Bortezomib resistance in multiple myeloma is associated with increased serine synthesis

Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to phar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer & metabolism Jg. 5; H. 1; S. 7 - 12
Hauptverfasser: Zaal, Esther A., Wu, Wei, Jansen, Gerrit, Zweegman, Sonja, Cloos, Jacqueline, Berkers, Celia R.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London BioMed Central 29.08.2017
BioMed Central Ltd
Springer Nature B.V
BMC
Schlagworte:
ISSN:2049-3002, 2049-3002
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ–resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.
AbstractList The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified.BACKGROUNDThe proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified.We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients.METHODSWe elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients.Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased.RESULTSOur findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased.Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.CONCLUSIONSOur findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.
The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.
Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance. Keywords: Metabolism, Drug resistance, Bortezomib, Multiple myeloma, PHGDH
Abstract Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ–resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.
Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.
The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ-resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.
Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread occurrence of resistance. Metabolic alterations play an important role in cancer development and aid in the cellular adaptation to pharmacologically changed environments. Metabolic changes could therefore play an essential role in the development of drug resistance. However, specific metabolic pathways that can be targeted to improve bortezomib therapy remain unidentified. Methods We elucidated the metabolic mechanisms underlying bortezomib resistance by using mass spectrometry-based metabolomics and proteomics on BTZ-sensitive and BTZ–resistant multiple myeloma cell lines as well as in a set of CD138+ cells obtained from multiple myeloma patients. Results Our findings demonstrate that a rewired glucose metabolism sustains bortezomib resistance. Mechanistically, this results in higher activity of both the pentose phosphate pathway and serine synthesis pathway, ultimately leading to an increased anti-oxidant capacity of BTZ-resistant cells. Moreover, our results link both serine synthesis pathway activity and expression of 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of serine synthesis, to bortezomib resistance across different BTZ-resistant multiple myeloma cell lines. Consistently, serine starvation enhanced the cytotoxicity of bortezomib, underscoring the importance of serine metabolism in the response to BTZ. Importantly, in CD138+ cells of clinically bortezomib refractory multiple myeloma patients, PHGDH expression was also markedly increased. Conclusions Our findings indicate that interfering with serine metabolism may be a novel strategy to improve bortezomib therapy and identify PHGDH as a potential biomarker for BTZ resistance.
ArticleNumber 7
Audience Academic
Author Zaal, Esther A.
Wu, Wei
Berkers, Celia R.
Zweegman, Sonja
Cloos, Jacqueline
Jansen, Gerrit
Author_xml – sequence: 1
  givenname: Esther A.
  surname: Zaal
  fullname: Zaal, Esther A.
  organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University
– sequence: 2
  givenname: Wei
  surname: Wu
  fullname: Wu, Wei
  organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University
– sequence: 3
  givenname: Gerrit
  surname: Jansen
  fullname: Jansen, Gerrit
  organization: Amsterdam Rheumatology and Immunology Center—Location VUMC, VU University Medical Center
– sequence: 4
  givenname: Sonja
  surname: Zweegman
  fullname: Zweegman, Sonja
  organization: Department of Hematology, VU University Medical Center
– sequence: 5
  givenname: Jacqueline
  surname: Cloos
  fullname: Cloos, Jacqueline
  organization: Department of Hematology, VU University Medical Center, Pediatric Oncology/Hematology, VU University Medical Center
– sequence: 6
  givenname: Celia R.
  orcidid: 0000-0003-0746-8565
  surname: Berkers
  fullname: Berkers, Celia R.
  email: c.r.berkers@uu.nl
  organization: Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28855983$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpD2CDIiEhNil-5GFvkErFo1IlNiCW1o1zM-NRYg-2UzT8epymhZkKcGQnsb9z4lyfp9mRdRaz7Dkl55SK-k0oCW1IkYbUa1nIR9kJI6UsOCHsaO_5ODsLYUNSExWXNX-SHTMhqkoKfpJ9e-d8xJ9uNG3uMZgQwWrMjc3HaYhmO2A-7nBwI-Qm5BCC0wYidvkPE9cJ0x4hpNeA3ljMw87G9WzzLHvcwxDw7O5-mn398P7L5afi-vPHq8uL60JXdRmLlhNd9hx0rYXGHmoUUJGalMhkB31btZxh2QBIZFr0FDWnXBCB2DFG-pKfZleLb-dgo7bejOB3yoFRtxPOrxT4aPSAKuk1MgZaal1K3rdtXUrKJZCm5qKD5PV28dpO7YidRhs9DAemhyvWrNXK3aiqairRzJt5fWfg3fcJQ1SjCRqHASy6KSgqeclEI0iT0JcP0I2bvE2luqVkmU6I_6FWkH7A2N6l7-rZVF1UlLJGSiISdf4XKl0djkan1PQmzR8IXu0J1ghDXAc3TNE4Gw7BF_sV-V2K-_wkoFkA7V0IHnulTYTZJ23BDIoSNYdVLWFVaVBzWJVMSvpAeW_-Pw1bNCGxdoV-r2j_FP0Cnsf7Ng
CitedBy_id crossref_primary_10_1172_JCI137411
crossref_primary_10_1016_j_cytogfr_2023_05_001
crossref_primary_10_3389_fnut_2023_1113228
crossref_primary_10_1182_bloodadvances_2022007383
crossref_primary_10_1016_j_ijpharm_2021_120267
crossref_primary_10_3892_ol_2022_13326
crossref_primary_10_1002_cnma_202500225
crossref_primary_10_3390_cells11010140
crossref_primary_10_1038_s12276_024_01268_1
