Fatty acid oxidation: An emerging facet of metabolic transformation in cancer

Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters Jg. 435; S. 92 - 100
Hauptverfasser: Ma, Yibao, Temkin, Sarah M., Hawkridge, Adam M., Guo, Chunqing, Wang, Wei, Wang, Xiang-Yang, Fang, Xianjun
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Ireland Elsevier B.V 28.10.2018
Elsevier Limited
Schlagworte:
ISSN:0304-3835, 1872-7980, 1872-7980
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a “lipolytic phenotype” of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway. •FAO emerges as a new aspect of metabolic transformation in cancer.•Cancer cells rely on FAO for growth, stemness, drug resistance and metastasis.•FAO is reprogrammed in cancer and cancer-associated immune and other host cells.•FAO is druggable given the differential dependence of cancer and normal tissues.•FAO inhibitors including those for other ailments offer new anti-cancer therapies.
AbstractList Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a “lipolytic phenotype” of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway. •FAO emerges as a new aspect of metabolic transformation in cancer.•Cancer cells rely on FAO for growth, stemness, drug resistance and metastasis.•FAO is reprogrammed in cancer and cancer-associated immune and other host cells.•FAO is druggable given the differential dependence of cancer and normal tissues.•FAO inhibitors including those for other ailments offer new anti-cancer therapies.
Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a “lipolytic phenotype” of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway.
Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a "lipolytic phenotype" of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway.Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de novo lipid synthesis and glutaminolysis. These alterations are pivotal to the development and maintenance of the malignant phenotype of cancer cells in unfavorable tumor microenvironment or metastatic sites. Although mitochondrial fatty acid β-oxidation (FAO) is a primary bioenergetic source, it has not been generally recognized as part of the metabolic landscape of cancer. The last few years, however, have seen a dramatic change in the view of cancer relevance of the FAO pathway. Many recent studies have provided significant evidence to support a "lipolytic phenotype" of cancer. FAO, like other well-defined metabolic pathways involved in cancer, is dysregulated in diverse human malignancies. Cancer cells rely on FAO for proliferation, survival, stemness, drug resistance, and metastatic progression. FAO is also reprogrammed in cancer-associated immune and other host cells, which may contribute to immune suppression and tumor-promoting microenvironment. This article reviews and puts into context our current understanding of multi-faceted roles of FAO in oncogenesis as well as anti-cancer therapeutic opportunities posed by the FAO pathway.
Author Temkin, Sarah M.
Wang, Xiang-Yang
Ma, Yibao
Wang, Wei
Fang, Xianjun
Hawkridge, Adam M.
Guo, Chunqing
AuthorAffiliation b Gynecologic Oncology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
c Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
a Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
d Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
AuthorAffiliation_xml – name: b Gynecologic Oncology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
– name: c Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
– name: a Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
– name: d Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
Author_xml – sequence: 1
  givenname: Yibao
  orcidid: 0000-0002-3270-8893
  surname: Ma
  fullname: Ma, Yibao
  organization: Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
– sequence: 2
  givenname: Sarah M.
  surname: Temkin
  fullname: Temkin, Sarah M.
  organization: Gynecologic Oncology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
– sequence: 3
  givenname: Adam M.
  surname: Hawkridge
  fullname: Hawkridge, Adam M.
  organization: Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, USA
– sequence: 4
  givenname: Chunqing
  surname: Guo
  fullname: Guo, Chunqing
  organization: Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
– sequence: 5
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
– sequence: 6
  givenname: Xiang-Yang
  surname: Wang
  fullname: Wang, Xiang-Yang
  organization: Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
– sequence: 7
  givenname: Xianjun
  surname: Fang
  fullname: Fang, Xianjun
  email: xianjun.fang@vcuhealth.org
  organization: Department of Biochemistry & Molecular Biology, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30102953$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2LUzEYhYOMOB_6D0QCbty0vsnNTXIHEYbBUWHEja5Dmo-aem8yJulg_73ptA7aTSEkizzncN73nKOTmKJD6CWBOQHC367mRsfR1TkFIufQDvAn6IxIQWdikHCCzqADNutk15-i81JWANAz0T9Dpx0QoEPfnaEvN7rWDdYmWJx-B6trSPESX0XsJpeXIS6x18ZVnDyeXNWLNAaDa9ax-JSnBxyHiFsW4_Jz9NTrsbgX-_cCfb_58O360-z268fP11e3M9NzVtutrTDeEM35wgyDBU4l88ZoIoeFFZ7KvueCDpx55gfL-45aIYSTjPhOiu4Cvd_53q0Xk7PGxZZoVHc5TDpvVNJB_f8Tww-1TPeKUwYDgWbwZm-Q06-1K1VNoRg3jjq6tC6KgpR0YIRu0dcH6Cqtc2zjNWqgTMgettSrfxM9Rvm76QawHWByKiU7_4gQUNtC1UrtClXbQhW0A7zJLg9kJtSHrbe5wnhMvF-Ta13cB5dVMcG1omzIzlRlUzhm8O7AwIwhBqPHn25zXP4HUBPShA
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103579
crossref_primary_10_1007_s11060_025_05208_5
crossref_primary_10_1007_s12015_022_10348_6
crossref_primary_10_1016_j_smallrumres_2024_107376
crossref_primary_10_1016_j_ccell_2023_02_009
crossref_primary_10_1186_s40170_021_00276_3
crossref_primary_10_1038_s41420_025_02364_5
crossref_primary_10_3389_fphar_2023_1113007
crossref_primary_10_3390_cancers12082157
crossref_primary_10_1038_s41419_020_03203_4
crossref_primary_10_1002_ctm2_1061
crossref_primary_10_1016_j_vetmic_2023_109932
crossref_primary_10_3390_cancers13030474
crossref_primary_10_1002_cam4_70975
crossref_primary_10_1007_s10555_024_10170_1
crossref_primary_10_3390_ani14010167
crossref_primary_10_1111_febs_17345
crossref_primary_10_3390_cancers13092042
crossref_primary_10_3389_fcell_2025_1615454
crossref_primary_10_3390_ijms231710172
crossref_primary_10_1016_j_envint_2024_108488
crossref_primary_10_1038_s41417_023_00598_y
crossref_primary_10_31083_j_fbl2703095
crossref_primary_10_1186_s12964_024_01792_7
crossref_primary_10_1016_j_semcancer_2025_03_003
crossref_primary_10_1016_j_cej_2025_165328
crossref_primary_10_1016_j_bbrc_2023_06_090
crossref_primary_10_3390_cancers12040862
crossref_primary_10_1016_j_archoralbio_2024_105982
crossref_primary_10_1016_j_pharmthera_2025_108849
crossref_primary_10_1016_j_ymben_2025_04_005
crossref_primary_10_1016_j_yexcr_2021_112892
crossref_primary_10_1158_1940_6207_CAPR_20_0425
crossref_primary_10_1016_j_jff_2019_103658
crossref_primary_10_3389_fphar_2024_1423629
crossref_primary_10_3390_genes15060755
crossref_primary_10_3390_metabo15070428
crossref_primary_10_1038_s41419_025_07781_z
crossref_primary_10_1007_s13402_025_01081_6
crossref_primary_10_3389_fendo_2025_1534393
crossref_primary_10_1016_j_oraloncology_2025_107571
crossref_primary_10_1016_j_ejphar_2023_176034
crossref_primary_10_3390_ijms26031186
crossref_primary_10_1016_j_isci_2023_106899
crossref_primary_10_1002_ar_24725
crossref_primary_10_1038_s41419_020_03336_6
crossref_primary_10_3390_cancers13236135
crossref_primary_10_1016_j_tcb_2023_03_013
crossref_primary_10_1016_j_gendis_2025_101806
crossref_primary_10_3389_fimmu_2024_1431112
crossref_primary_10_1158_0008_5472_CAN_21_4029
crossref_primary_10_3390_biomedicines8080270
crossref_primary_10_1007_s11010_023_04685_4
crossref_primary_10_1002_mc_23635
crossref_primary_10_1038_s41467_022_32101_w
crossref_primary_10_1186_s12943_021_01421_8
crossref_primary_10_1186_s12964_025_02109_y
crossref_primary_10_3390_cancers12103044
crossref_primary_10_1186_s12943_025_02263_4
crossref_primary_10_3390_ijms23031155
crossref_primary_10_1038_s42003_024_06993_x
crossref_primary_10_1186_s12943_024_02119_3
crossref_primary_10_1002_advs_202105126
crossref_primary_10_1111_jcmm_18042
crossref_primary_10_1186_s43556_020_00012_1
crossref_primary_10_1155_2022_2339584
crossref_primary_10_3390_ijms241914857
crossref_primary_10_1007_s10555_021_10012_4
crossref_primary_10_3390_metabo13080910
crossref_primary_10_3390_cancers14092340
crossref_primary_10_3390_foods12132629
crossref_primary_10_1042_BST20231141
crossref_primary_10_1002_mco2_559
crossref_primary_10_1016_j_heliyon_2024_e28441
crossref_primary_10_3390_ijms25147747
crossref_primary_10_1038_s41419_025_07644_7
crossref_primary_10_1038_s42003_025_08031_w
crossref_primary_10_3389_fimmu_2022_955614
crossref_primary_10_3390_jcm11216544
crossref_primary_10_1002_1878_0261_13752
crossref_primary_10_3389_fphar_2021_670167
crossref_primary_10_3390_metabo10090345
crossref_primary_10_1186_s12944_024_02024_0
crossref_primary_10_1186_s12951_025_03516_6
crossref_primary_10_1002_1878_0261_13052
crossref_primary_10_1016_j_heliyon_2023_e23867
crossref_primary_10_1016_j_canlet_2022_215912
crossref_primary_10_1111_febs_16181
crossref_primary_10_48130_animadv_0025_0023
crossref_primary_10_1089_ars_2024_0741
crossref_primary_10_3389_fonc_2025_1564226
crossref_primary_10_1016_j_cellsig_2024_111087
crossref_primary_10_1016_j_semcancer_2024_12_002
crossref_primary_10_3389_fonc_2020_01010
crossref_primary_10_3389_fonc_2023_1271505
crossref_primary_10_1002_mc_23898
crossref_primary_10_1016_j_bcp_2022_115379
crossref_primary_10_7759_cureus_71968
crossref_primary_10_1016_j_apsb_2025_09_019
crossref_primary_10_3390_cancers17071077
crossref_primary_10_4103_RPS_RPS_209_23
crossref_primary_10_3389_fonc_2022_850401
crossref_primary_10_1007_s00432_022_04501_4
crossref_primary_10_1080_14728222_2023_2255377
crossref_primary_10_1002_cac2_12591
crossref_primary_10_1038_s41421_022_00406_1
crossref_primary_10_1186_s12951_023_01876_5
crossref_primary_10_1177_15347354221114100
crossref_primary_10_1016_j_toxicon_2025_108339
crossref_primary_10_1038_s41598_024_59746_5
crossref_primary_10_1042_BSR20220645
crossref_primary_10_3390_ijms241813928
crossref_primary_10_7759_cureus_91345
crossref_primary_10_3390_pharmaceutics15020437
crossref_primary_10_1016_j_molmet_2024_102031
crossref_primary_10_1177_17588359231152839
crossref_primary_10_3390_ph15101295
crossref_primary_10_1186_s12906_024_04425_1
crossref_primary_10_1186_s12951_024_02585_3
crossref_primary_10_1093_ckj_sfad046
crossref_primary_10_3389_fphar_2023_1163160
crossref_primary_10_1016_j_ejphar_2021_174608
crossref_primary_10_1016_j_pbiomolbio_2025_05_002
crossref_primary_10_1002_mco2_27
crossref_primary_10_31083_j_fbl2902066
crossref_primary_10_1093_jb_mvab004
crossref_primary_10_3390_cells12202486
crossref_primary_10_3389_fimmu_2024_1302587
crossref_primary_10_1016_j_bcp_2024_116122
crossref_primary_10_3389_fphar_2021_769647
crossref_primary_10_3390_ijms25158026
crossref_primary_10_1186_s12943_025_02265_2
crossref_primary_10_1134_S1990519X24700561
crossref_primary_10_1186_s12967_024_05091_0
crossref_primary_10_3390_cancers14194663
crossref_primary_10_1007_s12672_024_01069_y
crossref_primary_10_1007_s11912_022_01223_1
crossref_primary_10_3390_cancers14040871
crossref_primary_10_1016_j_bbcan_2022_188837
crossref_primary_10_1016_j_phymed_2023_155128
crossref_primary_10_1073_pnas_2302878120
crossref_primary_10_1080_14789450_2021_1912602
crossref_primary_10_1186_s13046_024_02952_w
crossref_primary_10_3389_fimmu_2025_1524801
