Bortezomib resistance in multiple myeloma is associated with increased serine synthesis
Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to phar...
Saved in:
| Published in: | Cancer & metabolism Vol. 5; no. 1; pp. 7 - 12 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
London
BioMed Central
29.08.2017
BioMed Central Ltd Springer Nature B.V BMC |
| Subjects: | |
| ISSN: | 2049-3002, 2049-3002 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Background
The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified.
Methods
We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ–resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients.
Results
Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased.
Conclusions
Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. |
|---|---|
| AbstractList | The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified.BACKGROUNDThe proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified.We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients.METHODSWe elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients.Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased.RESULTSOur findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased.Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.CONCLUSIONSOur findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. Keywords: Metabolism, Drug resistance, Bortezomib, Multiple myeloma, PHGDH Abstract Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ–resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ–resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. |
| ArticleNumber | 7 |
| Audience | Academic |
| Author | Zaal, Esther A. Wu, Wei Berkers, Celia R. Zweegman, Sonja Cloos, Jacqueline Jansen, Gerrit |
| Author_xml | – sequence: 1 givenname: Esther A. surname: Zaal fullname: Zaal, Esther A. organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University – sequence: 2 givenname: Wei surname: Wu fullname: Wu, Wei organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University – sequence: 3 givenname: Gerrit surname: Jansen fullname: Jansen, Gerrit organization: Amsterdam Rheumatology and Immunology Center—Location VUMC, VU University Medical Center – sequence: 4 givenname: Sonja surname: Zweegman fullname: Zweegman, Sonja organization: Department of Hematology, VU University Medical Center – sequence: 5 givenname: Jacqueline surname: Cloos fullname: Cloos, Jacqueline organization: Department of Hematology, VU University Medical Center, Pediatric Oncology/Hematology, VU University Medical Center – sequence: 6 givenname: Celia R. orcidid: 0000-0003-0746-8565 surname: Berkers fullname: Berkers, Celia R. email: c.r.berkers@uu.nl organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28855983$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kktv1DAUhSNUREvpD2CDIiEhNil-5GFvkErFo1IlNiCW1o1zM-NRYg-2UzT8epymhZkKcGQnsb9z4lyfp9mRdRaz7Dkl55SK-k0oCW1IkYbUa1nIR9kJI6UsOCHsaO_5ODsLYUNSExWXNX-SHTMhqkoKfpJ9e-d8xJ9uNG3uMZgQwWrMjc3HaYhmO2A-7nBwI-Qm5BCC0wYidvkPE9cJ0x4hpNeA3ljMw87G9WzzLHvcwxDw7O5-mn398P7L5afi-vPHq8uL60JXdRmLlhNd9hx0rYXGHmoUUJGalMhkB31btZxh2QBIZFr0FDWnXBCB2DFG-pKfZleLb-dgo7bejOB3yoFRtxPOrxT4aPSAKuk1MgZaal1K3rdtXUrKJZCm5qKD5PV28dpO7YidRhs9DAemhyvWrNXK3aiqairRzJt5fWfg3fcJQ1SjCRqHASy6KSgqeclEI0iT0JcP0I2bvE2luqVkmU6I_6FWkH7A2N6l7-rZVF1UlLJGSiISdf4XKl0djkan1PQmzR8IXu0J1ghDXAc3TNE4Gw7BF_sV-V2K-_wkoFkA7V0IHnulTYTZJ23BDIoSNYdVLWFVaVBzWJVMSvpAeW_-Pw1bNCGxdoV-r2j_FP0Cnsf7Ng |
| CitedBy_id | crossref_primary_10_1172_JCI137411 crossref_primary_10_1016_j_cytogfr_2023_05_001 crossref_primary_10_3389_fnut_2023_1113228 crossref_primary_10_1182_bloodadvances_2022007383 crossref_primary_10_1016_j_ijpharm_2021_120267 crossref_primary_10_3892_ol_2022_13326 crossref_primary_10_1002_cnma_202500225 crossref_primary_10_3390_cells11010140 crossref_primary_10_1038_s12276_024_01268_1 crossref_primary_10_1016_j_cmet_2020_12_005 crossref_primary_10_1016_j_taap_2025_117403 crossref_primary_10_1186_s12964_024_02016_8 crossref_primary_10_1038_s41467_019_12606_7 crossref_primary_10_1007_s00277_024_06163_3 crossref_primary_10_3389_fonc_2022_899272 crossref_primary_10_3390_cancers15061682 crossref_primary_10_7717_peerj_12918 crossref_primary_10_1111_bjh_16503 crossref_primary_10_1097_HS9_0000000000000463 crossref_primary_10_3389_fphar_2024_1351565 