crossref_primary_10_1016_j_cmet_2020_12_005
crossref_primary_10_1016_j_taap_2025_117403
crossref_primary_10_1186_s12964_024_02016_8
crossref_primary_10_1038_s41467_019_12606_7
crossref_primary_10_1007_s00277_024_06163_3
crossref_primary_10_3389_fonc_2022_899272
crossref_primary_10_3390_cancers15061682
crossref_primary_10_7717_peerj_12918
crossref_primary_10_1111_bjh_16503
crossref_primary_10_1097_HS9_0000000000000463
crossref_primary_10_3389_fphar_2024_1351565
crossref_primary_10_1007_s10238_023_01174_2
crossref_primary_10_1083_jcb_202401024
crossref_primary_10_1016_j_neo_2024_100974
crossref_primary_10_3389_fimmu_2022_897862
crossref_primary_10_1038_s41589_019_0291_9
crossref_primary_10_1002_path_6020
crossref_primary_10_1016_j_bbcan_2024_189151
crossref_primary_10_1186_s13287_023_03563_6
crossref_primary_10_3390_ijms26146901
crossref_primary_10_1016_j_ejmech_2021_113379
crossref_primary_10_1016_j_drup_2023_100985
crossref_primary_10_1016_j_lfs_2024_122907
crossref_primary_10_3390_cells13151259
crossref_primary_10_2147_OTT_S246430
crossref_primary_10_1038_s41375_018_0362_z
crossref_primary_10_3390_cancers13071686
crossref_primary_10_3390_cancers14081905
crossref_primary_10_1186_s40170_018_0183_6
crossref_primary_10_1016_j_omton_2025_200964
crossref_primary_10_1111_bjh_16569
crossref_primary_10_1016_j_bbrc_2018_02_211
crossref_primary_10_3390_cancers15030974
crossref_primary_10_3390_ph13020020
crossref_primary_10_3390_cancers14225621
crossref_primary_10_1155_2022_9029544
crossref_primary_10_3390_cancers15010067
crossref_primary_10_3390_cancers13061191
crossref_primary_10_1016_j_bioorg_2024_107330
crossref_primary_10_1182_bloodadvances_2022008345
crossref_primary_10_1007_s10555_017_9707_8
crossref_primary_10_1038_s42003_025_07816_3
crossref_primary_10_3390_cells10092287
crossref_primary_10_3390_ijms19041200
crossref_primary_10_1093_jimmun_vkaf075
crossref_primary_10_1080_14789450_2018_1543595
crossref_primary_10_3390_biom10050696
crossref_primary_10_1038_s41598_022_17239_3
crossref_primary_10_3389_fonc_2022_1000106
crossref_primary_10_3390_ijms25094887
crossref_primary_10_3390_ph14070641
crossref_primary_10_3390_cancers13102411
crossref_primary_10_3390_cancers11020215
crossref_primary_10_1016_j_lfs_2020_118852
crossref_primary_10_3389_fonc_2018_00500
crossref_primary_10_3390_cancers13030396
crossref_primary_10_3390_hemato6030021
crossref_primary_10_1016_j_drup_2021_100797
crossref_primary_10_1038_s41374_021_00666_7
crossref_primary_10_1080_10428194_2023_2278431
crossref_primary_10_3390_cells10030665
crossref_primary_10_1016_j_canlet_2020_01_036
crossref_primary_10_1038_s41401_022_01017_y
crossref_primary_10_1038_s41598_020_57698_0
crossref_primary_10_1097_MD_0000000000039782
crossref_primary_10_1111_cas_14154
crossref_primary_10_1007_s13402_021_00599_9
crossref_primary_10_1007_s11306_019_1483_8
crossref_primary_10_1016_j_omton_2025_200992
crossref_primary_10_1111_ajco_13459
crossref_primary_10_1186_s13578_023_00971_2
crossref_primary_10_1002_jcp_29571
crossref_primary_10_1016_j_freeradbiomed_2020_12_012
crossref_primary_10_1371_journal_pone_0223807
crossref_primary_10_1158_0008_5472_CAN_22_0917
crossref_primary_10_3892_ol_2022_13228
crossref_primary_10_1016_j_bbagen_2022_130299
crossref_primary_10_1038_s41467_022_28515_1
crossref_primary_10_1007_s00280_017_3489_0
crossref_primary_10_1016_j_cellimm_2019_02_004
crossref_primary_10_1038_s41401_025_01500_2
crossref_primary_10_1002_ijc_34353
crossref_primary_10_3390_metabo10070289
crossref_primary_10_1186_s13046_025_03447_y
crossref_primary_10_1016_j_advnut_2023_05_007
crossref_primary_10_3389_fonc_2023_1271847
crossref_primary_10_3389_fonc_2023_1155621
crossref_primary_10_1158_0008_5472_CAN_20_3323
crossref_primary_10_1016_j_omto_2022_02_017
crossref_primary_10_1016_j_cmet_2023_11_019
crossref_primary_10_1080_13543776_2021_1890028
crossref_primary_10_1016_j_ecoenv_2025_118787
crossref_primary_10_1016_j_tetlet_2023_154627
crossref_primary_10_1186_s40164_020_00196_w
crossref_primary_10_1002_cbin_12101
crossref_primary_10_1016_j_ijbiomac_2018_10_034
crossref_primary_10_1111_cas_14178
crossref_primary_10_3389_fonc_2019_00285
crossref_primary_10_1371_journal_pone_0202045
crossref_primary_10_1097_CAD_0000000000001764
crossref_primary_10_1186_s40164_022_00303_z
crossref_primary_10_1158_0008_5472_CAN_22_3481
Cites_doi 10.1016/j.drup.2014.12.001
10.1158/1078-0432.CCR-07-2218
10.1182/blood-2012-04-403733
10.1038/nature11743
10.3324/haematol.2015.135780
10.1158/0008-5472.CAN-11-0127
10.1158/0008-5472.CAN-14-3400
10.18632/oncotarget.11340
10.1038/nrc3557
10.1016/j.tibs.2014.02.004
10.1016/j.molonc.2015.08.003
10.1016/j.drup.2008.08.002
10.1126/science.1160809
10.1021/ja2045925
10.1016/j.leukres.2011.09.011
10.1038/sj.leu.2404414
10.1016/j.copbio.2015.02.003
10.1038/leu.2011.256
10.1016/j.bcp.2011.10.009
10.1038/nature10350
10.1038/ng.890
10.1200/JCO.2011.37.8919
10.1016/j.molcel.2015.06.017
10.1016/j.abb.2010.05.014
10.1074/jbc.M114.618769
10.1007/s10549-010-0848-5
10.1038/leu.2009.8
10.1016/j.phrs.2016.01.029
10.1073/pnas.1521548113
10.1158/1535-7163.MCT-07-0445
10.1016/j.bcp.2014.02.005
10.1182/blood-2007-08-104950
10.1016/j.ccr.2012.02.014
10.1182/blood-2012-05-426924
10.1038/leu.2016.102
10.1038/nrd4145
10.1111/j.1755-148X.2011.00919.x
10.1038/nchembio.2070
10.1124/jpet.111.187542
10.3324/haematol.2011.043331
10.1016/j.mam.2016.05.001
10.1042/BST0380014
10.1038/ng.3421
10.1186/s13045-016-0312-z
10.1016/j.ccr.2013.08.009
10.1021/mp0700256
10.1016/j.celrep.2014.04.045
10.1182/blood-2005-08-3531
10.1016/j.molcel.2015.12.014
10.1038/nature22056
10.1186/1471-2407-9-56
ContentType Journal Article
Copyright The Author(s). 2017
COPYRIGHT 2017 BioMed Central Ltd.