crossref_primary_10_1038_s41419_021_04411_2
crossref_primary_10_1177_1010428320965284
crossref_primary_10_1016_j_bbalip_2025_159661
crossref_primary_10_7717_peerj_16335
crossref_primary_10_3389_fonc_2025_1464914
crossref_primary_10_1016_j_apsb_2023_09_005
crossref_primary_10_1155_2021_1815178
crossref_primary_10_1016_j_seminoncol_2025_152351
crossref_primary_10_1038_s41392_021_00659_4
crossref_primary_10_1038_s41523_022_00481_3
crossref_primary_10_1016_j_freeradbiomed_2024_10_258
crossref_primary_10_1515_biol_2022_0696
crossref_primary_10_3390_cancers16071313
crossref_primary_10_1016_j_cbi_2023_110672
crossref_primary_10_1158_0008_5472_CAN_23_2926
crossref_primary_10_1007_s11033_025_10472_9
crossref_primary_10_3389_fphar_2021_730751
crossref_primary_10_1158_1541_7786_MCR_20_0579
crossref_primary_10_3390_ijms23105572
crossref_primary_10_1007_s00217_021_03767_1
crossref_primary_10_3389_fendo_2025_1580559
crossref_primary_10_3390_biom14050601
crossref_primary_10_3389_fcvm_2020_00035
crossref_primary_10_1038_s41392_021_00485_8
crossref_primary_10_3389_fcvm_2024_1392816
crossref_primary_10_1186_s12967_024_05084_z
crossref_primary_10_3389_fbioe_2022_943906
crossref_primary_10_3390_metabo12080697
crossref_primary_10_3389_fonc_2020_00928
crossref_primary_10_1016_j_heliyon_2024_e28837
crossref_primary_10_1186_s12920_022_01369_8
crossref_primary_10_1016_j_bbrc_2023_04_074
crossref_primary_10_1016_j_saa_2025_126275
crossref_primary_10_1016_j_cmet_2020_04_010
crossref_primary_10_1016_j_critrevonc_2023_104037
crossref_primary_10_1038_s41416_022_01869_5
crossref_primary_10_1186_s13045_021_01200_4
crossref_primary_10_1016_j_semcancer_2023_05_002
crossref_primary_10_1038_s41556_024_01439_2
crossref_primary_10_1186_s12935_021_02057_w
crossref_primary_10_1186_s40364_024_00681_y
crossref_primary_10_1038_s41467_022_29137_3
crossref_primary_10_1016_j_biomaterials_2025_123259
crossref_primary_10_1155_2022_2159794
crossref_primary_10_1016_j_bbcan_2024_189149
crossref_primary_10_1016_j_xpro_2024_103518
crossref_primary_10_3390_biomedicines9020127
crossref_primary_10_1089_genbio_2023_0017
crossref_primary_10_2174_0109298673259347231019121757
crossref_primary_10_3389_fmolb_2021_742859
crossref_primary_10_3390_cells11030413
crossref_primary_10_3390_ijms24098441
crossref_primary_10_1016_j_bbamcr_2020_118944
crossref_primary_10_1111_liv_15409
crossref_primary_10_1016_j_metabol_2025_156334
crossref_primary_10_1111_febs_70193
crossref_primary_10_3390_cancers13050935
crossref_primary_10_1155_2024_6673550
crossref_primary_10_1080_14728222_2025_2532394
crossref_primary_10_3390_metabo14030148
crossref_primary_10_1038_s41598_020_58334_7
crossref_primary_10_1088_1361_6463_adbfa2
crossref_primary_10_3390_nu14030573
crossref_primary_10_1016_j_neo_2025_101125
crossref_primary_10_1158_1541_7786_MCR_20_0991
crossref_primary_10_1016_j_actbio_2023_05_040
crossref_primary_10_1016_j_molcel_2024_02_035
crossref_primary_10_1016_j_semcancer_2021_01_001
crossref_primary_10_1038_s41698_024_00662_2
crossref_primary_10_1002_cac2_12360
crossref_primary_10_1177_00037028241254403
crossref_primary_10_1007_s12094_022_02863_2
crossref_primary_10_1007_s12282_022_01356_y
crossref_primary_10_1002_cac2_12247
crossref_primary_10_3389_fgene_2024_1505011
crossref_primary_10_1016_j_ejphar_2023_175655
crossref_primary_10_1016_j_bcp_2023_115550
crossref_primary_10_1016_j_bbcan_2025_189447
crossref_primary_10_1016_j_molmet_2024_102044
crossref_primary_10_3389_fphar_2024_1516650
crossref_primary_10_1016_j_bbadis_2025_167919
crossref_primary_10_1186_s13046_025_03276_z
crossref_primary_10_1111_imm_13871
crossref_primary_10_3390_cancers14081865
crossref_primary_10_1002_advs_202510004
crossref_primary_10_1016_j_jbc_2023_105470
crossref_primary_10_1038_s41419_024_06956_4
crossref_primary_10_1016_j_bbalip_2021_159068
crossref_primary_10_1016_j_ijbiomac_2025_146087
crossref_primary_10_1038_s41397_024_00355_w
crossref_primary_10_1016_j_tranon_2021_101023
crossref_primary_10_1038_s41420_024_01807_9
crossref_primary_10_1111_cbdd_70158
crossref_primary_10_1158_0008_5472_CAN_20_2052
crossref_primary_10_3390_ijms22031444
crossref_primary_10_1016_j_molmet_2021_101389
crossref_primary_10_3390_ijms21218031
crossref_primary_10_1038_s41598_023_41176_4
crossref_primary_10_1038_s41419_024_06666_x
crossref_primary_10_3390_inorganics11100394
crossref_primary_10_1186_s12911_022_02020_3
crossref_primary_10_1002_advs_202306515
crossref_primary_10_1073_pnas_2221653120
crossref_primary_10_1016_j_bbcan_2025_189318
crossref_primary_10_1016_j_seminoncol_2025_152392
crossref_primary_10_1186_s12935_021_01799_x
crossref_primary_10_3390_ijms26051857
crossref_primary_10_3389_fonc_2020_572919
crossref_primary_10_1016_j_bbcan_2025_189430
crossref_primary_10_1016_j_addr_2020_07_013
crossref_primary_10_1093_rheumatology_keab788
crossref_primary_10_1155_2021_5754592
crossref_primary_10_1177_15330338221140655
crossref_primary_10_1016_j_canlet_2024_217415
crossref_primary_10_1016_j_biopha_2024_116247
crossref_primary_10_1016_j_biopha_2022_113376
crossref_primary_10_1002_cac2_12502
crossref_primary_10_1016_j_mcpro_2025_101026
crossref_primary_10_1016_j_taap_2024_117042
crossref_primary_10_1038_s41598_025_95173_w
crossref_primary_10_1016_j_biopha_2023_114346
crossref_primary_10_1038_s41598_020_79565_8
crossref_primary_10_1186_s40170_020_00237_2
crossref_primary_10_3390_cells10020202
crossref_primary_10_1089_ars_2020_8161
crossref_primary_10_1096_fj_202403019R
crossref_primary_10_3390_cancers12030581
crossref_primary_10_1016_j_cellsig_2023_110838
crossref_primary_10_1038_s41419_022_04606_1
crossref_primary_10_3390_cancers14194913
crossref_primary_10_1016_j_jare_2024_05_001
crossref_primary_10_3389_fonc_2021_656851
crossref_primary_10_2174_0113895575339660250106093738
crossref_primary_10_1016_j_chemphyslip_2021_105057
crossref_primary_10_1186_s12885_024_12781_x
crossref_primary_10_1186_s12964_022_00849_9
crossref_primary_10_4252_wjsc_v12_i11_1295
crossref_primary_10_2174_0929867331666230707094644
crossref_primary_10_1002_jcp_70000
crossref_primary_10_1038_s41467_023_36122_x
crossref_primary_10_1111_obr_13833
crossref_primary_10_3892_ol_2024_14222
crossref_primary_10_1002_adma_202415550
crossref_primary_10_1007_s00109_024_02461_5
crossref_primary_10_1016_j_semcancer_2022_10_005
crossref_primary_10_1186_s12944_024_02426_0
crossref_primary_10_3389_fcell_2021_675617
crossref_primary_10_1016_j_freeradbiomed_2024_01_004
crossref_primary_10_3389_fonc_2020_00428
crossref_primary_10_3390_biology13110892
crossref_primary_10_3390_ijms21207589
crossref_primary_10_3390_ijms22031258
crossref_primary_10_3892_ijmm_2024_5439
crossref_primary_10_1016_j_cellsig_2023_110847
crossref_primary_10_1016_j_jtemb_2024_127507
crossref_primary_10_3390_ijms24129921
crossref_primary_10_1016_j_cmet_2019_11_010
crossref_primary_10_1016_j_devcel_2023_07_005
crossref_primary_10_3892_or_2023_8575
crossref_primary_10_1038_s41419_022_04730_y
crossref_primary_10_15212_AMM_2024_0057
crossref_primary_10_1016_j_jds_2024_09_018
crossref_primary_10_3390_nu14040851
crossref_primary_10_1016_j_canlet_2023_216352
crossref_primary_10_3390_cancers15154013
crossref_primary_10_1016_j_intimp_2020_107198
crossref_primary_10_3390_cancers12113318
crossref_primary_10_3390_cells11091392
crossref_primary_10_1038_s41401_025_01581_z
crossref_primary_10_1021_jacs_3c02043
crossref_primary_10_3389_fonc_2023_1230934
crossref_primary_10_1016_j_scitotenv_2024_171510
crossref_primary_10_1002_1878_0261_13560
crossref_primary_10_1002_pmic_202300393
crossref_primary_10_1038_s41419_023_05968_w
crossref_primary_10_1084_jem_20201606
crossref_primary_10_3389_fimmu_2025_1603032
crossref_primary_10_1038_s41419_023_06181_5
crossref_primary_10_1016_j_pestbp_2023_105756
crossref_primary_10_3389_fmed_2021_740087
crossref_primary_10_3390_ijms252111760
crossref_primary_10_1038_s41420_025_02351_w
crossref_primary_10_1016_j_drudis_2024_104220
crossref_primary_10_1038_s41598_022_06934_w
crossref_primary_10_3389_fonc_2022_987499
crossref_primary_10_1007_s13105_021_00791_3
crossref_primary_10_3389_fphar_2022_1032806
crossref_primary_10_3390_ani11102969
crossref_primary_10_1080_10717544_2021_1995081
crossref_primary_10_1186_s12967_024_05446_7
crossref_primary_10_1186_s13046_024_03203_8
crossref_primary_10_1016_j_canlet_2024_217076
crossref_primary_10_3390_ijms232315263
crossref_primary_10_1038_s41420_025_02554_1
crossref_primary_10_1177_00368504251352375
crossref_primary_10_3389_fonc_2022_940402
crossref_primary_10_3390_antiox12112012
crossref_primary_10_3390_cells10051056
crossref_primary_10_3390_antiox9030243
crossref_primary_10_3892_ol_2024_14801
Cites_doi 10.1007/s10495-015-1137-x
10.1053/j.semnuclmed.2016.07.005
10.1016/j.stem.2016.06.001
10.1182/blood-2014-12-617498
10.1093/neuonc/now128
10.1172/JCI62129
10.1158/1535-7163.MCT-14-0183
10.1056/NEJMoa0808710
10.1194/jlr.M200312-JLR200
10.1016/0024-3205(89)90401-3
10.1038/nrc2222
10.1093/toxsci/68.1.93
10.1016/j.cell.2015.05.025
10.1126/science.123.3191.309
10.1016/j.ccr.2012.08.014
10.1038/nrc3245
10.1111/j.1527-3466.2007.00006.x
10.1038/nrc2981
10.1038/ni.3366
10.1021/jm101360s
10.2174/157488407781668776
10.18632/oncotarget.16123
10.1038/nature08268
10.1038/nrc3599
10.1038/sj.pcan.4500879
10.4049/jimmunol.1003613
10.1016/j.cmet.2017.11.001
10.1042/bst0301064
10.1016/j.molcel.2016.08.014
10.1016/j.ebiom.2016.11.025
10.1016/j.immuni.2011.12.007
10.1016/j.plipres.2015.11.004
10.1016/j.canlet.2015.11.020
10.1038/onc.2012.70
10.1038/onc.2015.447
10.1038/nrc3483
10.1038/nrc.2016.89
10.1038/nature21028
10.1016/j.celrep.2016.02.004
10.2337/diabetes.50.1.123
10.1038/leu.2015.213
10.1158/0008-5472.CAN-14-2676
10.1038/nm.4093
10.1158/1078-0432.CCR-11-3281
10.1038/s41388-018-0384-z
10.1097/00005344-200012000-00016
10.1016/S0021-9258(17)34693-8
10.1038/cddis.2016.132
10.1038/nrc1586
10.1038/ncb2329
10.1159/000019923
10.1038/onc.2017.124
10.1371/journal.pone.0046484
10.1158/2326-6066.CIR-15-0036
10.1016/j.canlet.2017.03.019
10.1016/S0022-5347(01)66366-3
10.1016/j.immuni.2017.12.004
10.1038/nature14362
10.1021/jm100809g
10.1016/j.semcdb.2012.01.003
10.1126/science.1160809
10.1016/j.cmet.2016.07.003
10.18632/oncotarget.6817
10.1186/1471-2091-13-23
10.1158/2159-8290.CD-16-0441
10.1007/s11307-014-0814-4
10.1038/nm.2172
10.1101/gad.276733.115
10.1016/j.cmet.2015.12.004
10.1146/annurev-physiol-021115-105045
10.1073/pnas.97.4.1444
10.18632/oncotarget.6757
10.1172/jci.insight.87489
10.1016/j.bbabio.2010.10.022
10.1038/nm.2882
10.1182/blood-2013-03-489468
10.1002/nbm.2794
10.1016/S0021-9258(18)47214-6
10.1038/onc.2016.150
10.1371/journal.pbio.2003782
10.1038/cddis.2017.21
10.1038/onc.2016.103
10.1074/jbc.M707965200
10.1002/iub.78
10.2337/db12-0259
10.1016/j.cmet.2015.12.006
10.1016/j.cmet.2013.05.017
10.1038/s41598-017-13505-x
10.1038/ni.2956
10.1016/j.mam.2004.06.004
10.1038/nm.2492
10.1101/gad.1987211
10.1016/j.celrep.2016.07.009
10.1158/0008-5472.CAN-15-2616
10.1016/j.canlet.2018.05.017
10.1093/jnci/djt030
10.1074/jbc.272.6.3324
10.1016/j.ccr.2013.06.014
10.1023/A:1007705707667
10.1158/0008-5472.CAN-16-0651
10.1186/1471-2407-11-56
10.1016/j.celrep.2016.01.004
10.1038/nbt.2285
10.1038/sj.cdd.4401636
10.1038/sj.onc.1208622
10.1161/01.RES.86.5.580
10.1016/j.cell.2010.01.025
10.1038/nature08097
10.1038/ng.3073
10.1038/nature20791
10.1097/00008390-199205000-00004
10.1016/j.cmet.2006.05.011
10.1016/j.plipres.2012.10.004
10.1016/j.celrep.2014.08.056
10.1172/JCI38942
10.1016/j.plefa.2010.02.029
10.1038/nm.4055
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier B.V.