crossref_primary_10_1007_s10238_023_01174_2 crossref_primary_10_1083_jcb_202401024 crossref_primary_10_1016_j_neo_2024_100974 crossref_primary_10_3389_fimmu_2022_897862 crossref_primary_10_1038_s41589_019_0291_9 crossref_primary_10_1002_path_6020 crossref_primary_10_1016_j_bbcan_2024_189151 crossref_primary_10_1186_s13287_023_03563_6 crossref_primary_10_3390_ijms26146901 crossref_primary_10_1016_j_ejmech_2021_113379 crossref_primary_10_1016_j_drup_2023_100985 crossref_primary_10_1016_j_lfs_2024_122907 crossref_primary_10_3390_cells13151259 crossref_primary_10_2147_OTT_S246430 crossref_primary_10_1038_s41375_018_0362_z crossref_primary_10_3390_cancers13071686 crossref_primary_10_3390_cancers14081905 crossref_primary_10_1186_s40170_018_0183_6 crossref_primary_10_1016_j_omton_2025_200964 crossref_primary_10_1111_bjh_16569 crossref_primary_10_1016_j_bbrc_2018_02_211 crossref_primary_10_3390_cancers15030974 crossref_primary_10_3390_ph13020020 crossref_primary_10_3390_cancers14225621 crossref_primary_10_1155_2022_9029544 crossref_primary_10_3390_cancers15010067 crossref_primary_10_3390_cancers13061191 crossref_primary_10_1016_j_bioorg_2024_107330 crossref_primary_10_1182_bloodadvances_2022008345 crossref_primary_10_1007_s10555_017_9707_8 crossref_primary_10_1038_s42003_025_07816_3 crossref_primary_10_3390_cells10092287 crossref_primary_10_3390_ijms19041200 crossref_primary_10_1093_jimmun_vkaf075 crossref_primary_10_1080_14789450_2018_1543595 crossref_primary_10_3390_biom10050696 crossref_primary_10_1038_s41598_022_17239_3 crossref_primary_10_3389_fonc_2022_1000106 crossref_primary_10_3390_ijms25094887 crossref_primary_10_3390_ph14070641 crossref_primary_10_3390_cancers13102411 crossref_primary_10_3390_cancers11020215 crossref_primary_10_1016_j_lfs_2020_118852 crossref_primary_10_3389_fonc_2018_00500 crossref_primary_10_3390_cancers13030396 crossref_primary_10_3390_hemato6030021 crossref_primary_10_1016_j_drup_2021_100797 crossref_primary_10_1038_s41374_021_00666_7 crossref_primary_10_1080_10428194_2023_2278431 crossref_primary_10_3390_cells10030665 crossref_primary_10_1016_j_canlet_2020_01_036 crossref_primary_10_1038_s41401_022_01017_y crossref_primary_10_1038_s41598_020_57698_0 crossref_primary_10_1097_MD_0000000000039782 crossref_primary_10_1111_cas_14154 crossref_primary_10_1007_s13402_021_00599_9 crossref_primary_10_1007_s11306_019_1483_8 crossref_primary_10_1016_j_omton_2025_200992 crossref_primary_10_1111_ajco_13459 crossref_primary_10_1186_s13578_023_00971_2 crossref_primary_10_1002_jcp_29571 crossref_primary_10_1016_j_freeradbiomed_2020_12_012 crossref_primary_10_1371_journal_pone_0223807 crossref_primary_10_1158_0008_5472_CAN_22_0917 crossref_primary_10_3892_ol_2022_13228 crossref_primary_10_1016_j_bbagen_2022_130299 crossref_primary_10_1038_s41467_022_28515_1 crossref_primary_10_1007_s00280_017_3489_0 crossref_primary_10_1016_j_cellimm_2019_02_004 crossref_primary_10_1038_s41401_025_01500_2 crossref_primary_10_1002_ijc_34353 crossref_primary_10_3390_metabo10070289 crossref_primary_10_1186_s13046_025_03447_y crossref_primary_10_1016_j_advnut_2023_05_007 crossref_primary_10_3389_fonc_2023_1271847 crossref_primary_10_3389_fonc_2023_1155621 crossref_primary_10_1158_0008_5472_CAN_20_3323 crossref_primary_10_1016_j_omto_2022_02_017 crossref_primary_10_1016_j_cmet_2023_11_019 crossref_primary_10_1080_13543776_2021_1890028 crossref_primary_10_1016_j_ecoenv_2025_118787 crossref_primary_10_1016_j_tetlet_2023_154627 crossref_primary_10_1186_s40164_020_00196_w crossref_primary_10_1002_cbin_12101 crossref_primary_10_1016_j_ijbiomac_2018_10_034 crossref_primary_10_1111_cas_14178 crossref_primary_10_3389_fonc_2019_00285 crossref_primary_10_1371_journal_pone_0202045 crossref_primary_10_1097_CAD_0000000000001764 crossref_primary_10_1186_s40164_022_00303_z crossref_primary_10_1158_0008_5472_CAN_22_3481 |