Copyright BioMed Central 2017
Copyright_xml – notice: The Author(s). 2017
– notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: Copyright BioMed Central 2017
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88C
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M0T
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s40170-017-0169-9
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (OA)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
ProQuest Health Management
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Health Management (Alumni Edition)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic




Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2049-3002
EndPage 12
ExternalDocumentID oai_doaj_org_article_c8fce22ac9cc493fbb649139a07638da
PMC5575874
A511279908
28855983
10_1186_s40170_017_0169_9
Genre Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: 722.013.009
  funderid: http://dx.doi.org/10.13039/501100003246
– fundername: ;
  grantid: 722.013.009
GroupedDBID 0R~
53G
5VS
7X7
8FI
8FJ
AAFWJ
AAJSJ
AASML
ABUWG
ACGFS
ADBBV
ADRAZ
ADUKV
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AOIJS
AQUVI
ASPBG
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
H13
HMCUK
HYE
IAO
IHR
IHW
INH
INR
ITC
KQ8
M0T
M48
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PUEGO
RBZ
ROL
RPM
RSV
SOJ
UKHRP
AAYXX
AFFHD
CITATION
-A0
3V.
ACRMQ
ADINQ
AHSBF
ALIPV
C24
NPM
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c564t-b30c4f3ac6c8cefa6e8a50604e29dafb5b32e47aa9e2c8f1ec313808eed220f43
IEDL.DBID 7X7
ISICitedReferencesCount 137
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000410456200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2049-3002
IngestDate Mon Nov 10 04:33:09 EST 2025
Tue Nov 04 01:52:07 EST 2025
Wed Oct 01 14:34:32 EDT 2025
Sat Oct 11 13:41:29 EDT 2025
Tue Nov 11 10:44:03 EST 2025
Tue Nov 04 17:11:30 EST 2025
Thu May 22 21:23:21 EDT 2025
Thu Jan 02 22:29:04 EST 2025
Sat Nov 29 04:00:00 EST 2025
Tue Nov 18 20:57:45 EST 2025
Sat Sep 06 07:25:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PHGDH
Bortezomib
Metabolism
Drug resistance
Multiple myeloma
Language English
License Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c564t-b30c4f3ac6c8cefa6e8a50604e29dafb5b32e47aa9e2c8f1ec313808eed220f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0746-8565
OpenAccessLink https://www.proquest.com/docview/1934948853?pq-origsite=%requestingapplication%
PMID 28855983
PQID 1934948853
PQPubID 2040155
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_c8fce22ac9cc493fbb649139a07638da
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5575874
proquest_miscellaneous_1934287807
proquest_journals_1934948853
gale_infotracmisc_A511279908
gale_infotracacademiconefile_A511279908
gale_healthsolutions_A511279908
pubmed_primary_28855983
crossref_citationtrail_10_1186_s40170_017_0169_9
crossref_primary_10_1186_s40170_017_0169_9
springer_journals_10_1186_s40170_017_0169_9
PublicationCentury 2000
PublicationDate 2017-08-29
PublicationDateYYYYMMDD 2017-08-29
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-29
  day: 29
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Cancer & metabolism
PublicationTitleAbbrev Cancer Metab
PublicationTitleAlternate Cancer Metab
PublicationYear 2017
Publisher BioMed Central
BioMed Central Ltd
Springer Nature B.V
BMC
Publisher_xml – name: BioMed Central
– name: BioMed Central Ltd
– name: Springer Nature B.V
– name: BMC
References MG Vander Heiden (169_CR22) 2009; 324
RZ Orlowski (169_CR9) 2008; 14
E Mullarky (169_CR47) 2011; 24
C Driessen (169_CR19) 2016; 101
CR Berkers (169_CR30) 2007; 4
Z-X Du (169_CR52) 2009; 9
M Kraus (169_CR34) 2007; 21
F Baenke (169_CR27) 2016; 10
ME Pacold (169_CR50) 2016; 12
ODK Maddocks (169_CR40) 2016; 61
JW Locasale (169_CR48) 2011; 43
SE Verbrugge (169_CR36) 2012; 341
DJ McConkey (169_CR8) 2008; 11
T Rückrich (169_CR13) 2009; 23
DI Lichter (169_CR16) 2012; 120
KC Anderson (169_CR2) 2012; 30
169_CR3
CF Labuschagne (169_CR39) 2014; 7
Y Zhao (169_CR25) 2011; 71
A Kuehne (169_CR35) 2015; 59
D Niewerth (169_CR7) 2015; 18
P Maiso (169_CR28) 2015; 75
GM DeNicola (169_CR45) 2015; 47
JM Buescher (169_CR32) 2015; 34
C Stäubert (169_CR26) 2015; 290
D Niewerth (169_CR33) 2014; 89
SE Bohndiek (169_CR37) 2011; 133
R Possemato (169_CR49) 2011; 476
H Liu (169_CR24) 2008; 7
P Balsas (169_CR14) 2012; 36
LHAM Wilt de (169_CR12) 2012; 83