Copyright Elsevier Limited Oct 28, 2018
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier B.V.
– notice: Copyright Elsevier Limited Oct 28, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U9
H94
K9.
NAPCQ
7X8
5PM
DOI 10.1016/j.canlet.2018.08.006
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7980
EndPage 100
ExternalDocumentID PMC6240910
30102953
10_1016_j_canlet_2018_08_006
S0304383518305184
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Asia
Europe
GeographicLocations_xml – name: Europe
– name: Asia
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA099326
– fundername: NCI NIH HHS
  grantid: R01 CA175033
– fundername: NCI NIH HHS
  grantid: P30 CA016059
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
4.4
457
4CK
4G.
5GY
5RE
5VS
6J9
6PF
7-5
71M
8FE
8FH
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IH2
IHE
J1W
K-O
KOM
LK8
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OC~
OO-
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSU
SSZ
T5K
Z5R
~G-
~HD
3V.
7RV
7X7
8C1
8FI
AACTN
AAIAV
AFCTW
AFKRA
AFKWA
AJOXV
AMFUW
AZQEC
BBNVY
BENPR
BHPHI
FYUFA
GUQSH
HCIFZ
M1P
M2M
M2O
M7P
RIG
.55
.GJ
3O-
53G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFFNX
AFJKZ
AGQPQ
AGRDE
AI.
AIGII
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HED
HMK
HMO
HVGLF
HZ~
R2-
SAE
SEW
UDS
VH1
WUQ
X7M
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7TO
7U9
H94
K9.
NAPCQ
7X8
5PM
ID FETCH-LOGICAL-c564t-c5ad7cfc1a66bc99d06284fcca189bd7f2855672964f4f9d6532d777e841f3873
ISICitedReferencesCount 398
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000444662700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3835
1872-7980
IngestDate Tue Sep 30 16:46:32 EDT 2025
Sun Sep 28 15:10:06 EDT 2025
Tue Oct 07 06:59:05 EDT 2025
Thu Apr 03 06:58:44 EDT 2025
Tue Nov 18 22:19:49 EST 2025
Sat Nov 29 07:18:00 EST 2025
Tue Jul 16 04:31:35 EDT 2024
Tue Oct 14 19:38:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords NADPH
Fatty acid β-oxidation
ATP
Lipolytic phenotype
Cancer
Language English
License Copyright © 2018. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c564t-c5ad7cfc1a66bc99d06284fcca189bd7f2855672964f4f9d6532d777e841f3873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3270-8893
PMID 30102953
PQID 2092478500
PQPubID 2031080
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6240910
proquest_miscellaneous_2088294120
proquest_journals_2092478500
pubmed_primary_30102953
crossref_primary_10_1016_j_canlet_2018_08_006
crossref_citationtrail_10_1016_j_canlet_2018_08_006
elsevier_sciencedirect_doi_10_1016_j_canlet_2018_08_006
elsevier_clinicalkey_doi_10_1016_j_canlet_2018_08_006
PublicationCentury 2000
PublicationDate 2018-10-28
PublicationDateYYYYMMDD 2018-10-28
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-28
  day: 28
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
– name: Clare
PublicationTitle Cancer letters
PublicationTitleAlternate Cancer Lett
PublicationYear 2018
Publisher Elsevier B.V
Elsevier Limited
Publisher_xml – name: Elsevier B.V
– name: Elsevier Limited
References Liu, Zuckier, Ghesani (bib62) 2010; 30
Shi, Fu, Jia, He, Fu, Wang (bib39) 2016; 14
Wu, Hurren, MacLean, Gronda, Jitkova, Sukhai, Minden, Schimmer (bib42) 2015; 20
Warburg, Posener, Negelein (bib2) 1924; 152
Park, Vithayathil, Kumar, Sung, Dobrolecki, Putluri, Bhat, Bhowmik, Gupta, Arora, Wu, Tsouko, Zhang, Maity, Donti, Graham, Frigo, Coarfa, Yotnda, Putluri, Sreekumar, Lewis, Creighton, Wong, Kaipparettu (bib51) 2016; 14
Liu, Liu, Jiang, Carew, Ogasawara, Pelicano, Croce, Estrov, Xu, Keating, Huang (bib40) 2016; 35
Caro, Kishan, Norberg, Stanley, Chapuy, Ficarro, Polak, Tondera, Gounarides, Yin, Zhou, Green, Chen, Monti, Marto, Shipp, Danial (bib19) 2012; 22
Hermanova, Arruabarrena-Aristorena, Valis, Nuskova, Alberich-Jorda, Fiser, Fernandez-Ruiz, Kavan, Pecinova, Niso-Santano, Zaliova, Novak, Houstek, Mracek, Kroemer, Carracedo, Trka, Starkova (bib81) 2016; 30
Cook, Soto-Pantoja, Clarke, Cruz, Zwart, Warri, Hilakivi-Clarke, Roberts, Clarke (bib45) 2016; 76
Cairns, Harris, Mak (bib7) 2011; 11
Abu-Elheiga, Brinkley, Zhong, Chirala, Woldegiorgis, Wakil (bib34) 2000; 97
Padanad, Konstantinidou, Venkateswaran, Melegari, Rindhe, Mitsche, Yang, Batten, Huffman, Liu, Tang, Rodriguez-Canales, Kalhor, Shay, Minna, McDonald, Wistuba, DeBerardinis, Scaglioni (bib43) 2016; 16
Reilly, Mak (bib26) 2012; 18
Ricciardi, Mirabilii, Allegretti, Licchetta, Calarco, Torrisi, Foa, Nicolai, Peluso, Tafuri (bib114) 2015; 126
Effert, Bares, Handt, Wolff, Bull, Jakse (bib65) 1996; 155
Vander Heiden, Cantley, Thompson (bib3) 2009; 324
Bensaad, Favaro, Lewis, Peck, Lord, Collins, Pinnick, Wigfield, Buffa, Li, Zhang, Wakelam, Karpe, Schulze, Harris (bib120) 2014; 9
Cheong, Lu, Lindsten, Thompson (bib16) 2012; 30
Vats, Mukundan, Odegaard, Zhang, Smith, Morel, Wagner, Greaves, Murray, Chawla (bib93) 2006; 4
Herber, Cao, Nefedova, Novitskiy, Nagaraj, Tyurin, Corzo, Cho, Celis, Lennox, Knight, Padhya, McCaffrey, McCaffrey, Antonia, Fishman, Ferris, Kagan, Gabrilovich (bib99) 2010; 16
Fragasso, Spoladore, Cuko, Palloshi (bib108) 2007; 2
Xie, Jones, Deeney, Hur, Bankaitis (bib77) 2016; 14
Shao, Mohamed, Xu, Waters, Jing, Ma, Zhang, Spiegel, Idowu, Fang (bib44) 2016; 7
Liu (bib63) 2006; 9
Ye, Adane, Khan, Sullivan, Minhajuddin, Gasparetto, Stevens, Pei, Balys, Ashton, Klemm, Woolthuis, Stranahan, Park, Jordan (bib78) 2016; 19
Paumen, Ishida, Muramatsu, Yamamoto, Honjo (bib68) 1997; 272
Hossain, Al-Khami, Wyczechowska, Hernandez, Zheng, Reiss, Valle, Trillo-Tinoco, Maj, Zou, Rodriguez, Ochoa (bib98) 2015; 3
Pearce, Walsh, Cejas, Harms, Shen, Wang, Jones, Choi (bib89) 2009; 460
German, Yoon, Yusuf, Murphy, Finley, Laurent, Haas, Satterstrom, Guarnerio, Zaganjor, Santos, Pandolfi, Beck, Gygi, Scadden, Kaelin, Haigis (bib37) 2016; 63
Pike, Smift, Croteau, Ferrick, Wu (bib8) 2011; 1807
Zaugg, Yao, Reilly, Kannan, Kiarash, Mason, Huang, Sawyer, Fuerth, Faubert, Kalliomaki, Elia, Luo, Nadeem, Bungard, Yalavarthi, Growney, Wakeham, Moolani, Silvester, Ten, Bakker, Tsuchihara, Berger, Hill, Jones, Tsao, Robinson, Thompson, Pan, Mak (bib25) 2011; 25
Ceccarelli, Chomienne, Gubler, Arduini (bib113) 2011; 54
Wang, Attane, Milhas, Dirat, Dauvillier, Guerard, Gilhodes, Lazar, Alet, Laurent, Le Gonidec, Biard, Herve, Bost, Ren, Bono, Escourrou, Prentki, Nieto, Valet, Muller (bib60) 2017; 2
Bagger, Botker, Thomassen, Nielsen (bib107) 1997; 11
Poulsen, Siersbaek, Mandrup (bib29) 2012; 23
Merrill, Ni, Yoon, Tirmenstein, Narayanan, Benavides, Easton, Creech, Hu, McFarland, Hahn, Thomas, Morgan (bib53) 2002; 68
Hardie, Pan (bib33) 2002; 30
Yan, Parsons, Jin, McLendon, Rasheed, Yuan, Kos, Batinic-Haberle, Jones, Riggins, Friedman, Friedman, Reardon, Herndon, Kinzler, Velculescu, Vogelstein, Bigner (bib15) 2009; 360
Wong, Wang, Zecchin, Thienpont, Cornelissen, Kalucka, Garcia-Caballero, Missiaen, Huang, Bruning, Blacher, Vinckier, Goveia, Knobloch, Zhao, Dierkes, Shi, Hagerling, Moral-Darde, Wyns, Lippens, Jessberger, Fendt, Luttun, Noel, Kiefer, Ghesquiere, Moons, Schoonjans, Dewerchin, Eelen, Lambrechts, Carmeliet (bib23) 2017; 542
Wang, Rajput, Watabe, Liao, Cao (bib14) 2010; 2
Schoors, Bruning, Missiaen, Queiroz, Borgers, Elia, Zecchin, Cantelmo, Christen, Goveia, Heggermont, Godde, Vinckier, Van Veldhoven, Eelen, Schoonjans, Gerhardt, Dewerchin, Baes, De Bock, Ghesquiere, Lunt, Fendt, Carmeliet (bib22) 2015; 520
Pacilli, Calienni, Margarucci, D'Apolito, Petillo, Rocchi, Pasquinelli, Nicolai, Koverech, Calvani, Peluso, Montanaro (bib115) 2013; 105
Lin, Patel, Affleck, Wilson, Turnbull, Joshi, Maxwell, Stoll (bib48) 2017; 19
Li, Zhao, Zhou, Zhang, Zhao, Miao, Song, Sun, Liu, Zhao, Huang (bib87) 2013; 8
Giordano, Calvani, Petillo, Grippo, Tuccillo, Melone, Bonelli, Calarco, Peluso (bib69) 2005; 12
Mascagna, Ghanem, Morandini, d'Ischia, Misuraca, Lejeune, Prota (bib117) 1992; 2
Kennedy, Kiosoglous, Murphy, Pelle, Horowitz (bib104) 2000; 36
Ito, Carracedo, Weiss, Arai, Ala, Avigan, Schafer, Evans, Suda, Lee, Pandolfi (bib31) 2012; 18
Tung, Shi, Wong, Zhu, Gorczynski, Laister, Minden, Blechert, Genzel, Reichl, Spaner (bib80) 2013; 122
Sierra, Gratacos, Carrasco, Clotet, Urena, Serra, Asins, Hegardt, Casals (bib27) 2008; 283
Leamy, Egnatchik, Young (bib71) 2013; 52
Zou (bib96) 2005; 5
Zammit (bib21) 2008; 60
Keung, Ussher, Jaswal, Raubenheimer, Lam, Wagg, Lopaschuk (bib111) 2013; 62
Qu, Zeng, Liu, Wang, Deng (bib12) 2016; 7
Carracedo, Weiss, Leliaert, Bhasin, de Boer, Laurent, Adams, Sundvall, Song, Ito, Finley, Egia, Libermann, Gerhart-Hines, Puigserver, Haigis, Maratos-Flier, Richardson, Schafer, Pandolfi (bib75) 2012; 122
Wang, Zeng, Lu, Wang, Liu, He, Zhao, Wang, Li, Lu, Wu, Yu, Wang, Pu, Li, Jia, Shi, Xie, Kang, Huang, Ju, Xu (bib76) 2018
Itkonen, Brown, Urbanucci, Tredwell, Ho Lau, Barfeld, Hart, Guldvik, Takhar, Heemers, Erho, Bloch, Davicioni, Derua, Waelkens, Mohler, Clarke, Swinnen, Keun, Rekvig, Mills (bib119) 2017; 8
Fridman, Pages, Sautes-Fridman, Galon (bib92) 2012; 12
Pirat, Farce, Lebegue, Renault, Furman, Millet, Yous, Speca, Berthelot, Desreumaux, Chavatte (bib30) 2012; 55
Barger, Gallo, Tandon, Liu, Sullivan, Grimes, Plas (bib82) 2013; 32
Nomura, Liu, Rovira, Gonzalez-Hurtado, Lee, Wolfgang, Finkel (bib95) 2016; 17
Patra, Wang, Bhaskar, Miller, Wang, Wheaton, Chandel, Laakso, Muller, Allen, Jha, Smolen, Clasquin, Robey, Hay (bib17) 2013; 24
Jin, Alesi, Kang (bib4) 2016; 35
Bressler, Gay, Copeland, Bahl, Bedotto, Goldman (bib103) 1989; 44
Buzzai, Bauer, Jones, Deberardinis, Hatzivassiliou, Elstrom, Thompson (bib73) 2005; 24
Kantor, Lucien, Kozak, Lopaschuk (bib106) 2000; 86
Ashrafian, Horowitz, Frenneaux (bib105) 2007; 25
Petruzzelli, Wagner (bib110) 2016; 30
Ma, Yu, Mohamed, Shao, Wang, Sundaresan, Zweit, Idowu, Fang (bib18) 2016; 35
McGarry, Leatherman, Foster (bib35) 1978; 253
Mihaylova, Shaw (bib32) 2011; 13
