lipid oxidation increases glucose metabolism and enhances 2-deoxy-2-[(18)F]fluoro-d-glucose uptake in prostate cancer mouse xenografts publication-title: Mol. Imag. Biol. doi: 10.1007/s11307-014-0814-4 – volume: 16 start-page: 880 year: 2010 ident: 10.1016/j.canlet.2018.08.006_bib99 article-title: Lipid accumulation and dendritic cell dysfunction in cancer publication-title: Nat. Med. doi: 10.1038/nm.2172 – volume: 30 start-page: 489 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib110 article-title: Mechanisms of metabolic dysfunction in cancer-associated cachexia publication-title: Genes Dev. doi: 10.1101/gad.276733.115 – volume: 23 start-page: 206 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib88 article-title: NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism publication-title: Cell Metabol. doi: 10.1016/j.cmet.2015.12.004 – volume: 78 start-page: 23 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib102 article-title: The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-021115-105045 – volume: 97 start-page: 1444 year: 2000 ident: 10.1016/j.canlet.2018.08.006_bib34 article-title: The subcellular localization of acetyl-CoA carboxylase 2 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.97.4.1444 – volume: 7 start-page: 3832 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib44 article-title: Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer publication-title: Oncotarget doi: 10.18632/oncotarget.6757 – volume: 2 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib60 article-title: Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells publication-title: JCI Insight doi: 10.1172/jci.insight.87489 – volume: 1807 start-page: 726 year: 2011 ident: 10.1016/j.canlet.2018.08.006_bib8 article-title: Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbabio.2010.10.022 – volume: 18 start-page: 1350 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib31 article-title: A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance publication-title: Nat. Med. doi: 10.1038/nm.2882 – volume: 122 start-page: 969 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib80 article-title: PPARalpha and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia publication-title: Blood doi: 10.1182/blood-2013-03-489468 – volume: 25 start-page: 1234 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib67 article-title: Metabolism of [U-13 C]glucose in human brain tumors in vivo publication-title: NMR Biomed. doi: 10.1002/nbm.2794 – volume: 269 start-page: 26443 year: 1994 ident: 10.1016/j.canlet.2018.08.006_bib112 article-title: Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)47214-6 – volume: 35 start-page: 6132 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib18 article-title: A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer publication-title: Oncogene doi: 10.1038/onc.2016.150 – volume: 16 year: 2018 ident: 10.1016/j.canlet.2018.08.006_bib116 article-title: Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of beta-oxidation publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2003782 – volume: 8 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib87 article-title: Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel publication-title: PLoS One – volume: 8 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib59 article-title: Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.21 – volume: 35 start-page: 5663 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib40 article-title: Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline publication-title: Oncogene doi: 10.1038/onc.2016.103 – volume: 283 start-page: 6878 year: 2008 ident: 10.1016/j.canlet.2018.08.006_bib27 article-title: CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity publication-title: J. Biol. Chem. doi: 10.1074/jbc.M707965200 – volume: 60 start-page: 347 year: 2008 ident: 10.1016/j.canlet.2018.08.006_bib21 article-title: Carnitine palmitoyltransferase 1: central to cell function publication-title: IUBMB Life doi: 10.1002/iub.78 – volume: 62 start-page: 711 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib111 article-title: Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice publication-title: Diabetes doi: 10.2337/db12-0259 – volume: 23 start-page: 27 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib1 article-title: The emerging hallmarks of cancer metabolism publication-title: Cell Metabol. doi: 10.1016/j.cmet.2015.12.006 – volume: 18 start-page: 153 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib11 article-title: Cellular fatty acid metabolism and cancer publication-title: Cell Metabol. doi: 10.1016/j.cmet.2013.05.017 – volume: 7 start-page: 12920 