EA Obeng (169_CR5) 2006; 107
PS Ward (169_CR21) 2012; 21
GP Soriano (169_CR29) 2016; 30
NE Franke (169_CR11) 2012; 26
A Corti (169_CR38) 2010; 500
CR Berkers (169_CR4) 2010; 38
PM Tedeschi (169_CR41) 2013; 4
P Moreau (169_CR1) 2012; 120
NE Franke (169_CR20) 2016; 7
D Niewerth (169_CR15) 2016; 9
C Leung-Hagesteijn (169_CR18) 2013; 24
BC Lipchick (169_CR6) 2016; 105
JW Locasale (169_CR42) 2013; 13
L Galluzzi (169_CR23) 2013; 12
ODK Maddocks (169_CR31) 2013; 493
E Mullarky (169_CR44) 2016; 113
SCW Ling (169_CR17) 2012; 97
ODK Maddocks (169_CR51) 2017; 544
R Oerlemans (169_CR10) 2008; 112
I Amelio (169_CR43) 2014; 39
S Pollari (169_CR46) 2011; 125
26482881 - Nat Genet. 2015 Dec;47(12):1475-81
20074028 - Biochem Soc Trans. 2010 Feb;38(Pt 1):14-20
26831078 - Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1778-83
23018640 - Blood. 2012 Nov 29;120(23):4513-6
24657017 - Trends Biochem Sci. 2014 Apr;39(4):191-8
18818117 - Drug Resist Updat. 2008 Aug-Oct;11(4-5):164-79
23822983 - Nat Rev Cancer. 2013 Aug;13(8):572-83
26365896 - Mol Oncol. 2016 Jan;10 (1):73-84
24113830 - Nat Rev Drug Discov. 2013 Nov;12 (11):829-46
20352489 - Breast Cancer Res Treat. 2011 Jan;125(2):421-30
24813884 - Cell Rep. 2014 May 22;7(4):1248-58
18347166 - Clin Cancer Res. 2008 Mar 15;14(6):1649-57
17708652 - Mol Pharm. 2007 Sep-Oct;4(5):739-48
22645181 - Blood. 2012 Aug 2;120(5):947-59
27155164 - Mol Aspects Med. 2016 Aug;50:41-55
26659919 - Haematologica. 2016 Mar;101(3):346-55
21941364 - Leukemia. 2012 Apr;26(4):757-68
26190262 - Mol Cell. 2015 Aug 6;59(3):359-71
16507771 - Blood. 2006 Jun 15;107(12):4907-16
22235146 - J Pharmacol Exp Ther. 2012 Apr;341(1):174-82
21981974 - Pigment Cell Melanoma Res. 2011 Dec;24(6):1112-5
19216805 - BMC Cancer. 2009 Feb 16;9:56
25697355 - J Biol Chem. 2015 Mar 27;290(13):8348-59
17024115 - Leukemia. 2007 Jan;21(1):84-92
27118406 - Leukemia. 2016 Nov;30(11):2198-2207
21760589 - Nature. 2011 Aug 18;476(7360):346-50
27110680 - Nat Chem Biol. 2016 Jun;12 (6):452-8
21498634 - Cancer Res. 2011 Jul 1;71(13):4585-97
18565852 - Blood. 2008 Sep 15;112(6):2489-99
21804546 - Nat Genet. 2011 Jul 31;43(9):869-74
26827824 - Pharmacol Res. 2016 Mar;105:210-5
26774282 - Mol Cell. 2016 Jan 21;61(2):210-21
25670156 - Drug Resist Updat. 2015 Jan;18:18-35
24157871 - Cell Death Dis. 2013 Oct 24;4:e877
25731751 - Curr Opin Biotechnol. 2015 Aug;34:189-201
24552657 - Biochem Pharmacol. 2014 May 1;89(1):43-51
21993678 - Haematologica. 2012 Jan;97(1):64-72
27542283 - Oncotarget. 2016 Nov 15;7(46):74779-74796
23242140 - Nature. 2013 Jan 24;493(7433):542-6
24029229 - Cancer Cell. 2013 Sep 9;24(3):289-304
22027222 - Biochem Pharmacol. 2012 Jan 15;83(2):207-17
18281512 - Mol Cancer Ther. 2008 Feb;7(2):263-70
21978467 - Leuk Res. 2012 Feb;36(2):212-8
20494648 - Arch Biochem Biophys. 2010 Aug 15;500(2):107-15
21692446 - J Am Chem Soc. 2011 Aug 3;133(30):11795-801
19460998 - Science. 2009 May 22;324(5930):1029-33
22215754 - J Clin Oncol. 2012 Feb 1;30(4):445-52
28425994 - Nature. 2017 Apr 19;544(7650):372-376
22439925 - Cancer Cell. 2012 Mar 20;21(3):297-308
25769724 - Cancer Res. 2015 May 15;75(10):2071-82
19225532 - Leukemia. 2009 Jun;23(6):1098-105
27599459 - J Hematol Oncol. 2016 Sep 06;9(1):82
References_xml – volume: 18
  start-page: 18
  year: 2015
  ident: 169_CR7
  publication-title: Drug Resist Updat
  doi: 10.1016/j.drup.2014.12.001
– volume: 14
  start-page: 1649
  year: 2008
  ident: 169_CR9
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-2218
– volume: 120
  start-page: 947
  year: 2012
  ident: 169_CR1
  publication-title: Blood
  doi: 10.1182/blood-2012-04-403733
– volume: 493
  start-page: 542
  year: 2013
  ident: 169_CR31
  publication-title: Nature
  doi: 10.1038/nature11743
– volume: 101
  start-page: 346
  year: 2016
  ident: 169_CR19
  publication-title: Haematologica
  doi: 10.3324/haematol.2015.135780
– volume: 71
  start-page: 4585
  year: 2011
  ident: 169_CR25
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-0127
– volume: 75
  start-page: 2071
  year: 2015
  ident: 169_CR28
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-3400
– volume: 7
  start-page: 74779
  year: 2016
  ident: 169_CR20
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11340
– volume: 13
  start-page: 572
  year: 2013
  ident: 169_CR42
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc3557
– volume: 39
  start-page: 191