Farge, Saland, de Toni, Aroua, Hosseini, Perry, Bosc, Sugita, Stuani, Fraisse, Scotland, Larrue, Boutzen, Feliu, Nicolau-Travers, Cassant-Sourdy, Broin, David, Serhan, Sarry, Tavitian, Kaoma, Vallar, Iacovoni, Linares, Montersino, Castellano, Griessinger, Collette, Duchamp, Barreira, Hirsch, Palama, Gales, Delhommeau, Garmy-Susini, Portais, Vergez, Selak, Danet-Desnoyers, Carroll, Recher, Sarry (bib84) 2017; 7
van der Windt, Everts, Chang, Curtis, Freitas, Amiel, Pearce, Pearce (bib90) 2012; 36
Wen, Xing, Harris, Zaytseva, Mitov, Napier, Weiss, Mark Evers, Gao (bib59) 2017; 8
Nieman, Kenny, Penicka, Ladanyi, Buell-Gutbrod, Zillhardt, Romero, Carey, Mills, Hotamisligil, Yamada, Peter, Gwin, Lengyel (bib58) 2011; 17
Currie, Schulze, Zechner, Walther, Farese (bib11) 2013; 18
Tirado-Velez, Joumady, Saez-Benito, Cozar-Castellano, Perdomo (bib56) 2012; 7
Corbet, Pinto, Martherus, Santiago de Jesus, Polet, Feron (bib36) 2016; 24
Samudio, Harmancey, Fiegl, Kantarjian, Konopleva, Korchin, Kaluarachchi, Bornmann, Duvvuri, Taegtmeyer, Andreeff (bib52) 2010; 120
Schuster, Nanni, Fanti (bib66) 2016; 46
Lee, Wolfgang (bib28) 2012; 13
Wang, Fahrmann, Lee, Li, Tripathi, Yue, Zhang, Lifshitz, Song, Yuan, Somlo, Jandial, Ann, Hanash, Jove, Yu (bib41) 2017; 27
Shinohara, Kumazaki, Minami, Ito, Sugito, Kuranaga, Taniguchi, Yamada, Otsuki, Naoe, Akao (bib83) 2016; 371
Chen, Uthaya Kumar, Punj, Xu, Sher, Tahara, Hess, Machida (bib88) 2016; 23
Maher, Marin-Valencia, Bachoo, Mashimo, Raisanen, Hatanpaa, Jindal, Jeffrey, Choi, Madden, Mathews, Pascual, Mickey, Malloy, DeBerardinis (bib67) 2012; 25
Zhao, Xiao, Evans, Theivanthiran, DeVito, Holtzhausen, Liu, Liu, Boczkowski, Nair, Locasale, Hanks (bib101) 2018; 48
Menendez, Lupu (bib13) 2007; 7
Yao, Liu, Wang, Moon, Gross, Patti (bib116) 2018; 16
Lee, Angka, Rota, Hanlon, Mitchell, Hurren, Wang, Gronda, Boyaci, Bojko, Minden, Sriskanthadevan, Datti, Wrana, Edginton, Pawliszyn, Joseph, Quadrilatero, Schimmer, Spagnuolo (bib9) 2015; 75
Schafer, Grassian, Song, Jiang, Gerhart-Hines, Irie, Gao, Puigserver, Brugge (bib72) 2009; 461
Bonnefont, Djouadi, Prip-Buus, Gobin, Munnich, Bastin (bib24) 2004; 25
Casals, Zammit, Herrero, Fado, Rodriguez-Rodriguez, Serra (bib86) 2016; 61
Rohrig, Schulze (bib5) 2016; 16
Carracedo, Cantley, Pandolfi (bib10) 2013; 13
Dobbins, Szczepaniak, Bentley, Esser, Myhill, McGarry (bib70) 2001; 50
Kitajima, Yoshida, Kohno, Li, Suzuki, Nagatani, Nishimoto, Sasaki, Muranaka, Wan, Thai, Okahashi, Matsuda, Shimizu, Nishiuchi, Suzuki, Tominaga, Gotoh, Suzuki, Ewen, Barbie, Hirose, Tanaka, Takahashi (bib85) 2017; 36
Holohan, Van Schaeybroeck, Longley, Johnston (bib79) 2013; 13
Berge, Tronstad, Bohov, Madsen, Berge (bib118) 2003; 44
Halama, Kulinski, Dib, Zaghlool, Siveen, Iskandarani, Zierer, Prabhu, Satheesh, Bhagwat, Uddin, Kastenmuller, Elemento, Gross, Suhre (bib121) 2018; 430
Gatza, Silva, Parker, Fan, Perou (bib57) 2014; 46
Grivennikov, Greten, Karin (bib97) 2010; 140
Schlaepfer, Rider, Rodrigues, Gijon, Pac, Romero, Cimic, Sirintrapun, Glode, Eckel, Cramer (bib54) 2014; 13
Hofer, Laubenbacher, Block, Breul, Hartung, Schwaiger (bib64) 1999; 36
Huang, Everts, Ivanova, O'Sullivan, Nascimento, Smith, Beatty, Love-Gregory, Lam, O'Neill, Yan, Du, Abumrad, Urban, Artyomov, Pearce, Pearce (bib94) 2014; 15
Weis
Liu (10.1016/j.canlet.2018.08.006_bib62) 2010; 30
Pearce (10.1016/j.canlet.2018.08.006_bib89) 2009; 460
Caro (10.1016/j.canlet.2018.08.006_bib19) 2012; 22
Barger (10.1016/j.canlet.2018.08.006_bib82) 2013; 32
Cubillos-Ruiz (10.1016/j.canlet.2018.08.006_bib100) 2015; 161
Ceccarelli (10.1016/j.canlet.2018.08.006_bib113) 2011; 54
Wang (10.1016/j.canlet.2018.08.006_bib41) 2017; 27
Mascagna (10.1016/j.canlet.2018.08.006_bib117) 1992; 2
Bensaad (10.1016/j.canlet.2018.08.006_bib120) 2014; 9
Warburg (10.1016/j.canlet.2018.08.006_bib6) 1956; 123
Leamy (10.1016/j.canlet.2018.08.006_bib71) 2013; 52
Vats (10.1016/j.canlet.2018.08.006_bib93) 2006; 4
Ricciardi (10.1016/j.canlet.2018.08.006_bib114) 2015; 126
Hardie (10.1016/j.canlet.2018.08.006_bib33) 2002; 30
Corbet (10.1016/j.canlet.2018.08.006_bib36) 2016; 24
Zhao (10.1016/j.canlet.2018.08.006_bib101) 2018; 48
Berge (10.1016/j.canlet.2018.08.006_bib118) 2003; 44
Poulsen (10.1016/j.canlet.2018.08.006_bib29) 2012; 23
Tung (10.1016/j.canlet.2018.08.006_bib80) 2013; 122
Reilly (10.1016/j.canlet.2018.08.006_bib26) 2012; 18
Chen (10.1016/j.canlet.2018.08.006_bib88) 2016; 23
Schafer (10.1016/j.canlet.2018.08.006_bib72) 2009; 461
Pacilli (10.1016/j.canlet.2018.08.006_bib115) 2013; 105
Giordano (10.1016/j.canlet.2018.08.006_bib69) 2005; 12
Ye (10.1016/j.canlet.2018.08.006_bib78) 2016; 19
Hofer (10.1016/j.canlet.2018.08.006_bib64) 1999; 36
Halama (10.1016/j.canlet.2018.08.006_bib121) 2018; 430
Michalek (10.1016/j.canlet.2018.08.006_bib91) 2011; 186
Hermanova (10.1016/j.canlet.2018.08.006_bib81) 2016; 30
Wong (10.1016/j.canlet.2018.08.006_bib23) 2017; 542
Lee (10.1016/j.canlet.2018.08.006_bib9) 2015; 75
Fridman (10.1016/j.canlet.2018.08.006_bib92) 2012; 12
Paumen (10.1016/j.canlet.2018.08.006_bib68) 1997; 272
Sierra (10.1016/j.canlet.2018.08.006_bib27) 2008; 283
Schlaepfer (10.1016/j.canlet.2018.08.006_bib55) 2015; 17
Currie (10.1016/j.canlet.2018.08.006_bib11) 2013; 18
van der Windt (10.1016/j.canlet.2018.08.006_bib90) 2012; 36
Camarda (10.1016/j.canlet.2018.08.006_bib49) 2016; 22
Itkonen (10.1016/j.canlet.2018.08.006_bib119) 2017; 8
Warburg (10.1016/j.canlet.2018.08.006_bib2) 1924; 152
Schwenk (10.1016/j.canlet.2018.08.006_bib20) 2010; 82
Shi (10.1016/j.canlet.2018.08.006_bib39) 2016; 14
Cook (10.1016/j.canlet.2018.08.006_bib45) 2016; 76
Farge (10.1016/j.canlet.2018.08.006_bib84) 2017; 7
Vander Heiden (10.1016/j.canlet.2018.08.006_bib3) 2009; 324
Halldorsson (10.1016/j.canlet.2018.08.006_bib74) 2017; 396
Pike (10.1016/j.canlet.2018.08.006_bib8) 2011; 1807
Liu (10.1016/j.canlet.2018.08.006_bib40) 2016; 35
Casals (10.1016/j.canlet.2018.08.006_bib86) 2016; 61
Nieman (10.1016/j.canlet.2018.08.006_bib58) 2011; 17
Hossain (10.1016/j.canlet.2018.08.006_bib98) 2015; 3
Cheong (10.1016/j.canlet.2018.08.006_bib16) 2012; 30
Wen (10.1016/j.canlet.2018.08.006_bib59) 2017; 8
Kennedy (10.1016/j.canlet.2018.08.006_bib104) 2000; 36
Effert (10.1016/j.canlet.2018.08.006_bib65) 1996; 155
Yao (10.1016/j.canlet.2018.08.006_bib116) 2018; 16
Menendez (10.1016/j.canlet.2018.08.006_bib13) 2007; 7
Gatza (10.1016/j.canlet.2018.08.006_bib57) 2014; 46
Zou (10.1016/j.canlet.2018.08.006_bib96) 2005; 5
Schlaepfer (10.1016/j.canlet.2018.08.006_bib54) 2014; 13
Carracedo (10.1016/j.canlet.2018.08.006_bib75) 2012; 122
Yan (10.1016/j.canlet.2018.08.006_bib15) 2009; 360
Liu (10.1016/j.canlet.2018.08.006_bib63) 2006; 9
Petruzzelli (10.1016/j.canlet.2018.08.006_bib110) 2016; 30
Shinohara (10.1016/j.canlet.2018.08.006_bib83) 2016; 371
Li (10.1016/j.canlet.2018.08.006_bib87) 2013; 8
Cairns (10.1016/j.canlet.2018.08.006_bib7) 2011; 11
Wang (10.1016/j.canlet.2018.08.006_bib47) 2016; 7
Samudio (10.1016/j.canlet.2018.08.006_bib52) 2010; 120
Holohan (10.1016/j.canlet.2018.08.006_bib79) 2013; 13
Bressler (10.1016/j.canlet.2018.08.006_bib103) 1989; 44
German (10.1016/j.canlet.2018.08.006_bib37) 2016; 63
Buzzai (10.1016/j.canlet.2018.08.006_bib73) 2005; 24
Ashrafian (10.1016/j.canlet.2018.08.006_bib105) 2007; 25
Huang (10.1016/j.canlet.2018.08.006_bib94) 2014; 15
Linher-Melville (10.1016/j.canlet.2018.08.006_bib46) 2011; 11
Padanad (10.1016/j.canlet.2018.08.006_bib43) 2016; 16
Wang (10.1016/j.canlet.2018.08.006_bib76) 2018
Ito (10.1016/j.canlet.2018.08.006_bib31) 2012; 18
Schoors (10.1016/j.canlet.2018.08.006_bib22) 2015; 520
Lee (10.1016/j.canlet.2018.08.006_bib28) 2012; 13
Weis (10.1016/j.canlet.2018.08.006_bib112) 1994; 269
Xie (10.1016/j.canlet.2018.08.006_bib77) 2016; 14
Park (10.1016/j.canlet.2018.08.006_bib51) 2016; 14
Yan (10.1016/j.canlet.2018.08.006_bib50) 2017; 7
Nomura (10.1016/j.canlet.2018.08.006_bib95) 2016; 17
Carracedo (10.1016/j.canlet.2018.08.006_bib10) 2013; 13
Lazar (10.1016/j.canlet.2018.08.006_bib61) 2016; 76
Dobbins (10.1016/j.canlet.2018.08.006_bib70) 2001; 50
Bonnefont (10.1016/j.canlet.2018.08.006_bib24) 2004; 25
Wang (10.1016/j.canlet.2018.08.006_bib60) 2017; 2
Merrill (10.1016/j.canlet.2018.08.006_bib53) 2002; 68
Houten (10.1016/j.canlet.2018.08.006_bib102) 2016; 78
Zammit (10.1016/j.canlet.2018.08.006_bib21) 2008; 60
Fragasso (10.1016/j.canlet.2018.08.006_bib108) 2007; 2
Patra (10.1016/j.canlet.2018.08.006_bib17) 2013; 24
Tirado-Velez (10.1016/j.canlet.2018.08.006_bib56) 2012; 7
Fukawa (10.1016/j.canlet.2018.08.006_bib109) 2016; 22
Ma (10.1016/j.canlet.2018.08.006_bib18) 2016; 35
Zaugg (10.1016/j.canlet.2018.08.006_bib25) 2011; 25
Grivennikov (10.1016/j.canlet.2018.08.006_bib97) 2010; 140
Shao (10.1016/j.canlet.2018.08.006_bib44) 2016; 7
Herber (10.1016/j.canlet.2018.08.006_bib99) 2010; 16
Lin (10.1016/j.canlet.2018.08.006_bib48) 2017; 19
Keung (10.1016/j.canlet.2018.08.006_bib111) 2013; 62
Qu (10.1016/j.canlet.2018.08.006_bib12) 2016; 7
Mihaylova (10.1016/j.canlet.2018.08.006_bib32) 2011; 13
Pirat (10.1016/j.canlet.2018.08.006_bib30) 2012; 55
Maher (10.1016/j.canlet.2018.08.006_bib67) 2012; 25
Pascual (10.1016/j.canlet.2018.08.006_bib38) 2017; 541
Kitajima (10.1016/j.canlet.2018.08.006_bib85) 2017; 36
McGarry (10.1016/j.canlet.2018.08.006_bib35) 1978; 253
Abu-Elheiga (10.1016/j.canlet.2018.08.006_bib34) 2000; 97
Jin (10.1016/j.canlet.2018.08.006_bib4) 2016; 35
Wang (10.1016/j.canlet.2018.08.006_bib14) 2010; 2
Wu (10.1016/j.canlet.2018.08.006_bib42) 2015; 20
Kantor (10.1016/j.canlet.2018.08.006_bib106) 2000; 86
Bagger (10.1016/j.canlet.2018.08.006_bib107) 1997; 11
Pavlova (10.1016/j.canlet.2018.08.006_bib1) 2016; 23
Schuster (10.1016/j.canlet.2018.08.006_bib66) 2016; 46
Rohrig (10.1016/j.canlet.2018.08.006_bib5) 2016; 16
References_xml – volume: 20
  start-page: 1099
  year: 2015
  end-page: 1108
  ident: bib42
  article-title: Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells
  publication-title: Apoptosis
– volume: 18
  start-page: 5850
  year: 2012
  end-page: 5855
  ident: bib26
  article-title: Molecular pathways: tumor cells Co-opt the brain-specific metabolism gene CPT1C to promote survival
  publication-title: Clin. Canc. Res.
– volume: 105
  start-page: 489
  year: 2013
  end-page: 498