| Cites_doi | 10.1016/j.drup.2014.12.001 10.1158/1078-0432.CCR-07-2218 10.1182/blood-2012-04-403733 10.1038/nature11743 10.3324/haematol.2015.135780 10.1158/0008-5472.CAN-11-0127 10.1158/0008-5472.CAN-14-3400 10.18632/oncotarget.11340 10.1038/nrc3557 10.1016/j.tibs.2014.02.004 10.1016/j.molonc.2015.08.003 10.1016/j.drup.2008.08.002 10.1126/science.1160809 10.1021/ja2045925 10.1016/j.leukres.2011.09.011 10.1038/sj.leu.2404414 10.1016/j.copbio.2015.02.003 10.1038/leu.2011.256 10.1016/j.bcp.2011.10.009 10.1038/nature10350 10.1038/ng.890 10.1200/JCO.2011.37.8919 10.1016/j.molcel.2015.06.017 10.1016/j.abb.2010.05.014 10.1074/jbc.M114.618769 10.1007/s10549-010-0848-5 10.1038/leu.2009.8 10.1016/j.phrs.2016.01.029 10.1073/pnas.1521548113 10.1158/1535-7163.MCT-07-0445 10.1016/j.bcp.2014.02.005 10.1182/blood-2007-08-104950 10.1016/j.ccr.2012.02.014 10.1182/blood-2012-05-426924 10.1038/leu.2016.102 10.1038/nrd4145 10.1111/j.1755-148X.2011.00919.x 10.1038/nchembio.2070 10.1124/jpet.111.187542 10.3324/haematol.2011.043331 10.1016/j.mam.2016.05.001 10.1042/BST0380014 10.1038/ng.3421 10.1186/s13045-016-0312-z 10.1016/j.ccr.2013.08.009 10.1021/mp0700256 10.1016/j.celrep.2014.04.045 10.1182/blood-2005-08-3531 10.1016/j.molcel.2015.12.014 10.1038/nature22056 10.1186/1471-2407-9-56 |
| ContentType | Journal Article |
| Copyright | The Author(s). 2017 COPYRIGHT 2017 BioMed Central Ltd. Copyright BioMed Central 2017 |
| Copyright_xml | – notice: The Author(s). 2017 – notice: COPYRIGHT 2017 BioMed Central Ltd. – notice: Copyright BioMed Central 2017 |
| DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88C 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M0T PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
| DOI | 10.1186/s40170-017-0169-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Healthcare Administration Database (Alumni) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Healthcare Administration Database - QC ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic Eastern Edition ProQuest Health Management ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Health Management (Alumni Edition) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2049-3002 |
| EndPage | 12 |
| ExternalDocumentID | oai_doaj_org_article_c8fce22ac9cc493fbb649139a07638da PMC5575874 A511279908 28855983 10_1186_s40170_017_0169_9 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek grantid: 722.013.009 funderid: http://dx.doi.org/10.13039/501100003246 – fundername: ; grantid: 722.013.009 |
| GroupedDBID | 0R~ 53G 5VS 7X7 8FI 8FJ AAFWJ AAJSJ AASML ABUWG ACGFS ADBBV ADRAZ ADUKV AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AOIJS AQUVI ASPBG BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EJD EMOBN FYUFA GROUPED_DOAJ H13 HMCUK HYE IAO IHR IHW INH INR ITC KQ8 M0T M48 M~E OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PUEGO RBZ ROL RPM RSV SOJ UKHRP AAYXX AFFHD CITATION -A0 3V. ACRMQ ADINQ AHSBF ALIPV C24 NPM 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM |
| ID | FETCH-LOGICAL-c564t-b30c4f3ac6c8cefa6e8a50604e29dafb5b32e47aa9e2c8f1ec313808eed220f43 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 137 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000410456200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2049-3002 |
| IngestDate | Mon Nov 10 04:33:09 EST 2025 Tue Nov 04 01:52:07 EST 2025 Wed Oct 01 14:34:32 EDT 2025 Sat Oct 11 13:41:29 EDT 2025 Tue Nov 11 10:44:03 EST 2025 Tue Nov 04 17:11:30 EST 2025 Thu May 22 21:23:21 EDT 2025 Thu Jan 02 22:29:04 EST 2025 Sat Nov 29 04:00:00 EST 2025 Tue Nov 18 20:57:45 EST 2025 Sat Sep 06 07:25:42 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | PHGDH Bortezomib Metabolism Drug resistance Multiple myeloma |
| Language | English |
| License | Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c564t-b30c4f3ac6c8cefa6e8a50604e29dafb5b32e47aa9e2c8f1ec313808eed220f43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0746-8565 |
| OpenAccessLink | https://link.springer.com/10.1186/s40170-017-0169-9 |
| PMID | 28855983 |
| PQID | 1934948853 |
| PQPubID | 2040155 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c8fce22ac9cc493fbb649139a07638da pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575874 proquest_miscellaneous_1934287807 proquest_journals_1934948853 gale_infotracmisc_A511279908 gale_infotracacademiconefile_A511279908 gale_healthsolutions_A511279908 pubmed_primary_28855983 crossref_citationtrail_10_1186_s40170_017_0169_9 crossref_primary_10_1186_s40170_017_0169_9 springer_journals_10_1186_s40170_017_0169_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-08-29 |
| PublicationDateYYYYMMDD | 2017-08-29 |
| PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-29 day: 29 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: England |
| PublicationTitle | Cancer & metabolism |
| PublicationTitleAbbrev | Cancer Metab |
| PublicationTitleAlternate | Cancer Metab |
| PublicationYear | 2017 |
| Publisher | BioMed Central BioMed Central Ltd Springer Nature B.V BMC |
| Publisher_xml | – name: BioMed Central – name: BioMed Central Ltd – name: Springer Nature B.V – name: BMC |
| References | MG Vander Heiden (169_CR22) 2009; 324 RZ Orlowski (169_CR9) 2008; 14 E Mullarky (169_CR47) 2011; 24 C Driessen (169_CR19) 2016; 101 CR Berkers (169_CR30) 2007; 4 Z-X Du (169_CR52) 2009; 9 M Kraus (169_CR34) 2007; 21 F Baenke (169_CR27) 2016; 10 ME Pacold (169_CR50) 2016; 12 ODK Maddocks (169_CR40) 2016; 61 JW Locasale (169_CR48) 2011; 43 SE Verbrugge (169_CR36) 2012; 341 DJ McConkey (169_CR8) 2008; 11 T Rückrich (169_CR13) 2009; 23 DI Lichter (169_CR16) 2012; 120 KC Anderson (169_CR2) 2012; 30 169_CR3 CF Labuschagne (169_CR39) 2014; 7 Y Zhao (169_CR25) 2011; 71 A Kuehne (169_CR35) 2015; 59 D Niewerth (169_CR7) 2015; 18 P Maiso (169_CR28) 2015; 75 GM DeNicola (169_CR45) 2015; 47 JM Buescher (169_CR32) 2015; 34 C Stäubert (169_CR26) 2015; 290 D Niewerth (169_CR33) 2014; 89 SE Bohndiek (169_CR37) 2011; 133 R Possemato (169_CR49) 2011; 476 H Liu (169_CR24) 2008; 7 P Balsas (169_CR14) 2012; 36 LHAM Wilt de (169_CR12) 2012; 83 EA Obeng (169_CR5) 2006; 107 PS Ward (169_CR21) 2012; 21 GP Soriano (169_CR29) 2016; 30 NE Franke (169_CR11) 2012; 26 A Corti (169_CR38) 2010; 500 CR Berkers (169_CR4) 2010; 38 PM Tedeschi (169_CR41) 2013; 4 P Moreau (169_CR1) 2012; 120 NE Franke (169_CR20) 2016; 7 D Niewerth (169_CR15) 2016; 9 C Leung-Hagesteijn (169_CR18) 2013; 24 BC Lipchick (169_CR6) 2016; 105 JW Locasale (169_CR42) 2013; 13 L Galluzzi (169_CR23) 2013; 12 ODK Maddocks (169_CR31) 2013; 493 E Mullarky (169_CR44) 2016; 113 SCW Ling (169_CR17) 2012; 97 ODK Maddocks (169_CR51) 2017; 544 R Oerlemans (169_CR10) 2008; 112 I Amelio (169_CR43) 2014; 39 S Pollari (169_CR46) 2011; 125 26482881 - Nat Genet. 2015 Dec;47(12):1475-81 20074028 - Biochem Soc Trans. 2010 Feb;38(Pt 1):14-20 26831078 - Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1778-83 23018640 - Blood. 2012 Nov 29;120(23):4513-6 24657017 - Trends Biochem Sci. 2014 Apr;39(4):191-8 18818117 - Drug Resist Updat. 2008 Aug-Oct;11(4-5):164-79 23822983 - Nat Rev Cancer. 2013 Aug;13(8):572-83 26365896 - Mol Oncol. 2016 Jan;10 (1):73-84 24113830 - Nat Rev Drug Discov. 2013 Nov;12 (11):829-46 20352489 - Breast Cancer Res Treat. 2011 Jan;125(2):421-30 24813884 - Cell Rep. 2014 May 22;7(4):1248-58 18347166 - Clin Cancer Res. 2008 Mar 15;14(6):1649-57 17708652 - Mol Pharm. 2007 Sep-Oct;4(5):739-48 22645181 - Blood. 2012 Aug 2;120(5):947-59 27155164 - Mol Aspects Med. 2016 Aug;50:41-55 26659919 - Haematologica. 2016 Mar;101(3):346-55 21941364 - Leukemia. 2012 Apr;26(4):757-68 26190262 - Mol Cell. 2015 Aug 6;59(3):359-71 16507771 - Blood. 2006 Jun 15;107(12):4907-16 22235146 - J Pharmacol Exp Ther. 2012 Apr;341(1):174-82 21981974 - Pigment Cell Melanoma Res. 2011 Dec;24(6):1112-5 19216805 - BMC Cancer. 2009 Feb 16;9:56 25697355 - J Biol Chem. 2015 Mar 27;290(13):8348-59 17024115 - Leukemia. 2007 Jan;21(1):84-92 27118406 - Leukemia. 2016 Nov;30(11):2198-2207 21760589 - Nature. 2011 Aug 18;476(7360):346-50 27110680 - Nat Chem Biol. 2016 Jun;12 (6):452-8 21498634 - Cancer Res. 2011 Jul 1;71(13):4585-97 18565852 - Blood. 2008 Sep 15;112(6):2489-99 21804546 - Nat Genet. 2011 Jul 31;43(9):869-74 26827824 - Pharmacol Res. 2016 Mar;105:210-5 26774282 - Mol Cell. 2016 Jan 21;61(2):210-21 25670156 - Drug Resist Updat. 2015 Jan;18:18-35 24157871 - Cell Death Dis. 2013 Oct 24;4:e877 25731751 - Curr Opin Biotechnol. 2015 Aug;34:189-201 24552657 - Biochem Pharmacol. 2014 May 1;89(1):43-51 21993678 - Haematologica. 2012 Jan;97(1):64-72 27542283 - Oncotarget. 2016 Nov 15;7(46):74779-74796 23242140 - Nature. 2013 Jan 24;493(7433):542-6 24029229 - Cancer Cell. 2013 Sep 9;24(3):289-304 22027222 - Biochem Pharmacol. 2012 Jan 15;83(2):207-17 18281512 - Mol Cancer Ther. 2008 Feb;7(2):263-70 21978467 - Leuk Res. 2012 Feb;36(2):212-8 20494648 - Arch Biochem Biophys. 2010 Aug 15;500(2):107-15 21692446 - J Am Chem Soc. 2011 Aug 3;133(30):11795-801 19460998 - Science. 2009 May 22;324(5930):1029-33 22215754 - J Clin Oncol. 2012 Feb 1;30(4):445-52 28425994 - Nature. 2017 Apr 19;544(7650):372-376 22439925 - Cancer Cell. 2012 Mar 20;21(3):297-308 25769724 - Cancer Res. 2015 May 15;75(10):2071-82 19225532 - Leukemia. 2009 Jun;23(6):1098-105 27599459 - J Hematol Oncol. 2016 Sep 06;9(1):82 |