  year: 2014
  ident: 169_CR43
  publication-title: Trends Biochem Sci
  doi: 10.1016/j.tibs.2014.02.004
– volume: 10
  start-page: 73
  year: 2016
  ident: 169_CR27
  publication-title: Mol Oncol
  doi: 10.1016/j.molonc.2015.08.003
– volume: 11
  start-page: 164
  year: 2008
  ident: 169_CR8
  publication-title: Drug Resist Updat
  doi: 10.1016/j.drup.2008.08.002
– volume: 324
  start-page: 1029
  year: 2009
  ident: 169_CR22
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 133
  start-page: 11795
  year: 2011
  ident: 169_CR37
  publication-title: J Am Chem Soc
  doi: 10.1021/ja2045925
– volume: 36
  start-page: 212
  year: 2012
  ident: 169_CR14
  publication-title: Leuk Res
  doi: 10.1016/j.leukres.2011.09.011
– volume: 21
  start-page: 84
  year: 2007
  ident: 169_CR34
  publication-title: Leukemia
  doi: 10.1038/sj.leu.2404414
– volume: 34
  start-page: 189
  year: 2015
  ident: 169_CR32
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2015.02.003
– volume: 26
  start-page: 757
  year: 2012
  ident: 169_CR11
  publication-title: Leukemia
  doi: 10.1038/leu.2011.256
– volume: 83
  start-page: 207
  year: 2012
  ident: 169_CR12
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2011.10.009
– volume: 476
  start-page: 346
  year: 2011
  ident: 169_CR49
  publication-title: Nature
  doi: 10.1038/nature10350
– volume: 43
  start-page: 869
  year: 2011
  ident: 169_CR48
  publication-title: Nat Genet
  doi: 10.1038/ng.890
– volume: 30
  start-page: 445
  year: 2012
  ident: 169_CR2
  publication-title: J Clin Oncol
  doi: 10.1200/JCO.2011.37.8919
– volume: 59
  start-page: 359
  year: 2015
  ident: 169_CR35
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.06.017
– volume: 500
  start-page: 107
  year: 2010
  ident: 169_CR38
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2010.05.014
– volume: 290
  start-page: 8348
  year: 2015
  ident: 169_CR26
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.618769
– volume: 125
  start-page: 421
  year: 2011
  ident: 169_CR46
  publication-title: Breast Cancer Res Treat
  doi: 10.1007/s10549-010-0848-5
– volume: 23
  start-page: 1098
  year: 2009
  ident: 169_CR13
  publication-title: Leukemia
  doi: 10.1038/leu.2009.8
– volume: 105
  start-page: 210
  year: 2016
  ident: 169_CR6
  publication-title: Pharmacol Res
  doi: 10.1016/j.phrs.2016.01.029
– volume: 113
  start-page: 1778
  year: 2016
  ident: 169_CR44
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1521548113
– volume: 7
  start-page: 263
  year: 2008
  ident: 169_CR24
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-07-0445
– volume: 89
  start-page: 43
  year: 2014
  ident: 169_CR33
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2014.02.005
– volume: 112
  start-page: 2489
  year: 2008
  ident: 169_CR10
  publication-title: Blood
  doi: 10.1182/blood-2007-08-104950
– volume: 21
  start-page: 297
  year: 2012
  ident: 169_CR21
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.014
– volume: 120
  start-page: 4513
  year: 2012
  ident: 169_CR16
  publication-title: Blood
  doi: 10.1182/blood-2012-05-426924
– volume: 30
  start-page: 2198
  year: 2016
  ident: 169_CR29
  publication-title: Leukemia
  doi: 10.1038/leu.2016.102
– volume: 4
  year: 2013
  ident: 169_CR41
  publication-title: NADPH and purine requirements of cancer cells Cell Death Dis
– volume: 12
  start-page: 829
  year: 2013
  ident: 169_CR23
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd4145
– volume: 24
  start-page: 1112
  year: 2011
  ident: 169_CR47
  publication-title: Pigment Cell Melanoma Res
  doi: 10.1111/j.1755-148X.2011.00919.x
– volume: 12
  start-page: 452
  year: 2016
  ident: 169_CR50
  publication-title: Nat Chem Biol
  doi: 10.1038/nchembio.2070
– volume: 341
  start-page: 174
  year: 2012
  ident: 169_CR36
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.111.187542
– volume: 97
  start-page: 64
  year: 2012
  ident: 169_CR17
  publication-title: Haematologica
  doi: 10.3324/haematol.2011.043331
– ident: 169_CR3
  doi: 10.1016/j.mam.2016.05.001
– volume: 38
  start-page: 14
  issue: Pt 1
  year: 2010
  ident: 169_CR4
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST0380014
– volume: 47
  start-page: 1475
  year: 2015
  ident: 169_CR45
  publication-title: Nat Genet
  doi: 10.1038/ng.3421
– volume: 9
  start-page: 82
  year: 2016
  ident: 169_CR15