  ident: bib115
  article-title: Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis
  publication-title: J. Natl. Cancer Inst.
– volume: 11
  start-page: 56
  year: 2011
  ident: bib46
  article-title: Establishing a relationship between prolactin and altered fatty acid beta-oxidation via carnitine palmitoyl transferase 1 in breast cancer cells
  publication-title: BMC Canc.
– volume: 62
  start-page: 711
  year: 2013
  end-page: 720
  ident: bib111
  article-title: Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice
  publication-title: Diabetes
– volume: 283
  start-page: 6878
  year: 2008
  end-page: 6885
  ident: bib27
  article-title: CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity
  publication-title: J. Biol. Chem.
– volume: 48
  start-page: 147
  year: 2018
  end-page: 160
  ident: bib101
  article-title: Paracrine Wnt5a-beta-catenin signaling triggers a metabolic program that drives dendritic cell tolerization
  publication-title: Immunity
– volume: 8
  year: 2013
  ident: bib87
  article-title: Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel
  publication-title: PLoS One
– volume: 50
  start-page: 123
  year: 2001
  end-page: 130
  ident: bib70
  article-title: Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats
  publication-title: Diabetes
– volume: 269
  start-page: 26443
  year: 1994
  end-page: 26448
  ident: bib112
  article-title: Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme
  publication-title: J. Biol. Chem.
– volume: 2
  start-page: 515
  year: 2010
  end-page: 526
  ident: bib14
  article-title: Acetyl-CoA carboxylase-a as a novel target for cancer therapy
  publication-title: Front. Biosci. (Schol. Ed.)
– volume: 17
  start-page: 216
  year: 2016
  end-page: 217
  ident: bib95
  article-title: Fatty acid oxidation in macrophage polarization
  publication-title: Nat. Immunol.
– volume: 22
  start-page: 547
  year: 2012
  end-page: 560
  ident: bib19
  article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
  publication-title: Canc. Cell
– volume: 9
  start-page: 230
  year: 2006
  end-page: 234
  ident: bib63
  article-title: Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer
  publication-title: Prostate Cancer Prostatic Dis.
– volume: 35
  start-page: 6132
  year: 2016
  end-page: 6142
  ident: bib18
  article-title: A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer
  publication-title: Oncogene
– volume: 152
  start-page: 319
  year: 1924
  end-page: 344
  ident: bib2
  article-title: üeber den Stoffwechsel der Tumoren
  publication-title: Biochem. Z.
– volume: 7
  year: 2012
  ident: bib56
  article-title: Inhibition of fatty acid metabolism reduces human myeloma cells proliferation
  publication-title: PLoS One
– volume: 253
  start-page: 4128
  year: 1978
  end-page: 4136
  ident: bib35
  article-title: Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA
  publication-title: J. Biol. Chem.
– volume: 30
  start-page: 209
  year: 2016
  end-page: 218
  ident: bib81
  article-title: Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells
  publication-title: Leukemia
– volume: 36
  start-page: 794
  year: 2000
  end-page: 801
  ident: bib104
  article-title: Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart
  publication-title: J. Cardiovasc. Pharmacol.
– volume: 13
  start-page: 23
  year: 2012
  ident: bib28
  article-title: Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism
  publication-title: BMC Biochem.
– volume: 8
  year: 2017
  ident: bib59
  article-title: Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer
  publication-title: Cell Death Dis.
– volume: 24
  start-page: 311
  year: 2016
  end-page: 323
  ident: bib36
  article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation
  publication-title: Cell Metabol.
– volume: 17
  start-page: 529
  year: 2015
  end-page: 538
  ident: bib55
  article-title: Inhibition of lipid oxidation increases glucose metabolism and enhances 2-deoxy-2-[(18)F]fluoro-d-glucose uptake in prostate cancer mouse xenografts
  publication-title: Mol. Imag. Biol.
– volume: 14
  start-page: 2154
  year: 2016
  end-page: 2165
  ident: bib51
  article-title: Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer
  publication-title: Cell Rep.
– volume: 36
  start-page: 5145
  year: 2017
  end-page: 5157
  ident: bib85
  article-title: The RB-IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity
  publication-title: Oncogene
– volume: 460
  start-page: 103
  year: 2009
  ident: bib89
  article-title: Enhancing CD8 T-cell memory by modulating fatty acid metabolism
  publication-title: Nature
– volume: 122
  start-page: 3088
  year: 2012
  end-page: 3100
  ident: bib75
  article-title: A metabolic prosurvival role for PML in breast cancer
  publication-title: J. Clin. Invest.
– volume: 7
  start-page: 12920
  year: 2017
  ident: bib50
  article-title: Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1beta/ERRalpha signaling pathway in MCF10A-ras cells
  publication-title: Sci. Rep.
– volume: 27
  start-page: 136
  year: 2017
  end-page: 150
  ident: bib41
  article-title: JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance
  publication-title: Cell Metabol.
– volume: 24
  start-page: 4165
  year: 2005
  end-page: 4173
  ident: bib73
  article-title: The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation
  publication-title: Oncogene
– volume: 542
  start-page: 49
  year: 2017
  end-page: 54
  ident: bib23
  article-title: The role of fatty acid beta-oxidation in lymphangiogenesis
  publication-title: Nature
– volume: 52
  start-page: 165
  year: 2013
  end-page: 174
  ident: bib71
  article-title: Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease
  publication-title: Prog. Lipid Res.
– volume: 126
  start-page: 1925
  year: 2015
  end-page: 1929
  ident: bib114
  article-title: Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias
  publication-title: Blood
– volume: 36
  start-page: 31
  year: 1999
  end-page: 35
  ident: bib64
  article-title: Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy
  publication-title: Eur. Urol.
– volume: 13
  start-page: 1016
  year: 2011
  end-page: 1023
  ident: bib32
  article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
  publication-title: Nat. Cell Biol.
– volume: 46
  start-page: 507
  year: 2016
  end-page: 521
  ident: bib66
  article-title: PET tracers beyond FDG in prostate cancer
  publication-title: Semin. Nucl. Med.
– volume: 7
  start-page: 3832
  year: 2016
  end-page: 3846
  ident: bib44
  article-title: Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer
  publication-title: Oncotarget
– volume: 97
  start-page: 1444
  year: 2000
  end-page: 1449
  ident: bib34
  article-title: The subcellular localization of acetyl-CoA carboxylase 2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 36
  start-page: 68
  year: 2012
  end-page: 78
  ident: bib90
  article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
  publication-title: Immunity
– volume: 2
  start-page: 190
  year: 2007
  end-page: 196
  ident: bib108
  article-title: Modulation of fatty acids oxidation in heart failure by selective pharmacological inhibition of 3-ketoacyl coenzyme-A thiolase
  publication-title: Curr. Clin. Pharmacol.
– volume: 25
  start-page: 1041
  year: 2011
  end-page: 1051
  ident: bib25
  article-title: Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
  publication-title: Genes Dev.
– volume: 68
  start-page: 93
  year: 2002
  end-page: 101
  ident: bib53
  article-title: Etomoxir-induced oxidative stress in HepG2 cells detected by differential gene expression is confirmed biochemically
  publication-title: Toxicol. Sci.
– volume: 122
  start-page: 969
  year: 2013
  end-page: 980
  ident: bib80
  article-title: PPARalpha and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia
  publication-title: Blood
– volume: 430
  start-page: 133
  year: 2018
  end-page: 147
  ident: bib121
  article-title: Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis
  publication-title: Canc. Lett.
– volume: 86
  start-page: 580
  year: 2000
  end-page: 588
  ident: bib106
  article-title: The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase
  publication-title: Circ. Res.
– volume: 78
  start-page: 23
  year: 2016
  end-page: 44
  ident: bib102
  article-title: The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders
  publication-title: Annu. Rev. Physiol.
– volume: 30
  start-page: 1064
  year: 2002
  end-page: 1070
  ident: bib33
  article-title: Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase
  publication-title: Biochem. Soc. Trans.
– volume: 23
  start-page: 27
  year: 2016
  end-page: 47
  ident: bib1
  article-title: The emerging hallmarks of cancer metabolism
  publication-title: Cell Metabol.
– volume: 155
  start-page: 994
  year: 1996
  end-page: 998
  ident: bib65
  article-title: Metabolic imaging of untreated prostate cancer by positron emission tomography with 18 fluorine-labeled deoxyglucose
  publication-title: J. Urol.
– volume: 54
  start-page: 3109
  year: 2011
  end-page: 3152
  ident: bib113
  article-title: Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research
  publication-title: J. Med. Chem.
– volume: 186
  start-page: 3299
  year: 2011
  end-page: 3303
  ident: bib91
  article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
  publication-title: J. Immunol.
– volume: 11
  start-page: 85
  year: 2011
  end-page: 95
  ident: bib7
  article-title: Regulation of cancer cell metabolism
  publication-title: Nat. Rev. Canc.
– volume: 7
  start-page: 763
  year: 2007
  end-page: 777
  ident: bib13
  article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
  publication-title: Nat. Rev. Canc.
– volume: 19
  start-page: 23
  year: 2016
  end-page: 37
  ident: bib78
  article-title: Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche
  publication-title: Cell Stem Cell
– volume: 25
  start-page: 76
  year: 2007
  end-page: 97
  ident: bib105
  article-title: Perhexiline
  publication-title: Cardiovasc. Drug Rev.