| References_xml | – volume: 18 start-page: 18 year: 2015 ident: 169_CR7 publication-title: Drug Resist Updat doi: 10.1016/j.drup.2014.12.001 – volume: 14 start-page: 1649 year: 2008 ident: 169_CR9 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-2218 – volume: 120 start-page: 947 year: 2012 ident: 169_CR1 publication-title: Blood doi: 10.1182/blood-2012-04-403733 – volume: 493 start-page: 542 year: 2013 ident: 169_CR31 publication-title: Nature doi: 10.1038/nature11743 – volume: 101 start-page: 346 year: 2016 ident: 169_CR19 publication-title: Haematologica doi: 10.3324/haematol.2015.135780 – volume: 71 start-page: 4585 year: 2011 ident: 169_CR25 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0127 – volume: 75 start-page: 2071 year: 2015 ident: 169_CR28 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-3400 – volume: 7 start-page: 74779 year: 2016 ident: 169_CR20 publication-title: Oncotarget doi: 10.18632/oncotarget.11340 – volume: 13 start-page: 572 year: 2013 ident: 169_CR42 publication-title: Nat Rev Cancer doi: 10.1038/nrc3557 – volume: 39 start-page: 191 year: 2014 ident: 169_CR43 publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2014.02.004 – volume: 10 start-page: 73 year: 2016 ident: 169_CR27 publication-title: Mol Oncol doi: 10.1016/j.molonc.2015.08.003 – volume: 11 start-page: 164 year: 2008 ident: 169_CR8 publication-title: Drug Resist Updat doi: 10.1016/j.drup.2008.08.002 – volume: 324 start-page: 1029 year: 2009 ident: 169_CR22 publication-title: Science doi: 10.1126/science.1160809 – volume: 133 start-page: 11795 year: 2011 ident: 169_CR37 publication-title: J Am Chem Soc doi: 10.1021/ja2045925 – volume: 36 start-page: 212 year: 2012 ident: 169_CR14 publication-title: Leuk Res doi: 10.1016/j.leukres.2011.09.011 – volume: 21 start-page: 84 year: 2007 ident: 169_CR34 publication-title: Leukemia doi: 10.1038/sj.leu.2404414 – volume: 34 start-page: 189 year: 2015 ident: 169_CR32 publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2015.02.003 – volume: 26 start-page: 757 year: 2012 ident: 169_CR11 publication-title: Leukemia doi: 10.1038/leu.2011.256 – volume: 83 start-page: 207 year: 2012 ident: 169_CR12 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2011.10.009 – volume: 476 start-page: 346 year: 2011 ident: 169_CR49 publication-title: Nature doi: 10.1038/nature10350 – volume: 43 start-page: 869 year: 2011 ident: 169_CR48 publication-title: Nat Genet doi: 10.1038/ng.890 – volume: 30 start-page: 445 year: 2012 ident: 169_CR2 publication-title: J Clin Oncol doi: 10.1200/JCO.2011.37.8919 – volume: 59 start-page: 359 year: 2015 ident: 169_CR35 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.06.017 – volume: 500 start-page: 107 year: 2010 ident: 169_CR38 publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2010.05.014 – volume: 290 start-page: 8348 year: 2015 ident: 169_CR26 publication-title: J Biol Chem doi: 10.1074/jbc.M114.618769 – volume: 125 start-page: 421 year: 2011 ident: 169_CR46 publication-title: Breast Cancer Res Treat doi: 10.1007/s10549-010-0848-5 – volume: 23 start-page: 1098 year: 2009 ident: 169_CR13 publication-title: Leukemia doi: 10.1038/leu.2009.8 – volume: 105 start-page: 210 year: 2016 ident: 169_CR6 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2016.01.029 – volume: 113 start-page: 1778 year: 2016 ident: 169_CR44 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1521548113 – volume: 7 start-page: 263 year: 2008 ident: 169_CR24 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-07-0445 – volume: 89 start-page: 43 year: 2014 ident: 169_CR33 publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2014.02.005 – volume: 112 start-page: 2489 year: 2008 ident: 169_CR10 publication-title: Blood doi: 10.1182/blood-2007-08-104950 – volume: 21 start-page: 297 year: 2012 ident: 169_CR21 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.02.014 – volume: 120 start-page: 4513 year: 2012 ident: 169_CR16 publication-title: Blood doi: 10.1182/blood-2012-05-426924 – volume: 30 