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-016-0312-z
– volume: 24
  start-page: 289
  year: 2013
  ident: 169_CR18
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.08.009
– volume: 4
  start-page: 739
  year: 2007
  ident: 169_CR30
  publication-title: Mol Pharm
  doi: 10.1021/mp0700256
– volume: 7
  start-page: 1248
  year: 2014
  ident: 169_CR39
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.04.045
– volume: 107
  start-page: 4907
  year: 2006
  ident: 169_CR5
  publication-title: Blood
  doi: 10.1182/blood-2005-08-3531
– volume: 61
  start-page: 210
  year: 2016
  ident: 169_CR40
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.12.014
– volume: 544
  start-page: 372
  year: 2017
  ident: 169_CR51
  publication-title: Nature
  doi: 10.1038/nature22056
– volume: 9
  start-page: 56
  year: 2009
  ident: 169_CR52
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-9-56
– reference: 21498634 - Cancer Res. 2011 Jul 1;71(13):4585-97
– reference: 20494648 - Arch Biochem Biophys. 2010 Aug 15;500(2):107-15
– reference: 27110680 - Nat Chem Biol. 2016 Jun;12 (6):452-8
– reference: 27599459 - J Hematol Oncol. 2016 Sep 06;9(1):82
– reference: 22235146 - J Pharmacol Exp Ther. 2012 Apr;341(1):174-82
– reference: 25769724 - Cancer Res. 2015 May 15;75(10):2071-82
– reference: 21978467 - Leuk Res. 2012 Feb;36(2):212-8
– reference: 25697355 - J Biol Chem. 2015 Mar 27;290(13):8348-59
– reference: 17024115 - Leukemia. 2007 Jan;21(1):84-92
– reference: 22439925 - Cancer Cell. 2012 Mar 20;21(3):297-308
– reference: 22645181 - Blood. 2012 Aug 2;120(5):947-59
– reference: 26659919 - Haematologica. 2016 Mar;101(3):346-55
– reference: 24552657 - Biochem Pharmacol. 2014 May 1;89(1):43-51
– reference: 24157871 - Cell Death Dis. 2013 Oct 24;4:e877
– reference: 18818117 - Drug Resist Updat. 2008 Aug-Oct;11(4-5):164-79
– reference: 26831078 - Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1778-83
– reference: 27118406 - Leukemia. 2016 Nov;30(11):2198-2207
– reference: 28425994 - Nature. 2017 Apr 19;544(7650):372-376
– reference: 18281512 - Mol Cancer Ther. 2008 Feb;7(2):263-70
– reference: 20352489 - Breast Cancer Res Treat. 2011 Jan;125(2):421-30
– reference: 19460998 - Science. 2009 May 22;324(5930):1029-33
– reference: 22215754 - J Clin Oncol. 2012 Feb 1;30(4):445-52
– reference: 18565852 - Blood. 2008 Sep 15;112(6):2489-99
– reference: 27155164 - Mol Aspects Med. 2016 Aug;50:41-55
– reference: 23242140 - Nature. 2013 Jan 24;493(7433):542-6
– reference: 25731751 - Curr Opin Biotechnol. 2015 Aug;34:189-201
– reference: 21981974 - Pigment Cell Melanoma Res. 2011 Dec;24(6):1112-5
– reference: 21692446 - J Am Chem Soc. 2011 Aug 3;133(30):11795-801
– reference: 21760589 - Nature. 2011 Aug 18;476(7360):346-50
– reference: 17708652 - Mol Pharm. 2007 Sep-Oct;4(5):739-48
– reference: 20074028 - Biochem Soc Trans. 2010 Feb;38(Pt 1):14-20
– reference: 23822983 - Nat Rev Cancer. 2013 Aug;13(8):572-83
– reference: 21993678 - Haematologica. 2012 Jan;97(1):64-72
– reference: 26190262 - Mol Cell. 2015 Aug 6;59(3):359-71
– reference: 22027222 - Biochem Pharmacol. 2012 Jan 15;83(2):207-17
– reference: 25670156 - Drug Resist Updat. 2015 Jan;18:18-35
– reference: 26774282 - Mol Cell. 2016 Jan 21;61(2):210-21
– reference: 26482881 - Nat Genet. 2015 Dec;47(12):1475-81
– reference: 23018640 - Blood. 2012 Nov 29;120(23):4513-6
– reference: 16507771 - Blood. 2006 Jun 15;107(12):4907-16
– reference: 18347166 - Clin Cancer Res. 2008 Mar 15;14(6):1649-57
– reference: 24813884 - Cell Rep. 2014 May 22;7(4):1248-58
– reference: 19225532 - Leukemia. 2009 Jun;23(6):1098-105
– reference: 21941364 - Leukemia. 2012 Apr;26(4):757-68
– reference: 26365896 - Mol Oncol. 2016 Jan;10 (1):73-84
– reference: 27542283 - Oncotarget. 2016 Nov 15;7(46):74779-74796
– reference: 19216805 - BMC Cancer. 2009 Feb 16;9:56
– reference: 24657017 - Trends Biochem Sci. 2014 Apr;39(4):191-8
– reference: 21804546 - Nat Genet. 2011 Jul 31;43(9):869-74
– reference: 26827824 - Pharmacol Res. 2016 Mar;105:210-5
– reference: 24113830 - Nat Rev Drug Discov. 2013 Nov;12 (11):829-46
– reference: 24029229 - Cancer Cell. 2013 Sep 9;24(3):289-304
SSID ssj0000853963
Score 2.4188044
Snippet Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the...
The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the wide-spread...
Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by the...