– volume: 19
  start-page: 43
  year: 2017
  end-page: 54
  ident: bib48
  article-title: Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells
  publication-title: Neuro Oncol.
– volume: 25
  start-page: 1234
  year: 2012
  end-page: 1244
  ident: bib67
  article-title: Metabolism of [U-13 C]glucose in human brain tumors in vivo
  publication-title: NMR Biomed.
– volume: 32
  start-page: 453
  year: 2013
  end-page: 461
  ident: bib82
  article-title: S6K1 determines the metabolic requirements for BCR-ABL survival
  publication-title: Oncogene
– volume: 2
  start-page: 25
  year: 1992
  end-page: 32
  ident: bib117
  article-title: Synthesis and cytotoxic properties of new N-substituted 4-aminophenol derivatives with a potential as antimelanoma agents
  publication-title: Melanoma Res.
– volume: 30
  start-page: 369
  year: 2010
  end-page: 374
  ident: bib62
  article-title: Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach
  publication-title: Anticancer Res.
– volume: 13
  start-page: 714
  year: 2013
  end-page: 726
  ident: bib79
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat. Rev. Canc.
– volume: 15
  start-page: 846
  year: 2014
  end-page: 855
  ident: bib94
  article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
  publication-title: Nat. Immunol.
– volume: 541
  start-page: 41
  year: 2017
  end-page: 45
  ident: bib38
  article-title: Targeting metastasis-initiating cells through the fatty acid receptor CD36
  publication-title: Nature
– volume: 13
  start-page: 227
  year: 2013
  end-page: 232
  ident: bib10
  article-title: Cancer metabolism: fatty acid oxidation in the limelight
  publication-title: Nat. Rev. Canc.
– volume: 140
  start-page: 883
  year: 2010
  end-page: 899
  ident: bib97
  article-title: Immunity, inflammation, and cancer
  publication-title: Cell
– volume: 16
  start-page: 880
  year: 2010
  end-page: 886
  ident: bib99
  article-title: Lipid accumulation and dendritic cell dysfunction in cancer
  publication-title: Nat. Med.
– volume: 61
  start-page: 134
  year: 2016
  end-page: 148
  ident: bib86
  article-title: Carnitine palmitoyltransferase 1C: from cognition to cancer
  publication-title: Prog. Lipid Res.
– volume: 16
  start-page: 732
  year: 2016
  end-page: 749
  ident: bib5
  article-title: The multifaceted roles of fatty acid synthesis in cancer
  publication-title: Nat. Rev. Canc.
– volume: 16
  start-page: 1614
  year: 2016
  end-page: 1628
  ident: bib43
  article-title: Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis
  publication-title: Cell Rep.
– volume: 5
  start-page: 263
  year: 2005
  end-page: 274
  ident: bib96
  article-title: Immunosuppressive networks in the tumour environment and their therapeutic relevance
  publication-title: Nat. Rev. Canc.
– volume: 25
  start-page: 495
  year: 2004
  end-page: 520
  ident: bib24
  article-title: Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects
  publication-title: Mol. Aspect. Med.
– volume: 55
  start-page: 4027
  year: 2012
  end-page: 4061
  ident: bib30
  article-title: Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators
  publication-title: J. Med. Chem.
– volume: 16
  year: 2018
  ident: bib116
  article-title: Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of beta-oxidation
  publication-title: PLoS Biol.
– volume: 7
  start-page: 716
  year: 2017
  end-page: 735
  ident: bib84
  article-title: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism
  publication-title: Canc. Discov.
– volume: 461
  start-page: 109
  year: 2009
  end-page: 113
  ident: bib72
  article-title: Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
  publication-title: Nature
– volume: 8
  start-page: 38264
  year: 2017
  end-page: 38275
  ident: bib119
  article-title: Lipid degradation promotes prostate cancer cell survival
  publication-title: Oncotarget
– volume: 75
  start-page: 2478
  year: 2015
  end-page: 2488
  ident: bib9
  article-title: Targeting mitochondria with Avocatin B induces selective leukemia cell death
  publication-title: Canc. Res.
– volume: 24
  start-page: 213
  year: 2013
  end-page: 228
  ident: bib17
  article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
  publication-title: Canc. Cell
– volume: 4
  start-page: 13
  year: 2006
  end-page: 24
  ident: bib93
  article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
  publication-title: Cell Metabol.
– volume: 23
  start-page: 206
  year: 2016
  end-page: 219
  ident: bib88
  article-title: NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism
  publication-title: Cell Metabol.
– volume: 371
  start-page: 1
  year: 2016
  end-page: 11
  ident: bib83
  article-title: Perturbation of energy metabolism by fatty-acid derivative AIC-47 and imatinib in BCR-ABL-harboring leukemic cells
  publication-title: Canc. Lett.
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: bib3
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 161
  start-page: 1527
  year: 2015
  end-page: 1538
  ident: bib100
  article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis
  publication-title: Cell
– volume: 14
  start-page: 991
  year: 2016
  end-page: 999
  ident: bib77
  article-title: Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism
  publication-title: Cell Rep.
– volume: 11
  start-page: 479
  year: 1997
  end-page: 484
  ident: bib107
  article-title: Effects of ranolazine on ischemic threshold, coronary sinus blood flow, and myocardial metabolism in coronary artery disease
  publication-title: Cardiovasc. Drugs Ther.
– volume: 520
  start-page: 192
  year: 2015
  end-page: 197
  ident: bib22
  article-title: Fatty acid carbon is essential for dNTP synthesis in endothelial cells
  publication-title: Nature
– volume: 7
  start-page: 6711
  year: 2016
  end-page: 6726
  ident: bib47
  article-title: HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress
  publication-title: Oncotarget
– volume: 12
  start-page: 603
  year: 2005
  end-page: 613
  ident: bib69
  article-title: tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1
  publication-title: Cell Death Differ.
– volume: 13
  start-page: 2361
  year: 2014
  end-page: 2371
  ident: bib54
  article-title: Lipid catabolism via CPT1 as a therapeutic target for prostate cancer
  publication-title: Mol. Canc. Therapeut.
– volume: 23
  start-page: 631
  year: 2012
  end-page: 639
  ident: bib29
  article-title: PPARs: fatty acid sensors controlling metabolism
  publication-title: Semin. Cell Dev. Biol.
– volume: 22
  start-page: 427
  year: 2016
  end-page: 432
  ident: bib49
  article-title: Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer
  publication-title: Nat. Med.
– volume: 3
  start-page: 1236
  year: 2015
  end-page: 1247
  ident: bib98
  article-title: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies
  publication-title: Cancer Immunol Res
– year: 2018
  ident: bib76
  article-title: CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis
  publication-title: Oncogene
– volume: 17
  start-page: 1498
  year: 2011
  end-page: 1503
  ident: bib58
  article-title: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
  publication-title: Nat. Med.
– volume: 272
  start-page: 3324
  year: 1997
  end-page: 3329
  ident: bib68
  article-title: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 153
  year: 2013
  end-page: 161
  ident: bib11
  article-title: Cellular fatty acid metabolism and cancer
  publication-title: Cell Metabol.
– volume: 396
  start-page: 117
  year: 2017
  end-page: 129
  ident: bib74
  article-title: Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition
  publication-title: Canc. Lett.
– volume: 123
  start-page: 309
  year: 1956
  end-page: 314
  ident: bib6
  article-title: On the origin of cancer cells
  publication-title: Science
– volume: 360
  start-page: 765
  year: 2009
  end-page: 773
  ident: bib15
  article-title: IDH1 and IDH2 mutations in gliomas
  publication-title: N. Engl. J. Med.
– volume: 18
  start-page: 1350
  year: 2012
  end-page: 1358
  ident: bib31
  article-title: A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
  publication-title: Nat. Med.
– volume: 1807
  start-page: 726
  year: 2011
  end-page: 734
  ident: bib8
  article-title: Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
  publication-title: Biochim. Biophys. Acta
– volume: 35
  start-page: 3619
  year: 2016
  end-page: 3625
  ident: bib4
  article-title: Glutaminolysis as a target for cancer therapy
  publication-title: Oncogene
– volume: 12
  start-page: 298
  year: 2012
  end-page: 306
  ident: bib92
  article-title: The immune contexture in human tumours: impact on clinical outcome
  publication-title: Nat. Rev. Canc.
– volume: 44
  start-page: 118
  year: 2003
  end-page: 127
  ident: bib118
  article-title: Impact of mitochondrial beta-oxidation in fatty acid-mediated inhibition of glioma cell proliferation
  publication-title: J. Lipid Res.
– volume: 63
  start-page: 1006
  year: 2016
  end-page: 1020
  ident: bib37
  article-title: PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2
  publication-title: Mol. Cell
– volume: 22
  start-page: 666
  year: 2016
  end-page: 671
  ident: bib109
  article-title: Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia
  publication-title: Nat. Med.
– volume: 35
  start-page: 5663
  year: 2016
  end-page: 5673
  ident: bib40
  article-title: Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline
  publication-title: Oncogene
– volume: 44
  start-page: 1897
  year: 1989
  end-page: 1906
  ident: bib103
  article-title: Chronic inhibition of fatty acid oxidation: new model of diastolic dysfunction
  publication-title: Life Sci.
– volume: 30
  start-page: 671
  year: 2012
  end-page: 678
  ident: bib16
  article-title: Therapeutic targets in cancer cell metabolism and autophagy
  publication-title: Nat. Biotechnol.
– volume: 60
  start-page: 347
  year: 2008
  end-page: 354
  ident: bib21
  article-title: Carnitine palmitoyltransferase 1: central to cell function
  publication-title: IUBMB Life
– volume: 76
  start-page: 5657
  year: 2016
  end-page: 5670
  ident: bib45
  article-title: Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer
  publication-title: Canc. Res.
– volume: 120
  start-page: 142
  year: 2010
  end-page: 156
  ident: bib52
  article-title: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
  publication-title: J. Clin. Invest.
– volume: 46
  start-page: 1051
  year: 2014
  end-page: 1059
  ident: bib57
  article-title: An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer
  publication-title: Nat. Genet.
– volume: 9
  start-page: 349
  year: 2014
  end-page: 365
  ident: bib120
  article-title: Fatty acid uptake and lipid storage induced by HIF-1 alpha contribute to cell growth and survival after hypoxia-reoxygenation
  publication-title: Cell Rep.
– volume: 2
  year: 2017
  ident: bib60
  article-title: Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells
  publication-title: JCI Insight
– volume: 82
  start-page: 149
  year: 2010
  end-page: 154
  ident: bib20
  article-title: Fatty acid transport across the cell membrane: regulation by fatty acid transporters
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
– volume: 14
  start-page: 55
  year: 2016
  end-page: 64
  ident: bib39
  article-title: High expression of CPT1A predicts adverse outcomes: a potential therapeutic target for acute myeloid leukemia
  publication-title: EBioMedicine
– volume: 30
  start-page: 489
  year: 2016
  end-page: 501
  ident: bib110
  article-title: Mechanisms of metabolic dysfunction in cancer-associated cachexia
  publication-title: Genes Dev.
– volume: 7
  start-page: e2226
  year: 2016
  ident: bib12
  article-title: Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer
  publication-title: Cell Death Dis.
– volume: 76
  start-page: 4051
  year: 2016
  end-page: 4057
  ident: bib61
  article-title: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer
  publication-title: Canc. Res.