start-page: 2198 year: 2016 ident: 169_CR29 publication-title: Leukemia doi: 10.1038/leu.2016.102 – volume: 4 year: 2013 ident: 169_CR41 publication-title: NADPH and purine requirements of cancer cells Cell Death Dis – volume: 12 start-page: 829 year: 2013 ident: 169_CR23 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4145 – volume: 24 start-page: 1112 year: 2011 ident: 169_CR47 publication-title: Pigment Cell Melanoma Res doi: 10.1111/j.1755-148X.2011.00919.x – volume: 12 start-page: 452 year: 2016 ident: 169_CR50 publication-title: Nat Chem Biol doi: 10.1038/nchembio.2070 – volume: 341 start-page: 174 year: 2012 ident: 169_CR36 publication-title: J Pharmacol Exp Ther doi: 10.1124/jpet.111.187542 – volume: 97 start-page: 64 year: 2012 ident: 169_CR17 publication-title: Haematologica doi: 10.3324/haematol.2011.043331 – ident: 169_CR3 doi: 10.1016/j.mam.2016.05.001 – volume: 38 start-page: 14 issue: Pt 1 year: 2010 ident: 169_CR4 publication-title: Biochem Soc Trans doi: 10.1042/BST0380014 – volume: 47 start-page: 1475 year: 2015 ident: 169_CR45 publication-title: Nat Genet doi: 10.1038/ng.3421 – volume: 9 start-page: 82 year: 2016 ident: 169_CR15 publication-title: J Hematol Oncol doi: 10.1186/s13045-016-0312-z – volume: 24 start-page: 289 year: 2013 ident: 169_CR18 publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.08.009 – volume: 4 start-page: 739 year: 2007 ident: 169_CR30 publication-title: Mol Pharm doi: 10.1021/mp0700256 – volume: 7 start-page: 1248 year: 2014 ident: 169_CR39 publication-title: Cell Rep doi: 10.1016/j.celrep.2014.04.045 – volume: 107 start-page: 4907 year: 2006 ident: 169_CR5 publication-title: Blood doi: 10.1182/blood-2005-08-3531 – volume: 61 start-page: 210 year: 2016 ident: 169_CR40 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.12.014 – volume: 544 start-page: 372 year: 2017 ident: 169_CR51 publication-title: Nature doi: 10.1038/nature22056 – volume: 9 start-page: 56 year: 2009 ident: 169_CR52 publication-title: BMC Cancer doi: 10.1186/1471-2407-9-56 – reference: 21498634 - Cancer Res. 2011 Jul 1;71(13):4585-97 – reference: 20494648 - Arch Biochem Biophys. 2010 Aug 15;500(2):107-15 – reference: 27110680 - Nat Chem Biol. 2016 Jun;12 (6):452-8 – reference: 27599459 - J Hematol Oncol. 2016 Sep 06;9(1):82 – reference: 22235146 - J Pharmacol Exp Ther. 2012 Apr;341(1):174-82 – reference: 25769724 - Cancer Res. 2015 May 15;75(10):2071-82 – reference: 21978467 - Leuk Res. 2012 Feb;36(2):212-8 – reference: 25697355 - J Biol Chem. 2015 Mar 27;290(13):8348-59 – reference: 17024115 - Leukemia. 2007 Jan;21(1):84-92 – reference: 22439925 - Cancer Cell. 2012 Mar 20;21(3):297-308 – reference: 22645181 - Blood. 2012 Aug 2;120(5):947-59 – reference: 26659919 - Haematologica. 2016 Mar;101(3):346-55 – reference: 24552657 - Biochem Pharmacol. 2014 May 1;89(1):43-51 – reference: 24157871 - Cell Death Dis. 2013 Oct 24;4:e877 – reference: 18818117 - Drug Resist Updat. 2008 Aug-Oct;11(4-5):164-79 – reference: 26831078 - Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1778-83 – reference: 27118406 - Leukemia. 2016 Nov;30(11):2198-2207 – reference: 28425994 - Nature. 2017 Apr 19;544(7650):372-376 – reference: 18281512 - Mol Cancer Ther. 2008 Feb;7(2):263-70 – reference: 20352489 - Breast Cancer Res Treat. 2011 Jan;125(2):421-30 – reference: 19460998 - Science. 2009 May 22;324(5930):1029-33 – reference: 22215754 - J Clin Oncol. 2012 Feb 1;30(4):445-52 – reference: 18565852 - Blood. 2008 Sep 15;112(6):2489-99 – reference: 27155164 - Mol Aspects Med. 2016 Aug;50:41-55 – reference: 23242140 - Nature. 2013 Jan 24;493(7433):542-6 – reference: 25731751 - Curr Opin Biotechnol. 2015 Aug;34:189-201 – reference: 21981974 - Pigment Cell Melanoma Res. 2011 Dec;24(6):1112-5 – reference: 21692446 - J Am Chem Soc. 2011 Aug 3;133(30):11795-801 – reference: 21760589 - Nature. 2011 Aug 18;476(7360):346-50 – reference: 17708652 - Mol Pharm. 2007 Sep-Oct;4(5):739-48 – reference: 20074028 - Biochem Soc Trans. 2010 Feb;38(Pt 1):14-20 – reference: 23822983 - Nat Rev Cancer. 2013 Aug;13(8):572-83 – reference: 21993678 - Haematologica. 2012 Jan;97(1):64-72 – reference: 26190262 - Mol Cell. 2015 Aug 6;59(3):359-71 – reference: 22027222 - Biochem Pharmacol. 2012 Jan 15;83(2):207-17 – reference: 25670156 - Drug Resist Updat. 