Abstract Background The proteasome inhibitor bortezomib (BTZ) is successfully applied in the treatment of multiple myeloma, but its efficacy is restricted by...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7
SubjectTerms Apoptosis
Biomedical and Life Sciences
Biomedicine
Biosynthesis
Bortezomib
Breast cancer
Cancer Research
Cancer therapies
Carbon
Cell Biology
Cell growth
Dehydrogenases
Drug resistance
Drug therapy
Experiments
Imaging
Inhibitor drugs
Mass spectrometry
Melanoma
Metabolic Diseases
Metabolism
Metabolomics
Multiple myeloma
Mutation
Oncology
Patient outcomes
Penicillin
PHGDH
Proteins
Radiology
Scientific imaging
Targeted cancer therapy
Testing
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (OA)
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA9yiPgifls9NYIgKOXaJm2Tx1M8fPHwQfHeQjKdYuW2e1z3hPOvdybtlu2J-uJLYTeTJTszycw0M78R4mUISmPdeApL6KF93aQW0KShUoGsjcYyb2Kzifr42Jyc2E87rb44J2yEBx4ZdwCmBSwKDxZAW9WGUGmGsvQUgCvTRNcoq-1OMPV9zL5SpFrTNWZuqoNBZ7HHSs6ZlpVN7cIQRbz-30_lHbN0NWXyyr1pNEdHt8WtyY-Uh-P674hr2N8VNz5ON-X3xFfuk44_16suSIqo2Usk8cqul9sUQrm6xNP1ystukH4SEjaSX8wSGTuTA30cYnmgHC578hTpZ-6LL0fvP7_7kE5NFFIoK71Jg8pAt8pDBQaw9RUaH0EFsbCNb0MZVIG69t5iQbzOEVSuTGbIdhZF1mr1QOz16x4fCQm2LKuGXZYSGeE0cKFQqQHzQCd-DonIthx1MCGMc6OLUxcjDVO5UQiOHo6F4GwiXs9TzkZ4jb8Rv2UxzYSMjB2_IH1xk764f-lLIp6zkN1YZjrvb3fInmdNttkk4lWk4B1Oywc_FSoQExgra0G5v6CknQnL4a0iuelkGBw5zIzIQ_qZiBfzMM_kbLce1xcjDUWyJqsT8XDUu_lPFzS1tIZm1wuNXHBlOdJ33yJueEmuual1It5sdXdnWX9i-uP_wfQn4mYRdx5X_OyLvc35BT4V1-HHphvOn8Wt-wudCki8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer LINK
  dbid: RSV
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3bitUwcNBVZF-8X6qrRhAEpdg2aZs8ruLii4t43beQpula2NMup2eF9eudSdOyXS-gL4WezBySydzSzAXgaVVx4cra4LEEH8KUdaysk3FV8AqtjXB5WvtmE-X-vjw4UO9DHvcwRbtPV5JeU3uxlsXLQSS-SUpKoZKFitVFuITWTlK_hg8fv8wfVtCH4MhV4Qbzt5gLG-RL9f-qkM9YpPPRkueuTL0l2rv2X2u4DleD48l2R065ARdcdxOuvAtX67fgKzVWdz_6VVsxPIKTW4n8wNqOTTGHbHXqjvqVYe3ATNhVVzP6kotg5H0O-Dr4fEI2nHboWuLf3IbPe28-vX4bh64Lsc0LsYkrnljRcGMLK61rTOGk8VUIXaZq01R5xTMnSmOUy6xsUmd5ymUi0dhmWdIIfge2ur5z94BZledFTT5O7qgkakWZRbmwLq3QRKQ2gmTaB21DSXLqjHGk_dFEFnokmMaHJoJpFcHzGeV4rMfxN-BXtLkzIJXS9j_060MdJFPjGqzLMmOVtULxBicpqFaqSVD1ytpE8JhYQ495qbNC0LvkqpZozGUEzzwEqQScvjUhswGJQMW1FpA7C0gUZbscnthPB1UyaPSwqYQPcnUET-ZhwqTwuM71JyMMHn1lUkZwd-TWedEZouZKIna54OMFVZYjXfvNFxrP0ZeXpYjgxcTNZ6b1J6Lf_yfoB7CdeXGgXKAd2NqsT9xDuGy_b9ph_chL9k9wJEtr
  priority: 102
  providerName: Springer Nature
Title Bortezomib resistance in multiple myeloma is associated with increased serine synthesis
URI https://link.springer.com/article/10.1186/s40170-017-0169-9
https://www.ncbi.nlm.nih.gov/pubmed/28855983
https://www.proquest.com/docview/1934948853
https://www.proquest.com/docview/1934287807
https://pubmed.ncbi.nlm.nih.gov/PMC5575874
https://doaj.org/article/c8fce22ac9cc493fbb649139a07638da
Volume 5
WOSCitedRecordID wos000410456200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 2049-3002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000853963
  issn: 2049-3002
  databaseCode: RBZ
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2049-3002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000853963
  issn: 2049-3002
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2049-3002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000853963
  issn: 2049-3002
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Health & Medical Collection (ProQuest)
  customDbUrl:
  eissn: 2049-3002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000853963
  issn: 2049-3002
  databaseCode: 7X7
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Healthcare Administration Database
  customDbUrl:
  eissn: 2049-3002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000853963
  issn: 2049-3002