– volume: 20
  start-page: 1099
  year: 2015
  ident: 10.1016/j.canlet.2018.08.006_bib42
  article-title: Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells
  publication-title: Apoptosis
  doi: 10.1007/s10495-015-1137-x
– volume: 46
  start-page: 507
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib66
  article-title: PET tracers beyond FDG in prostate cancer
  publication-title: Semin. Nucl. Med.
  doi: 10.1053/j.semnuclmed.2016.07.005
– volume: 19
  start-page: 23
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib78
  article-title: Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.06.001
– volume: 126
  start-page: 1925
  year: 2015
  ident: 10.1016/j.canlet.2018.08.006_bib114
  article-title: Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias
  publication-title: Blood
  doi: 10.1182/blood-2014-12-617498
– volume: 19
  start-page: 43
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib48
  article-title: Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells
  publication-title: Neuro Oncol.
  doi: 10.1093/neuonc/now128
– volume: 122
  start-page: 3088
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib75
  article-title: A metabolic prosurvival role for PML in breast cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI62129
– volume: 13
  start-page: 2361
  year: 2014
  ident: 10.1016/j.canlet.2018.08.006_bib54
  article-title: Lipid catabolism via CPT1 as a therapeutic target for prostate cancer
  publication-title: Mol. Canc. Therapeut.
  doi: 10.1158/1535-7163.MCT-14-0183
– volume: 360
  start-page: 765
  year: 2009
  ident: 10.1016/j.canlet.2018.08.006_bib15
  article-title: IDH1 and IDH2 mutations in gliomas
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0808710
– volume: 44
  start-page: 118
  year: 2003
  ident: 10.1016/j.canlet.2018.08.006_bib118
  article-title: Impact of mitochondrial beta-oxidation in fatty acid-mediated inhibition of glioma cell proliferation
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.M200312-JLR200
– volume: 44
  start-page: 1897
  year: 1989
  ident: 10.1016/j.canlet.2018.08.006_bib103
  article-title: Chronic inhibition of fatty acid oxidation: new model of diastolic dysfunction
  publication-title: Life Sci.
  doi: 10.1016/0024-3205(89)90401-3
– volume: 7
  start-page: 763
  year: 2007
  ident: 10.1016/j.canlet.2018.08.006_bib13
  article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2222
– volume: 68
  start-page: 93
  year: 2002
  ident: 10.1016/j.canlet.2018.08.006_bib53
  article-title: Etomoxir-induced oxidative stress in HepG2 cells detected by differential gene expression is confirmed biochemically
  publication-title: Toxicol. Sci.
  doi: 10.1093/toxsci/68.1.93
– volume: 161
  start-page: 1527
  year: 2015
  ident: 10.1016/j.canlet.2018.08.006_bib100
  article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.025
– volume: 123
  start-page: 309
  year: 1956
  ident: 10.1016/j.canlet.2018.08.006_bib6
  article-title: On the origin of cancer cells
  publication-title: Science
  doi: 10.1126/science.123.3191.309
– volume: 22
  start-page: 547
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib19
  article-title: Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma
  publication-title: Canc. Cell
  doi: 10.1016/j.ccr.2012.08.014
– volume: 12
  start-page: 298
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib92
  article-title: The immune contexture in human tumours: impact on clinical outcome
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc3245
– volume: 25
  start-page: 76
  year: 2007
  ident: 10.1016/j.canlet.2018.08.006_bib105
  article-title: Perhexiline
  publication-title: Cardiovasc. Drug Rev.
  doi: 10.1111/j.1527-3466.2007.00006.x
– volume: 11
  start-page: 85
  year: 2011
  ident: 10.1016/j.canlet.2018.08.006_bib7
  article-title: Regulation of cancer cell metabolism
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc2981
– volume: 17
  start-page: 216
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib95
  article-title: Fatty acid oxidation in macrophage polarization
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3366
– volume: 55
  start-page: 4027
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib30
  article-title: Targeting peroxisome proliferator-activated receptors (PPARs): development of modulators
  publication-title: J. Med. Chem.
  doi: 10.1021/jm101360s
– volume: 2
  start-page: 190
  year: 2007
  ident: 10.1016/j.canlet.2018.08.006_bib108
  article-title: Modulation of fatty acids oxidation in heart failure by selective pharmacological inhibition of 3-ketoacyl coenzyme-A thiolase
  publication-title: Curr. Clin. Pharmacol.
  doi: 10.2174/157488407781668776
– volume: 8
  start-page: 38264
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib119
  article-title: Lipid degradation promotes prostate cancer cell survival
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16123
– volume: 461
  start-page: 109
  year: 2009
  ident: 10.1016/j.canlet.2018.08.006_bib72
  article-title: Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment
  publication-title: Nature
  doi: 10.1038/nature08268
– volume: 13
  start-page: 714
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib79
  article-title: Cancer drug resistance: an evolving paradigm
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc3599
– volume: 9
  start-page: 230
  year: 2006
  ident: 10.1016/j.canlet.2018.08.006_bib63
  article-title: Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer
  publication-title: Prostate Cancer Prostatic Dis.
  doi: 10.1038/sj.pcan.4500879
– volume: 186
  start-page: 3299
  year: 2011
  ident: 10.1016/j.canlet.2018.08.006_bib91
  article-title: Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1003613
– volume: 152
  start-page: 319
  year: 1924
  ident: 10.1016/j.canlet.2018.08.006_bib2
  article-title: üeber den Stoffwechsel der Tumoren
  publication-title: Biochem. Z.
– volume: 27
  start-page: 136
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib41
  article-title: JAK/STAT3-regulated fatty acid beta-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2017.11.001
– volume: 30
  start-page: 1064
  year: 2002
  ident: 10.1016/j.canlet.2018.08.006_bib33
  article-title: Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/bst0301064
– volume: 63
  start-page: 1006
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib37
  article-title: PHD3 loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2016.08.014
– volume: 14
  start-page: 55
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib39
  article-title: High expression of CPT1A predicts adverse outcomes: a potential therapeutic target for acute myeloid leukemia
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.11.025
– volume: 36
  start-page: 68
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib90
  article-title: Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
  publication-title: Immunity
  doi: 10.1016/j.immuni.2011.12.007
– volume: 61
  start-page: 134
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib86
  article-title: Carnitine palmitoyltransferase 1C: from cognition to cancer
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2015.11.004
– volume: 371
  start-page: 1
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib83
  article-title: Perturbation of energy metabolism by fatty-acid derivative AIC-47 and imatinib in BCR-ABL-harboring leukemic cells
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2015.11.020
– volume: 32
  start-page: 453
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib82
  article-title: S6K1 determines the metabolic requirements for BCR-ABL survival
  publication-title: Oncogene
  doi: 10.1038/onc.2012.70
– volume: 35
  start-page: 3619
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib4
  article-title: Glutaminolysis as a target for cancer therapy
  publication-title: Oncogene
  doi: 10.1038/onc.2015.447
– volume: 13
  start-page: 227
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib10
  article-title: Cancer metabolism: fatty acid oxidation in the limelight
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc3483
– volume: 16
  start-page: 732
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib5
  article-title: The multifaceted roles of fatty acid synthesis in cancer
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc.2016.89
– volume: 2
  start-page: 515
  year: 2010
  ident: 10.1016/j.canlet.2018.08.006_bib14
  article-title: Acetyl-CoA carboxylase-a as a novel target for cancer therapy
  publication-title: Front. Biosci. (Schol. Ed.)
– volume: 542
  start-page: 49
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib23
  article-title: The role of fatty acid beta-oxidation in lymphangiogenesis
  publication-title: Nature
  doi: 10.1038/nature21028
– volume: 14
  start-page: 2154
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib51
  article-title: Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.02.004
– volume: 50
  start-page: 123
  year: 2001
  ident: 10.1016/j.canlet.2018.08.006_bib70
  article-title: Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.1.123
– volume: 30
  start-page: 209
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib81
  article-title: Pharmacological inhibition of fatty-acid oxidation synergistically enhances the effect of l-asparaginase in childhood ALL cells
  publication-title: Leukemia
  doi: 10.1038/leu.2015.213
– volume: 75
  start-page: 2478
  year: 2015
  ident: 10.1016/j.canlet.2018.08.006_bib9
  article-title: Targeting mitochondria with Avocatin B induces selective leukemia cell death
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-14-2676
– volume: 22
  start-page: 666
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib109
  article-title: Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia
  publication-title: Nat. Med.
  doi: 10.1038/nm.4093
– volume: 18
  start-page: 5850
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib26
  article-title: Molecular pathways: tumor cells Co-opt the brain-specific metabolism gene CPT1C to promote survival
  publication-title: Clin. Canc. Res.
  doi: 10.1158/1078-0432.CCR-11-3281
– year: 2018
  ident: 10.1016/j.canlet.2018.08.006_bib76
  article-title: CPT1A-mediated fatty acid oxidation promotes colorectal cancer cell metastasis by inhibiting anoikis
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0384-z
– volume: 36
  start-page: 794
  year: 2000
  ident: 10.1016/j.canlet.2018.08.006_bib104
  article-title: Effect of perhexiline and oxfenicine on myocardial function and metabolism during low-flow ischemia/reperfusion in the isolated rat heart
  publication-title: J. Cardiovasc. Pharmacol.
  doi: 10.1097/00005344-200012000-00016
– volume: 253
  start-page: 4128
  year: 1978
  ident: 10.1016/j.canlet.2018.08.006_bib35
  article-title: Carnitine palmitoyltransferase I. The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(17)34693-8
– volume: 7
  start-page: e2226
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib12
  article-title: Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2016.132
– volume: 5
  start-page: 263
  year: 2005
  ident: 10.1016/j.canlet.2018.08.006_bib96
  article-title: Immunosuppressive networks in the tumour environment and their therapeutic relevance
  publication-title: Nat. Rev. Canc.
  doi: 10.1038/nrc1586
– volume: 13
  start-page: 1016
  year: 2011
  ident: 10.1016/j.canlet.2018.08.006_bib32
  article-title: The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2329
– volume: 36
  start-page: 31
  year: 1999
  ident: 10.1016/j.canlet.2018.08.006_bib64
  article-title: Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy
  publication-title: Eur. Urol.
  doi: 10.1159/000019923
– volume: 36
  start-page: 5145
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib85
  article-title: The RB-IL-6 axis controls self-renewal and endocrine therapy resistance by fine-tuning mitochondrial activity
  publication-title: Oncogene
  doi: 10.1038/onc.2017.124
– volume: 7
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib56
  article-title: Inhibition of fatty acid metabolism reduces human myeloma cells proliferation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0046484
– volume: 3
  start-page: 1236
  year: 2015
  ident: 10.1016/j.canlet.2018.08.006_bib98
  article-title: Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-15-0036
– volume: 396
  start-page: 117
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib74
  article-title: Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2017.03.019
– volume: 155
  start-page: 994
  year: 1996
  ident: 10.1016/j.canlet.2018.08.006_bib65
  article-title: Metabolic imaging of untreated prostate cancer by positron emission tomography with 18 fluorine-labeled deoxyglucose
  publication-title: J. Urol.
  doi: 10.1016/S0022-5347(01)66366-3
– volume: 48
  start-page: 147
  year: 2018
  ident: 10.1016/j.canlet.2018.08.006_bib101
  article-title: Paracrine Wnt5a-beta-catenin signaling triggers a metabolic program that drives dendritic cell tolerization
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.12.004
– volume: 520
  start-page: 192
  year: 2015
  ident: 10.1016/j.canlet.2018.08.006_bib22
  article-title: Fatty acid carbon is essential for dNTP synthesis in endothelial cells
  publication-title: Nature
  doi: 10.1038/nature14362
– volume: 54
  start-page: 3109
  year: 2011
  ident: 10.1016/j.canlet.2018.08.006_bib113
  article-title: Carnitine palmitoyltransferase (CPT) modulators: a medicinal chemistry perspective on 35 years of research
  publication-title: J. Med. Chem.
  doi: 10.1021/jm100809g
– volume: 23
  start-page: 631
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib29
  article-title: PPARs: fatty acid sensors controlling metabolism
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2012.01.003
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.canlet.2018.08.006_bib3
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 24
  start-page: 311
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib36
  article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2016.07.003
– volume: 7
  start-page: 6711
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib47
  article-title: HBx regulates fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6817
– volume: 13
  start-page: 23
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib28
  article-title: Metabolomic profiling reveals a role for CPT1c in neuronal oxidative metabolism
  publication-title: BMC Biochem.
  doi: 10.1186/1471-2091-13-23
– volume: 7
  start-page: 716
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib84
  article-title: Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism
  publication-title: Canc. Discov.
  doi: 10.1158/2159-8290.CD-16-0441
– volume: 17
  start-page: 529
  year: 2015
  ident: 10.1016/j.canlet.2018.08.006_bib55
  article-title: Inhibition of lipid oxidation increases glucose metabolism and enhances 2-deoxy-2-[(18)F]fluoro-d-glucose uptake in prostate cancer mouse xenografts
  publication-title: Mol. Imag. Biol.
  doi: 10.1007/s11307-014-0814-4
– volume: 16
  start-page: 880
  year: 2010
  ident: 10.1016/j.canlet.2018.08.006_bib99
  article-title: Lipid accumulation and dendritic cell dysfunction in cancer
  publication-title: Nat. Med.
  doi: 10.1038/nm.2172
– volume: 30
  start-page: 489
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib110
  article-title: Mechanisms of metabolic dysfunction in cancer-associated cachexia
  publication-title: Genes Dev.
  doi: 10.1101/gad.276733.115
– volume: 23
  start-page: 206
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib88
  article-title: NANOG metabolically reprograms tumor-initiating stem-like cells through tumorigenic changes in oxidative phosphorylation and fatty acid metabolism
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2015.12.004
– volume: 78
  start-page: 23
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib102
  article-title: The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-021115-105045
– volume: 97
  start-page: 1444
  year: 2000
  ident: 10.1016/j.canlet.2018.08.006_bib34
  article-title: The subcellular localization of acetyl-CoA carboxylase 2
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.97.4.1444
– volume: 7
  start-page: 3832
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib44
  article-title: Carnitine palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.6757
– volume: 2
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib60
  article-title: Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.87489
– volume: 1807
  start-page: 726
  year: 2011
  ident: 10.1016/j.canlet.2018.08.006_bib8
  article-title: Inhibition of fatty acid oxidation by etomoxir impairs NADPH production and increases reactive oxygen species resulting in ATP depletion and cell death in human glioblastoma cells
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbabio.2010.10.022
– volume: 18
  start-page: 1350
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib31
  article-title: A PML-PPAR-delta pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance
  publication-title: Nat. Med.