2015 Jan;18:18-35 – reference: 26774282 - Mol Cell. 2016 Jan 21;61(2):210-21 – reference: 26482881 - Nat Genet. 2015 Dec;47(12):1475-81 – reference: 23018640 - Blood. 2012 Nov 29;120(23):4513-6 – reference: 16507771 - Blood. 2006 Jun 15;107(12):4907-16 – reference: 18347166 - Clin Cancer Res. 2008 Mar 15;14(6):1649-57 – reference: 24813884 - Cell Rep. 2014 May 22;7(4):1248-58 – reference: 19225532 - Leukemia. 2009 Jun;23(6):1098-105 – reference: 21941364 - Leukemia. 2012 Apr;26(4):757-68 – reference: 26365896 - Mol Oncol. 2016 Jan;10 (1):73-84 – reference: 27542283 - Oncotarget. 2016 Nov 15;7(46):74779-74796 – reference: 19216805 - BMC Cancer. 2009 Feb 16;9:56 – reference: 24657017 - Trends Biochem Sci. 2014 Apr;39(4):191-8 – reference: 21804546 - Nat Genet. 2011 Jul 31;43(9):869-74 – reference: 26827824 - Pharmacol Res. 2016 Mar;105:210-5 – reference: 24113830 - Nat Rev Drug Discov. 2013 Nov;12 (11):829-46 – reference: 24029229 - Cancer Cell. 2013 Sep 9;24(3):289-304 |
| SSID | ssj0000853963 |
| Score | 2.4188044 |
| Snippet | Background
The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the... The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread... Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the... Abstract Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by... |
| SourceID | doaj pubmedcentral proquest gale pubmed crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7 |
| SubjectTerms | Apoptosis Biomedical and Life Sciences Biomedicine Biosynthesis Bortezomib Breast cancer Cancer Research Cancer therapies Carbon Cell Biology Cell growth Dehydrogenases Drug resistance Drug therapy Experiments Imaging Inhibitor drugs Mass spectrometry Melanoma Metabolic Diseases Metabolism Metabolomics Multiple myeloma Mutation Oncology Patient outcomes Penicillin PHGDH Proteins Radiology Scientific imaging Targeted cancer therapy Testing |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEB9kEfEifltdNYIgKGXbJM3HcRUXLy4eFPcWkjTFyr6-ZftWWP96J2leeV1RL14KbSYlbz46My-T3wC87Fprkflt2QTmSu5tUzqlRGm1QofPW_SRLjWbkMfH6uREf9pp9RVrwiZ44IlxB151PlBqvfaea9Y5J3iEsrSYgDPVptCoknonmfo-VV8xVK28jVkrcTDyKvVYqWOlpdClXjiihNf_-1d5xy1dLZm8sm-a3NHRbbiV40hyOK3_DlwLw1248THvlN-Dr7FPevi5XvWOYEYdo0QUL-kHsi0hJKvLcLpeWdKPxGYhhZbEP2aRLAaTI96O6XggGS8HjBTxNffhy9H7z-8-lLmJQukbwTelY5XnHbNeeOVDZ0VQNoEKBqpb27nGMRq4tFYHiryug2c1Qzmh76S06jh7AHvDegiPgOjKCke90E3gPFTSOukbJxn3glXW1QVUW44anxHGY6OLU5MyDSXMJASDFxOFYHQBr-cpZxO8xt-I30YxzYQRGTs9QH0xWV_Mv_SlgOdRyGY6ZjrbtzmMkadE36wKeJUoooXj8r3NBxWQCREra0G5v6BEy_TL4a0imfxlGA0GzBGRB_WzgBfzcJwZq92GsL6YaDCTVZUs4OGkd_OPpji10Qpny4VGLriyHBn6bwk3vMHQXElewJut7u4s609Mf_w_mP4EbtJkefHEzz7sbc4vwlO47n9s-vH8WTLdX7-LSCo priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9UwEA-6injx-6O6agVBUMq2TZqPk6zi4sXFg-K7hSRNtbCvXV_fCutf70ya1u2KexFKoc2kNJlfZibJZIaQF01tDHR-nVWe2ow5U2VWSp4ZJUHhsxp0pA3JJsThoVyt1Ke44DZEt8pJJgZBXfcO18j3wNDASCagXd4c_8gwaxTursYUGpfJFUybjTgXKzGvsYA5QQFgcTOzkHxvYHnItFKgvyVXmVqooxC1_2_ZfEY5nXecPLd7GpTSwc3_bc4tciOao-n-iJ_b5JLv7pBrH-OG-13yFdOt-1_9urUpTMzR2ASUpG2XTp6I6frUH_Vrk7ZDaiKvfZ3i-i6QoU06wOMQThmmw2kHBid85h75cvD-87sPWczFkLmKs21mae5YQ43jTjrfGO6lCbEJfalq09jK0tIzYYzypZNN4R0tKLAbVHBZ5g2j98lO13f-IUlVbrgtHVeVZ8znwljhKisoc5zmxhYJySeWaBcDlWO-jCMdJiyS65GLGm4auahVQl7NVY7HKB0XEb9FPs-EGGA7vOg333Qcrxra4HxZGqecY4o21nKGEVRNDgJZ1iYhzxAlejytOosJvY8GrAAVLxPyMlCgoIDfdyaed4BOwJBbC8rdBSUMcLcsniCko4AZ9B_8JOT5XIw10Wmu8_3JSAMTYpmLhDwYgTs3uoSqlZJQWywgveiVZUnXfg_hxyuw8KVgCXk9gf_Mb_2r0x9d3IjH5Ho5Dkq4dsnOdnPin5Cr7ue2HTZPw6j-Dc21VVY priority: 102 providerName: ProQuest |
| Title | Bortezomib resistance in multiple myeloma is associated with increased serine synthesis |
| URI | https://link.springer.com/article/10.1186/s40170-017-0169-9 https://www.ncbi.nlm.nih.gov/pubmed/28855983 https://www.proquest.com/docview/1934948853 https://www.proquest.com/docview/1934287807 https://pubmed.ncbi.nlm.nih.gov/PMC5575874 https://doaj.org/article/c8fce22ac9cc493fbb649139a07638da |
| Volume | 5 |