  databaseCode: M0T
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthmanagement
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2049-3002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000853963
  issn: 2049-3002
  databaseCode: BENPR
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2049-3002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000853963
  issn: 2049-3002
  databaseCode: PIMPY
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2049-3002
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000853963
  issn: 2049-3002
  databaseCode: RSV
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1db9QwzIINob3wvVEYR5GQkEDV-pG2yRPa0CZ4uNNpDDieojRN4aRdO643pPHrsdNcWYfYCy-R0jhVEju248Q2wMuiSJjJS4XHEiyYystAaMODIksKlDbMpFFpk03kkwmfzcTUGdxa96xyzRMtoy4bTTbyPVQ0KJIJSpe3Zz8CyhpFt6suhcZN2KS02UTn-SzvbSyoTiRIYO4yM-LZXstCm2kloveWmQjEQBzZqP1_8-ZLwunqw8krt6dWKB3d_d_p3IM7Th319zv6uQ83TP0Abo_dhftD-ELp1s2vZjEvfDyYk7KJVOLPa3_9EtFfXJjTZqH8eesrh2tT-mTfRTDSSVusttbL0G8valQ48TeP4NPR4cm794HLxRDoNGOroEhCzapE6UxzbSqVGa5sbEITi1JVRVoksWG5UsLEmleR0UmU8JCjCI7jsGLJNmzUTW0eg69FmmYlaT6poUCpBfkbpUybqEDBEWkPwjVKpHaByilfxqm0BxaeyQ6LEgtJWJTCg9d9l7MuSsd1wAeE5x6QAmzbD83ym3T7VeIctIljpYXWTCQVDpJRBFUVIkPmpfLgOVGJ7LxVezYh90mBzVHEcw9eWQhiFDh8rZy_Ay4ChdwaQO4OIHGD62HzmoSkYzCt_EM_Hrzom6knPZqrTXPeweCBmIe5Bzsd4faTjrFrKjj2zgckPViVYUs9_27Dj6eo4fOcefBmTfyXhvWvRX9y_SSewlZsNyW5BO3Cxmp5bp7BLf1zNW-XI7urbclHsHlwOJkej6zxBMtxeILfph_G069YO_74-TelTV0w
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFH4qU0S5sBcChQYJhASKmsVJnANCZak6amc0hyLak3EcB0bqJGUyBQ0_it_Ie85CU0RvPXCJNOPnyHa-t9h-C8CzNA2YjjOJ2xJ8MBlnTqI0d9IoSFHbMB16mSk2EY_H_PAwmazArzYWhtwqW5loBHVWKjoj30JDgzKZoHZ5c_LNoapRdLvaltCoYbGnlz9wy1a9Hr7H7_vc93c-HLzbdZqqAo4KI7Zw0sBVLA-kihRXOpeR5tJk2dN-ksk8DdPA1yyWMtG-4rmnVeAF3OWoTHzfzVmA770Cq4zAPoDVyXA0OepOddCACRDSzfWpx6OtirmmtotHHp5R4iQ9BWjqBPytDc6ow_Oumufua40a3Ln5vy3gLbjRGNz2ds0ht2FFF3fg2qhxKbgLn6igvP5ZzqapPdcVmdPIB_a0sFtfS3u21MflTNrTypYNmnVm0wk2kpHVXeHPysRR2tWyQJMaX3MPPl7KtNZhUJSFfgC2SsIwysi2CzWlgk0poipkSnspqkZPWeC2EBCqScVOFUGOhdmS8UjUqBH4EIQakVjwsutyUuchuYj4LeGqI6QU4uaPcv5FNBJJ4ByU9n2pEqVYEuQ4SEY5YqWLKodn0oJNQqWo43E7QSi2yUSP0YjhFrwwFCQKcfhKNhEduAiUVKxHudGjRBGm-s0tZEUjQivxB68WPO2aqSe5BRa6PK1pcMvP3diC-zWjdJP2sWuYcOwd91iotyr9lmL61SRYD3EPw2NmwauW2c4M61-L_vDiSWzC2u7BaF_sD8d7j-C6bwQCBUBtwGAxP9WP4ar6vphW8yeNTLHh82Vz4W-fvrdg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ra9RAEB-0SukX363RalcQBCU0j02y-7E-DkU9Cr76bdlsNhro5crlKtS_3pnNJjT1AeKXwGVnjn3M7MxmZ34D8LgsU26LSuOxBB9cF1UojRVhmaclWhtus7hyxSaK-VwcHclDX-e0G6LdhyvJPqeBUJra9f5JVfcqLvL9jkeuYEpMYZO5DOVluMIpjp6O6x8-jx9Z8E2KEuZvM3_LObFHDrb_1835nHW6GDl54frUWaXZ9f8ezw245h1SdtBL0E24ZNtbsPneX7nfhi9UcN3-WC6akuHRnNxNlBPWtGyIRWSLM3u8XGjWdEz71bYVoy-8SEZeaYc_O5dnyLqzFl1O_Js78Gn26uOL16GvxhCaLOfrsEwjw-tUm9wIY2udW6EdOqFNZKXrMivTxPJCa2kTI-rYmjRORSTQCCdJVPN0GzbaZWvvAjMyy_KKfJ_MElRqSRlHGTc2LtF0xCaAaFgTZTxUOVXMOFbuyCJy1U-YwoeiCVMygKcjy0mP0_E34ue00CMhQWy7F8vVV-U1VuEYjE0SbaQxXKY1dpIThqqOcEsWlQ5gj8RE9fmq40ahDsiFLdDIiwCeOAraKrD7RvuMB5wEAt2aUO5OKFHFzbR5EEXlt5hOoedN0D4o4QE8GpuJk8LmWrs87WnwSCyiIoCdXnLHQSfImkmB3MVEpiezMm1pm28OgDxDH18UPIBng2Sf69afJv3eP1Hvwebhy5l692b-9j5sJU4zKF1oFzbWq1P7AK6a7-umWz10Cv8TdExXMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bortezomib+resistance+in+multiple+myeloma+is+associated+with+increased+serine+synthesis&rft.jtitle=Cancer+%26+metabolism&rft.au=Zaal%2C+Esther+A&rft.au=Wu%2C+Wei&rft.au=Jansen%2C+Gerrit&rft.au=Zweegman%2C+Sonja&rft.date=2017-08-29&rft.pub=Springer+Nature+B.V&rft.eissn=2049-3002&rft.volume=5&rft_id=info:doi/10.1186%2Fs40170-017-0169-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-3002&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-3002&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-3002&client=summon