  doi: 10.1038/nm.2882
– volume: 122
  start-page: 969
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib80
  article-title: PPARalpha and fatty acid oxidation mediate glucocorticoid resistance in chronic lymphocytic leukemia
  publication-title: Blood
  doi: 10.1182/blood-2013-03-489468
– volume: 25
  start-page: 1234
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib67
  article-title: Metabolism of [U-13 C]glucose in human brain tumors in vivo
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.2794
– volume: 269
  start-page: 26443
  year: 1994
  ident: 10.1016/j.canlet.2018.08.006_bib112
  article-title: Use of a selective inhibitor of liver carnitine palmitoyltransferase I (CPT I) allows quantification of its contribution to total CPT I activity in rat heart. Evidence that the dominant cardiac CPT I isoform is identical to the skeletal muscle enzyme
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)47214-6
– volume: 35
  start-page: 6132
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib18
  article-title: A causal link from ALK to hexokinase II overexpression and hyperactive glycolysis in EML4-ALK-positive lung cancer
  publication-title: Oncogene
  doi: 10.1038/onc.2016.150
– volume: 16
  year: 2018
  ident: 10.1016/j.canlet.2018.08.006_bib116
  article-title: Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of beta-oxidation
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2003782
– volume: 8
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib87
  article-title: Inhibition of lipolysis by mercaptoacetate and etomoxir specifically sensitize drug-resistant lung adenocarcinoma cell to paclitaxel
  publication-title: PLoS One
– volume: 8
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib59
  article-title: Adipocytes activate mitochondrial fatty acid oxidation and autophagy to promote tumor growth in colon cancer
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.21
– volume: 35
  start-page: 5663
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib40
  article-title: Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline
  publication-title: Oncogene
  doi: 10.1038/onc.2016.103
– volume: 283
  start-page: 6878
  year: 2008
  ident: 10.1016/j.canlet.2018.08.006_bib27
  article-title: CPT1c is localized in endoplasmic reticulum of neurons and has carnitine palmitoyltransferase activity
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M707965200
– volume: 60
  start-page: 347
  year: 2008
  ident: 10.1016/j.canlet.2018.08.006_bib21
  article-title: Carnitine palmitoyltransferase 1: central to cell function
  publication-title: IUBMB Life
  doi: 10.1002/iub.78
– volume: 62
  start-page: 711
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib111
  article-title: Inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice
  publication-title: Diabetes
  doi: 10.2337/db12-0259
– volume: 23
  start-page: 27
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib1
  article-title: The emerging hallmarks of cancer metabolism
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2015.12.006
– volume: 18
  start-page: 153
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib11
  article-title: Cellular fatty acid metabolism and cancer
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2013.05.017
– volume: 7
  start-page: 12920
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib50
  article-title: Eugenol inhibits oxidative phosphorylation and fatty acid oxidation via downregulation of c-Myc/PGC-1beta/ERRalpha signaling pathway in MCF10A-ras cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13505-x
– volume: 15
  start-page: 846
  year: 2014
  ident: 10.1016/j.canlet.2018.08.006_bib94
  article-title: Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2956
– volume: 25
  start-page: 495
  year: 2004
  ident: 10.1016/j.canlet.2018.08.006_bib24
  article-title: Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects
  publication-title: Mol. Aspect. Med.
  doi: 10.1016/j.mam.2004.06.004
– volume: 17
  start-page: 1498
  year: 2011
  ident: 10.1016/j.canlet.2018.08.006_bib58
  article-title: Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth
  publication-title: Nat. Med.
  doi: 10.1038/nm.2492
– volume: 25
  start-page: 1041
  year: 2011
  ident: 10.1016/j.canlet.2018.08.006_bib25
  article-title: Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress
  publication-title: Genes Dev.
  doi: 10.1101/gad.1987211
– volume: 16
  start-page: 1614
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib43
  article-title: Fatty acid oxidation mediated by acyl-CoA synthetase long chain 3 is required for mutant KRAS lung tumorigenesis
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.07.009
– volume: 76
  start-page: 5657
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib45
  article-title: Endoplasmic reticulum stress protein GRP78 modulates lipid metabolism to control drug sensitivity and antitumor immunity in breast cancer
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-15-2616
– volume: 430
  start-page: 133
  year: 2018
  ident: 10.1016/j.canlet.2018.08.006_bib121
  article-title: Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis
  publication-title: Canc. Lett.
  doi: 10.1016/j.canlet.2018.05.017
– volume: 30
  start-page: 369
  year: 2010
  ident: 10.1016/j.canlet.2018.08.006_bib62
  article-title: Dominant uptake of fatty acid over glucose by prostate cells: a potential new diagnostic and therapeutic approach
  publication-title: Anticancer Res.
– volume: 105
  start-page: 489
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib115
  article-title: Carnitine-acyltransferase system inhibition, cancer cell death, and prevention of myc-induced lymphomagenesis
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djt030
– volume: 272
  start-page: 3324
  year: 1997
  ident: 10.1016/j.canlet.2018.08.006_bib68
  article-title: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.6.3324
– volume: 24
  start-page: 213
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib17
  article-title: Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer
  publication-title: Canc. Cell
  doi: 10.1016/j.ccr.2013.06.014
– volume: 11
  start-page: 479
  year: 1997
  ident: 10.1016/j.canlet.2018.08.006_bib107
  article-title: Effects of ranolazine on ischemic threshold, coronary sinus blood flow, and myocardial metabolism in coronary artery disease
  publication-title: Cardiovasc. Drugs Ther.
  doi: 10.1023/A:1007705707667
– volume: 76
  start-page: 4051
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib61
  article-title: Adipocyte exosomes promote melanoma aggressiveness through fatty acid oxidation: a novel mechanism linking obesity and cancer
  publication-title: Canc. Res.
  doi: 10.1158/0008-5472.CAN-16-0651
– volume: 11
  start-page: 56
  year: 2011
  ident: 10.1016/j.canlet.2018.08.006_bib46
  article-title: Establishing a relationship between prolactin and altered fatty acid beta-oxidation via carnitine palmitoyl transferase 1 in breast cancer cells
  publication-title: BMC Canc.
  doi: 10.1186/1471-2407-11-56
– volume: 14
  start-page: 991
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib77
  article-title: Inborn errors of long-chain fatty acid beta-oxidation link neural stem cell self-renewal to autism
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2016.01.004
– volume: 30
  start-page: 671
  year: 2012
  ident: 10.1016/j.canlet.2018.08.006_bib16
  article-title: Therapeutic targets in cancer cell metabolism and autophagy
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2285
– volume: 12
  start-page: 603
  year: 2005
  ident: 10.1016/j.canlet.2018.08.006_bib69
  article-title: tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1
  publication-title: Cell Death Differ.
  doi: 10.1038/sj.cdd.4401636
– volume: 24
  start-page: 4165
  year: 2005
  ident: 10.1016/j.canlet.2018.08.006_bib73
  article-title: The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1208622
– volume: 86
  start-page: 580
  year: 2000
  ident: 10.1016/j.canlet.2018.08.006_bib106
  article-title: The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.86.5.580
– volume: 140
  start-page: 883
  year: 2010
  ident: 10.1016/j.canlet.2018.08.006_bib97
  article-title: Immunity, inflammation, and cancer
  publication-title: Cell
  doi: 10.1016/j.cell.2010.01.025
– volume: 460
  start-page: 103
  year: 2009
  ident: 10.1016/j.canlet.2018.08.006_bib89
  article-title: Enhancing CD8 T-cell memory by modulating fatty acid metabolism
  publication-title: Nature
  doi: 10.1038/nature08097
– volume: 46
  start-page: 1051
  year: 2014
  ident: 10.1016/j.canlet.2018.08.006_bib57
  article-title: An integrated genomics approach identifies drivers of proliferation in luminal-subtype human breast cancer
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3073
– volume: 541
  start-page: 41
  year: 2017
  ident: 10.1016/j.canlet.2018.08.006_bib38
  article-title: Targeting metastasis-initiating cells through the fatty acid receptor CD36
  publication-title: Nature
  doi: 10.1038/nature20791
– volume: 2
  start-page: 25
  year: 1992
  ident: 10.1016/j.canlet.2018.08.006_bib117
  article-title: Synthesis and cytotoxic properties of new N-substituted 4-aminophenol derivatives with a potential as antimelanoma agents
  publication-title: Melanoma Res.
  doi: 10.1097/00008390-199205000-00004
– volume: 4
  start-page: 13
  year: 2006
  ident: 10.1016/j.canlet.2018.08.006_bib93
  article-title: Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2006.05.011
– volume: 52
  start-page: 165
  year: 2013
  ident: 10.1016/j.canlet.2018.08.006_bib71
  article-title: Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2012.10.004
– volume: 9
  start-page: 349
  year: 2014
  ident: 10.1016/j.canlet.2018.08.006_bib120
  article-title: Fatty acid uptake and lipid storage induced by HIF-1 alpha contribute to cell growth and survival after hypoxia-reoxygenation
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.08.056
– volume: 120
  start-page: 142
  year: 2010
  ident: 10.1016/j.canlet.2018.08.006_bib52
  article-title: Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI38942
– volume: 82
  start-page: 149
  year: 2010
  ident: 10.1016/j.canlet.2018.08.006_bib20
  article-title: Fatty acid transport across the cell membrane: regulation by fatty acid transporters
  publication-title: Prostaglandins Leukot. Essent. Fatty Acids
  doi: 10.1016/j.plefa.2010.02.029
– volume: 22
  start-page: 427
  year: 2016
  ident: 10.1016/j.canlet.2018.08.006_bib49
  article-title: Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer
  publication-title: Nat. Med.
  doi: 10.1038/nm.4055
SSID ssj0005475
Score 2.6767855
SecondaryResourceType review_article
Snippet Cancer cells undergo metabolic reprogramming such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid cycle enzymes, and upregulation of de...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 92
SubjectTerms Angina pectoris
Apoptosis
ATP
Biosynthesis
Breast cancer
Cancer
Cell growth
Cell proliferation
Cell Transformation, Neoplastic - metabolism
Dehydrogenases
Drug resistance
Energy Metabolism
Enzymes
Fatty acid β-oxidation
Fatty acids
Fatty Acids - metabolism
Genetic transformation
Glycolysis
Humans
Kinases
Leukemia
Lipid Metabolism
Lipolysis
Lipolytic phenotype
Medical research
Medicine
Metabolic pathways
Metabolism
Metastases
Metastasis
Mitochondria
Mitochondria - metabolism
NADPH
Neoplasms - metabolism
Neoplasms - pathology
NMR
Nuclear magnetic resonance
Oxidation
Oxidation-Reduction
Phenotypes
Prostate cancer
Transgenic animals
Tricarboxylic acid cycle
Tumor Microenvironment
Tumorigenesis
Title Fatty acid oxidation: An emerging facet of metabolic transformation in cancer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0304383518305184
https://dx.doi.org/10.1016/j.canlet.2018.08.006
https://www.ncbi.nlm.nih.gov/pubmed/30102953
https://www.proquest.com/docview/2092478500
https://www.proquest.com/docview/2088294120
https://pubmed.ncbi.nlm.nih.gov/PMC6240910
Volume 435
WOSCitedRecordID wos000444662700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7980
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005475
  issn: 0304-3835
  databaseCode: AIEXJ
  dateStart: 19950106
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELagRYgL4lkCpTISt2hRdtde29yiquUhUnEoKJxW3ofVLa1Tkg3k5zN-rJM0QNsDl1Xil9Y7n8dje_wNQq8plYxRkUYk4zIiMZORLBSLMl7DjFBwWVoGvq-f2NERH4_FZ7-rNLPhBJjWfLEQF_9V1JAGwjZXZ28g7tAoJMBvEDo8QezwvJbgD2ULhrUsm6o_WTRV8N4Y6r65DGyDEilZ1q07Wm8BBYboul2xYJ37Y2kAMV21XvdtSv_MXgEKxvjI2p_fmkJOwj5Afe7DfNkd5_7ozVLT_foeAroPK3m-kvdu7vZtT-b6Rzej-g2J2LLDJis61By2RrDwpatKlvi_Tk268Hd-wo0tVemmLnfbCqewTtfQL-OFxy3b6uAP1NmXprTgaNj5sJ3mrpXctJKbwJuGpn07AZiCKtwefjgYf1x6BhHLzxz60d24tG6Bm2_zN4tmc8Vy2fF2xZI5foDu-yUIHjroPES3av0I3R15J4vHaGQRhA2CcEDQWzzUuMMPtvjBE4UDfvA6fnCjscPPE_Tl8OB4_33ko25EJc1IC09ZsVKVscyyohSiMrdsiYKRHnNRVEwlnNKMmeN6RZSoMpomFWOs5iRWKWfpU7SlJ7p-hrCqCROl8cyXgtRUFlU2UIOiVGDGM5pkPZR2Xy4vPSW9iYxylv9Lbj0UhVoXjpLlivK0E0reXTeGCTIHnF1Rj4V63hx1ZuY1au52ss-9ZphBvkgI43Qw6KFXIRuUuTmhk7qezE0ZWPAKEidQZsdBJXQxNeyPgqbwWmsgCgUMUfx6jm5OLGF8BmY7LAue3_DDvUD3luN7F22103n9Et0pf7bNbLqHbrMx3_Nj5zd-cuBm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fatty+acid+oxidation%3A+An+emerging+facet+of+metabolic+transformation+in+cancer&rft.jtitle=Cancer+letters&rft.au=Ma%2C+Yibao&rft.au=Temkin%2C+Sarah+M.&rft.au=Hawkridge%2C+Adam+M.&rft.au=Guo%2C+Chunqing&rft.date=2018-10-28&rft.issn=0304-3835&rft.volume=435&rft.spage=92&rft.epage=100&rft_id=info:doi/10.1016%2Fj.canlet.2018.08.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_canlet_2018_08_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3835&client=summon