| WOSCitedRecordID | wos000410456200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central Open Access Free customDbUrl: eissn: 2049-3002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000853963 issn: 2049-3002 databaseCode: RBZ dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2049-3002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000853963 issn: 2049-3002 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2049-3002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000853963 issn: 2049-3002 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2049-3002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000853963 issn: 2049-3002 databaseCode: 7X7 dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Healthcare Administration Database customDbUrl: eissn: 2049-3002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000853963 issn: 2049-3002 databaseCode: M0T dateStart: 20150101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthmanagement providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2049-3002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000853963 issn: 2049-3002 databaseCode: BENPR dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2049-3002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000853963 issn: 2049-3002 databaseCode: PIMPY dateStart: 20150101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2049-3002 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000853963 issn: 2049-3002 databaseCode: RSV dateStart: 20131201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtQwcERbhPrCTQmUJUhISKCIbOz4eGxRK3jY1aoUWJ4s23FgpW4WbbZI5esZO4eackjwYinxTBSPxzNjew6A52WhNRK_SHJHTEKtzhMjBEu0FKjwaYE60oRiE3w6FfO5nLVx3HXn7d5dSQZJHZa1YK9rmoYiKWPvKslkIrdgB7Wd8PUaTt5_7A9W0IYgyFXtDeZvMQc6KKTq_1UgX9JIV70lr1yZBk10fOu_xnAbbraGZ3zQcModuOaqu3Bj0l6t34NPvrC6-7FaLkyMW3BvViI_xIsq7nwO4-WFO1stdbyoY93Oqitif5KLYN76rPGxDvGEcX1RoWmJn7kPH46PTt-8TdqqC4nNGd0khqSWlkRbZoV1pWZO6JCF0GWy0KXJDckc5VpLl1lRjp0lY4ITi8o2y9KSkgewXa0q9xBimWpmMstk7ih1KdeG29xwQi0jqTbjCNJuHpRtU5L7yhhnKmxNBFMNwRQ2yhNMyQhe9ijfmnwcfwM-9JPbA_pU2uHFav1FtStT4RisyzJtpbVUktIYRn2uVJ2i6BWFjuCpZw3VxKX2AkEdeFOVozIXEbwIEF4k4O9b3UY2IBF8cq0B5P4AEpeyHXZ37KdaUVIrtLB9Ch_k6gie9d0e07vHVW513sDg1lekPIK9hlv7QWeImkuB2HzAxwOqDHuqxdeQaDxHW15wGsGrjpsv_dafiP7on6Afw24WloOPBdqH7c363D2B6_b7ZlGvR7DF5zy0YgQ7h0fT2ckonJpgO0lP8d3s3WT2eRQkwE_BrlHb |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qUwRc2JdAoUECIYGiZhwnsQ8IlaXqqJ1RD0W0J2M7DozUScpkChp-FL-RZ2ehKaK3HrhEmvg5sj3fW2y_BeBZnkmJi58FsYlUQLWMA8VYEkjOUOHTDHWkcsUm0smEHRzwvRX41cbCWLfKViY6QZ2V2p6Rb6ChYTOZoHZ5c_wtsFWj7O1qW0KjhsWOWf7ALVv1evQe_9_nhGx92H-3HTRVBQIdJ3QRqCjUNI-kTjTTJpeJYdJl2TOEZzJXsYqIoamU3BDN8qHR0TDCgaMyISTMaYTfvQSr1IJ9AKt7o_HeYXeqgwZMhJBurk-HLNmoaOhquwyth2fCA95TgK5OwN_a4JQ6POuqeea-1qnBrRv_2wLehOuNwe1v1hxyC1ZMcRuujBuXgjvwyRaUNz_L2VT5c1NZcxr5wJ8Wfutr6c-W5qicSX9a-bJBs8l8e4KNZNbqrvBn5eIo_WpZoEmNn7kLHy9kWvdgUJSFeQA-D2WiiE54bCg1YSpVqmOVRlQnUSjV0IOwhYDQTSp2WxHkSLgtGUtEjRqBD2FRI7gHL7sux3UekvOI31pcdYQ2hbh7Uc6_iEYiCZyDNoRIzbWmPMqVSqjNEStDVDkskx6sW1SKOh63E4Ri05roKRoxzIMXjsKKQhy-lk1EBy6CTSrWo1zrUaII0_3mFrKiEaGV-INXD552zbandQssTHlS0-CWn4WpB_drRukmTbBrzBn2Tnss1FuVfksx_eoSrMe4h2Ep9eBVy2ynhvWvRX94_iTW4er2_nhX7I4mO4_gGnECwQZArcFgMT8xj-Gy_r6YVvMnjUzx4fNFc-FvOFe2zg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1ra9RAcNAqpV98t0arjSAISmguu9nsfqyPQ1GPgq9-W3Y3Gz3o5crlKtRf78zmQVMfIH4JJDsTsrPz2uw8AB5XpTFI_DLJPbMJdyZPrJQiMUqiwecl2kgbmk0Us5k8OlKHXZ_Tpo92748k25wGqtJUr_dPyqoVcSn2G56GhikTCpsUKlGX4QqnOHrarn_4PPxkwScMOaw7zfwt5sgehbL9vyrnc9bpYuTkhePTYJWm1_97PjfgWueQxgctB92ES76-BZvvuyP32_CFGq77H8vF3Ma4NSd3E_kkntdxH4sYL8788XJh4nkTm261fRnTH14EI6-0wdsm5BnGzVmNLie-5g58mr76-OJ10nVjSFwu-DqxLHW8YsYJJ52vjPDShOqEPlOlqWxuWeZ5YYzymZPVxDs2YbjgaISzLK0424aNeln7uxCr1AibOaFyz7lPC2MLl9uCcSdYauwkgrRfE-26UuXUMeNYhy2LFLolmMaLJoJpFcHTAeWkrdPxN-DntNADIJXYDg-Wq6-6k1iNc3A-y4xTznHFKmsFpxqqJkWVLEsTwR6xiW7zVQdFoQ_IhS3QyMsIngQIUhX4-c50GQ9IBCq6NYLcHUGiiLvxcM-KulMxjUbPm0r7IIdH8GgYJkwKm6v98rSFwS2xTIsIdlrOHSadIWquJGIXI54eUWU8Us-_hQLkOfr4suARPOs5-9xn_Yno9_4Jeg82D19O9bs3s7f3YSsLkkHpQruwsV6d-gdw1X1fz5vVwyDwPwGGQ1ah |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bortezomib+resistance+in+multiple+myeloma+is+associated+with+increased+serine+synthesis&rft.jtitle=Cancer+%26+metabolism&rft.au=Zaal%2C+Esther+A.&rft.au=Wu%2C+Wei&rft.au=Jansen%2C+Gerrit&rft.au=Zweegman%2C+Sonja&rft.date=2017-08-29&rft.pub=BioMed+Central&rft.eissn=2049-3002&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1186%2Fs40170-017-0169-9&rft.externalDocID=10_1186_s40170_017_0169_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-3002&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-3002&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-3002&client=summon |