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib50 article-title: Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1beta/ERRalpha signaling pathway in MCF10A-ras cells publication-title: Sci. Rep. doi: 10.1038/s41598-017-13505-x – volume: 15 start-page: 846 year: 2014 ident: 10.1016/j.canlet.2018.08.006_bib94 article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2956 – volume: 25 start-page: 495 year: 2004 ident: 10.1016/j.canlet.2018.08.006_bib24 article-title: Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects publication-title: Mol. Aspect. Med. doi: 10.1016/j.mam.2004.06.004 – volume: 17 start-page: 1498 year: 2011 ident: 10.1016/j.canlet.2018.08.006_bib58 article-title: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth publication-title: Nat. Med. doi: 10.1038/nm.2492 – volume: 25 start-page: 1041 year: 2011 ident: 10.1016/j.canlet.2018.08.006_bib25 article-title: Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress publication-title: Genes Dev. doi: 10.1101/gad.1987211 – volume: 16 start-page: 1614 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib43 article-title: Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.07.009 – volume: 76 start-page: 5657 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib45 article-title: Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-15-2616 – volume: 430 start-page: 133 year: 2018 ident: 10.1016/j.canlet.2018.08.006_bib121 article-title: Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis publication-title: Canc. Lett. doi: 10.1016/j.canlet.2018.05.017 – volume: 30 start-page: 369 year: 2010 ident: 10.1016/j.canlet.2018.08.006_bib62 article-title: Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach publication-title: Anticancer Res. – volume: 105 start-page: 489 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib115 article-title: Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djt030 – volume: 272 start-page: 3324 year: 1997 ident: 10.1016/j.canlet.2018.08.006_bib68 article-title: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.6.3324 – volume: 24 start-page: 213 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib17 article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer publication-title: Canc. Cell doi: 10.1016/j.ccr.2013.06.014 – volume: 11 start-page: 479 year: 1997 ident: 10.1016/j.canlet.2018.08.006_bib107 article-title: Effects of ranolazine on ischemic threshold, coronary sinus blood flow, and myocardial metabolism in coronary artery disease publication-title: Cardiovasc. Drugs Ther. doi: 10.1023/A:1007705707667 – volume: 76 start-page: 4051 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib61 article-title: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer publication-title: Canc. Res. doi: 10.1158/0008-5472.CAN-16-0651 – volume: 11 start-page: 56 year: 2011 ident: 10.1016/j.canlet.2018.08.006_bib46 article-title: Establishing a relationship between prolactin and altered fatty acid beta-oxidation via carnitine palmitoyl transferase 1 in breast cancer cells publication-title: BMC Canc. doi: 10.1186/1471-2407-11-56 – volume: 14 start-page: 991 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib77 article-title: Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.01.004 – volume: 30 start-page: 671 year: 2012 ident: 10.1016/j.canlet.2018.08.006_bib16 article-title: Therapeutic targets in cancer cell metabolism and autophagy publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2285 – volume: 12 start-page: 603 year: 2005 ident: 10.1016/j.canlet.2018.08.006_bib69 article-title: tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401636 – volume: 24 start-page: 4165 year: 2005 ident: 10.1016/j.canlet.2018.08.006_bib73 article-title: The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation publication-title: Oncogene doi: 10.1038/sj.onc.1208622 – volume: 86 start-page: 580 year: 2000 ident: 10.1016/j.canlet.2018.08.006_bib106 article-title: The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase publication-title: Circ. Res. doi: 10.1161/01.RES.86.5.580 – volume: 140 start-page: 883 year: 2010 ident: 10.1016/j.canlet.2018.08.006_bib97 article-title: Immunity, inflammation, and cancer publication-title: Cell doi: 10.1016/j.cell.2010.01.025 – volume: 460 start-page: 103 year: 2009 ident: 10.1016/j.canlet.2018.08.006_bib89 article-title: Enhancing CD8 T-cell memory by modulating fatty acid metabolism publication-title: Nature doi: 10.1038/nature08097 – volume: 46 start-page: 1051 year: 2014 ident: 10.1016/j.canlet.2018.08.006_bib57 article-title: An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer publication-title: Nat. Genet. doi: 10.1038/ng.3073 – volume: 541 start-page: 41 year: 2017 ident: 10.1016/j.canlet.2018.08.006_bib38 article-title: Targeting metastasis-initiating cells through the fatty acid receptor CD36 publication-title: Nature doi: 10.1038/nature20791 – volume: 2 start-page: 25 year: 1992 ident: 10.1016/j.canlet.2018.08.006_bib117 article-title: Synthesis and cytotoxic properties of new N-substituted 4-aminophenol derivatives with a potential as antimelanoma agents publication-title: Melanoma Res. doi: 10.1097/00008390-199205000-00004 – volume: 4 start-page: 13 year: 2006 ident: 10.1016/j.canlet.2018.08.006_bib93 article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation publication-title: Cell Metabol. doi: 10.1016/j.cmet.2006.05.011 – volume: 52 start-page: 165 year: 2013 ident: 10.1016/j.canlet.2018.08.006_bib71 article-title: Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2012.10.004 – volume: 9 start-page: 349 year: 2014 ident: 10.1016/j.canlet.2018.08.006_bib120 article-title: Fatty acid uptake and lipid storage induced by HIF-1 alpha contribute to cell growth and survival after hypoxia-reoxygenation publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.08.056 – volume: 120 start-page: 142 year: 2010 ident: 10.1016/j.canlet.2018.08.006_bib52 article-title: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction publication-title: J. Clin. Invest. doi: 10.1172/JCI38942 – volume: 82 start-page: 149 year: 2010 ident: 10.1016/j.canlet.2018.08.006_bib20 article-title: Fatty acid transport across the cell membrane: regulation by fatty acid transporters publication-title: Prostaglandins Leukot. Essent. Fatty Acids doi: 10.1016/j.plefa.2010.02.029 – volume: 22 start-page: 427 year: 2016 ident: 10.1016/j.canlet.2018.08.006_bib49 article-title: Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer publication-title: Nat. Med. doi: 10.1038/nm.4055 |
| SSID | ssj0005475 |
| Score | 2.6767855 |
| SecondaryResourceType | review_article |
| Snippet | Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 92 |
| SubjectTerms | Angina pectoris Apoptosis ATP Biosynthesis Breast cancer Cancer Cell growth Cell proliferation Cell Transformation, Neoplastic - metabolism Dehydrogenases Drug resistance Energy Metabolism Enzymes Fatty acid β-oxidation Fatty acids Fatty Acids - metabolism Genetic transformation Glycolysis Humans Kinases Leukemia Lipid Metabolism Lipolysis Lipolytic phenotype Medical research Medicine Metabolic pathways Metabolism Metastases Metastasis Mitochondria Mitochondria - metabolism NADPH Neoplasms - metabolism Neoplasms - pathology NMR Nuclear magnetic resonance Oxidation Oxidation-Reduction Phenotypes Prostate cancer Transgenic animals Tricarboxylic acid cycle Tumor Microenvironment Tumorigenesis |
| Title | Fatty acid oxidation: An emerging facet of metabolic transformation in cancer |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0304383518305184 https://dx.doi.org/10.1016/j.canlet.2018.08.006 https://www.ncbi.nlm.nih.gov/pubmed/30102953 https://www.proquest.com/docview/2092478500 https://www.proquest.com/docview/2088294120 https://pubmed.ncbi.nlm.nih.gov/PMC6240910 |
| Volume | 435 |
| WOSCitedRecordID | wos000444662700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7980 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005475 issn: 0304-3835 databaseCode: AIEXJ dateStart: 19950106 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DSFeEHcKYzISb1VQmjixzVs1bVxEJySGVJ4ix461jC4dXTr68zm-xO1WoQ0kXqI2tpvU5_PxZ_tcEHqjJAWWnbGoTKsqIkryqCQwrqgqc6ESlTNps5Z8pkdHbDLhX3o93fnCXE5p07Dlkp__V1HDPRC2cZ39C3GHH4Ub8BmEDlcQO1xvJfhD0QKxFrJWg9myVsF6Y9QMjDOwTUqkhaxad7TeAgpMoOt2jcE680dpADFfZ6_79s5gal2AAhkfW_75vS7FLOwDVGc-zZfdcR6M36403a8fIaH7SImztbL3C7dve7JofnYzqt-QGNrosN7B2-6SbXjKOO8scwLDXGiSTvMS_9XpTpcTz8_CQxu_dFPBu72GU1i8N_BnjWkesyFY42vxtO0M_dU81TwU9BYoH0a20E5CMw7ab2f08WDyaWUMRGxI5vCWnZOltQTcfNafSMzmIuW6re0aeTl-gO77VQceObQ8RL2qeYTujr1dxWM0tqDBBjQ4gOYdHjW4gwy2kMEzjQNk8FXI4LrBDjJP0LfDg-P9D5FPtBHJLCctXIWiUsuhyPNScq6MYy3RMLiHjJeK6oRlWU7NCb0mmqs8SxNFKa0YGeqU0fQp2m5mTfUc4VhQWNDzisbUMHVdpinNclHpVBMBfLGP0q7nCumj0JtkKNOiMzc8LVx_F6a_C5MjNc77KAqtzl0UlhvqZ51Qis7DGObEAlB0Qzsa2nkG6pjlLVrudrIvvDK4gHKeEMqyOO6j16EY9Lc5lBNNNVuYOrDG5WSYQJ1nDirhL6Ym4CPPUnitKyAKFUxs-KslTX1iY8TnwNRhJfDiHzviJbq3Gtq7aLudL6pX6I68bOuL-R7aohO258fQb8H-3lU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatty+acid+oxidation%3A+An+emerging+facet+of+metabolic+transformation+in+cancer&rft.jtitle=Cancer+letters&rft.au=Ma%2C+Yibao&rft.au=Temkin%2C+Sarah+M.&rft.au=Hawkridge%2C+Adam+M.&rft.au=Guo%2C+Chunqing&rft.date=2018-10-28&rft.pub=Elsevier+B.V&rft.issn=0304-3835&rft.volume=435&rft.spage=92&rft.epage=100&rft_id=info:doi/10.1016%2Fj.canlet.2018.08.006&rft.externalDocID=S0304383518305184 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3835&client=summon |